
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2015; 00:1–25
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Evaluating code-based test input generator tools

Lajos Cseppentő and Zoltán Micskei∗

Budapest University of Technology and Economics, Hungary

SUMMARY

In recent years several tools have been developed to automatically select relevant test inputs from the
source code of the system under test. However, each of these tools has different advantages, and there
is little detailed feedback available on the actual capabilities of the various tools. In order to evaluate
test input generators we collected a representative set of programming language concepts that should be
handled by the tools, mapped them to 300 code snippets that would serve as inputs for the tools, created
an automated framework to execute and evaluate these snippets, and performed experiments on six tools
using symbolic execution, search-based and random techniques. The test suites’ coverage, size, generation
time and mutation score were compared. The results highlight the strengths and weaknesses of each tool
and approach, and identify hard code parts that are difficult to tackle for most of the tools. We hope that our
research could serve as actionable feedback to tool developers and help practitioners assess the readiness of
test input generation. Copyright c© 2015 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: software testing; test generation; white-box testing; test data

1. INTRODUCTION

Testing is one of the most commonly used techniques to check and improve the quality of
software systems, where the system is executed under specified conditions defined by test cases.
A test case should include “test inputs, execution conditions, and expected results developed for
a particular objective” [1]. However, creating efficient and effective tests is a challenging and
resource consuming task. That is why extensive research has been performed in the last decades
to automatically derive the various test artifacts. For example model-based testing methods can
generate test cases from behavioral models. Code-based methods start from the source code of the
system under test and select test inputs typically maximizing achieved code coverage. Code-based
methods primarily generate only test inputs without expected outputs, and rely on assertions or
exceptions to detect issues.†

Several techniques have been proposed for test input generation [2], e.g. symbolic execution (SE)
[3], search-based software testing [4] or variants of random methods [5]. Test input generation is an
active research topic with more and more tools developed. There exists tools for several platforms,
such as C, .NET, Java or x86 machine code. However, the majority of these tools are academic or
research prototypes, and the method is not used widely in industry.

As the problem at the heart of test input generation is computationally hard in general,
the development of such tools faces several theoretical challenges. Additionally, as modern
programming languages and platforms offer a wide variety of complex language constructs and

∗Correspondence to: H-1117 Budapest, Magyar tudosok krt. 2., Hungary. E-mail: micskeiz@mit.bme.hu
†Note on similar terminology: Some papers use the terms test data generation and white-box testing for these concepts.

Copyright c© 2015 John Wiley & Sons, Ltd.
Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]

MZ

This is the pre-peer reviewed version, which has been published in final form at https://doi.org/10.1002/stvr.1627. The final version was significantly extended, please see the final version.This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

zoli
Rectangle



2 L. CSEPPENTŐ AND Z. MICSKEI

features, supporting all of them is a significant development task. Thus the available test generators
have varying capabilities.

Typically the publication of a new tool includes also experimental results to assess the tool’s
capabilities. However, some of the developers use their own sample programs, while others conduct
case studies on open source software. The used third-party software are usually different, thus
comparing the abilities of the tools is not trivial. The tool papers always describe the benefits of
the new tool and the innovation carried out during development. Nonetheless, only some of them
mention all limits of the tool. Several experiments have been published in which tools were applied
to complex software [6, 7]. These experiments communicate aggregated quantitative results (such
as average code coverage) in the first place and point out how the tools perform and handle the
challenges in real situations. However, we only found one general survey [8] containing fine-grained
feedback on what pieces of code can or cannot be handled by a certain tool. Thus the initial question
that motivated our work was:

How can the different test input generator tools be compared and evaluated?

Designing a common evaluation method and framework would help to identify general
challenges, would provide tool developers with actionable, reproducible feedback, and would help
practitioners assess the readiness of the tools and test input generation more precisely.

We applied the following method in our research. First, we collected and organized the
programming language concepts that should be handled by a test input generator (e.g. recursion,
complex structures). Then, we defined minimal code snippets that target these features and serve as
inputs for the test input generators. Next, the tools were executed on the above snippets, and based on
the results of the test generation, it was possible to conclude whether the given tool handles a certain
feature properly or not. Moreover, several other metrics including test suite size or generation time
were analyzed. Using all the snippets, detailed feedback could be obtained, which makes possible
to compare the tools.

In our initial paper [9] we concentrated on tools using symbolic execution. This paper extends
the scope of the work by including search-based and random testing tools, adding two new tools to
the automatic evaluation framework, performing a large number of experiments and extending the
analysis from only code coverage to several other properties.

Thus contributions of this paper include:

• collecting the relevant and challenging features of imperative programming languages w.r.t.
test input generation;

• mapping these features to the Java and .NET languages and platforms and implementing them
in 300 code snippets;

• creating an easily extendable framework called SETTE for automatically evaluating the
snippets on selected tools;

• designing and conducting a large number of experiment on five Java and one .NET tools,
• analyzing the results by highlight the significant differences and the ‘hard code parts’, i.e. the

features which are difficult to tackle for most of the tools.

The SETTE framework, the code snippets and all the experimental results are publicly available
from the tool’s website:

http://sette-testing.github.io

2. OVERVIEW

Structural or white-box testing is a well-known method since the early days of software testing [10].
Even in the 1970s several algorithms and tools were proposed for automatic test input generation
starting from the source code [11, 12]. Since then numerous techniques have been developed (e.g.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://sette-testing.github.io


EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 3

Table I. List of evaluated test input generator tools

Name Platform OS Access Published Updated Technique
CATG [24] Java – open source 2012 2015 SE
EvoSuite [25] Java – closed source 2008 2015 SBST
PET/jPET [26] Java Linux open source 2009 2011 SE
Pex [27] .NET Windows closed source 2008 2015 SE
Randoop [28] Java – open source 2007 2015 RT
SPF [29] Java – open source 2012 2015 SE

using mutation analysis [13] or pre-/postconditions [14], etc.). In this work we focus on tools using
symbolic execution, search-based and random testing.

Symbolic execution (SE) is a program analysis technique where symbolic variables are used
instead of concrete inputs and an execution path in the program is represented with an expression
over the symbolic variables (called a path condition or path constraint) [15]. The possible execution
paths are collected and the respective path constraints are solved by usually an SMT solver yielding
a set of concrete input values activating the given path in the program. Although the idea of symbolic
execution was born in the 1970s, it has been used for test generation in practice only recently because
of its high computational need [3].

Search-based software testing (SBST) is an area of search-based software engineering, i.e.
the application of metaheuristic search techniques to optimization problems found in software
engineering. In SBST the test input generation is formulated as a search problem: possible inputs to
the program forms a search space and the test adequacy criterion is coded as a fitness function [16].

Variants of random testing (RT) have also been used for test input generation. Even in its simple
forms, random testing could be useful in practice, e.g. to find robustness failures [17]. More recently,
adaptive random testing and feedback-directed testing have been proposed as extensions.

Note that the distinction between these techniques are often blurred, e.g. in symbolic execution
various search techniques could be used to select the next path, and these techniques could be
combined in hybrid approaches [2].

Challenges However, like other hard problems, the practical application of test input generation
faces also several challenges. For SE [2, 18, 19, 20], currently the most important ones to
deal with include path explosion (exponentially increasing number of possible execution paths),
complex and external arithmetic functions (due to the limitations of SMT solvers), floating-point
calculations, pointer operations, interaction with the environment and multi-threading. Interaction
with environment and multi-threading are also challenging for an SBST tool [21]. Further SBST
challenges include predicates with only a flag variable, nested conditions and enumerations [22],
complex strings and objects with internal state [4], or nun-functional requirements [23].

