
Implementing XML-based Product Manuals*

* This work was partly sponsored by the OTKA F030763 research project

Zsolt Barczikay
Department of Measurement and Information Systems,

Budapest University of Technology and Economics,
Muegyetem rkp. 9 Bldg. R., H-1521 Budapest, Hungary,

barczy@mit.bme.hu

Tamás Mészáros
Department of Measurement and Information Systems,

Budapest University of Technology and Economics,
Muegyetem rkp. 9 Bldg. R., H-1521 Budapest, Hungary,

meszaros@mit.bme.hu

ABSTRACT: The management of the electronic
information is a very important field nowadays.
Relational database systems (RDBS) are widespread
solutions, but text -based documentation, like product
manuals, could not be squeezed into rows, columns, and
cells. The Extensible Markup Language (XML) is a
new standard that describes text documents in a
structured format. It is based on the SGML ISO
standard, and was primary designed for the World
Wide Web. In this paper we introduce how web-based
electronic product manuals can be build using XML
technology. After a short presentation of the XML
components, we concentrate on the main advanced
features in product manuals using XML. Finally, we
present a prototype system for implementing XML-
based product manuals.

1. INTRODUCTION

An ongoing research project at the Budapest University of
Technology and Economics targets the creation of
Intelligent Product Manuals (IPM) [1]. The project
involves four universities: University of Wales, Cardiff
(UK), Budapest University of Technology and Economics
(BUTE, Hungary), Technical University Clausthal
(Germany), University of Rousse (Bulgaria), and two
industrial partners: Excel Csepel Manufacturing Ltd from
Hungary, and Sparky PLC from Bulgaria.

The aim of the IPM project is to develop a methodology
for providing of intelligent decision-support throughout the
product life cycle, from product installation, through its
maintenance and diagnosis to its dismantling and recycling
[2]. The project staff at BUTE is working on the prototype
IPM of Excel-Csepel SL 320/600 CNC turning center [3].

The main objective of the design of the architecture is to
define a common information framework for integrating all
product-related data stored in various electronic formats,
integrating knowledge-based and multimedia systems to
use and present these data and finally to develop IPM
prototypes.

 Taking the needs of industrial partners into
consideration the architecture should support simple and
affordable IPM solutions as well as an enterprise-wide
information framework for integrating all available data
and tools.

An important field of intelligent product manuals is to
effectively manage electronic documentation. A suitable
technology was needed that can be the basis of the
document management system, and has suitable features

and applications for building product manuals. XML has
proven to be a good choice for this purpose.

2. IPM ARCHITECTURE

The main innovation of the project lies in the application
of state-of-the-art techniques and tools. It utilises existing
standards and tools from all possible fields. It was also a
project rationale that the incorporated techniques and tools
should be widely accessible and supported.

The following general architecture has been proposed:

Fig 1. IMP architecture

The system utilises web technology to provide an easy -

to-use multimedia user interface, document storage and
access, and communication methods. Knowledge-based
modules are added to perform more complex tasks, for
example machine diagnosis.

The operation of the IPM can be categorised into three
main operation modes:
?? Standalone IPM. A low cost solution, which runs on a

multimedia PC and provides basic documentation and
knowledge-based tools from a CD-ROM. It also can be
portable.

?? Intranet-based level. This level is a multi-user
environment containing the full documentation,
knowledge-based tools for diagnosis and supervision,
and databases of product related data. It is integrated
with the customer's information management system.

?? Internet-based level. This level connects the IPM to
the manufacturer's information system and to other
external sites. This supports additional features like
automatic document updates, product history
monitoring, and information retrieval from external
data sources.

3. XML TECHNOLOGY AND METHODS

The World Wide Web Consortium (W3C), responsible for
web standards, had worked out the Extensible Markup
Language [4], and brought out as a recommendation in 10
February 1998. XML is a meta-language, a language to
describe applications-specific languages for representing
text documents. It plays two important roles.

