

DEPARTMENT OF MEASUREMENTS AND INFORMATION SYSTEMS

DEVELOPING AN EFFICIENT APPLICATION
FOR THE DISTRIBUTION OF LARGE FILES

B.Sc. Thesis

László András Gárdonyi

Advisor: Zoltán Micskei

Budapest, 2008

Developing an Efficient Application for the Distribution of Large Files 1

Table of Contents

1. Introduction .. 3

1.1. The Goal of the Thesis ... 3

1.2. Existing Solution .. 3

1.2.1. UFTP Details .. 4

1.3. Problems with the Existing Solution .. 4

1.4. High-Level Requirements... 5

1.5. Alternative Solutions ... 5

1.5.1. Advanced Framework for the Current Solution .. 5

1.5.2. Active Directory Software Deployment .. 5

1.5.3. Commercial Software Management Systems ... 6

1.5.4. BitTorrent Based Solution ... 6

1.6. Development Method ... 7

2. Designing the Application ... 8

2.1. Requirement Analysis .. 8

2.1.1. Use Case Analysis .. 8

2.1.2. Non-Functional Requirements .. 11

2.2. Architecture ... 11

2.2.1. Technology .. 11

2.2.2. Layers .. 14

2.2.3. Security Concerns ... 15

2.2.4. User Interface ... 16

2.3. Development Environment ... 16

2.3.1. Version Control System... 16

2.3.2. Issue Tracking System ... 17

2.3.3. Other Development Tools ... 18

2.4. Testing Principles ... 18

2.4.1. Unit Testing ... 19

2.4.2. Integration Testing .. 19

2.4.3. System Testing .. 19

2.4.4. User Acceptance Testing ... 19

2.4.5. Code Analysis .. 19

3. Implementation of the Application .. 21

3.1. Service Component ... 21

3.2. Client Component .. 26

Developing an Efficient Application for the Distribution of Large Files 2

3.3. UFTP Daemon .. 27

3.4. Logging Component ... 28

3.5. Test Implementations .. 29

3.5.1. Features to Be Tested ... 29

3.5.2. Features Not to Be Tested .. 29

3.5.3. Unit Testing Framework .. 29

3.5.4. Integration Testing Framework .. 31

3.5.5. Test Scripts .. 32

3.5.6. System Testing .. 36

4. Testing Results .. 37

4.1. Fixed Issues .. 37

4.2. Code Analysis Results .. 38

4.3. Testing in the Target Environment .. 39

5. Installation Instructions .. 40

5.1. Service Component ... 40

5.1.1. Requirements .. 40

5.1.2. Installation .. 40

5.1.3. Settings ... 40

5.1.4. Operation .. 43

5.2. Client Component .. 45

5.2.1. Requirements .. 45

5.2.2. Installation .. 45

5.2.3. Settings ... 45

5.2.4. Operation .. 46

5.3. UFTP Daemon .. 47

5.3.1. Requirements .. 47

5.3.2. Installation .. 47

5.4. Group Policy Settings ... 47

6. User Manual ... 48

7. Conclusions ... 50

7.1. Evaluation of the Solution ... 50

7.2. Lessons Learned... 51

7.3. Future Plans ... 51

References .. 52

Developing an Efficient Application for the Distribution of Large Files 3

1. Introduction

The following chapter discusses the initiative information for the thesis. It starts by laying down the

goals and explaining the existing scenario, finally going over the alternative solutions and describing

the method of the development.

1.1. The Goal of the Thesis

Recently in the department's laboratories virtual machines are being used to supply the special

software environments required for the different courses, e.g. high availability clusters, J2EE

application servers or system management applications.

Before the lab sessions the teaching assistants have to arrange the quick distribution of the virtual

machines. These virtual machines are usually large in size, at least 5 GB, but there are plenty above

10 GB, thus copying them separately to each machine would take a long time and would put a severe

load on the server containing the VMs, as well as the network infrastructure.

The goal of the thesis is to find an efficient solution for distributing these large files.

1.2. Existing Solution

To solve the problem, the department staff found a utility capable of efficiently distributing large

files, but didn’t require the installation of a large scale configuration management or software

distribution system.

The choice fell upon the utility called UFTP (1). It's a simple command line application that uses

multicast packets for copying to multiple machines. The application has two components, a daemon

(the client) and a server. The daemon has to be running on each of the clients; it listens on a specific

UDP port for the copy announcements. The server has to be started with a filename as a parameter.

The server first sends out announce messages to the network and waits for the clients that answer,

then it starts to send the file in smaller blocks. Each block has to be acknowledged by the clients to

ensure reliable transmission.

Figure 1: The Output of the UFTP utility.

Developing an Efficient Application for the Distribution of Large Files 4

The copy process is currently controlled by a simple PowerShell script, which maintains the tasks that

have to be performed before and after the actual copying (e.g. starting/stopping clients, creating

destination directories, moving files to final destination from temporary folders on clients, setting file

permissions, etc.).

1.2.1. UFTP Details

Following is the detailed description of the protocol used by UFTP according to the description on the

tool’s homepage (1).

UFTP’s transfer protocol consists of three phases: Announce/Register, Transfer/NAK phase and the

Completion/Confirmation phase.

In the first phase the server announces the transfer on a public multicast address that the clients are

listening on. Depending on the parameters, the server either specifies the hosts that are allowed to

participate in the transfer (closed group membership) or allows any host to participate (open group

membership). The announcement also contains information such as the file name, file size, number

of blocks and the private multicast address that will be used for the actual file transfer. The

participating client sends a registration which the server confirms in reply.

In the next phase the server divides the transferred file into sections and blocks and starts sending

them continuously to the network via UDP. Since the UDP protocol does not guarantee that the

packets arrive in order, each packet is numbered, so that the clients can properly reassemble the file.

If a section is complete, the server sends a “Done” message to the clients to which the clients reply

with the list of NAKs (negative acknowledgements) of the packets that have not arrived successfully.

Once all the sections have been transferred, the server runs additional passes by only sending the

missing packets, until it receives no further NAKs from the clients.

When a client received all packets of the file, it sends a “Completion” status to the server which

replies with a “Confirmation” status message. After receiving the confirmation, the client stops

listening to the private multicast address.

1.3. Problems with the Existing Solution

The copying is handled efficiently by UFTP, but there's still need for manual preparation:

 The user has to log in manually on each client and start the UFTP daemon,

 The user has to check free space manually on each client machine,

 The user has to log in on the server machine and start the PowerShell script. The main problem is

not the manual procedure, but the fact that user needs to be a Domain Administrator to ensure

that the script can map the client's local drives. Some lab sessions are coordinated by non-

administrators, thus they can't arrange these preparations,

 The user has to manually check whether the copy was successful on each client machine.

Developing an Efficient Application for the Distribution of Large Files 5

1.4. High-Level Requirements

Since the current solution has some drawbacks, the task is to develop a software system which

features the following capabilities and enhancements:

 Efficient and reliable file distribution in a like or similar fashion to the UFTP tool,

 Seamless authorization and authentication for users with non-administrator accounts,

 Simple, intuitive user interface.

1.5. Alternative Solutions

This section walks through the solution alternatives to the requirements specified above.

1.5.1. Advanced Framework for the Current Solution

The obvious solution, which was actually accomplished, was to take the current script and implement

its features in an advanced framework. This required the time for development and access to the

laboratory for testing. It was also a convenient project for a homework assignment and a project

laboratory task, not to mention this thesis project.

Nevertheless it is worth looking at the pros and cons of other solutions.

1.5.2. Active Directory Software Deployment

The machines in the department laboratory are part of an Active Directory domain. Active Directory

can deploy MSI installer packages using Group Policy Objects (GPOs). After deployment, packages are

installed the next time the clients log into the domain. The packages have to be accessible via a

shared folder on the server.

Figure 2: Deploying a package via Group Policy.

Developing an Efficient Application for the Distribution of Large Files 6

Each image folder would have to be built into an MSI package that’s configured to extract its content

to the appropriate destination.

By default only the Domain Administrator has rights to create and edit GPOs, but access rights can be

granted to other users or groups for a certain GPO, although they allow access to additional

adjustments beside deployment, which could be considered as a security risk.

The actual deployment takes place when the machines in the group log in to the domain and update

their group policies. The clients are not able to log on to their accounts while the installer packages

are acquired from the shared folders and being executed.

This alternative would produce a higher load on the network during distribution and would also

severely delay the log on time on the clients.

1.5.3. Commercial Software Management Systems

There are several software management systems available on the market, two large scale products in

the category are the IBM Tivoli Provisioning Manager (2) and the Microsoft System Center

Configuration Manager (3) (formerly System Management Server). They are both intended for

managing the IT infrastructure of large enterprises, including operating system and software

deployment, patch management, and also maintaining the software and hardware inventory.

Their methods of the actual software deployment is similar to that of the Active Directory solution,

thus they have the same drawbacks, not to mention that we would only require a small set of the

available features.

1.5.4. BitTorrent Based Solution

BitTorrent is a popular, public domain, peer-to-peer protocol designed particularly for the

distribution of large files.

The distribution process consists of the following elements:

 The tracker, which keeps track of clients connecting to a certain distribution process,

 Peers, who are users downloading the distributed data using a BitTorrent client,

 Seeders, who are peers in possession of all the data being distributed,

 A static metainfo file containing details of the distribution.

The client communicates with the tracker via HTTP; communication with other peers is done directly

via TCP/IP. Commands and statuses are encoded using a text based encoding called bencode. The

basic task of the tracker is to circulate the addresses of all peers, so that they know about each

other’s existence.

Distributed files are divided into pieces and blocks. One piece is transferred at a time between two

peers, block by block. The pieces and blocks are numbered so that the original file can be properly

reassembled. Each piece has a corresponding SHA1 hash (4) that is used to validate finished pieces. If

the piece fails the hash test, it is redownloaded.

Developing an Efficient Application for the Distribution of Large Files 7

What makes the protocol efficient is that although not all peers have the whole amount of

distributed data, all of them are uploading the pieces that they already have. This means that if there

is only a single initial seeder and a number of peers it is possible to distribute data to all the peers

with the seeder having to upload each piece only once. This method dramatically decreases the

network load for peers and seeders locally.

The static metainfo files contain information about the filenames and the hash of every piece, and

also the addresses of trackers, all encoded in the bencode format. They can be recognized by their

.torrent extension and are traditionally downloadable from thematic web sites and search engines.

A more detailed description can be found in the official BitTorrent protocol specification (5).

There are numerous clients available; some even contain a built-in tracker. A detailed list and

comparison can be found here (6). There is also an open source, platform independent library

available for custom implementations called libtorrent (7).

Choosing BitTorrent as an alternative would replace UFTP as the efficient distribution method, but

would still require a proprietary framework for the administrative tasks.

1.6. Development Method

Development of the application was done in an iterative fashion similar to extreme programming.

The course of the whole process can be split among the following phases:

 Phase 1: The script version was created and served as a basis for the design of an advanced

application.

 Phase 2: A prototype was created as a homework project with the then new Windows

Communication Foundation (WCF) (8) architecture.

 Phase 3: The prototype was extended with the implementation of the main features during the

Project laboratory course.