Tools In the last decade several test input generator tools have been published. A list of tools can
be found in a recent orchestrated survey [2], or on the website of one the authors‡. Some tools are
open source, some tools are still actively developed while others are not available any more. The
tools also vary in their input language and platform (C, Java and .NET).

In our experiments we concentrated on tools for Java, we evaluated the following tools CATG
[24], EvoSuite [25], PET [26], Randoop [28], and Symbolic PathFinder (SPF) [29] and included
additional results for Pex [27]. Table I contains some details about the tools.

Our approach Our goal was to compare test input generators. The overview of our approach is
illustrated on Fig. 1.

‡“Code-based test generation methods and tools”, http://mit.bme.hu/˜micskeiz/pages/cbtg.html

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://mit.bme.hu/~micskeiz/pages/cbtg.html


4 L. CSEPPENTŐ AND Z. MICSKEI

Features

Code Snippets

Evaluation

(Coverage…)

Language 

Reference

Generated Test 

Inputs

Challenges

Derive

Test Input 

Generation

Select

Test Generator 

Tool

Figure 1. Our approach for comparing test input generators

1. We have collected the common language elements and program organizational structures for
C/C++, Java and .NET languages ranging from basic data types and operators to complex
concepts like handling string manipulations or class inheritance. We would refer to these
collectively as “features”. We paid attention to include the ones responsible for the challenges
above.

2. These features are later mapped to a specific programming language by creating code snippets
targeting a feature. A code snippet is an executable program code, like a general main
function. Several code snippets could be defined for a feature depending on its complexity.
The majority of the code snippets contain 10–20 lines.

3. The tools under evaluation are ordered to generate inputs for these snippets separately. The
generated inputs, the code coverage achieved by these inputs on the code snippets and several
other metrics are collected. An ideal tool should generate such a set of inputs for each snippet,
which reaches the maximal possible coverage.

4. Using these results a detailed feedback can be given on one tool and several tools can be
compared.

The next sections detail the features (Section 3), the code snippets (Section 4), the planning of
the experiment (Section 5) and the discussion of the results (Section 6).

3. FEATURES TO COMPARE

The goal of one feature is to check whether a tool supports a certain language construct or program
organizational structure (e.g. recursion). These features are grouped into categories and focus on
imperative programming languages. Our guidelines during the selection of the features were the
following:

• Coverage: in order to get basic and detailed feedback on the tools, the most important
language elements shall be covered at least once. It must be noted that because of the large
number of elements and combinations full coverage cannot be a reasonable objective.

• Clarity: the methodology should be clear for each programming language since sometimes
the common concept in two different programming languages can have different meanings.

• Well-organized structure: it not only increases clarity and helps maintenance, but all the partial
and final results will have the same structure, which makes evaluation easier.

• Compactness: the number of code snippets should not be unnecessarily large, otherwise the
maintenance, the test execution and the evaluation would require more resource.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 5

Table II. Selected language features used in the evaluation

B Basic language constructs, operations and control flow statements

B1 Primitive types, constants and operators
B2 Conditional statements, linear and non-linear expressions
B3 Looping statements
B4 Arrays
B5 Function calls and recursion
B6 Exceptions

S Structures

S1 Basic structure usage
S2 Structure usage with conditional statements
S3 Structure usage with looping statements
S4 Structures containing other structures

O Objects and their relations

O1 Basic object usage
O2 Class delegation
O3 Inheritance and interfaces
O4 Method overriding

G Generics

G1 Generic functions
G2 Generic objects

L Built-in class library

L1 Complex arithmetic functions
L2 Strings
L3 Wrapper classes
L4 Collections
LO Other built-in library features

Others Other features

• Minimizing the dependencies: inevitably there will be dependencies between the features. For
example, to use a conditional statement, support for the used type is essential. Care must be
taken about that dependencies should be only present in one direction between two criteria
and there should be no circular dependencies. In addition, the number of dependencies should
be small.

Before discussing the concrete features, some notions must be clarified, as the differences
between C/C++, Java and C# can be significant:

• Function: a program code which can be called several times, but does not belong to any high-
level constructs, i.e. functions in C/C++, static methods in Java and C#.

• Structure: a complex type which can contain other types (even another structure), but does
not have methods and all parts of it are accessible, i.e. structs and classes without methods
and with only public fields.

Table II lists the selected features, whose details will be discussed in the next subsections.

3.1. Primitive Types and Operators (B)

As our former experiences showed, it is not obvious that a tool is capable of handling all the
primitive types and constructs of a programming language, thus the support for these features should
be checked first. This category also includes operators, control flow statements and both simple and
complex mathematical problems. Arrays§ are checked with safe and unsafe snippets: safe snippets

§In Java, arrays are also objects, however, they are discussed here because of their special function.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



6 L. CSEPPENTŐ AND Z. MICSKEI

handle illegal indices and null references, while unsafe snippets do not. The ability of the tool to
detect common exceptions is also checked in this category. The main questions were whether a tool
is able to

B1 handle all the basic language elements,
B2 solve simple and complex arithmetic problems,
B3 generate inputs for simple loops, loops with inner state, complex loops and embedded loops,
B4 use arrays and generate arrays as input values,
B5 dispatch function calls, cover called functions and handle recursion and
B6 detect exceptions and handle exception-specific language constructs.

3.2. Structures (S)

The following step is to check support for complex (data) types. The goal is to determine whether
a certain tool is able to handle types containing other types, even in combination with conditional
statements and loops. The main questions were whether a tool is able to

S1 use data fields of structures,
S2 use structures with conditional statements
S3 use structures with looping statements and
S4 generate complex structures as input values.

3.3. Objects and Their Relations (O)

A major part of modern programming languages support object-oriented programming and these
language concepts are commonly used by software. Objects are not only structures with functions,
but they can have states and it is common that an object cannot have certain field values. In addition,
other OO concepts should be supported by an ideal tool such as delegation, inheritance, interfaces,
abstract classes and method overriding. Latter is not trivial since for example in C++ and C#.NET
not all the methods are implicitly virtual.

An ideal tool should be able to i) handle objects, ii) create instances of objects, iii) guess the
concrete type or create dummy classes when using interfaces, and iv) it should never produce an
object which cannot be created with the available methods. The last requirement describes that e.g.
given an object whose integer field is ensured to be positive, a test input generator should never
create an instance of the object, which has a negative field value. The main questions were whether
a tool is able to

O1 use objects, generate objects for different criteria as input values,
O2 handle class delegation,
O3 handle inheritance and interfaces and
O4 handle method overriding.

3.4. Generics (G)

Generics became widespread and commonly used in the last decade, therefore a test input generator
should not fail when it encounters generic function or objects. When designing concrete snippets
for generics the features of the target platform should be seriously taken into account since the
implementation and behavior of generics is different for all the three major platforms mentioned
before. The main questions were whether a tool is able to

G1 handle and generate inputs for generic functions and
G2 use and create generic objects as input values.

3.5. The Built-in Class Library (L)

Modern programming languages are shipped with a built-in class library, whose components receive
calls quite frequently. Since today’s class libraries are huge (the Java 7 SE platform API specification

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 7

contains 4024 classes), our target was only a little part of it focusing on commonly used classes.
The parts of the class library whose support was under investigation can be seen in Table II.

3.6. Others

The majority of programming languages have several unique concepts and language constructs,
like anonymous classes in Java or delegates and events in C#.NET. In addition, the support for
other common practices should also be checked. One of them is the usage of a third party library
for which only the binary is available. The goal is that a tool should be able to perform symbolic
execution even in this code to reach the maximal coverage. This case is not trivial for source code-
based test input generators or for languages which compile to machine code. Code snippets have
been implemented for the following subset:

• anonymous classes,
• enumerations,
• third party library (no source code, only binary),
• variable number of arguments.