The XML language is very similar to the Standard
Generalizes Markup Language (SGML), which is an ISO
standard for electronic document management since 1986.
The main advantage of this technology is that it provides
an opportunity to plan the structure of the information, and
to store the data according to the developed structure. It
can be used for processing text -based information. The
application of the SGML standard dates back several
decades. It was primary used by the large-scale industry
[5].

XML has plenty of advantages for using in electronic
manuals:
??Long lifetime of the syntax: XML is vendor independent

– we can define a document language based on XML that
does not depend on particular document editing software.

??Structured: we are able to build structured text
documents, and use structured queries to retrieve
information from the documents.

??Content validation: XML has techniques to
automatically validate the content of a document based
on the document type definition.

??XML documents are reusable: we are able to take out, or
change the required parts, without reading the whole text.

??We can regain the invested energy of document design
many times at the side of the utilization.
XML, as a meta-language, can help in defining

languages and describe the information content of a
document. We can define the available elements and the
hierarchy between them. The formal definition of
elements, their usage and relations, is called Document
Type Definition (DTD) [6].

XML is a markup language. It stores not only text
fragments, but also their types. The stored string of the
electronic markup is called tag. The information is stored
between starting and ending tags, as shown in the example
below.

<title>Accuracy Test Reports</title>
<testdata>
 <product>
 <productname>EXCEL CNC LATHE</productname>
 <producttype>SL-320/600</producttype>
 <identifier>EM1234567890</identifier>
 </product>
 <testman>Mr. John Smith</testman>
 . . .
</testdata>

As the example shows us, the XML language does not
specify the appearance of the text. It is entirely separated
from the content. The W3C defined its own technology
rules called eXtensible Stylesheet Language XSL [7] and
XSL Transformation XSLT [8].
Structuring a document means to analyze the sense of its
content. We have to examine what kind of content
elements can we distinguish, what are the characteristics of
these elements, and what are the relations between them.

 For instance the following text is a part from the product
manual. Let us try to see it through the glasses of the
XML.

The opening of the chip conveyor is 280 mm
wide, while its height of ejection is 1200 mm.

In this sentence it is worth to mark up the physical units
together with their numerical values. So we are able to
query the technical information about the chip conveyor,
and the software systems will be able to process these
values and use them in other calculations. We can mark up
the information in the following way:

<P>The opening of the chip conveyor is
<Measure><Value>280</Value><Unit>mm</Unit>
</Measure> wide, while its height of ejection is
<Measure><Value>1200</Value> <Unit>mm</Unit>
</Measure>.</P>

The planning of the documentation structure consists of
a collection of similar ideas, thoughts and requirements.
We have to take into consideration the separable content
elements and possible logical structure among them.

The next step is to formulate these requirements in a
formal way to create the document type definition. The
following example shows the DTD of our example for
measures:

<!ELEMENT P (#PCDATA | Measure)* >
<!ELEMENT Measure (Name? , Value , Unit) >
<!ELEMENT Name (#PCDATA) >
<!ELEMENT Value (#PCDATA) >
<!ELEMENT Unit (#PCDATA) >

We can notice that we have to define the name of the tag
and describe the content. #PCDATA means that the content is
a text. It also states that the Name, Value and Unit elements
can not be further divided. The Measure element consists
of the name of the measure, the measured value and the
unit. The ‘?’ symbol at the end of the name specifies that
the element occurs once or never. The P element contains
simple text, or the Measure element. The ‘|’ symbol
specifies the ‘or’ relation, and the ‘*’ symbol at the end
tells us that this structure can occur several times. In other
words the measure can appear anywhere in the text.

When the DTD is ready, we can create the document
with an XML editor, like XMetal [9]. XML editors use the
DTD, and force us to keep the rules of the document
structure.

4. THE SKELETON OF AN XML BASED SYSTEM

The XML-based product manual can be integrated at
various levels into the main architecture. In this paper we
only concentrate on the internet -based level, as this is the
most typical application area at the moment.

After we had created the documentation in XML format,
the documentation managing system had been designed to
present it to the users (document authors and end users as
well).