 Phase 4: The thesis project added missing features and restructured the implementation to allow

systematic testing.

Each phase consisted roughly of the following cyclical steps:

 Designing of a new function,

 Coding the new function,

 Testing the new function in the development environment,

 Testing the new function in the target environment,

 Feedback to the next cycle.

The rest of the thesis describes the currently last phase of the development process.

Developing an Efficient Application for the Distribution of Large Files 8

2. Designing the Application

The following chapter discusses the steps of designing the application. It starts by analyzing

requirements and designing a preliminary user interface, which is followed by architecture planning,

development environment setup and last but not least, the designation of testing principles.

2.1. Requirement Analysis

As the first step of the designing process the high-level requirements must be expanded into detail

by examining the real life situations of the tasks in question.

2.1.1. Use Case Analysis

The system consists of one actor and several use cases. The following diagram shows the Image

Distributer System on a use case diagram. The packages were introduced to enhance readability and

to categorize the use cases.

Image Distributer

Client Management

Startup Client

Machines

Check Free Disk

Space

Start UFTP

Deamons

Image Management

Query Images

on Server

Query Images

on Clients

Image Distribution

Copy Images to

Clients

Stop UFTP

Daemons

Shutdown Client

Machines

Image Distributer System

Figure 3: The Image Distributer System Use Case diagram.

Actors

There is only one actor in the diagram called Image Distributer. It represents the user who

distributes virtual machine files to the lab computers.

Developing an Efficient Application for the Distribution of Large Files 9

Use Cases

The following is the detailed specification of use cases on the diagram:

Use Case Startup Client Machines

Category Client Management

Actor Image Distributer

Description Start up client machines so that they can receive distributed files.

Use Case Check Free Disk Space

Category Client Management

Actor Image Distributer

Description Check free disk space on client machines to verify that they have the
capacity to receive the distributed files.

Use Case Start UFTP Daemons

Category Client Management

Actor Image Distributer

Description Start UFTP daemons on client machines before distribution.

Use Case Stop UFTP Daemons

Category Client Management

Actor Image Distributer

Description Stop UFTP daemons on client machines when the distribution is
finished.

Use Case Shutdown Client Machines

Category Client Management

Actor Image Distributer

Description Shutdown client machines when the distribution is finished.

Use Case Query Images on Server

Category Image Management

Actor Image Distributer

Description Query the distributable images on the server.

Use Case Query Images on Clients

Category Image Management

Actor Image Distributer

Description Query images on the clients to check whether the images already
exist on them or if the distribution has been successful.

Use Case Copy Images to Clients

Category Image Distribution

Actor Image Distributer

Description Copy selected images to the target client machines.

Developing an Efficient Application for the Distribution of Large Files 10

The following sequence diagram shows a typical course of the image distribution process:

ServiceClient Client Machines

Startup Client Machines

Check Free Disk Space

Report Free Disk Space

Start UFTP Daemons

Start UFTP Daemon

Query Free Disk Space

Report Free Disk Space

Query Images on Server

Build List of ImagesReport Images on Server

Copy Images to Clients

Start Client Machine

Copy Files

UFTP Daemon

Start UFTP Daemon

Report Copy Status

Report Copy Status

Query Images on Client

Report Images on Client

Stop UFTP Deamons

Stop UFTP Daemon

Stop UFTP DaemonShutdown Client Machines

Shutdown Client Machine

Image Distributer System Sequence Diagram

Figure 4: Sequence diagram of a typical distribution process.

Developing an Efficient Application for the Distribution of Large Files 11

2.1.2. Non-Functional Requirements

The following non-functional requirements are important to the success of the application, in order

to achieve acceptance from the end users:

 Fast Copying: The complexity of the system should not degrade the speed of the copy process

achieved by using UFTP alone.

 Central Manageability: The user shouldn’t have to log in on each machine; the whole

distribution process should be managed from a single operation central.

 Asynchronous Operation: Starting up and shutting down the client machines, as well as the

multicast copying are very long operations, therefore they have to be performed asynchronously

and the user interface has to stay responsive, otherwise the users might think that the system

has crashed or feel uncomfortable using it all together.

 Security: Not every user should have the rights to use the system, but the rightful should not

need to have Administrator privileges. By filling the hard drives of the clients or deleting existing

virtual machines one can do considerable harm, therefore unauthorized users should not be able

to change or forge messages in the system.

2.2. Architecture

The analysis of the requirements comes down to the following principals in the light of architecture:

 There has to be a central component, i.e. the business logic (BL), running with high privileges to

gain access to all the various system resources affected in the distribution process. The user

interface running under lower privileges then connects to this central component,

 The user interface and the business logic have to be loosely and asynchronously connected,

 There has to be a component on the clients that runs the UFTP daemon in the background when

necessary.

User Interface
Image Distributer

Service

UFTP Daemon

UFTP Daemon

...

Figure 5: The diagram shows the basic architecture of the logical components.

2.2.1. Technology

The choice of technology depended on the existing environment, not to mention the preferences and

curiosity of the developers:

 Since the multicast copying is already solved by UFTP it was obvious to use the tool itself

internally for the actual file transfers. It is also open source, thus it is possible to re-implement in

a form other than the original command line executable.

Developing an Efficient Application for the Distribution of Large Files 12

 The fundamental technology for the development is the Microsoft .NET Framework 3.5 (9). The

reason behind the choice is that both the clients and the server in the department’s laboratory

run Microsoft Windows operating systems and the framework has good support for the built-in

facilities (service management, authentication and authorization, platform invocation). It was

also interesting to explore the possibilities of the new version of the framework.

 The communication between the components is crucial to the whole architecture. The choice fell

on the Windows Communication Foundation (WCF) (8). This relatively new technology does not

mean a certain communication protocol, but a framework for service-oriented architecture (SOA)

(10), largely simplifying the creation of loosely coupled components.

 Because the business logic is running separated from the user interface, it should be decided

whether the latter is implemented as a thin or a thick client that is whether it should be a web

interface or a separate executable. It is also a question whether to host the service in a web

server or in a Windows service1 executable.

 The main technology for turning on machines over the network is Wake-On-Lan (11). All of the

machines’ network adapters in the laboratory support it, and there are numerous tools available

online, it is also easy to implement.

 Windows Management Instrumentation (WMI) supports initiating shutdown remotely by users

with sufficient rights (12). Fortunately the .NET Framework has extensive support for WMI.

Windows Communication Foundation

Because WCF is an important factor in deciding several architectural questions, here is short

summary about its features. The main objective in the designing of WCF was to provide a standard

framework for the existing Microsoft communication technologies. While developing WCF

applications only abstract terms are used, the actual carrier protocols are chosen later, possibly even

in the installation phase.

The elements of a WCF application:

 Service: An independent unit, providing methods to be called remotely through one or more

endpoints.

 Client: A unit using one or more services. As in other similar technologies, a client uses proxies to

communicate with the services. The proxies are automatically generated by the framework and

hide the details of the network communication process. The client only sees a method call as if it

were on a local object.

 Endpoint: Services are provided and consumed through so called endpoints. An endpoint

consists of the following elements:

o Contract: Describes the operations provided by the service, as well as the data types

used as their parameters and return values. It serves as an abstract description of the

calling interface, e.g. when hosting web services in WCF, the contract is mapped to a

WSDL (Web Service Description Language) file.

1
 Since WCF uses the same term for its components as the Windows operating system for its background

processes, from here I will refer to the latter as a Windows service.

Developing an Efficient Application for the Distribution of Large Files 13

o Binding: Describes the protocols and encodings for the endpoint. It is possible to specify

non-functional protocols, e.g. for authentication and encryption.

o Address: Describes the place where the endpoint is found, it is actually a URI.

 Message: Calls to service operations are always translated to messages that are transferred

between the endpoints. According to the binding configuration, they can become e.g. binary

packages or XML formatted SOAP messages.

Figure 6: Basic architecture of WCF applications (13).

These terms and their basic usage are well described in this article (14). The WCF documentation (15)

describes all the functions and detailed steps to using the technology.

The following is an excerpt of the main steps:

 Defining the service contract. This means writing a .NET interface annotated with specific

attributes. There are three types of operations:

o Request/Reply: default message transfer pattern. The call blocks the client until the

operation finishes.

o One-way: the client does not wait for a reply, in a fire-and-forget kind of pattern. The

client is not notified of exceptions.

o Duplex: two-way communication. There is a callback interface that the service can use to

call operations on the client.

 Specify how the clients communicate with the service. The choices are:

o Asynchronous or synchronous method,

o Enabling session handling for related messages or not.

 The configuration of the service can be done by coding in the initialization phase, but it is more

flexible to use configuration files. The system.serviceModel element serves as the container for

WCF configuration. It contains the description of the service and the endpoints.

 Create a host for the service. A detailed description can be found in article (16). The basic choices

for service hosts are the following:

o Windows Forms or Console application. Since the business logic has to run indefinitely in

the background, this is only acceptable for testing purposes during the development,

o Windows service,

o ASP.NET application, running in IIS.

CClliieenntt

CC BB AA

SSeerrvviiccee

CC BB AA

CC BB AA

EEnnddppooiinnttss

MMeessssaaggeess

AAddddrreessss

((WWhhee rree))
BBiinnddii nngg

((HHooww))
CCoonntt rraacctt

((WWhhaatt))

Developing an Efficient Application for the Distribution of Large Files 14

2.2.2. Layers

After deciding on technologies, we must proceed to the layers of the architecture.

Business Logic

The business logic will offer its services through the WCF framework. It will need Domain

Administrator privileges to acquire and modify information on the client machines; therefore security

is a significant factor. Considering this, the host will be a Windows service rather than a web

application hosted in IIS (although it will require minimal changes in the code if we were to change

our minds later).

Some of the operations are long running and need to be run asynchronously and some also need to

report progress before the end of the whole operation, e.g. while copying the client should be

notified of finishing large files. This calls for implementation according to the Duplex pattern.

Client

At the very beginning of development WCF was still in beta stage and it seemed risky to try an

implementation with a web interface, as it turned out to have various defects in this perspective.

Thus the Client was initially developed as a Windows Forms application. This seemed suitable,

because all potential users have Windows accounts in the laboratory environment and the

application is genuinely intended for inside use only.

The communication protocols between the client and the service are configurable even at

installation time, but the Duplex communication scheme limits the possible bindings to

WSDualHttpBinding, NetTcpBinding, NetNamedPipeBinding and NetPeerTcpBinding. The

NetNamedPipeBinding is only for use within one computer, the NetPeerTcpBinding is more suitable

for peer-to-peer applications. The other two both provide reliable message sending and options for

secure transmission, but since there is no need for interoperability among different platforms the

NetTcpBinding is an appropriate choice, not to mention a faster one because its binary encoding.

UFTP Daemon

The existing solution already incorporates a Windows service that is a wrapper around the command

line UFTP daemon. It starts and stops the daemon when needed and takes its configuration

(command line arguments) from the registry.

The following diagram describes the connection between the logical components of the system:

ImageDistributerService UftpService

ImageDistributer

ImageDistributerCallback

UFTP
ImageDistributerClient

Figure 7: Logical diagram of the components.