3.7. Evaluating the Selection of Features

The selection of the features was a systematic approach based on language references and the
challenges reported in related work.

Language The code snippets use 84% of the Java keywords, the omitted ones are the following:

• assert: assertions which should be never triggered in production code, not turned on by
default

• const, goto: not used reserved words
• native: used when the bytecode has attached native implementations
• transient: used to prevent the serialization of certain fields
• strictfp: ensures that floating-point precision is the same on any platform
• synchronized, volatile: used in connection with multi-threading

Challenges The features cover the following challenges from Section 2:

• Path explosion: loops (B3) and recursion (B5)
• Complex and extern arithmetic functions: mathematical expressions (B2) and arithmetical

functions (L1)
• Floating-point calculations: conditions using floats (B2)
• Flag variables, nested conditions and enumerations: conditions (B2d), enumerations (Others)
• Complex strings: string handling (L2)
• Objects with internal state: object usage (O1)

The following challenges were not covered in the selected features.

• Interaction with the environment: was not covered
• Pointer operations: as our targets were managed languages we have not covered them
• Multi-threading: was not covered
• Non-functional requirements: was not covered

We aimed for a set of features and code snippets that is able to check tool support for not only
basic, but more complex language concepts and program organizational structures. On the other
hand we wanted to keep the number of features and snippets manageable, thus we had to find the
right balance (similarly to other testing activities). Nevertheless as our experiments showed the
selected features could provide useful insights and are able to identify issues in tools. Once the tools
will handle all the selected features, new ones could be added to extend the scope of our work.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



8 L. CSEPPENTŐ AND Z. MICSKEI

4. IMPLEMENTATION

We mapped the features defined in Section 3 to the Java language, and created 300 code snippets
implementing them. The details of the snippets in each category are shown on Table III and Table
IV. The category and method names could serve as an overview about the detailed features selected.
The columns NCSS and CCN give the non commenting source statements and the cyclomatic
complexity number¶. As it can be seen, the majority of the code snippets focuses on the basic
features. The reason for this is because the basic features should be individually checked, including
all the types and operators.

For each code snippet meta-data (goal, maximum reachable coverage etc.) and sample inputs
(with which the maximal reachable coverage can be achieved) were defined. Sample inputs can be
used for demonstration and validation purposes.

An example code snippet can be seen in Listing 1. It belongs to feature O1 in the Objects category,
and checks whether a tool can instantiate an object and perform state changing methods calls on
it to reach a desired state (in the example the SimpleObject class has an int field and an
addAbs(int) method to manipulate it). Sample inputs for the snippet can be seen in Listing 2.
Three inputs are defined, the first one (null) covers the branch with −1 return value, the second
the 1 return value, and the third the 0 return value respectively.

Listing 1: Example code snippet
@SetteRequiredStatementCoverage(value = 100)
@SetteIncludeCoverage(classes = {SimpleObject.class, SimpleObject.class},

methods = {"getResult()", "getOperationCount()"})
public static int guessObject(SimpleObject obj) {
if (obj == null) {

return -1;
}

if (obj.getOperationCount() == 2 && obj.getResult() == 3) {
return 1;

} else {
return 0;

}
}

Listing 2: Defined sample inputs for the example code snippet
public static SnippetInputContainer guessObject() {

SnippetInputContainer inputs = new SnippetInputContainer(1);

inputs.addByParameters((Object) null);

SimpleObject obj = new SimpleObject();
obj.addAbs(3);
obj.addAbs(0);
inputs.addByParameters(obj);

inputs.addByParameters(new SimpleObject());

return inputs;
}

Since in Java a sequence of statements can only be defined inside classes, all code snippets are
defined in a final class which is called a snippet container. One or more snippets can be defined in
a snippet container. All the code snippets must be directly callable (i.e. they must be public static
methods) and they can require an arbitrary number of parameters. Annotations can be used to specify
the required statement coverage or included method coverage (i.e. methods whose coverages should
be also taken in account during evaluation). For example, in the sample snippet all statements in

¶NCSS and CCN were measured with JavaNCSS (http://www.kclee.de/clemens/java/javancss/).
Note: some snippets call other functions, these are not included in the numbers.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://www.kclee.de/clemens/java/javancss/


EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 9

Table III. Details of code snippets by categories

Category Method NCSS CCN
B

as
ic

B
1

Ty
pe

s
an

d
op

er
at

or
s

B
1a

Pr
im

iti
ve

Ty
pe

s

oneParamBoolean(boolean) 2 1
twoParamBoolean(boolean,boolean) 2 1
oneParamByte(byte) 2 1
twoParamByte(byte,byte) 2 1
oneParamChar(char) 2 1
twoParamChar(char,char) 2 1
oneParamDouble(double) 2 1
twoParamDouble(double,double) 2 1
oneParamFloat(float) 2 1
twoParamFloat(float,float) 2 1
oneParamInt(int) 2 1
twoParamInt(int,int) 2 1
oneParamLong(long) 2 1
twoParamLong(long,long) 2 1
oneParamShort(short) 2 1
twoParamShort(short,short) 2 1

B
1b

C
on

st
an

ts

constBoolean() 2 1
constByte() 2 1
constChar() 2 1
constFloat() 2 1
constInt() 2 1
constLong() 2 1
constDouble() 2 1
constShort() 2 1

B
1c

A
ri

th
m

et
ic

al

add(int,int) 2 1
addAssignment(int,int) 3 1
divide(int,int) 2 1
divideAssignment(int,int) 3 1
modulo(int,int) 2 1
moduloAssignment(int,int) 3 1
multiply(int,int) 2 1
multiplyAssignment(int,int) 3 1
substract(int,int) 2 1
substractAssignment(int,int) 3 1
postfixMinusMinus(int) 3 1
postfixPlusplus(int) 3 1
unaryMinus(int) 2 1
unaryMinusMinus(int) 3 1
unaryPlus(int) 2 1
unaryPlusPlus(int) 3 1

B
1d

R
el

at
io

na
l

and(boolean,boolean) 2 2
equal(int,int) 2 1
greater(int,int) 2 1
greaterOrEqual(int,int) 2 1
negate(boolean) 2 1
notEqual(int,int) 2 1
or(boolean,boolean) 2 2
smaller(int,int) 2 1
smallerOrEqual(int,int) 2 1

B
1e

B
itw

is
e

and(int,int) 2 1
andAssignment(int,int) 3 1
negate(int) 2 1
or(int,int) 2 1
orAssignment(int,int) 3 1
shiftLeft(int,int) 2 1
shiftLeftAssignment(int,int) 3 1
shiftRight(int,int) 2 1
shiftRightAssignment(int,int) 3 1
shiftRightUnsigned(int,int) 2 1
shiftRightUnsignedAssignment(int,int) 3 1
xor(int,int) 2 1
xorAssignment(int,int) 3 1

B
2

C
on

di
tio

na
ls

B
2a

If
E

ls
e

oneParamBoolean(boolean) 5 3
twoParamsBoolean(boolean,boolean) 17 16
oneParamInt(int) 10 7
twoParamsInt(int,int) 20 19
oneParamDouble(double) 11 7
twoParamsDouble(double,double) 20 19

B
2b

Te
rn

. oneParamBoolean(boolean) 2 2
twoParamsBoolean(boolean,boolean) 2 3
oneParamInt(int) 2 2
twoParamsInt(int,int) 2 3

B
2c

simple(int) 16 4
missingBreaks(int) 14 4
withReturn(int) 14 6

B
2d

L
in

ea
r oneParamInt(int) 5 3

oneParamIntNoSolution(int) 5 3
twoParamsInt(int,int) 7 4
twoParamsIntNoSolution(int,int) 7 4