There are numerous ways to access and present the
information stored in XML documents. There are simple
document viewers that can show the documentation to the

user. In addition to conventional document viewers, these
systems have advanced presentation facilities to display the
documentation in different ways, using different formats,
and filtering the required parts. They have advanced
filtering and search capabilities based on the document
structure and markingups.

We can also create programs to access and handle the
information stored in XML format. This opens a wide
spectrum of possible applications. These applications can
access the documentation in a similar way to how access
databases. They can form queries and evaluate them over
the documentation.

In the IPM project we used small program modules to
build our prototype system. Some of these modules are
based on freeware APIs implementing basic XML
functionality. During the development of these modules,
our primary goal was to demonstrate how to query the
content, and how to find marked text elements. Last but
not least the XML modules had to suit the main IPM
prototype, which is client-server based, and can be
accessed via the internet.

The server stores text, figures, numerical, and other data
about the product. The user sends a query to the server,
that processes the query using XSL filtering, generates a
web page, and sends it back to the user in HTML format.
At clients’ side a standard web-browser is used to present
the results to the user.

 Figure 2 shows the scheme of the XML subsystem. At
client side we use a standard web-browser, like Netscape
Navigator, or Internet Explorer to access the web pages of
the product manual. The browser provides the opportunity
to read the manual, and also to submit a query form. To
formulate our request, we can write the name of the tag, or
give a query expression in the XPath language [10]. This
case is for demonstration only, since the user has to know
the structure of the documents and tags used in the
documents. The query form contains the list of available
tags to help the user.

 Fig 2. Prototype XML system architecture

The XML Path language (XPath) is another W3C
technology to describe the location path of elements in
XML based document. XPath treats the structured
document as a tree, and one can navigate in this document
tree. We can use relations like child, parent, ancestor and
descendant. The leaves of the tree are text elements of the
document. Using multiple relations in a chain we can
address any marked piece of the text.

5. COM PONENTS AND TOOLS

The XML module was implemented using the Java
programming environment and its Servlet technology [11].
The Java Servlet technology makes it possible to connect
our programs to the web-server to enhance its
functionality. When the user visits the manual pages the
web-server automatically calls our Java function and
establishes a channel through which we can send data
directly to the end user in the HTML format. In the project
the Apache HTTP Server [12] is used. To connect to our
system, only its configuration file had been set.

The server side program module uses the XT [13] and
XP [14] Java APIs by James Clark.

The XP API is an XML parser. It is able to read an
XML document. It separates the tags from simple text. The
XT API is also a parser, but it interprets XSL tags and
XPath descriptions instead of XML tags. Both programs
are implemented as Java classes.

In the following example two classes are created and the
XSL parser is set up, that uses the specified XML parser
inside. The outputHandler class deals with the output of
the parsers, and transfers it to the web-server through the
ServerDestination. The xslPatterns contains the XSL rules
and the XMLSourceFile the XML-based documents.

XSLProcessorImpl xsl = new XSLProcessorImpl();
Object parserObj = Class.forName

("com.jclark.xml.sax.CommentDriver")
.newInstance();

xsl.setParser((Parser) parserObj);

OutputMethodHandlerImpl outputHandler = new

OutputMethodHandlerImpl(xsl);
xsl.setOutputMethodHandler(outputHandler);
Destination dest=new ServletDestination(res);
outputHandler.setDestination(dest);

xsl.loadStylesheet(xslPatterns);
xsl.parse(XMLSourceFile);

With the help of the XP parser we read through the

documents and find the required element. The result of the
search is still in XML form, which should be then
transformed into HTML before being sent to the web
browser.

 Using XSLT we can describe transformation rules for
XML documents. It makes it possible to pick up some
pieces of the document, to change the order of elements,
and to insert elements into the document. With the help of
this technology we can convert our XML document into
HTML. The following is an XSLT example, in which we
transform the Title element into HTML format.