Developing an Efficient Application for the Distribution of Large Files 15

2.2.3. Security Concerns

As stated in the high-level requirements the system should be accessible by non-administrators, but

only to a selected group of users. With Active Directory it is possible to achieve role based

authentication by defining user groups for access verification. As discussed earlier, the .NET

Framework has built-in support for Windows based authentication.

The business logic needs Domain Administrator rights to operate, but the users should not have

direct access to these privileges. It must verify access for users according to their group membership.

The client should also warn the user if trying to connect from an account that is not member of the

required group.

The system should not let the users decide whichever machines in the network they want to tamper

with, thus the business logic must manage a list of allowed machines in the laboratory to which all

operation are restricted. If the client tries to perform operations on a machine that is not on the list it

should be notified that it tried accessing a disallowed machine.

UFTP in its current implementation doesn’t support any form of authentication, thus daemons

should not be running at all times, because anyone in the subnet could initiate a file transfer who

knows which port the daemons are listening on. This risk can be reduced by only running the UFTP

daemons when distribution is in progress.

Client
Business

Logic

Group Membership

Verification

Non-Administrator Privileges Domain Administrator Privileges

Domain Clients

Figure 8: Security diagram of the system components.

Developing an Efficient Application for the Distribution of Large Files 16

2.2.4. User Interface

In a large scale project it is essential to provide a preliminary concept of all user interfaces to the

customers, who can provide feedback on whether they like or do not like what they see. It also helps

review the functions and features planned and may point out the need for new features not yet

thought of. However the final implementation might completely differ from the one below.

Image Distributer ClientImage Distributer Client

WOL Start Services

VPC 1

...

labpc5

labpc4

labpc3

labpc2

labpc1

Machine

...

-

-

18 GB

14 GB

15 GB

Free Space Virtual Images Folder

Lab Environments

Other Images

VPC 2
VPC 1

Start Copy

CopyTurned On UFTP Daemon

Get ImagesGet Machine Infos

Figure 9: User interface design.

The lab machines are listed in a grid view displaying necessary information for each. The list of

available images will be displayed in a tree view control. There will be buttons to retrieve all

information from the service and also to send commands concerning the selected machines and

image folder.

2.3. Development Environment

The mainstream development environment for .NET Framework applications is Microsoft Visual

Studio. The Microsoft Visual Studio 2008 Team System Edition is available for download via the

Microsoft Developer Network Academic Alliance (MSDNAA) program intended for purely academic

usage (17).

2.3.1. Version Control System

Version control systems store source files in the so called “repository”. They keep track of changes,

and all changes are revertible to previous versions. Developers can also create “branches” off the

main “trunk”, by viewing the repository via the popular tree analogy. They can create new features in

branches and test them separately while leaving the main trunk untouched. If the branch is stable

enough, it can be merged with the main trunk.

In a project with multiple participants version control is essential to store and keep track of code

edited by several people. Therefore changes are labeled with the user’s name that made them.

For version control we used the Subversion (SVN) (18) server hosted on the department server,

available at the following address:

https://svn.inf.mit.bme.hu/student/onlab/trunk/ImageDistributer/

https://svn.inf.mit.bme.hu/student/onlab/trunk/ImageDistributer/

Developing an Efficient Application for the Distribution of Large Files 17

The top folder structure of the repository is the following:

 dist: files to be installed on server and clients (Client, Service, UftpService),

 doc: documentation and related material,

 src: source code and project files.

 test: testing related subprojects.

The Subversion server uses name and password for authentication.

The thesis comes attached with a CD-ROM containing the most current condition of the repository.

2.3.2. Issue Tracking System

We set up a web-based issue tracking system named Trac (19) on the department server.

Trac keeps track of notes, bugs, ideas made by project members. Tickets can be issued in the defect,

enhancement, and task categories. Milestones can be created (e.g. FirstRelease, NextVersion) to

signify the goals of the project. Tickets can be assigned to certain users or can be left open for

anyone to resolve. Tickets can be resolved as fixed, duplicate, worksome, wontfix, invalid.

Trac can search and filter tickets and also display events on a timeline. It is linked to the SVN server

and has its own web-based repository browser. It can be configured to send email notifications to

the users involved in the project. It also features a wiki style documentation system.

Figure 10: Timeline view in the Trac Issue Tracking System.

Our Trac setup is available at the following address:

https://trac.inf.mit.bme.hu/ImageDistributer

A username and password must be entered for authentication.

https://trac.inf.mit.bme.hu/ImageDistributer

Developing an Efficient Application for the Distribution of Large Files 18

2.3.3. Other Development Tools

Other tools that proved useful during development:

 Service Configuration Editor: Graphical UI for editing the XML configuration file for WCF services.

It is part of the Windows SDK (20).

 Service Trace Viewer: Viewer for WCF messages passed between the client and the service, if

tracing is enabled in the configuration file. Also part of the Windows SDK (20).

 MDbg: While testing in a live environment with no IDE available, this lightweight debugger came

useful e.g. in catching certain authentication exceptions. It requires no installation and no

framework to be installed. It can be downloaded from here (21), and more information can be

found here (22).

 psgetsid: While testing in a Windows Domain environment we came across a problem that it is

not easy to acquire a name for a certain SID using purely managed APIs, thus making debugging

quite cumbersome. The tool that helped in these situations is the psgetsid.exe. It is available as

part of the SysInternals (23) package.

 TortoiseSVN: A Subversion client that integrates itself into the Windows shell. It can check out

the repository to a selected folder and the versioning services can be managed via the context

menus, while file statuses are indicated with icon overlays. It also features a sophisticated diff

viewer (24).

2.4. Testing Principles

Systematic testing is the key component of quality assurance in all branches of engineering,

particularly in the software variety and should take up a significant amount of time during the

development. In a worst case scenario without systematic testing, a major bug might only be

discovered only after the final deployment of the system. The situation can possibly cause financial

damages, or in the least, set back the release of the product.

In multi contributor projects, testing is crucial to the efficiency of teamwork. First of all, a defect in

one component can compromise the functionality of others, thus giving a hard time for other

contributors debugging their own modules. Therefore it is important to test new builds before

committing changes to the source code repository. This approach is sometimes called “smoke

testing”.

Since systematic testing was introduced rather late in this project, we have selected only the few

methods we found suitable for a “small” venture like this, hence this is a rather minimal testing

scenario.

On the long term, test driven development should be the key to quality software engineering. A

significant example I came across recently is the Chromium project. This article describes (25) the

chief test principles the project is based on.

Developing an Efficient Application for the Distribution of Large Files 19

2.4.1. Unit Testing

As its name suggests, unit testing focuses on individual parts of the source code, such as functions

and procedures or perhaps complete classes.

The point is to test only the relevant unit (“Unit-Under-Testing” or “System-Under-Testing”), thus

external dependencies have to be emulated with so called “test doubles”. This detailed article

describes the nature of these objects (26).

Unit tests generally include the following steps:

1. Setup input parameters (initiate test doubles),

2. Execute Unit-Under-Testing,

3. Verify that the results are as expected,

4. Clean up, if necessary.

Unit tests can be custom built, but there is a wide range of unit testing frameworks available (27),

most notably there is one built into the Team System Edition of Visual Studio.

2.4.2. Integration Testing

Unit testing verifies the quality of individual components. These components communicate with each

other through well specified interfaces. Integration testing focuses on these interfaces. It should

verify the functional composition of the system.

Modules can be tested in smaller groups or all at once, it depends on the nature of the project.

2.4.3. System Testing

System testing is a type of black-box testing which examines the various aspects of the system as a

whole. It should verify how the system satisfies the specified requirements and tolerates extreme

situations, such as high loads or invalid inputs.

2.4.4. User Acceptance Testing

User acceptance testing is similar to system testing, but its goal is to verify that the end users accept

the system and are ready to start using it. This test should be performed regularly when a new

feature is implemented or when the development arrives to a stage where new features are likely to

be added and the end users’ feedback is required. The feedback results sometimes lead to decisions

of redesigning certain parts of the software.

2.4.5. Code Analysis

So far we have discussed dynamic testing, which involves executing code. It is also possible to do

static testing by analyzing source code with purely mathematical methods. Code analysis can be used

to identify typical coding errors and security vulnerabilities, and also to enforce best practices. There

are numerous tools and metrics available on the subject (28).

Developing an Efficient Application for the Distribution of Large Files 20

The majority of code analysis tools analyze the source files directly. For managed .NET applications,

there is a source code analyzer built into the Visual Studio Team System Edition, but it is also

available separately from Microsoft (29). This tool analyses compiled .NET assemblies instead of the

original source code as .NET is considered “language independent”. .NET assemblies do not contain

native machine code, but an intermediate language (IL) code that can be converted back to any of

the source languages supported by the framework, but the IL code is directly suitable for code

analysis.

In Visual Studio projects, there’s also an option to automatically run code analysis after a successful

build. The code analyzer generates its output as compiler warnings.

Developing an Efficient Application for the Distribution of Large Files 21

3. Implementation of the Application

The following chapter discusses the implementation of the system specified so far, divided by each

component.

All coding was done in C#, the programming language most native to the .NET Framework.

The following table contains the code metrics generated by Visual Studio for the service and the

client component projects with their underlying namespaces:

Figure 11: Code metrics generated by Visual Studio.

The Maintainability Index should provide a general idea of how complex the code is. Both projects

have reached rather high scores on the scale of 0 to 100 which means the code is highly maintainable

(30).

3.1. Service Component

The service component is implemented as a Windows service, the related classes can be found in the

WindowsService namespace. The Program class contains the Main method that creates an

ImageDistributerWindowsService class which contains the initialization and finalization codes for

Windows service. The ProjectInstaller class contains metadata (display name, description, startup

options) that the service installer utility uses to generate the registry entries for the Windows

service.

The Contract namespace contains the interfaces that define the operations and data types used in

the WCF service.

The Service namespace contains the actual implementation of the service component, the

ImageDistributerService class which implements the IImageDistributerService interface.

The implementation class relies on three helper classes in the Utils namespace:

 The Ping class determines whether a certain machine is turned on using ICMP ping messages.

 The WOL class generates Wake-On-LAN packets and broadcasts them on the network.

 The UftpServer class is a wrapper for the native DLL implementation of the UFTP server tool.

Developing an Efficient Application for the Distribution of Large Files 22

ImageDistributerService

Contract

<<interface>>

IImageDistributerServiceCallback

<<interface>>

<<ServiceContract>>

IImageDistributerService

<<DataContract>>

MachineState

Service

ImageDistributerService

<<struct>>

MachineNetworkInfo

WindowsService

ImageDistributerWindowsService :

ServiceBase

Program ProjectInstaller

Utils

UftpServerPing WOL

Figure 12: Composition of the service component’s classes.

The following diagram contains the methods of the implementation classes and its interfaces:

Figure 13: Class diagram of the service component.

Developing an Efficient Application for the Distribution of Large Files 23

The following is the list of signatures and descriptions of significant methods in the

ImageDistributerService class:

Method Signature ImageDistributerService()

Description The constructor of the class. Verifies and loads machine information stored in the
configuration file.

Method Signature long AddSubfoldersXml(XmlDocument document, XmlNode

node, string path)

Description Recursively adds the subfolders to the supplied XmlDocument starting from the
root path specified in the parameter.
The return value is the size of all files and folders under the path specified.
This function is used by the GetListOfImages method.