Category Method NCSS CCN

B
as

ic
(c

on
t’d

)

B
2

C
on

di
tio

na
ls

B
2d

L
in

ea
r

threeParamsInt(int,int,int) 8 5
threeParamsIntNoSolution(int,int,int) 8 5
oneParamFloat(float) 5 3
twoParamsFloat(float,float) 7 4
threeParamsFloat(float,float,float) 8 8
oneParamDouble(double) 5 3
twoParamsDouble(double,double) 7 4
threeParamsDouble(double,double,double) 8 8

B
2d

N
on

lin
ea

r quadraticInt(int,int) 7 5
quadraticIntNoSolution(int,int) 7 5
quadraticFloat(float,float) 7 7
quadraticFloatNoSolution(float,float) 7 7
quadraticDouble(double,double) 7 7
quadraticDoubleNoSolution(double,double) 7 7

B
3

L
oo

ps

B
3a

W
hi

le

withLimit(int) 7 3
withConditionAndLimit(int) 8 4
withConditionNoLimit(int) 8 3
withContinueBreak(int) 12 4
complex(int,int,int,int) 22 10
infinite(int) 2 2
infiniteNotOptimalizable(int) 8 5
nestedLoop(int,int) 11 7
nestedLoopWithLabel(int,int) 18 10

B
3b

Fo
r

withLimit(int) 5 3
withConditionAndLimit(int) 6 4
withConditionNoLimit(int) 6 3
withContinueBreak(int) 9 4
complex(int,int,int,int) 19 10
infinite(int) 2 2
infiniteNotOptimalizable(int) 8 5
nestedLoop(int,int) 8 7
nestedLoopWithLabel(int,int) 15 10

B
3c

D
oW

hi
le

withLimit(int) 7 3
withConditionAndLimit(int) 8 4
withConditionNoLimit(int) 8 3
withContinueBreak(int) 12 4
complex(int,int,int,int) 22 10
infinite(int) 2 2
infiniteNotOptimalizable(int) 8 5
nestedLoop(int,int) 11 7
nestedLoopWithLabel(int,int) 18 10

B
4

A
rr

ay
s B

4a
Sa

fe
A

rr
ay

s

fromParams(int,int,int) 6 5
indexParam(int) 8 6
guessLength(int) 6 3
fromParamsWithIndex(int,int,int,int) 8 8
guessOneArray(int[]) 7 7
guessOneArrayWithLength(int[]) 7 7
twoArrays(int[],int[][]) 10 10
iterateWithFor(numbers2[][]) 11 7
iterateWithForeach(numbers[][]) 13 7

B
4b

U
ns

af
eA

rr
ay

s fromParams(int,int,int) 6 5
indexParam(int) 6 3
guessLength(int) 6 3
fromParamsWithIndex(int,int,int,int) 6 5
guessOneArray(int[]) 5 4
guessOneArrayWithLength(int[]) 5 5
twoArrays(int[],int[][]) 8 5
iterateWithFor(numbers2[][]) 8 5
iterateWithForeach(numbers[][]) 10 5

B
5

Fu
nc

tio
ns

B
5a

C
al

l

simple(int,int) 2 1
useReturnValue(int,int) 5 3
conditionalCall(int,int,boolean) 5 3
simple(int,int) 2 1
useReturnValue(int,int) 5 3
conditionalCall(int,int,boolean) 5 3

B
5b

R
ec

. simple(int) 2 1
fibonacci(int) 2 1
simple(int) 5 3
fibonacci(int) 8 5

B
6

E
xc

ep
tio

ns

B
6a

C
he

ck
ed always() 2 2

conditionalAndLoop(int) 9 6
call(int,int) 2 1
recursive(int) 2 1
tryCatch(int,int) 4 4
tryCatchFinally(int,int,int) 10 7

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



10 L. CSEPPENTŐ AND Z. MICSKEI

Table IV. Details of code snippets by categories (cont’d)

Category Method NCSS CCN
B

as
ic

(c
on

t’d
)

B
6

E
xc

ep
tio

ns

B
6b

U
nc

he
ck

ed always() 2 2
conditionalAndLoop(int) 9 6
call(int,int) 2 1
recursive(int) 2 1
tryCatch(int,int) 4 4
tryCatchFinally(int,int,int) 10 7

B
6c

C
om

m
on

R
un

tim
e arithmeticException(boolean) 4 3

arrayIndexOutOfBoundsException(boolean) 4 3
classCastException(boolean) 4 3
illegalArgumentException(boolean) 4 3
illegalStateException(boolean) 4 3
indexOutOfBoundsException(boolean) 4 3
nullPointerException(boolean) 4 3
securityException(boolean) 4 3
unsupportedOperationException(boolean) 4 3

St
ru

ct
ur

es

S1
B

as
ic useStructureParams(int,int) 5 1

useStructure(CoordinateStructure) 4 3
returnStructureParams(int,int) 7 1
returnStructure(CoordinateStructure) 6 3

S2
C

on
d. oneStructureParams(int,int) 17 13

oneStructure(CoordinateStructure) 16 15
twoStructuresParams(int,int,int,int) 23 13
twoStructures(CoordinateStructure,CoordinateStructure) 19 16

S3
W

ith
L

oo
ps withLimitParams(int,int,int) 11 4

withLimit(CoordinateStructure,int) 10 6
noLimitParams(int,int,int) 11 3
noLimit(CoordinateStructure,int) 10 5
arrayOfStructuresParams(int[],int[][]) 15 8
arrayOfStructures(CoordinateStructure[]) 10 5

S4

guessParams(int,int,int,int) 16 10
guessCoordinates(CoordinateStructure,CoordinateStructure) 16 13
guess(SegmentStructure) 13 14

O
bj

ec
ts

O
1

Si
m

pl
e

oneOperationParams(int) 4 1
oneOperationWithCheck(SimpleObject,int) 5 3
oneOperationNoCheck(SimpleObject,int) 3 1
twoOperationsParams(int,int) 4 1
twoOperationsWithCheck(SimpleObject,int,int) 5 3
twoOperationsWithNocheck(SimpleObject,int,int) 3 1
guessResultParams(int,int,int) 9 3
guessResult(SimpleObject,int,int,int) 10 5
guessImpossibleResultParams(int,int,int) 9 3
guessImpossibleResult(SimpleObject,int,int,int) 10 5
guessOperationCountParams(int) 8 4
guessOperationCount(SimpleObject,int) 9 6
guessImpossibleOperationCountParams(int) 8 4
guessImpossibleOperationCount(SimpleObject,int) 9 6
guessResultAndOperationCountParams(int,int) 8 5
guessResultAndOperationCount(SimpleObject,int,int) 9 7
guessImpossibleResultAndOperationCountParams(int,int) 8 5
guessImpossibleResultAndOperationCount(...) 9 7
guessObject(SimpleObject) 7 6
guessImpossibleObject(SimpleObject) 7 6
fullCoverage(SimpleObject,int,int,int) 8 6

O
2 guessResultParams(int,int,int) 9 3

guessResult(SimpleObjectDelegate,int,int,int) 10 5

O
3a guessResultParams(int,int,int) 9 3

guessResult(SimpleExtendedObject,int,int,int) 10 5

O
3b

If
. guess(MyInterface,int) 8 5

validate(MyInterface,int) 8 6
guessImpossible(MyInterface,int) 8 5

O
3c

guess(MyAbstract,int) 8 5
validate(MyAbstract,int) 8 6
guessImpossible(MyAbstract,int) 8 5