<xsl:template match="descendant::Title">
 <h1><center>
 <xsl:apply-templates/>
 </center></h1>
</xsl:template>

The syntax of XSLT follows the XML standard. This
fact also shows the power of the XML language. The first
line of this rule describes that we would like to match the
Title element. The matching pattern is formulated in the
XPath language. The next line specifies the output. In our
example the <h1><center> are standard HTML tags. The
<xsl:apply-templates/> marker tells the XSL processor
to display the text surrounded by the <Title> tags in the

XML document. Finally, the </center></h1> tags come
up at the end of the output. If the input was:

<Title>ACCURACY TEST REPORTS</Title>

The output will be:

<h1><center> ACCURACY TEST REPORTS</center></h1>

The XT parser can do this conversation automatically.
We only have to describe the transformation rules for
every content element. Using this technique we can
achieve that our XML-based documentation can be
processed at server side, and can be visualized in HTML
browsers at client side.

6. THE USER INTERFACE

Figure 3 shows the result at client side running Internet
Explorer. In the main window we can see the text of the
product manual. The smaller window to the left shows
general information and the selected component that will
be highlighted in the main window. The lower window
contains an input area for XPath expression, and a list of
the most important content elements.
 The basic aim of this designed was to demonstrate the
power of XML-based product manuals. It makes it possible
for programs to interpret the structure and meaning of the
product documentation, and it can also help in processing
complex content searching. We have demonstrated tools
and techniques to build XML-based product manuals, and
to generate document pages automatically based on user
queries and the documentation.

Fig 3. Screenshot of the prototype XML system

Another advantage of the introduced system and the

solution is that the XML technology remains hidden to the
user. He only experiences ve ry dynamic and useful web
pages. According to the current trends in web system
design, it is expected that in the near future web-browsers
will implement the XML technology so we won’t need to
convert XML into HTML format.

The field of XML technology is de veloping rapidly.
Some technology elements (for example XML linking) are
still under development by the W3C. To implement and
use these new technology elements into our system are the
next developing steps.

7. SUMMARY

This paper summarized how we can use XM L in electronic
product manuals. It introduced briefly the XML language,
its syntax, and authoring of the XML documents. We have
followed the steps of authoring, and presented application
examples. We have also demonstrated how to analyze and
how to structure a simple text.

The paper described a prototype system, which was
developed to display XML based documentation to product
manual readers. We have shown the architecture of the
system, its main components, and theirs tasks and the co-
operation. In that way we can get acquainted with the tools
belong to the eXtensible Markup Language. The main
software tools used were an Apache web -server and the
XT and XP APIs. We used Java Servlet technology to link
these together.

We can conclude that a system based on the XML
technology can provide essential tools to improve the
efficiency of the processing of the text -based information.
Such system, through the extensive usage of the XML
related technologies, seems to be flexible and scalable to
larger and even more diversified applications.

REFERENCES

[1] Deliverable 1.1: Analysis of the Problem Domain ,
Intelligent Product Manual, INCO-COP 96/0231,
January 1998

[2] Deliverable 1.2: Outline Solution that Illustrates the
Capabilities of Intelligent Product Manuals ,
Intelligent Product Manual, INCO-COP 96/0231,
January 1998

[3] Excel Csepel Machine Tools Ltd.
http://www.marathon-excel.com

[4] World Wide Web Consortium:
Extensible Markup Language (XML) 1.0
http://www.w3c.org/TR/1998/REC-xml-19980210

[5] Chet Ensign : $GML : The Billion Dollar Secret
(Charles F. Goldfarb Series on Open Information
Management) Prentice Hall Computer Books, 1997

[6] Simon St. Laurent: XML Elements of Style
McGraw -Hill, 2000

[7] Extensible Stylesheet Language (XSL)
http://www.w3c.org/TR/WD-xsl

[8] XSL Transformation
http://www.w3c.org/TR/xslt

[9] XMetal, Softquad Inc.
http://www.softquad.com

[10] XML Path Language
http://www.w3c.org/TR/xpath

[11] Ken Arnold, James Gosling, The Java™
Programming Language Second Edition , Addison
Wesley Longman Computer & Engineering Publishing
Group, ISBN 0-201-31006-6, 1998

[12] Apache Project
http://www.apache.org

[13] XT API, James Clark
http://www.jclark.com/xml/xt.html

[14] XP API, James Clark
http://www.jclark.com/xml/xp/index.html