Method Signature void CopyImage(string imagePath, string[] machineNames)

Description Copies the image folder specified in the imagePath parameter to the machines
specified in the second parameter.
Internally the RecursiveCopyFolders method is called to do the actual copying.
Pseudo code:

DemandGroupMembership()

FilterAllowedMachineNames(machineNames)

if imagePath does not exists then fail

DeleteRemoteTempContents(machineNames)

RecursiveCopyFolders(imagePath, machineNames)

Actual parameters of methods called may differ.
This method realizes the “Copy Images to Clients” use case.

Method Signature void DemandGroupMembership()

Description Verifies that the WCF client is member of the group specified in the configuration
file. If the verification fails an exception is thrown and the calling method fails,
thus the WCF channel state becomes “faulted”, and further communication is
blocked with the client.

Method Signature void FilterAllowedMachineNames(string[] machineNames,

ref List<string> allowed, ref List<string> disallowed)

Description Given the array of machine names in the first parameter, the method returns the
list of allowed machines in the second parameter according to the list of machines
in the configuration file. The machines that are not on the allowed list will be
returned in the third parameter.

Method Signature void GetListOfImages()

Description Returns the listing of images on the server to the client. It calls the
ReturnImageList callback to send the results back to the client.
The method uses the AddSubfoldersXml function to parse the folders and returns
the resulting XML in a string.
This method realizes the “Query Images on Server” use case.

Developing an Efficient Application for the Distribution of Large Files 24

Method Signature void GetMachineStates(string[] machineNames)

Description Queries the required information from the machines listed in the machineNames
parameter and returns them one-by-one to the client using the
ReturnMachineState callback method.
Pseudo code:

DemandGroupMembership()

FilterAllowedMachineNames(machineNames)

foreach allowedMachine

 QueryInformation

 ReturnMachineState(info, allowed)

end foreach

foreach disallowedMachine

 ReturnMachineState(emptyinfo, disallowed)

end foreach

ReportOperationFinished("images")

Actual parameters of methods called may differ.
This method eventually realizes the “Check Free Disk Space” use case.

Method Signature bool RecursiveCopyFolders(string imagePath,

FileSystemAccessRule folderRule, FileSystemAccessRule

fileRule, List<string> machineNames, UftpServer

uftpServer)

Description Recursively distributes files and folders under the root path specified in the
imagePath parameter. It is called internally by the CopyImage method.
Pseudo code:

RetrieveDirectoryInformation

foreach large file

 MulticastCopy(filename)

end foreach

foreach file

 CreateRemoteDirectories(imagePath)

 if small file then UnicastCopy(filename)

 SetFileAccessRules(file)

end foreach

for each subdirectory

 RecursiveCopyFolders(subdirectory, ...)

end foreach

Actual parameters of methods called may differ.

Method Signature void StartUftpService(string[] machineNames)

Description Starts the UFTP daemons on the client machines specified in the machineNames
parameter. It calls the DemandGroupMembership method to verify user
authorization.
This method eventually realizes the “Start UFTP Daemons” use case.

Method Signature void StopUftpService(string[] machineNames)

Description Stops the UFTP daemons on the client machines specified in the machineNames
parameter. It calls the DemandGroupMembership method to verify user
authorization.
This method eventually realizes the “Stop UFTP Daemons” use case.

Developing an Efficient Application for the Distribution of Large Files 25

Method Signature void TurnOffMachines(string[] machineNames)

Description Turns off the client machines specified in the machineNames parameter. It calls
the DemandGroupMembership method to verify user authorization.
This method eventually realizes the “Shutdown Client Machines” use case.

Method Signature void TurnOnMachines(string[] machineNames)

Description Turns on the client machines specified in the machineNames parameter. It calls
the DemandGroupMembership method to verify user authorization.
This method eventually realizes the “Startup Client Machines” use case.

The following is the list of method signatures and descriptions in the

IImageDistributerServiceCallback interface:

Method Signature void ReportMachineState(MachineState state, bool

allowed)

Description Receives a MachineState object and a boolean value indicating whether the
returned information belongs to an allowed or a disallowed machine.

Method Signature void ReturnImageList(string folderListXml);

Description Receives a string containing an XML structure that describes the folder hierarchy
of the image folder on the server.
The schema of the XML should be the following:

<xs:schema>

 <xs:element name="folders">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="folder" type="xs:element"/>

 <xs:attribute name="size" type="xs:integer"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="folder">

 <xs:complexType>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="size" type="xs:integer"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

Example XML:

<folders size="150">

 <folder name="subfolder1" size="100">

 <folder name="subfolder2" size="50" />

 <folder name="subfolder3" size="50" />

 </folder>

 <folder name="subfolder4" size="50" />

</folders>

Developing an Efficient Application for the Distribution of Large Files 26

Method Signature void ReportEvent(string message, bool error);

Description Receives a status messages, and a Boolean value that indicates if the message
describes an error.

Method Signature void ReportOperationFinished(string operation);

Description Reports the finish of a long running operation that could send multiple status
notifications during its process. The string parameter contains the name of the
operation, such as “states”, “images”, or “copy”.

3.2. Client Component

The client component is implemented as a Windows Forms application. The Program class contains

the Main method which first checks whether the user trying to start the client has the appropriate

credentials stated in the configuration file. If the credentials are correct it starts the application.

The ImageDistributerClientForm class represents the user interface and also contains the client logic,

according to the development scheme of a Windows Forms application. It uses the service reference

generated by the development environment as the proxy to communicate with the service

component. Although not shown on the diagram, the ImageDistributerClientForm class implements

the IImageDistributerServiceCallback interface (which is also generated in the service reference

namespace).

ImageDistributerServiceReference
Client

ImageDistributerClientForm

Program

Figure 14: Composition of the client component’s classes.

Developing an Efficient Application for the Distribution of Large Files 27

The following diagram contains the methods of the ImageDistributerClientForm class:

Figure 15: Class diagram of the client component.

3.3. UFTP Daemon

The UFTP daemon is run by a Windows service that starts in the background with the parameters

stored in the Registry. This Windows service was created by András Kövi independently of this

project and has been installed on all machines in the laboratory, for it was used in the previous

solution with the PowerShell scripts.

An alternative tool exists with the same functionality called Applications as Services Utility

(srvany.exe) which can be found in the Windows Server Resource Kit Tools package (31).

Developing an Efficient Application for the Distribution of Large Files 28

3.4. Logging Component

Since the service component has no direct user interface, we needed a way to keep track of internal

events without a debugging environment. Initially this was done by sending these messages to the

Application Event Log, but this solution wasn’t efficient on the long run. As a final solution we have

decided to use a configurable logging framework for this task. Our choice fell upon the Logging

Application Block from the Microsoft Enterprise Library (32).

The Enterprise Library is a set of “application blocks” which contain best practice code blocks for

enterprise development. The Logging Application Block is a more flexible, extended version of the

.NET Framework’s built-in Debug and Trace features. It can be configured in the applications

configuration file similarly to WCF services. Logging can be filtered by category or severity and sent to

the appropriate outputs accordingly, such as plain text, XML files or even to the Windows Event Log.

For instance, the following piece of configuration is responsible for filtering out incoming log events

other than errors:

<logFilters>

 <!-- Set enable to false to disable logging -->

 <add enabled="true"

 type="Microsoft.Practices.EnterpriseLibrary.Logging.Filters.

 LogEnabledFilter, Microsoft.Practices.EnterpriseLibrary.Logging,

 Version=4.1.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"

 name="LogEnabled Filter" />

 <!-- Comment out the following item to enable verbose logging -->

 <add categoryFilterMode="DenyAllExceptAllowed"

 type="Microsoft.Practices.EnterpriseLibrary.Logging.Filters.

 CategoryFilter, Microsoft.Practices.EnterpriseLibrary.Logging,

 Version=4.1.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"

 name="Category Filter">

 <categoryFilters>

 <add name="Error" />

 </categoryFilters>

 </add>

</logFilters>

This way we could configure multiple levels of logging, e.g. verbose logging is disabled by default, but

it can be enabled to aid debugging sessions.

Logging was included in the client component as well yet again to assist in debugging.

More detailed information can be found in the documentation of the Enterprise Library Logging

Application Block (33).

Developing an Efficient Application for the Distribution of Large Files 29

3.5. Test Implementations

The following section discusses the implementation of the test principles discussed in the Design

chapter.

When the project was initially developed, it wasn’t anticipated that it would evolve into a thesis

project; therefore the design was not focused on testing. Since we decided not to restart the project

with clean code, these test plans had to be designed in retrospect. Nevertheless the process was still

a valuable experience for the future.

3.5.1. Features to Be Tested

The most important part of the system is the service component, specifically the

ImageDistributerService class, which holds the implementation of the all the main use cases

discussed in the design section. These operations are tested with unit testing.

The service provides its operations via the WCF Framework. Integration testing focuses on accessing

the service component via this interface.

The client component is a typical Windows Forms application, where the code structure is mostly

generated by the development environment. Since the operations cannot be separated from the

user interface, testing of this element is done during manual system testing.

3.5.2. Features Not to Be Tested

The implementation was initially designed without testable components in mind; therefore it turned

out that it would be quite hard to create unit tests for all the operations of the service.

When unit testing the external dependencies need to be emulated with test doubles (26). In our

scenario, the service component relies on multiple external dependencies such as:

 The Windows service controller,

 Windows Communication Foundation static objects,

 Networking services for pinging,

 File system services.

The first three can be overridden and emulated with stubs, by removing the reference to their

respective assemblies, but the file system features are wired into the System namespace, which

cannot by unreferenced in .NET applications, thus unit tests cannot be made for operations that

access the file system directly. It could only be achieved by major redesign with adding an extra layer

of abstraction between the implementation and the file system functions, but that would also add

unnecessary complexity at this stage.

3.5.3. Unit Testing Framework

The testing framework that comes with Visual Studio would’ve come handy, but as it turns out, it

references the assembly directly from the tested project, thus eliminating the chances of creating

stubs for originally referenced classes.

Developing an Efficient Application for the Distribution of Large Files 30

After seeing this we decided to create our own command line testing interface for the service

component. The interface takes commands from the standard input and writes events and results to

the standard output. The project is set up to copy the source files from the tested project into its

own directory prior to each build. The client stub implements the callback channel and outputs all

reported results to the standard output.

Stubs

System.ServiceModel

Utils

System.ServiceProcess

System.Management

TestMachines

IService ICallback

<<SUT>>

ImageDistributerService

ConsoleService

Figure 16: The architecture of the unit testing framework. SUT stands for System-Under-Testing.

The format of the commands is the following:

CommandName parameter1,parameter2,...

Lines starting with a hash mark (“#”) are treated as comments.

The list of available commands is the following:

 GetMachineStates

 TurnOnMachines

 TurnOffMachines

 StartUftpService

 StopUftpService

The commands resemble the names of the invoked operations and take a list of machine names as

parameters.