O
4

O
ve

r. guessResultParams(int,int,int) 9 3
guessResult(SimpleObjectOverride,int,int,int) 10 5
guessImpossibleParams(int,int,int) 9 3
guessImpossible(SimpleObjectOverride,int,int,int) 10 5

Category Method NCSS CCN

G
en

er
ic

s G
1

Fu
nc

. guessType(T) 14 10
guessTypeAndUse(T) 22 14
guessTypeWithExtends(T) 14 10
guessTypeWithExtendsAndUse(T) 22 14

G
2

O
bj

ec
ts

guessInteger(Integer) 5 3
guessIntegerNoHelp(GenericTriplet) 5 3
guessImpossible(Double) 5 3
guessDescendant(IntegerTriplet) 5 3
guessSafe(SafeGenericTriplet) 5 3
guessSafeNoHelp(GenericTriplet) 5 3

L
ib

ra
ry

L
1

A
ri

th
m

et
ic

s

abs(int,int) 5 4
absImpossible(int,int) 5 4
minMax(int,int) 5 4
minMaxWithOrder(int,int) 5 5
minMaxImpossible(int,int) 5 5
sqrt(double) 6 4
sqrtImpossible(double) 5 3
cbrt(double) 6 4
powGuessBase(double) 6 4
powGuessExponent(double) 6 4
powGuessBaseAndExponent(double,double) 6 4
log10GuessArgument(double) 6 4
logGuessBase(double) 6 4
logGuessArgument(double) 6 4
logGuessBaseAndArgument(double,double) 6 4
sin(double) 6 4
sinImpossible(double) 5 3
cos(double) 6 4
cosImpossible(double) 5 3
tan(double) 6 4

L
2

St
ri

ng
s

equality(String) 14 10
equalityIgnoreCase(String) 14 10
add(String,String) 11 8
addWithCondition(String,String) 20 16
length(String) 11 8
charAt(String) 11 8
regionEquality(String) 11 8
compareTo(String) 14 12
compareToIgnoreCase(String) 14 12
startsEnds(String) 11 7
indexOf(String) 11 10
substring(String) 11 9
switchString(String) 10 7

L
3

guessInteger(Integer) 8 5
integerOverflow(Integer,Integer) 6 4
guessDouble(Double) 8 5

L
4

C
ol

le
ct

io
ns

guessSize(int) 8 3
guessElements(int,int) 8 4
guessSizeAndElements(int,int,int) 8 5
guessIndices(int,int) 11 4
guessElementAndIndex(int,int) 11 3
guessVectorWithSize(Vector) 5 3
guessGenericVectorWithSize(Integer) 5 3
guessGenericVectorWithElement(Integer) 5 4
guessListWithSize(List) 5 3
guessGenericListWithSize(Integer) 5 3
guessGenericListWithElement(Integer) 5 4

L
O

O
th

er

inheritsAPIGuessOnePrimitive(int) 9 5
inheritsAPIGuessOneObject(FingerNumber) 11 7
inheritsAPIGuessTwoPrimitives(int,int) 11 5
inheritsAPIGuessTwoObjects(...,...) 11 8
associatesAPIGuessValidDateFormat(String) 6 3
associatesAPIGuessDate(String) 9 5
guessValidUUID(String) 7 5
guessUUID(String) 10 8
regexCaseSensitive(String) 7 5
regexCaseInsensitive(String) 9 5

O
th

er
s

A
C test(int) 8 1

E
nu

m

guessEnum(State) 17 12
guessEnumString(State) 17 12
guessEnumOrdinal(State) 17 12
switchEnum(State) 14 12

3r
d

p. minMax(int,int) 5 4
minMaxWithOrder(int,int) 5 5
minMaxImpossible(int,int) 5 5

V
ar

ar
gs

guess(int) 7 7
guessWithLength(int) 7 7
iterateWithFor(int) 11 7
iterateWithForeach(int) 13 7

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 11

Code snippets
Generate Runner 

Project for a Tool

Tool-specific Files

(e.g. test-drivers)

Execute Code 

Snippets on a Tool
Raw Results

Parse Results Results in XML

Analyse Coverage
Evaluation 

for a Tool

Working Phase Artifact

JUnit Test CasesGenerate Test Suite

Figure 2. Workflow of the SETTE framework

the getResult() and getOperationCount() methods should also be covered. For defining
sample inputs we first tried to use annotations too, but in this way complex inputs (like the second
one in the example, where also method calls have to be described) could not be reliable specified,
thus we chose Java code as a format.

The execution of 300 snippets for several different tools by hand is extremely expensive and error-
prone. First, the tools require different configuration files and test-drivers. Secondly, the format
of the output is different for each tool and a tool can have several output channels, e.g. standard
output, standard error output or an XML file containing the generated test inputs. In addition, each
execution has to be performed separately to guarantee the isolation between test input generations
for different code snippets. Some tools report on the achieved coverage, but as there exists several
different coverage measurement techniques (e.g. source or bytecode level), this information cannot
be reliably used for comparison.

To overcome these problems we have developed the SETTE‖ framework, with which (i) code
snippets can be defined and categorized, (ii) sample inputs for the code snippets can be specified,
(iii) the test input generators can be executed automatically on the code snippets, (iv) the results can
be collected into a common XML format, and (v) the reached coverage can be measured uniformly
using the JaCoCo [30] code coverage library. The SETTE workflow is shown in Fig. 2.

Developing such an evaluator framework requires a great effort since it not only involves job
management, manipulation of Java classloaders and integration with the tools and the code coverage
library, but involves numerous trials. This is because that the output format of the tools (standard
output, error output, XML) is often unspecified and certain cases rarely happen so we had to
rely on our experimental data. After everything is parsed into a common format, test source code
compilation requires attention and larger resources (we encountered out of memory compiler errors
several times). In addition, uncommon phenomenon may still occur, such as a generated test case
does not finish in a reasonable time. In one such case the code snippet was not an infinite loop and
it happened only twice among ten full evaluations (evaluation 10 times for the 300 code snippets).

‖Initially SETTE stood for Symbolic Execution-based Test Tool Evaluator.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



12 L. CSEPPENTŐ AND Z. MICSKEI

Table V. Configurations of test input generators used in the experiments

Tool Version Configuration

CATG v1.03 (Yices 2.4.1 64-bit) ./concolic 100 CODE-SNIPPET
EvoSuite 0.2.0 -Dsearch budget=TIMEOUT -class CODE-SNIPPET
jPET 0.4 -c bck 10 -td num -d -100000 100000 -l ff -v 2 -w

-tr statements -cc yes
Pex 0.94.51006.1 pexwizard /NoMoles /TestFramework:nunit CODE-SNIPPET

pex /TimeOut:TIMEOUT CODE-SNIPPET-TEST
SPF rev. 64083a81f440

(JPF rev. 36f3e39fcb4c)
Constraint solver: CORAL
Listener: gov.nasa.jpf.symbc.SymbolicListener

Randoop 1.3.6 gentest --timelimit=TIMEOUT --forbid-null=false
--null-ratio=0.5 --inputlimit=5000
--string-maxlen=50 --randomseed=...

5. EXPERIMENT PLANNING

To validate our approach we performed experiments on six test input generator tools. This section
presents the detailed design of the experiments.

5.1. Objective and Research Questions

The main objective of our research was to create a method and framework for comparing and
evaluating test input generators. Thus the experiments were designed to answer the following
research questions: Is the approach able to produce fine-grained feedback on a tool’s capabilities?

More specifically:

• RQ1: Which of the defined features are supported by each tool?
• RQ2: How do the generated test suites compare to each other with respect to typical metrics?

