Operating systems (vimia219)

Authentication and authorization

Toth Daniel, Micskei Zoltan

Budapesti Miiszaki és Gazdasagtudomanyi Egyetem
Méréstechnika és Informacios Rendszerek Tanszék

Security of computer systems

" |s it important?

= |s it important
for everyone?

= Whenis it
important?

When is security important?

" |n every phase of
software development

= [f the system was not
designed for security, it is
really hard to make it
Secure. implementatio
n

= Security is determined by
the weakest link.

operation

What is security?

= ,C.ILA”: three related concepts

= Goal:

Integrity
o guarantee that the systems

behaves always as expected

= One technology is usually I ‘
not enough
Confidentiality £ & Availability

Methods for security

Cryptography
o For the integrity and

confidentiality of communication :
, , Integrity
Platform-level intrusion

detection
o Integrity if the applications

Network-level intrusion I ‘
detection
Confidentiality £ & Availability

Redundancy,
Authentication, authorization

reconfiguration
o For availability

Who is “authorized”?

= Short security introduction
= User management, authentication

o UNIX, Linux
Wi }_
o Windows On the last lecture of
= Authorization the semester

o General methods
* Role-based access control
e Access control lists

o Authorization on UNIX/Linux

o Authorization on Windows

Authentication

= How can be the identity of the user decided?
o ...knows (e.g. password)
o ...has (e.g. keycard, security token)
o ...is (e.g. biometric, fingerprint)

= A (non-compromised) machine can decide the
identity of the user using these methods

o But what if the machine is compromised?

o What to do with machine-machine communication?

Authentication

= Authentication on 3 levels:
o Human—machine interaction
o Machine—machine interaction over network
o Between processes inside an OS

= Authentication protocols are needed
o Machine—machine only the “knows” principle

o But complex cryptographic primitives can be used

What is a user account?

User

+ 1D

+ Name

+ Real Name

+ Personal data...
+ Shared Secret
(Password, etc.)
+ Private
Datastore path

For the system, the user is an object...

What is a user account?

= Unique identifier for an account
o Linux, UNIX: UID (integer, root 0O, users 1000-...)

= Further attributes of an account
o Stored in /etc/passwd, /etc/shadow, /etc/groups
o Examples

* Login name

* Password

* Home directory
Default shell
e Real name...

plA\/[68 User account on Linux

= Stored in the following files:

o /etc/passwd
o /etc/shadow
o /etc/group

= Create, de
o useradc

o groupac

o passwd

ete, modify
, usermod, userdel
d, groupmod, groupdel

User account on Linux

User Initial group Group
+UID] M + GID
+ name + name
+ +
password embers (+ password)
+ shell
3 *

+ home directory
+ comment
+ expiry date

B]5\Y/[6R Process identity

= |dentifying the identity of a process
ops aux, pstree, /proc/$PID/status

" Changing effective user és group runtime
o setuid, setgid

O Su, sudo

= Short security introduction

= User management, authentication
o UNIX, Linux
o Windows

= Authorization
o General methods

* Role-based access control
e Access control lists

o Authorization on UNIX/Linux

o Authorization on Windows

Authorization in general

' Protected objects

Security
policy . Data
g
L
27 7P _ -

Resources

Actor, Subject Data structure

of actor

Actor is

Permissions are a relationship
represented by a

between actors and protected
objects

data structure

Executing operations

Read(Datal)

pollcy
enforcement
pomt

approved T Datal

policy
decision
point

X Data2

- A

Resource 3

General concepts

= Actors initiate operations

" The context of the operation includes the
identifier of the actor, the protected object and
the type of operation

= The policy decision component evaluates:

o approves or denies the operation

= The policy enforcement component assures that
the result is enforced

Challenges in authorization

" There are many actors in the system

o Moreover: different systems identify the users
differently

= There are many protected objects

= The whole relationship:
o (Actors) X (Objects) X (Types of operation)

o This is called access matrix

o It is unmanageable, the whole matrix is huge!

Categorizing authorization methods

<

D|scret|onary

System level
Authorization
. Level
categories

Resource IeveI

Integrity
control
Access control

I|sts

Category: Compulsoriness

= Classical concepts (US DoD standard)

= Mandatory
o security policy is managed centrally
o users cannot change the policy

= Discretionary

o the owner of the resource can change the permissions

Category: type

" |ntegrity control
o Labeling objects
* Integrity level: high — low, public — secret
o Typical validation:

* lower level actor cannot read a higher level object

o Bell-LaPadula (confidentiality) and Biba (integrity)

,No read up” ,No write up”
,No write down ,No read down”

Category: type

" |ntegrity control

o Labeling objects
* Integrity level: high — low, public — secret
o Typical validation:

* lower level actor cannot read a higher level object

o Bell-LaPadula (confidentiality) and Biba (integrity)

= Access control lists

o object — (actor, permissions)

* Permission: read, write, execute...

Access control lists

Actor Permission Protected object

Access mask: contains
the operations the

permission is defined
for

Access control lists

A permission can be defined
for a set of objects

Actor Permission Protected object

Sometimes the

ordering is also
defined

Role-based Access Control (RBAC)

Role makes
defining actors
hierarchically
possible

Permission Protected object

The number of

permissions can be
greatly reduced

26

MUEGYETEM ITEEZ

Hierarchy between objects

If there is a
hierarchy between
objects...

+ mask
+inherit

Protected object

...a permission
can be defined
for a subtree of
objects using
inheritance

27

memberOf

Group membership is a (+ Purpose...)
method for (+ Shared Secret)

implementing RBAC

= Short security introduction

= User management, authentication
o UNIX, Linux
o Windows

= Authorization
o General methods

* Role-based access control
e Access control lists

o Authorization on UNIX/Linux

o Authorization on Windows

POSIX file system permissions

= Basic concepts
o Acotr: user
o Hierarchy of actors: group
o A user can be member of several group
o A group can contain several user
o Group cannot contain an other group

" Permissions

o 3x3 bit: read, write, execute (entering a directory)
* First 3: for the owner of the object
* Second 3: for the group of the object
* Third 3: everyone else

o Special bits:
* setuid, setgid: when running changes the uid, gid to the owner
* sticky: sets the owner of new objects

| +parent

Ffocess

| teffective_gid

Inode
Group . +groupClass + owner read : bool
+ grouplD @ int | + owner write : bool
+ name : string | + owner_execute : bool
" i + group read : bool
+ group write : bool B
+ group execute : bool
+ world read : bool +contents
+ world write : bool
M + setgid : bool
uSer. 1 B + sticky : bool
+ useriD : int
+ name : string | +userClass L2
File Directory

Device || Socket ([Fifo | Symlink

EGYETEM I1TEEZ 1

BIA\V/IOR Linux permissions

" Changing owner: chown
o can be executed only by the root

" Changing permissions: chmod

o Only allowed to the owner of the object
o Several styles for permissions:
* 4 octal numbers

* Changing e.g.: u+x (add execute for user),
g-w (remove write for group)

= Listing:

ols -1

Other privileges

= Root has special privileges:
o Can set real-time class scheduling
o Can access I/O devices directly (!)
o Can listen on TCP ports below 1024

o Can change kernel parameters, load kernel module,
etc.

O ...

= But this also should be modifiable
o Principle of least privileges

o Method: POSIX Capabilities (method for assigning
global system-level privileges)