The following is the list of namespaces that are created as stubs in order to emulate the external

dependencies of the service component:

 System.Management, for emulating WMI related classes,

 System.ServiceProcess, for emulating the ServiceController class,

 System.ServiceModel, for emulating the WCF OperationContext class,

 Utils namespace for emulating the UftpServer, WOL and Ping utility classes,

 An extended MachineState object that implements the WCF contract specifications, but also

adds additional features to aid the testing process.

Developing an Efficient Application for the Distribution of Large Files 31

These stubs act as their original counterparts, but the modifications are only reflected internally on a

list of MachineState objects, that are initially loaded from an XML file named machines.xml

(generated by serialization).

There is an additional command named DumpMachines, which requires no parameters, and outputs

the list of internal machines, to verify that modifications were successful.

The operations GetListOfImages and CopyImage rely on file system operations, thus their testing will

be done manually using a real life like setup on the development machine and in the laboratory

environment.

The unit testing framework can be found in the test\Unit folder of the repository.

3.5.4. Integration Testing Framework

For integration testing I created a console version of the client that uses the same command format

as the unit testing framework, except it has no DumpMachines command, since it doesn’t maintain

an internal list of machine states.

I have also created a version of the unit testing framework that references the real

System.ServiceModel namespace and starts hosting the WCF service, however it still uses stubs

instead of all the other dependencies.

Stubs

Utils

System.ServiceProcess System.Management

TestMachines

Service Callback

WCF interface

<<SUT>>

ImageDistributerService

<<SUT>>

ConsoleClient

Figure 17: The architecture of the integration testing framework.

This setup enabled me to design a common set of test scripts for both unit and integration tests, with

only minor differences, e.g. configuration verification at load time doesn’t apply in integration

testing.

The integration testing framework can be found in the test\Integration folder of the repository.

The batch file that runs all test scripts in the folder first starts the WCF host then starts running the

test scripts. After all the scripts have finished running, the WCF host is shut down.

Developing an Efficient Application for the Distribution of Large Files 32

3.5.5. Test Scripts

The test scripts are placed in separate subfolders, the folder names being formatted as

ut_<testname> for unit tests and it_<testname> for integration tests. The test name includes the

postfixes _neg or _pos indicating whether the test scripts should have a negative or a positive

outcome.

Each test script consists of the following elements:

 config.xml file for the service implementation (only in unit tests),

 machine.xml to provide test machine information (only in unit tests),

 testinput.txt containing commands for the test script,

 expected.txt containing the expected output of the test script.

The following batch files are used to evaluate test scripts and output results to the console or a file:

 run_all_tests.cmd runs all the tests found in the current directory (based on the ut_* or it_*

filters).

 log_all_tests.cmd runs the previous batch file and redirects the output to the

unit_tests.log file.

 run_test.cmd runs a single test, which is passed to it via the first command line argument.

The output of a test scripts is similar to the following:

--

Running test: TestName

Test result: SUCCESS/FAIL

--

I have defined a set of machines that is suitable for every test script that involves querying or

amending their properties:

<TestMachineStates>

 <machines>

 <machine name="labpc1" turnedOn="true" freeSpace="6.5"

 uftpdServiceState="Running" ipAddress="10.40.100.10"

 macAddress="001111EF9273" />

 <machine name="labpc2" turnedOn="false" freeSpace="4"

 uftpdServiceState="Stopped" ipAddress="10.40.100.20"

 macAddress="001111890C88" />

 <machine name="labpc3" turnedOn="true" freeSpace="5"

 uftpdServiceState="Stopped" ipAddress="10.40.100.30"

 macAddress="001111B546FB" />

 </machines>

</TestMachineStates>

These machines have identical configuration as the machines in the laboratory with the same name.

Developing an Efficient Application for the Distribution of Large Files 33

I have defined the following test scripts for the service component (in alphabetical order):

Name DemandGroupMembership_neg

Description Tests whether access is granted to a client with no authorization.
The GroupName setting in the configuration file is set to a group
that the developer is not member of. Since
DemandGroupMembership is a private method, it is tested by
calling GetMachineStates.

Applies to Unit test

Expected results An error is returned with the message “Client has no
authorization” and an exception is thrown because of the
unsuccessful authentication (the exception message can be
localized along with the framework).

Name GetMachineStates_neg

Description Tests the returned machine states for the GetMachineStates
method with disallowed machine names.

Applies to Unit and integration test

Expected results The states are turned back empty with indication that they were
disallowed.

Name GetMachineStates_pos

Description Tests the returned machine states for the GetMachineStates
method with allowed machine names and compares them to the
internal list.

Applies to Unit and integration test

Expected results The states are turned back with the same information as the
internal machines dump.

Name InvalidConfig1_neg

Description Attempts to load the service implementation with a malformed
MachineNetworkInfo entry in the config file. This test focuses on
the verification features in the constructor of the service class.
The following invalid line is inserted (contains invalid IP
addresses):

invalid,257.1.1.1,255.0.0.0.0,ABCDEFABCDEF

Applies to Unit test only

Expected results The service returns a “MachineNetworkInfo line in wrong
format” error.

Developing an Efficient Application for the Distribution of Large Files 34

Name InvalidConfig2_neg

Description Same as previous test case.
The following invalid line is inserted (contains invalid MAC
address):

invalid,255.1.1.1,255.0.0.0,001111B546FBBB

Applies to Unit test only

Expected results The service returns a “MachineNetworkInfo line in wrong
format” error.

Name InvalidConfig3_neg

Description Same as previous test case.
The following invalid line is inserted (contains a single string
without any commas):

invalidline

Applies to Unit test only

Expected results The service returns a “MachineNetworkInfo line in wrong
format” error.

Name StartUftpService_neg

Description Tests the outcome of the StartUftpService method when called
with machines that are turned off or the service is already
started on them.

Applies to Unit and integration test

Expected results Errors returned for all machines.

Name StartUftpService_pos

Description Tests the outcome of the StartUftpService method when called
with machines that are turned on and the service is not running
on them.

Applies to Unit and integration test

Expected results The method throws no exceptions and the services are started
on the appropriate machines.

Name StopUftpService_neg

Description Tests the outcome of the StopUftpService method when called
with machines that are turned off or the service is not running on
them.

Applies to Unit and integration test

Expected results Errors returned for all machines.

Developing an Efficient Application for the Distribution of Large Files 35

Name StopUftpService_pos

Description Tests the outcome of the StartUftpService method when called
with machines that are turned on and the service is not running
on them.

Applies to Unit and integration test

Expected results The method throws no exceptions and the services are stopped
on the appropriate machines.

Name TurnOffMachines_neg

Description Tests the outcome of the TurnOffMachines method when called
with machines that are already turned off.

Applies to Unit and integration test

Expected results Errors returned for all machines.

Name TurnOffMachines_pos

Description Tests the outcome of the TurnOffMachines method when called
with machines that are turned on.

Applies to Unit and integration test

Expected results The method throws no exceptions and the appropriate machines
are turned off.

Name TurnOnMachines_neg

Description Tests the outcome of the TurnOnMachines method when called
with machines that are already turned on.

Applies to Unit and integration test

Expected results Errors returned for all machines.

Name TurnOnMachines_pos

Description Tests the outcome of the TurnOnMachines method when called
with machines that are turned off.

Applies to Unit and integration test

Expected results The method throws no exceptions and the appropriate machines
are turned on.

Logging is turned on in the configuration files by default, thus in case of an unexpected error, the log

file can be examined for details.

These tests are configured to run on the development machine because configuration files must

contain references to the executing environment, such as the machine name and user group names.

Ideally the development environment should have the same parameters as the department server

where final testing will be administered before deployment, otherwise a separate set of

configuration files have to be created for the final testing environment.

Developing an Efficient Application for the Distribution of Large Files 36

3.5.6. System Testing

System testing will be performed manually according to a predefined script. The system passes the

test if all the elements in the script have been achieved successfully.

Although no restriction was implemented, the service is intended for serving one client at a time. The

general idea of multicast copying is to relieve the network of unnecessary load, performing two or

more distribution processes simultaneously would negatively affect network performance. Therefore

system testing can be performed by a single testing client at a time.

The configuration in the development environment should resemble that in the laboratory. If a build

passes all tests in the development environment, it should be copied to the dist folder of the

repository, into a subfolder indicating the build version. In the laboratory the system tests should be

repeated with the latest build in the dist folder.

The tester should perform the following operations during a system test:

1. Rebuild the solution file (in the development environment or using the appropriate batch

files in each project folder),

2. Verify parameters in the configuration files for both the service and the client,

3. Start the Windows service of the service component (with the batch files or the Services

MMC module),

4. Start client user interface (ImageDistributerClient.exe),

5. Query images on server (press Get Images button),

6. Query machine states (select machines and press Get States button),

7. If possible try turning machines on and off (select machines and press Turn On/Off button,

then Get States to verify changes),

8. Try starting and stopping UFTP daemon on machines (select machines and press Start/Stop

Service button, the Get States to verify changes),

9. Copy image files to client machines (select image folder and target machines, press Start

Copy button).

Notes are to be taken about unexpected events and the system’s logs should be archived for further

analysis.

Developing an Efficient Application for the Distribution of Large Files 37

4. Testing Results

The latest build of the application fulfills all requirements and successfully passed all test scripts and

manual testing sequences specified in the previous chapter. The last testing session in the target

environment was considered as a successful acceptance testing; therefore we have labeled it as

version 1.0.0.0 and made it ready for deployment.

The following chapter describes the issues we met while testing the system.

4.1. Fixed Issues

The following query results from the issue tracker show the list of tickets that were resolved during

the current phase of the development:

Figure 18: Ticket results for resolved defects.

The categories of the issues in detail:

 Configuration related: tickets #23, #31 and #32 referred to inconsistencies in the numerous

configuration files of the components. Different files are used for unit, integration and systematic

testing that are also different from the ones used in the target environment. The issue was partly

solved by reformatting all configurations to differ only in meaningful parameters, thus

verification is manually possible with simple text comparison. A more robust configuration file

manager solution is still to be designed.

 Repository related: ticket #40 refers to files missing from the repository. This usually happened

after adding new files to the project or restructuring the existing hierarchy. The issue was

resolved by the final reviewing of the repository structure and by introducing the practice of

testing a new checkout after major changes.

 Coding related: unit testing and system testing revealed functionality flaws such as the ones

described in tickets #22, #24, #26, #35, #38, #46 that needed amendments in the components’

code.

 Network related: ticket #20 refers to network related issues when the UFTP tool and the WOL

features did not work as expected. These issues had to be resolved independently of the

applications testing.

Developing an Efficient Application for the Distribution of Large Files 38

4.2. Code Analysis Results

Visual Studio’s built-in code analysis generated warnings in the following categories:

Type Microsoft.Naming

Description Indicated spelling errors in class and namespace names. The analyzer
considered abbreviations like “uftp” and names containing the word
“distributer” incorrect.
Also suggested spelling for compound words like “filename” to be
changed to “fileName”.

Resolution The abbreviations were obviously correct in spelling in the context of
the project.
The word “distributer” is a correct form of spelling in the English
language, but the analyzer probably prefers the “distributor” spelling
which is considered identical, although the latter is used far more often
on the Internet (34). I have decided not to change the word to the
alternative spelling, because that would also require correcting all the
documentation and configuration files created up to date.