RQ1 is concerned with tool-specific information, while RQ2 is summarizing the insights obtained
for the different tools. Note that our goal was not to compare the techniques itself or draw
conclusions whether tool X is generally better than tool Y. This is not even possible with our
approach, as the size of the study objects (the selected code snippets) is too small and they are
biased.

5.2. Subjects of the Experiments

Five tools have been chosen for tool evaluation, which have been fully integrated into SETTE, thus
the execution and data collection is automatic for them.

• CATG [24] performs instrumentation and symbolic execution on Java bytecode.
• EvoSuite [25] uses genetic algorithms and mutation to evolve and reduce test suites.
• jPET [26] translates Java bytecode to Prolog and performs symbolic execution on that.
• SPF [29] does not translate nor instrument the bytecode, but uses a custom Java Virtual

Machine, Java PathFinder (JPF) for execution.
• Randoop [28] uses feedback-directed random testing to generate tests.

To extend the findings of our experiments we included and evaluated a tool for .NET. In this case
the execution was automatic, but some steps in the analysis were manual.

• Pex [27] is a SE-based test input generator for .NET.

To support Pex all the code snippets have been manually translated to C#.NET code and
differences between the Java and C# were taken into account (e.g. wildcard generic types).

General information about the subjects of the experiments were presented in Table I. The used
tool versions and configurations are shown in Table V.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 13

5.3. Process and Data Collection

The objects of the study were the developed code snippets, and the subjects of the study the selected
test input generator tools. The process of the experiments was detailed in the workflow of SETTE
in Section 4, it was repeated for each of the tools.

1. The snippet project was transformed to the format required by the tool (e.g. adding
configuration or runner files).

2. The tool under study was executed to perform test generation for each of the code snippets
separately.

3. Detailed results (e.g. generated test input, log files, achieved code coverage and possible errors
raised) were collected for evaluation.

For evaluation purposes the following data was collected.

5.3.1. Status and coverage We defined a status variable to represent the overall outcome of each
execution. For each tool, each snippet was assigned exactly one flag from the followings.

• N/A: The tool was not able to perform test generation since the tool’s input could not have
been specified for the execution or the tool signaled that it cannot deal with the certain code
snippet.

• EX: Test input generation was terminated by an exception, which was thrown by the code of
the tool or the tool did not caught an exception thrown from the code snippet and stopped.

• T/M: The tool reached the specified external time-out and it was stopped by force without
result or the execution was terminated by an out of memory error. Note that if a tool stopped
the execution itself, the result is categorized as NC or C instead.

• NC: The tool has finished test input generation before time-out, however, the generated inputs
have not reached the maximal possible coverage.

• C: The tool has finished test input generation before time-out and the generated inputs have
reached the maximal possible coverage. If an execution is classified into this category it means
that the tool has generated appropriate inputs for the code snippet.

It can be easily decided whether a result of an execution should be categorized into the first three
or last two categories. However, to determine whether it goes to NC or C, the snippet must be
executed with the generated inputs and coverage should be measured. The evaluation is automatic
and is performed by SETTE. The method of coverage measurement is based on JaCoCo [30] and it
is uniform for all the tools. Currently SETTE measures statement coverage. (Note that because the
snippets were designed in a way that usually every branch has a return statement in it, this is also a
good indicator of branch coverage.)

Code coverage are frequently used as a metric by tool developers. However, research [31, 32]
suggest that high code coverage is not necessarily correlated with the effectiveness of the tests.
Thus we included other metrics in our evaluation.

5.3.2. Size The size of the generated tests are also an important factor, because it increases the cost
of manual oracle definition and test execution. There are several choices how to measure “size”
(e.g. number of test cases or number of statements). We collect the number of generated test cases
for each snippet, as for most of the snippets the generated tests contain only one statement. For the
tools which does not generate any test cases but only test inputs, this number means the number of
generated test inputs since the SETTE framework generates one test case with an assertion for each
input.

5.3.3. Duration We collect the duration of each execution for each snippet. For the Java tools time
is measured by SETTE from the start of the generation process until the process termination (using
the System.currentTimeMillis() method). For Pex, the duration included in Pex’s report
is reused.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



14 L. CSEPPENTŐ AND Z. MICSKEI

5.3.4. Mutation score Mutation analysis [33] can be used to assess the quality of a test suite by
injecting faults in the unit under test, and measuring how many tests can differentiate the original
version and the faulty versions (the mutants). We used an existing mutation framework with the
following settings to compute mutation adequacy scores.

• Mutation tool: Version v1.1.5 of the Major∗∗ mutation framework was applied.
• Number of mutants: Starting from the snippets’ source code 13697 mutants were generated

using the default settings of Major with all its mutation operators. This fixed set of mutants
were later used in the analysis of the tests from the different tools.

• Equivalent mutants: Due to the high number of the mutants, non-killed mutants were not
checked manually. Mutants that were not killed by any tool were considered as equivalent with
the original. This is an overestimation, but this strategy is commonly used when comparing
different test suites [31, 34].

• Assertions: The number of killed mutants depends heavily on the number and quality of the
assertions in the test code. CATG, jPET and SPF only generate test inputs and no assertions,
Randoop and Pex generate assertions mostly stating the return value of the snippet method,
while EvoSuite uses an extra phase to search for detailed assertions. For the tools which does
not generate any test cases or assertions, SETTE will add an assertion which checks whether
the return value of the method call using the generated inputs is the same as the expected
result which is calculated by SETTE based on the code snippets during runtime.

5.4. Experimental Setup

The next section describes the platforms running the experiments, and the chosen time limit and
repetition count.

5.4.1. Platform Two platforms were used in executing the experiments.

1. For all the tools (except Pex) virtual machines were used running Ubuntu 14.04 64-bit
and Oracle’s Java 8 implementation. The virtual machines were given 2 GB memory and
1 processor core. The virtual machines were running in a shared environment, where the
host machines had 32 GB memory and 2 quad core 2.5 GHz L5420 Xeon processors. The
deployment of the virtual machines and the overall load of the hosts were unknown to us.

2. Pex was executed on a laptop with 12 GB memory and 1 dual core 1.7 GHz i3-4010U
processor running Windows 8.1 64-bit and Microsoft .NET 4.0.

5.4.2. Time limit Two sets of experiments were performed with different external time limits
enforced by SETTE.

1. Fixed time limit: For the first set of experiments a fixed time limit, 30 seconds was chosen.
2. Variable time limit: To account for the random nature of EvoSuite and Randoop, in a second

set of experiments a subset of snippets were run with different time limits.

The rationale behind choosing 30 seconds was the following. Our experiences have shown that
in the given environment the SE-based test generators usually finish in 10 seconds and if a test
generator uses more than 20 seconds of runtime, it will run out of memory sooner or later without
finishing test input generation. However, it is advised to use a time limit greater than 10 seconds
because heavyweight tools like SPF might need a couple seconds to initialize (in case of SPF the
JPF JVM has to be started on each execution). EvoSuite†† and Randoop use all the time for searching
and could improve the results with more time given. The developers of EvoSuite and Randoop
usually use a time limit of 2 minutes [28, 21] per class in their experiments, which is comparable

∗∗Major mutation framework: http://mutation-testing.org/
††Note: EvoSuite performs minimization and assertion generation after finishing the search for tests, we did not count
these steps in the specified time limit.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://mutation-testing.org/


EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 15

Table VI. Number of repetitions with different results from the 10 runs with 30 s time limit

Tool Status Size Coverage
CATG, jPET, SPF 0 0 0
EvoSuite 42 109 49
Pex 0 1 1
Randoop 0 16 0

with our setting (our suite contains on average 6.93 snippets per class, thus the 30 seconds per
snippet limit means a 3.5 minutes per class limit on average).