Type Microsoft.Design

Description Suggested missing elements of Microsoft .NET design patterns, e.g.
strong naming of assemblies and the catching specific exception classes
rather than the base Exception class.

Resolution Strong naming was considered not yet necessary for this application
will only be used internally.
The catch blocks in question contain reporting and logging calls,
without concern for what specific exceptions they report to the user or
log to the log file, thus no changes are required.

Type Microsoft.Performance

Description Suggested that certain non-static methods of the implementation
didn’t use the this parameter, thus they would provide the same
functionality when declared static.

Resolution Added static modifier to the DemandGroupMembership method and
the Callback property.

Type Microsoft.Usage

Description Suggested that specific exceptions should be created rather than the
base Exception class.
Also suggested that exceptions should be re-thrown instead of passed
as parameters to another method to preserve stack location where the
exception was initially caught.

Resolution Although a rather formal suggestion, I modified the two created
Exception classes to FormatException in the ImageDistributerService
constructor, as they are thrown when the machineNetworkInfo setting
is in wrong format.
The latter exceptions were passed to logging functions where there
was no need to keep track of the location where it was caught, the
logging framework takes care of that with the Activity Tracing feature.

Developing an Efficient Application for the Distribution of Large Files 39

Type Microsoft.Security

Description Suggested possible security vulnerability because values from the
configuration file are directly passed to PrincipalPermission class’
constructor.

Resolution This being an internally used project, the configuration file is
guaranteed to be stored in secure place along with the service
executable.

Type Microsoft.Globalization

Description Suggested that string.Format and type.Parse methods should be
supplied with a specific culture info to make sure persisting of
formatted values is not compromised by different environment
settings.

Resolution In an application that is likely to be used in environments with different
culture settings, this can be considered an issue, but this project is
created for a specific target environment.

4.3. Testing in the Target Environment

We regularly ran tests in the target environment to test newly implemented features and performed

overall system tests. These testing sessions highlighted the following issues:

 The components must provide sufficient debug information even outside the development

environment, because advanced debugging tools are typically not available in the target

environment. To achieve this we have included configurable logging in each component, with

optional verbose logging to help debugging.

 Multicast copying was tested in the development environment by distributing smaller images,

than the ones in the laboratory, hence when testing with a real image the client timed out and

disconnected from the service during the operation. This was resolved by setting a higher

timeout period in the WCF configuration.

 Also while testing the Query images on server function in the development environment, the

folder structure was moderate compared to the one that already existed on the laboratory

server, which resulted in the feature not working in the laboratory. By tracing the WCF packets

we discovered that the size of string parameters that could be passed to the remote methods

was maximized in the configuration files and had to be set higher for the function to work

properly.

 The Windows service did not fail immediately if the logging assemblies could not be loaded, and

only sent unclear error messages to the Event Log when we tried to connect with a client. Since

the logging framework was to help in debugging the service, our only option was to use an

individual debugger to resolve the issue. An additional resolution was to add logging functions to

the initialization code of the Windows service, hence if there’s any problem with assembly

loading the service will fail to start, thus narrowing the list of potential errors.

Developing an Efficient Application for the Distribution of Large Files 40

5. Installation Instructions

The following chapter discusses the installation and maintenance instructions of the application,

divided by each component.

The dist folder contains the files required to install the system components. The component folders

contain the executables, the configuration files and a Lib folder that contains the referenced

assemblies and DLLs. The files are arranged under subfolders indicating release versions, e.g. 0.9.*

or 1.0.0.0. The whole contents of the components’ folder have to be deployed in order for them to

work.

5.1. Service Component

Following are the installation instructions for the service component.

5.1.1. Requirements

.NET Framework 3.5 (or later) must be installed on the target machine.

5.1.2. Installation

The service has to be installed with the installutil.exe tool (comes with the .NET Framework).

There is a batch file named install_service.cmd to execute the installation. There are two more

batch files to start and to stop the service, without having to open the Services MMC module.

The service installer will be prompt for a username and password for under whose account the

service will run. This user must have the rights to access the administrative shared folders (c$, d$) of

the client machines, to execute remote WMI calls and to register an HTTP address on the machine

(by default only Domain Administrator accounts have these rights). The username must be given in

the DOMAIN\UserName format, otherwise the installation will fail.

5.1.3. Settings

The settings of the component are stored in the ImageDistributerService.config file beside the

executable. The following table contains the significant configuration elements and their meanings.

The elements indented are subelements of the previous unindented ones.

logConfiguration Contains elements controlling the methods of logging. In the default
configuration only the errors are logged to a log file and severe
errors are also logged to the Event Log (under the source named
“ImageDistributerService”). The Enterprise Library (32) comes
equipped with a graphical editor tool, but some of the settings can
be easily modified by editing the following elements in a text editor.

 listeners These objects tell the logger where to log the events. By default
there are two listeners installed, a FlatFile TraceListener, that logs to
a text file and a Formatted EventLog Listener that logs to the
Windows Event Log. The fileName attribute of the former specifies
the filename in which the log file is created or appended and for the
latter the source attribute indicates the Event Log source name.

Developing an Efficient Application for the Distribution of Large Files 41

 logFilters There are two filters installed by default, the LogEnabled filter and
the Category filter. Setting the enabled attribute of the LogEnabled
filter to false disables logging entirely. By default the Category filter
is set to let through the log entries only from the “Error” category.
Putting XML comment tags (<!-- -->) around the “add” element
of the Category filter enables verbose logging by letting through log
entries from every category.

system.diagnostics This element enables logging of WCF messages, so that the
communication can be analyzed with the Service Trace Viewer
utility. In the distributed .config file it is turned off by default.

system.serviceModel WCF related settings.

 behaviours This element contains serviceBehavior elements, which customize
details of the service’s debug behavior.

 serviceMetadata Enables WSDL metadata generation, which can be acquired via
HTTP protocol.

serviceDebug Enables inner service exception details to be sent back to the client
with FaultExceptions.

endpoint Under the services/service elements, this element provides the
endpoint configuration, namely the exact protocols and URI on
which the service should be available. More than one can be
specified. The default setting in the distributed configuration file
specifies an endpoint with netTcpBinding on port 9000. (There is
also an endpoint named mex (short for Metadata EXchange) that
serves metadata on port 9090.)

bindings The default setting enables encryption and digital signatures and
message ordering. The default inactivity timeout is set to 1 hour,
because the copy processes can take a long time to finish and it is
possible that the client would time out in a shorter period.

applicationSettings This element contains parameters of the business logic.

 GroupName Only the group that is specified here has access to call the business
logic. Users that do not belong to the group are denied access.
Format: DOMAIN\NameOfGroup
Note: After adding a user to a group, the changes are only applied
after the user logs out and then logs back in.

GroupToAddWriteAccess The group specified here will get write access to the distributed files
and folders.
Note: In case this is a built-in group (e.g. Users, Administrators) the
copy operation will fail with an IdentityNotMapped exception. This
is probably a bug in the .NET Framework.

MachineNetworkInfo An XML serialized as an ArrayOfStrings, contains a the list of
machines and their network information in the following format:

machineName,IPAddress,NetMask,MACAddress

The format of this information is verified when the service initializes
and in case of syntax error it will not start and logs an exception to
the Event Log.

ImageFolderRoot Path of the folder on the server that contains the images to be
distributed.

Developing an Efficient Application for the Distribution of Large Files 42

 RemoteTempFolderPart The path of the temporary folder to be used on the client machines.
This is the location where the multicast copied files are first saved.
Must contain an administrative shared folder (c$, d$, etc.) as root.
(It is required to retrieve the free space available on the partition.)
Default value: c$\users\temp.

RemoteImageFolderPart The path of the folder containing the images on the client machines.
Must contain an administrative shared folder (c$, d$, etc.) as root.
This is where the unicast copied files are saved and the multicast
copied files are moved here after the transfer finishes.

FileSizeLimitForMulticast Files smaller than this value in bytes will be unicast copied to the
target machines. This is required because multicast copying is not
efficient for small files.
Default value: 10000000 (~10 MB).

UftpServiceName The name of the Windows service that controls the UFTP daemon
on the clients.
Default value: UftpService.

UftpServerConfiguration An XML structure describing the parameters of the UftpServer. The
parameters are described in detail on the UFTP homepage (1). The
XML structure has corresponding elements to each parameter.
An example configuration:

<UftpServer>

 <Unicast>false</Unicast>

 <Verbose>3</Verbose>

 <Rate>0</Rate>

 <Weight>0</Weight>

 <MinTime>0</MinTime>

 <TimeToLive>0</TimeToLive>

 <LatencyLevel>0</LatencyLevel>

 <Interface>192.168.1.2</Interface>

 <Port>0</Port>

 <Hosts>

 <host>host1</host>

 <host>host2</host>

 </Hosts>

 <LogFile>filename.ext</LogFile>

<PublicMulticastAddress>230.4.4.1</PublicMulticastAddress>

<PrivateMulticastAddress>230.5.5.x</PrivateMulticastAddress>

<UftpServer>

The above configuration has every parameter set, but all elements
are optional except for the root.
Note: The XML structure must be surrounded by the <![CDATA[
]]> tags in order to be processed correctly.

Developing an Efficient Application for the Distribution of Large Files 43

5.1.4. Operation

The component logs the following severe errors to the Event Log and also to the log file:

MachineNetworkInfo line in wrong format: {0}

A certain line in the MachineNetworkInfo configuration setting has a syntax error. {0} is replaced
with the problematic line.

UftpServerConfiguration in wrong format

The UftpServerConfiguration setting has a syntax error. The message will also contain the
problematic XML structure and the validation exception details.

System.TimeoutException or System.CommunicationException

The Windows service could not initialize the WCF service host. The WCF service is probably
misconfigured.

The component logs the following non-severe errors to the log file. These can occur during an

established client-server communication session thus the client is also notified of these events, but

the exception details are only logged to the log file.

Client has no authorization.

The user that connected to the service with the client doesn’t belong to the group specified in the
GroupName setting.

Could not acquire UftpService status from {0}

An error occurred while acquiring UftpService status from a certain client ({0}). This could mean that
the service cannot execute a WMI query because it has insufficient rights or the client is not
responding, perhaps because the firewall blocked the WMI query.

Could not acquire free space from {0} (drive {1}:)

An error occurred while acquiring free disk space information from a certain client ({0}). This could
mean that the service cannot execute a WMI query because it has insufficient rights or the client is
not responding, perhaps because the firewall blocked the WMI query. It could also mean that the
drive letter specified in the RemoteImageFolderPart setting doesn’t exist on the client.

Could not retrieve states from {0}

An unknown error occurred while retrieving status information from a certain client ({0}). The
detailed description of the exception is logged to the log file.

Could not send wake-up packet to {0}

An error occurred while sending a wake-up packet to a certain client ({0}). Probably a network error.

Could not shutdown {0}. WMI returned null or empty result.

WMI returned null or empty result when querying the Win32Shutdown object from a certain client
({0}). This could mean that the service cannot execute a WMI query because it has insufficient rights
or the client is not responding, perhaps because the firewall blocked the WMI query.

Developing an Efficient Application for the Distribution of Large Files 44

Could not shutdown {0}.