For the variable time limit experiments we chose a subset of the snippets (129 from 300), which
are harder to cover for the tools, namely the categories B2, B3, O1–O4, G1, G2, L1–L4 and LO. We
run experiments with the following time limits: 15, 45, 60, 300 seconds.

In case of CATG, jPET and SPF when the generation reaches the time limit, SETTE terminates
these processes and since none of the tools have a usable output, these cases are considered a timout.
The two other Java tools, EvoSuite and Randoop, are able to watch the length of the generation
process and they finish the test generation within the time limit. It must be noted that EvoSuite may
significantly use more time for one execution than the time limit, because the tool also re-executes
the test cases and performs test minimization which is not carried out by the other tools. However,
the generation always finishes near the time limit. Pex is also able to take care of finishing within
the specified time.

5.4.3. Repetitions As some of the tools utilize random algorithms, it was necessary to repeat the
experiments several times [35]. The executions were performed 10 times for each tool as in previous
experiments from the tool’s developers [28, 21]. In case of EvoSuite and Randoop a different random
seed was used each time. The variability of the results are listed in Table VI. In case of EvoSuite there
were several snippets, where some of the executions were able to achieve the maximal coverage
(C), while for not (NC). In this cases, we assigned a C status if more than 5 from the 10 repetitions
resulted in C (a similar method was used in [45]). For size and coverage we calculated aggregated
values (mean, median, standard deviance. . . ).

This resulted in 18 000 observations for the first experiment (6 tools × 300 snippets ×
10 repetitions), and 10320 observations from the second experiment (2 tools × 129 snippets ×
10 repetitions × 4 time limit).

5.5. Threats to Validity

Reliability of the experiments: For the first five subjects the SETTE framework automated the whole
experiment to eliminate human errors. To reduce the risk of having errors in the framework itself,
the results were checked also manually (e.g. if an exception was produced then it was not because
of the framework). In case of Pex the status was partly automatically determined with a Powershell
script and partly checked and categorized independently by the two authors. The main reason for
this is that Pex includes the coverage of those methods which were not meant to be covered and the
coverage for the same ṄET code with the same inputs may be different from the coverage of the
Java code.

Knowledge of the tools: These tools are fairly complex and configurable software (e.g. EvoSuite
has 29 options and 296 parameters, Pex has 118 command-line parameters and many other options),
and neither tool was developed by the authors. Care was taken to examine the possible options and
encountered errors of each tool, but it is likely that some of the otherwise reported code snippets can
be handled by the tool with advanced parametrization. However, our results are a good indicator of
what results could be produced by a tool user.

Selection of subjects: There are several other test generator tools. Initially we selected Java-based
tools because Java was the platform for which the most tools are available. Later we extended our
selection to a tool with different platform (Pex). Note that our findings are about the tools and not

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



16 L. CSEPPENTŐ AND Z. MICSKEI

Table VII. Number of snippets categorized into the different statuses by tools

Status CATG EvoSuite jPET Pex Randoop SPF
N/A 105 – 108 2 – 18
EX 29 – 3 – 16 7
T/M 28 – 9 – – 15
NC 24 52 17 19 117 96
C 114 248 163 279 167 164

Figure 3. Number of snippets categorized into the different statuses by tools

0

100

200

300

CATG EvoSuite jPET Pex Randoop SPF
Tool

N
um

be
r 

of
 s

ni
pp

et
s

Status

N/A

EX

T/M

NC

C

about the techniques they use (as shown by the great differences in the results for all symbolic-
execution based tools).

6. RESULTS AND DISCUSSION

This section presents the results and discusses them in the context of the research questions. The
detailed experimental results can be downloaded from the SETTE website: we uploaded for each
tool the tool’s configuration, the tool’s full output, the generated test inputs and codes and coverage
colored snippet codes to help to validate our results.

The analysis was performed using the R statistical framework‡‡ (version 3.2.2).

6.1. RQ1: Overview of the Tools’ Capabilities

Figure 3 and Table VII presents a high-level overview of the results, the number of snippets
categorized into the different statuses for each tool.

A more detailed breakdown can be seen in Table VIII. For each tool and each feature category
the numbers of the code snippets classified as C, NC, T/M, EX and N/A are displayed.

Note that the total percentage numbers should not serve as global indicators for tool quality. For
example, if a tool generates only trivial inputs (like zeros) and another only misses one branch, both
are classified as NC. Moreover, some code snippets represent corner cases that are not frequently
seen. Instead, the table should serve as a high-level overview to identify possible issues and then
the details should be consulted. Fig. 4 presents a visualization of the results that highlights the data
with colors.

CATG has no problem with basic features except that the tool does not support floating-point
numbers. Regarding conditional statements and loops CATG is able to handle simple cases such as

‡‡R statistical framework: https://www.r-project.org/

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://www.r-project.org/


EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 17

Table VIII. Detailed status by categories for all the tools

Basic Structures Objects Generics Library Others
B1 B2 B3 B4 B5 B6 S1 S2 S3 S4 O1 O2 O3 O4 G1 G2 L1 L2 L3 L4 LO

Total 62 31 27 18 10 21 4 4 6 3 21 2 8 4 4 6 20 13 3 11 10 12
C

AT
G

C 58 14 6 5 9 2 2 2 1 3 1 1 2 2 2 3 1
NC 1 2 1 3 10 1 6

T/M 21 1 1 5
EX 4 1 19 2 1 2

N/A 4 12 10 2 2 4 2 13 1 7 2 4 6 15 1 1 6 2 11

E
vo

Su
ite

C 62 21 24 13 9 21 4 4 6 11 2 7 2 4 5 17 9 3 7 6 11
NC 10 3 5 1 3 10 1 2 1 3 4 4 4 1

T/M
EX

N/A

jP
E

T

C 42 17 24 14 10 9 4 4 2 3 19 2 1 2 2 2 1 5
NC 3 4 1 3 2 1 2 1

T/M 3 4 2
EX 3

N/A 20 11 11 4 2 3 18 13 3 11 9 3

Pe
x

C 62 31 27 18 10 21 4 4 6 3 20 2 8 4 4 18 11 3 8 4 11
NC 1 2 2 2 2 3 6 1

T/M
EX

N/A 2

R
an

do
op

C 62 14 24 2 10 21 2 2 2 6 1 1 1 4 11 1 1 2
NC 17 3 6 2 2 2 3 15 1 7 3 6 9 13 2 10 10 6

T/M 9 2 4
EX 10 2 4

N/A

SP
F

C 60 26 9 4 6 19 2 2 1 4 1 1 2 18 3 2 4
NC 4 14 2 2 4 2 13 1 7 2 4 6 1 13 3 5 5 8

T/M
EX 1 3 3

N/A 2 9 2 2 2 1

linear statements and loops with smaller state space, however, it cannot cover fully more complex
code parts. CATG cannot generate arrays as input and cannot solve constraints for array indices. In
addition, the tool does not catch all the exceptions coming from the code and this usually results in
tool shutdown.

In case of structures and objects, CATG is able to handle the fields but cannot generate objects as
input. However, when more complex constraint solving is needed, then in most of the cases CATG
exceeds the time limit. Generics and the majority of the arithmetic functions are not supported by
the tool. CATG is able to generate strings as input, but constraint solving is only supported for the
equals() method.

jPET does not support the majority of the built-in Java objects. Although the tool supports
floating-point numbers, it does not support complex conditions, some primitive types, bitwise
operators and floating point number literals. Regarding conditional statements jPET underachieves
the other tools, but it has the best support for loops. Because of the incompleteness of the Prolog
translation, jPET is only able to handle half of the exception code snippets.