An error occurred while calling the shutdown method of a certain client ({0}). The detailed
description of the exception is logged.

Could not start remote service on {0}.

An error occurred while trying to start the UftpService on a certain client ({0}).

Could not stop remote service on {0}.

An error occurred while trying to stop the UftpService on a certain client ({0}).

Could not enumerate subfolders in images folder.

An error occurred while enumerating subfolders in the images folder on the server.

Cannot create access rule.

An error occurred while creating file system access rules. Check configuration for errors and verify
that the service has sufficient permissions.

Image directory does not exist on server.

Check configuration for mistyped path in the ImageFolderRoot setting.

Cannot delete contents of remote temp folder.

Verify that the temporary folder exists on the selected clients and whether the service has write
access to them.

Unknown error occurred while copying.

An unknown error occurred during the copy process. The detailed description of the related
exception is also logged to the log file.

Unable to invoke UftpServer.

Check that the uftp.dll file is in the Lib folder relative to the path of the service executable.

Could not move files to destination folder.

An error occurred while moving the copied files to the destination folder on the clients. The detailed
description of the related exception is logged to the log file.

Could not retrieve directory info.

An error occurred while retrieving directory information in the image folder being distributed. The
detailed description of the related exception is logged to the log file.

Error occurred while copying: path\filename.ext.

The UFTP server returned an error while copying a certain file. The detail of the error is logged to
the log file.

Cannot copy to disallowed machines.

The user tried copying images to a machine that is not configured in the configuration file of the
service.

Developing an Efficient Application for the Distribution of Large Files 45

5.2. Client Component

Following are the installation instructions for the client component.

5.2.1. Requirements

.NET Framework 3.5 (or later) must be installed on the target machine.

5.2.2. Installation

The client does not require installation. It only needs the ImageDistributerClient.config file and

the Lib folder containing the Enterprise Library Logging Application Block assemblies to be in the

same folder as the executable.

The client can be run on any machine in the domain, the only restriction is that the executing user

must be in the group specified in the GroupName setting in both the client’s and the service’s

configuration file. Obviously the configuration file of the client can be tampered with; nevertheless

the service will not give access to unauthorized users. The setting in the client’s configuration only

serves warning purposes.

5.2.3. Settings

The settings of the component are stored in the .config file beside the executable. The following

elements and their effects are considered significant:

logConfiguration Contains elements controlling the methods of logging. In the
default configuration only the errors are logged to a log file. The
Enterprise Library (32) comes equipped with a graphical editor tool,
but some of the settings can be easily modified by editing the
following elements in a text editor.

 listeners These objects tell the logger where to log the events. By default
there is only one listener installed, namely a FlatFile TraceListener
that logs to a text file, the filename is specified by the fileName
attribute.

 logFilters There are two filters installed by default, the LogEnabled filter and
the Category filter. Setting the enabled attribute of the LogEnabled
filter to false disables logging completely. By default the Category
filter is set to let through the log entries only from the “Error”
category. Putting XML comment tags (<!-- -->) around the “add”
element of the Category filter enables verbose logging by letting
through log entries from every category.

system.serviceModel WCF related settings. These settings must match the settings in the
service in order for the connection to be established. The main
difference is that instead of being defined under the services
element the endpoints are defined under the client element.

Developing an Efficient Application for the Distribution of Large Files 46

applicationSettings This element contains parameters of the client component logic.

 GroupName Only the group that is specified here has access to call the business
logic. Users that do not belong to the group are denied access. The
group name specified in the service’s configuration overrules this
setting.
Format: DOMAIN\NameOfGroup
Note: After adding a user to a group, the changes are only applied
after the user logs out and then logs back in.

machineNames Comma separated list of machine names to be displayed on the UI.
By specifying the list of machines in the client configuration, it is
possible to create individual configuration files for the discrete sets
of machines in the laboratory. The machines specified here must
also be specified in the configuration of the service component,
because access will only be granted for the latter.

RemoteImageFolderRoot Path of a shared folder name on all clients that the user has access
to. This is the folder that opens in an Explorer window when the
user clicks on the View Images button for the selected client. The
installation script for the UFTP daemon component will be
responsible for creating the shared folders and as long as the users
in the specified group have access to the folders in the file system,
they will be able to reach it through the shared folder.

5.2.4. Operation

The component logs the following errors to the event log on the user interface and also the client log

file:

Could not call the remote service.

An error occurred while calling the WCF service. Check whether the service is running and the
configuration contains the correct endpoint specifications.

Could not add the returned image names to the treeview.

The service returned an invalid XML folder hierarchy. Enable verbose logging to output the XML
string to the log file.

Could not close connection on exit.

An error occurred while closing the proxy instance on exiting.

There are other errors that can occur and show up in the event list, the list of those exceptions can

be found in the previous section.

Developing an Efficient Application for the Distribution of Large Files 47

5.3. UFTP Daemon

Following are the installation instructions for the UFTP daemon.

5.3.1. Requirements

.NET Framework 3.0 (or later) must be installed on the target machine.

5.3.2. Installation

The dist\UftpService directory contains a batch file named setup.cmd which performs the

operations needed to install the daemon on the client. These commands are the following:

 Creates the C:\Program Files\Uftp directory and copies the executable files into it,

 Creates the temporary directory (C:\Users\Temp by default) in which the files are saved during

distribution,

 Creates a firewall rule to enable WMI and ping services and also enables the Uftpd.exe

executable to open a port on the firewall,

 Creates a shared folder pointing to the folder containing the images on the machine, so that they

can be accessed by the client component,

 Installs the Windows service that runs the UFTP daemon. It also inserts the contents of the

uftpserviceinstall.reg file to the registry, which contains the command line parameters for

the service.

The directory and file paths in the batch file reflect the scenario in which the daemon was used with

the PowerShell script, in case of configuration changes, the appropriate parameters will need to be

amended.

5.4. Group Policy Settings

Group policy settings can be used to centrally control the configuration and access rights of client

machines, which is much safer than allowing local modifications. Since the laboratory operates in an

Active Directory domain, it was obvious to use group policies to distribute settings to the clients.

Therefore the firewall related settings in the UFTP daemon’s installation script has been commented

out and deployed centrally by group policy settings.

These settings are available in the Computer Management console, via the following path:

Computer Configuration\Administrative Templates\Network\Network
Connections\Windows Firewall\Domain Profile

The following policies have to be enabled:

 Windows Firewall: Allow remote administration exception

 Windows Firewall: Allow ICMP exceptions

 Windows Firewall: Define program exceptions

o Value: C:\Program Files\Uftpd\uftpd.exe:localsubnet:enabled:UFTPD

Developing an Efficient Application for the Distribution of Large Files 48

6. User Manual

The end users of the system will be using the client component, in other words the user interface:

Figure 19: The user interface after startup.

The list control on the bottom right side is the Event log. All events and errors are reported in this

list. The events in the list can be cleared by pressing the Clear Log button.

The grid on the top contains the list of machines configured in the configuration file of the client.

Initially it contains no data other than the machine names. Press the Get States button to retrieve

information for the selected machines. After pressing the button, the name of the machines stay

gray, but as the information is received their background turns green. The background of the

selected machines that are not configured on the server will turn to red instead of green and an error

message is reported in the Event log.

Other features related to the selected machines:

View Images Opens a file browser window pointing to the shared folder containing the
distributed image files on the selected machine(s).

Turn On Sends a turn on signal to the selected machine(s). Changes aren’t reflected
immediately, only after retrieving the information for the selected machines again.

Turn Off Sends a turn off signal to the selected machines. Changes aren’t reflected
immediately, only after retrieving the information for the selected machines again.

Start Service Starts the UFTP daemon on the selected machines. Changes aren’t reflected
immediately, only after retrieving the information for the selected machines again.

Stop Service Stops the UFTP daemon on the selected machines. Changes aren’t reflected
immediately, only after retrieving the information for the selected machines again.

Developing an Efficient Application for the Distribution of Large Files 49

All of the above features first verify that the operation in question is necessary, e.g. the UFTP

daemon cannot be started on machines that are turned off, and machines that are already turned on

cannot be turned on again. A notification is logged of these situations into the Event log.

The treeview control on the bottom left side displays the image folders that exist on the server,

which can be retrieved by press the Get Images button. The folders are displayed hierarchically. The

size of a certain folder will be displayed in a tooltip by hovering with the mouse cursor over a certain

tree node.

To start a distribution process the target machines and the image folder to be copied must be

selected first. This doesn’t necessarily have to be a leaf node, since the subfolders are copied

recursively. Distribution is started by pressing the Start Copy button. Status events and errors during

will be displayed in the Event log.

Please keep in mind that the connection between the client and the service times out after 1 hour.

Should the client be left inactive for a long time, it might need to be restarted to successfully

administer a distribution process. If the distribution takes longer than an hour, the administrator

must increase the timeout period in the client and the service configuration likewise.

The following screenshot shows the user interface after querying the information of the test

machines, including one deliberately disallowed, loading the list of images, and finally performing the

distribution of an image folder:

Figure 20: The interface after a test copy.

Developing an Efficient Application for the Distribution of Large Files 50

7. Conclusions

The following chapter serves as the epilogue of the thesis. It summarizes the achieved goals and

lessons derived from the development process. It also reveals the future of the project.

7.1. Evaluation of the Solution

The development of the application is considered successful as it fulfills requirements specified on all

levels and passed acceptance testing. The following is the detailed analysis of the implemented

requirements.

Implementation of high-level requirements (section 1.4):

 The application uses the very same UFTP tool, thus the efficiency of multicast copying did not

change,

 The authorization is solved by integration with the existing Active Directory environment, with

access granted only to selected users,

 The user interface was designed according to end user preferences and successfully passed

acceptance testing.

Use cases (section 2.1.1) are implemented as operations of the service component as described in

section 3.1.

Implementation of non-functional requirements (section 2.1.2):

 Fast Copying: The UFTP tool was ported to a Dynamic Link Library (DLL) which allowed more

seamless integration with the service, but the actual workings of the tool was not changed, nor

used in a more complex way than with the original PowerShell scripted solution.

 Central Manageability: The application’s client can be used to manage the whole distribution

process from turning on the machines to turning them off after finishing, from a single client

machine.

 Asynchronous Operation: Interaction between the client and the service component are

performed as one-way WCF methods, thus the client is not being blocked during the execution of

the actual operations.

 Security: The components communicate via a secured WCF channel and authorization checking is

enforced by the service component, while the client will display warnings if access will not be

granted or a disallowed machine was found in the configuration.

As additional requirement of the thesis, systematic testing was introduced to ensure the quality of

the current and future versions of the application.

Developing an Efficient Application for the Distribution of Large Files 51

7.2. Lessons Learned

This thesis went over the development cycles of a software application that is only intended for

inside use in the department’s laboratory. Nevertheless the process can be drawn parallel with the

development of larger scale software systems, which I am hoping to be part of some day.

However small it may be, this project served as a valuable lesson of teamwork, e.g. files were

sometimes missing from the repository, because they weren’t automatically added upon creation.

Thus adding new files and restructuring the hierarchy requires extensive care and the occasional

smoke testing of the repository itself.

Even with a highly profound test plan, unexpected situations will arise, for instance something that

passes all tests in the development environment, doesn’t work at all in the target environment. It is

probably a configuration error, a buffer size set too low, which doesn’t cause any symptoms during

the initial testing if it was done with a smaller amount of test data, but identifying the cause is only

possible with the sufficient amount of debugging information available. This led to the recognition of

the need for debugging without an advanced Integrated Development Environment. The laboratory

machines do not have Visual Studio installed and the convenient debugging tools were not available

while testing there. As a solution to this we implemented efficient verbose logging of internal

operations. The .NET Framework was also very helpful in this respect, because it contains the

complete tool chain to build projects without the need for a separate SDK.

Such experiences could not have been earned otherwise than contributing in a similar project and

without the devoted help of my advisor.

7.3. Future Plans

The project doesn’t end here, although we have achieved the initial goal to present a usable system,

still there are unresolved tickets in the issue tracking system. Some of them minor defects, some of

them enhancements, or new ideas for features, e.g. the ability to abort the distribution process or

reporting detailed progress of the multicast copying to the client. On the development side the

automatic versioning and the management of configuration files need further improvements.

It is also considered to create a web interface, i.e. thin client instead of or alongside to the current

thick client component.

Meanwhile the department staff can begin using the application for its designated purpose starting

next semester.

Developing an Efficient Application for the Distribution of Large Files 52

References

(1) Bush D. UFTP homepage. [Online]. Available from: http://www.tcnj.edu/~bush/uftp.html.

(2) IBM. IBM - Provisioning Software - Tivoli Provisioning Manager - Software. [Online]. Available from:

http://www.ibm.com/software/tivoli/products/prov-mgr/.

(3) Microsoft Corporation. System Center Configuration Manager: Home Page. [Online]. Available from:

http://www.microsoft.com/systemcenter/configurationmanager/en/us/default.aspx.

(4) Buttyán L, Györfi L, Győr S, István V. Kódolástechnika jegyzet. *Online+. 2006. Available from:

http://www.crysys.hu/courses/kodolastechnika/bscinfkod.pdf.

(5) Cohen B. The BitTorrent Specification Protocol Specification. [Online]. Available from:

http://www.bittorrent.org/beps/bep_0003.html.

(6) Wikipedia. Comparison of BitTorrent clients. [Online]. Available from:

http://en.wikipedia.org/wiki/Comparison_of_BitTorrent_clients.

(7) Rasterbar Software. libtorrent Homepage. [Online]. Available from:

http://www.rasterbar.com/products/libtorrent/.

(8) Microsoft Corporation. Windows Communication Foundation. [Online]. Available from:

http://msdn.microsoft.com/en-us/netframework/aa663324.aspx.

(9) Microsoft Corporation..NET Framework Development Center. [Online]. Available from:

http://msdn.microsoft.com/en-us/netframework/default.aspx.

(10) Douglas K. B. Service-oriented architecture (SOA) definition. [Online]. Available from: http://www.service-

architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html.

(11) Lieberman P. White Paper: Wake On LAN Technology. [Online]. 2002. Available from:

http://www.liebsoft.com/index.cfm/whitepapers/Wake_On_LAN.

(12) Microsoft Corporation. Shutdown Method of the Win32_OperatingSystem Class. [Online]. Available from:

http://msdn.microsoft.com/en-us/library/aa393627.aspx.

(13) Zoltán B. Windows Communication Foundation - a kommunikációs réteg. *Online+. 2007. Available from:

http://www.devportal.hu/Portal/Detailed.aspx?NewsId=6c10d424-df70-4b66-b64e-e2dd2404b8cb.

(14) Microsoft Corporation. Windows Communication Foundation Architecture Overview. [Online]. 2006.

Available from: http://msdn2.microsoft.com/en-us/library/aa480210.aspx.

(15) Microsoft Corporation. Windows Communication Foundation Documentation. [Online]. 2007. Available

from: http://msdn2.microsoft.com/en-us/library/ms735119.aspx.

(16) Peiris C, Mulder D. Hosting and Consuming WCF Services. [Online]. 2007. Available from:

http://msdn2.microsoft.com/en-us/library/bb332338.aspx.

(17) Microsoft Corporation. Microsoft Developer Network Academic Alliance Homepage at BME-VIK. [Online].

Available from: http://msdnaa.bme.hu/.

(18) Open Source Community. Subversion. [Online]. Available from: http://subversion.tigris.org/.

http://www.tcnj.edu/~bush/uftp.html
http://www.ibm.com/software/tivoli/products/prov-mgr/
http://www.microsoft.com/systemcenter/configurationmanager/en/us/default.aspx
http://www.crysys.hu/courses/kodolastechnika/bscinfkod.pdf
http://www.bittorrent.org/beps/bep_0003.html
http://en.wikipedia.org/wiki/Comparison_of_BitTorrent_clients
http://www.rasterbar.com/products/libtorrent/
http://msdn.microsoft.com/en-us/netframework/aa663324.aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx
http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
http://www.liebsoft.com/index.cfm/whitepapers/Wake_On_LAN
http://msdn.microsoft.com/en-us/library/aa393627.aspx
http://www.devportal.hu/Portal/Detailed.aspx?NewsId=6c10d424-df70-4b66-b64e-e2dd2404b8cb
http://msdn2.microsoft.com/en-us/library/aa480210.aspx
http://msdn2.microsoft.com/en-us/library/ms735119.aspx
http://msdn2.microsoft.com/en-us/library/bb332338.aspx
http://msdnaa.bme.hu/
http://subversion.tigris.org/

Developing an Efficient Application for the Distribution of Large Files 53

(19) Edgewall Software. Trac. [Online]. Available from: http://trac.edgewall.org/.

(20) Microsoft Corporation. Windows SDK. [Online]. Available from: http://msdn.microsoft.com/en-

us/windowsserver/bb980924.aspx.

(21) Microsoft Corporation. Mdbg Download. [Online]. 2006. Available from:

http://www.microsoft.com/downloads/details.aspx?familyid=38449a42-6b7a-4e28-80ce-

c55645ab1310&displaylang=en.

(22) Stall M. Mike Stall's.NET Debugging Blog. [Online]. 2005. Available from:

http://blogs.msdn.com/jmstall/archive/2005/11/08/mdbg_linkfest.aspx.

(23) Microsoft Corporation. SysInternals. [Online]. Available from:

http://www.microsoft.com/technet/sysinternals/default.mspx.

(24) Open Source Community. TortoiseSVN. [Online]. Available from: http://tortoisesvn.tigris.org/.

(25) Green P. Chromium Blog: Putting It to Test. [Online]. 2008. Available from:

http://blog.chromium.org/2008/11/putting-it-to-test.html.

(26) Fowler M. Mocks Aren't Stubs. [Online]. 2007. Available from:

http://martinfowler.com/articles/mocksArentStubs.html.

(27) Wikipedia. List of unit testing frameworks. [Online]. Available from:

http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks.

(28) Wikipedia. List of tools for static code analysis. [Online]. Available from:

http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis.

(29) Microsoft Corporation. FxCop. [Online]. Available from: http://msdn.microsoft.com/en-

us/library/bb429476.aspx.

(30) J. Foster J. Calculate Code Metrics using Visual Studio 2008. [Online]. 2008. Available from:

http://www.jamesjfoster.com/blog/2008/10/11/CalculateCodeMetricsUsingVisualStudio2008.aspx.

(31) Microsoft Corporation. Windows Server 2003 Resource Kit Tools. [Online]. 2003. Available from:

http://www.microsoft.com/downloads/details.aspx?FamilyID=9D467A69-57FF-4AE7-96EE-B18C4790CFFD.

(32) Microsoft Corporation. Enterprise Library. [Online]. Available from: http://msdn.microsoft.com/en-

us/library/cc467894.aspx.

(33) Microsoft Corporation. The Logging Application Block. [Online]. 2008. Available from:

http://msdn.microsoft.com/en-us/library/dd139916.aspx.

(34) Google Fight. Distributer vs. Distributor. [Online]. Available from:

http://www.googlefight.com/index.php?lang=en_GB&word1=distributer&word2=distributor.

(35) Microsoft Corporation..NET Framework Development Center. [Online]. Available from:

http://msdn.microsoft.com/en-us/netframework/default.aspx.

(36) Foster JJ. Calculate Code Metrics using Visual Studio 2008. [Online]. 2008.

http://trac.edgewall.org/
http://msdn.microsoft.com/en-us/windowsserver/bb980924.aspx
http://msdn.microsoft.com/en-us/windowsserver/bb980924.aspx
http://www.microsoft.com/downloads/details.aspx?familyid=38449a42-6b7a-4e28-80ce-c55645ab1310&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=38449a42-6b7a-4e28-80ce-c55645ab1310&displaylang=en
http://blogs.msdn.com/jmstall/archive/2005/11/08/mdbg_linkfest.aspx
http://www.microsoft.com/technet/sysinternals/default.mspx
http://tortoisesvn.tigris.org/
http://blog.chromium.org/2008/11/putting-it-to-test.html
http://martinfowler.com/articles/mocksArentStubs.html
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://msdn.microsoft.com/en-us/library/bb429476.aspx
http://msdn.microsoft.com/en-us/library/bb429476.aspx
http://www.jamesjfoster.com/blog/2008/10/11/CalculateCodeMetricsUsingVisualStudio2008.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=9D467A69-57FF-4AE7-96EE-B18C4790CFFD
http://msdn.microsoft.com/en-us/library/cc467894.aspx
http://msdn.microsoft.com/en-us/library/cc467894.aspx
http://msdn.microsoft.com/en-us/library/dd139916.aspx
http://www.googlefight.com/index.php?lang=en_GB&word1=distributer&word2=distributor
http://msdn.microsoft.com/en-us/netframework/default.aspx

	Introduction
	The Goal of the Thesis
	Existing Solution
	UFTP Details

	Problems with the Existing Solution
	High-Level Requirements
	Alternative Solutions
	Advanced Framework for the Current Solution
	Active Directory Software Deployment
	Commercial Software Management Systems
	BitTorrent Based Solution

	Development Method

	Designing the Application
	Requirement Analysis
	Use Case Analysis
	Actors
	Use Cases

	Non-Functional Requirements

	Architecture
	Technology
	Windows Communication Foundation

	Layers
	Business Logic
	Client
	UFTP Daemon

	Security Concerns
	User Interface

	Development Environment
	Version Control System
	Issue Tracking System
	Other Development Tools

	Testing Principles
	Unit Testing
	Integration Testing
	System Testing
	User Acceptance Testing
	Code Analysis

	Implementation of the Application
	Service Component
	Client Component
	UFTP Daemon
	Logging Component
	Test Implementations
	Features to Be Tested
	Features Not to Be Tested
	Unit Testing Framework
	Integration Testing Framework
	Test Scripts
	System Testing

	Testing Results
	Fixed Issues
	Code Analysis Results
	Testing in the Target Environment

	Installation Instructions
	Service Component
	Requirements
	Installation
	Settings
	Operation

	Client Component
	Requirements
	Installation
	Settings
	Operation

	UFTP Daemon
	Requirements
	Installation

	Group Policy Settings

	User Manual
	Conclusions
	Evaluation of the Solution
	Lessons Learned
	Future Plans

	References