However, in comparison with CATG and SPF, jPET has the best support for arrays, structures
and objects. The mechanism of jPET is the following: the tool builds up a heap with constraints and
solves the heap during test input generation. This method seemed quite effective, however, input
generation can result in invalid inputs, like an array with less elements than its length, an array
having elements from different (not compatible) types or an object whose state cannot be reached
by using its methods. Support for generics and calls to the Java SE library is limited.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



18 L. CSEPPENTŐ AND Z. MICSKEI

Figure 4. Visualization of the results

Basic Structures Objects Generics Library O

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

C
AT

G
E

vo
S

ui
te

jP
E

T
P

ex
R

an
do

op
S

P
F

B1 B2 B3 B4 B5 B6 S1 S2 S3 S4 O1 O2 O3 O4 G1 G2 L1 L2 L3 L4 LO Others

Legend
C
NC
T/M
EX
N/A

SPF supports all the basic types and operators except the modulo operator and only has issues
with the hardest conditional statements and loops. SPF was unable to generate arrays as inputs and
solve constraints for array indices. Exceptions are handled well by the tool.

Similarly to CATG, SPF has limited support for structures and objects. While CATG produces
compile time errors when using objects as input, SPF generates null values and does not create any
meaningful object. In addition, SPF has better constraint-solving capabilities. The tool is also able
to handle the majority of the arithmetical functions, however lacks generics, string and other library
support.

EvoSuite generates test cases directly instead of just listing test input values. The tool handles all
the bytecode instructions and terminates when the time limit has expired, resulting in no generations
categorized as N/A, EX or T/M. EvoSuite reaches high coverage on the majority of the code snippets
and it is the only tool who is completely able to cover all the snippets for objects and generics.
The not covered library cases focused on special features, such as not common string methods, date
and UUID guessing. However, EvoSuite’s limit is solving complex constraints and mathematical
problems and covering codes with looping statements.

Pex handled all the instructions, the tool detects exceptions and shuts itself down after the time
limit has expired. Thus, no generations were classified as EX and T/M. Pex was able to satisfy
statement coverage requirements in most of the cases, however, we also found some cases when it
failed to cover all the statements.

Two executions were marked as N/A because Pex was unable to guess a valid generic type when
there is a condition for the base class. Two NC snippets focused on float precision (the tool was
able to handle all the snippets using double), 1 on object guessing (see later), 4 on generics, 15 on
built-in library features and 1 on enumerations.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 19

Figure 5. Mean coverage along snippets aggregated by categories (all tools)

25

50

75

100

B1 B2 B3 B4 B5 B6 S1 S2 S3 S4 O1 O2 O3 O4 G1 G2 L1 L2 L3 L4 LO Ot
Snippet categories

M
ea

n 
co

ve
ra

ge

Summary: RQ1 focused on tool-specific feedback. As it can be seen the selected features and
code snippets were able to detect issues with the subjects. For example, some tools terminate on
certain code snippets due to uncaught exceptions. Another common problem is that a tool is not
prepared for some cases, like floating-point numbers, cannot handle certain literals, other language
elements or bytecode instructions. The experimental results give a detailed list of these issues and
provide short code snippets that reproduce them.

6.2. RQ2: Comparing the Generated Tests

6.2.1. Coverage When analyzing coverage data an important question is how to handle executions
with N/A, EX and T/M statuses. They can either be removed or counted with 0% coverage (as
no coverage information belongs to these observations). In either case they distort results. If they
are removed a tool with many removed executions will contain only the easy snippets with high
coverage. On the other hand, if they count as 0% coverage, then a tool missing a feature (e.g.
handling floats) will distort several snippets, which are otherwise easy to handle for all the other
tools.

Figure 5 presents the data aggregated by categories. In this case we removed the executions with
N/A, EX and T/M status. Then, for each snippet and tool, the mean of the achieved coverage was
computed (thus averaging the 10 runs). The figure shows that there are certain categories that are
easy to handle for most tools (e.g. B1 types and operators, B5 function or B6 exceptions), while for
others there are great differences along tools (e.g. O4 overriding). Snippets in the generics category
were especially hard.

Table IX and Figure 6 report the coverage achieved by each of the tools for all snippets. In this
case we counted the missing coverage values as 0%. The values are similar to the status overview,
EvoSuite and Pex were able to handle relatively well the snippets, Randoop had more diverse
values, while CATG, jPET and SPF had varying results (high standard deviation). The Manual
row represents the sample inputs selected by us that achieve the maximal coverage.

6.2.2. Duration In case of the analysis of the duration values, we removed the executions with N/A,
EX and T/M status.

Figure 7 presents the distribution of the mean duration values computed for each snippet and
tool. Note that the figure was limited to the 0–60 range, which is twice of the time limit of an
execution. EvoSuite was the only tool that exceeded this limit significantly, but it had snippets where

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



20 L. CSEPPENTŐ AND Z. MICSKEI

Figure 6. Distribution of mean coverage along snippets for each tool

CATG EvoSuite jPET

Pex Randoop SPF

0

50

100

150

200

0

50

100

150

200

0 30 60 90 0 30 60 90 0 30 60 90
Mean coverage [%]

C
ou

nt

Table IX. Coverage [%] achieved by the tools (aggregates of snippet’s mean coverage values)

Tool Min Mean Median Max SD
CATG 0.00 42.27 0.00 100.00 47.19
EvoSuite 0.00 91.14 100.00 100.00 17.99
jPET 0.00 53.60 76.50 100.00 47.79
Pex 0.00 91.08 100.00 100.00 17.45
Randoop 0.00 70.83 85.71 100.00 36.34
SPF 0.00 62.33 88.20 100.00 42.19

Manual 0.00 92.67 100.00 100.00 18.01

the whole generation process (including search, test minimization, test execution and assertions)
lasted 417 seconds.

Pex and jPET were the two fastest tools (note that jPET had a large number of removed snippets).
For Pex even the median of the duration is 0.08 seconds, which shows that if dynamic symbolic
execution can find a solution, then it can find it fast. Moreover, the overall low values were due to
Pex has numerous built-in default boundaries and timeouts, e.g. the constraint solver calls time outs
after 1 second. Randoop almost always used all of its allocated time for searching for test inputs.

6.2.3. Size For analyzing the size variable, the N/A, EX and T/M experiments were removed.
Table X summarizes the statistics of the generated test suite sizes. Notice the large maximal values

in the case of jPET and Randoop. jPET generated 1026 and 2047 test inputs for 2 snippets in S3
(array of structures), but it had 13 other snippets with size values 20–200. The larger values for
Randoop’s test suite sizes are consistent with expectations (Randoop had a minimization feature,
but it is not working in the current version). The minimization feature of EvoSuite was working
well, it achieved similar sizes than Pex.

Figure 8 compares the tool’s test suites to the manually selected sample inputs. The figure’s data
contains for every tool, for every snippet the sample input size minus the tool’s generated size. Thus
a negative value means that the tool generated fewer tests (cases with NC status). EvoSuite and Pex
were relatively close to the sample inputs, while for jPET and Randoop there was a larger difference.

6.2.4. Mutation analysis The mutation analysis has been carried out for CATG, EvoSuite and SPF
using the Major framework. We were not able to perform mutation analysis for jPET and Randoop.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 21

Figure 7. Distribution of mean duration along snippets for each tool

0

20

40

60

CATG EvoSuite jPET Pex Randoop SPF
Tool

M
ea

n 
du

ra
tio

n 
[s

]

Table X. Size of the generated tests by the tools (aggregates per snippet’s mean size values)

Tool Min Mean Median Max SD Sum
CATG 1.0 3.04 1.0 16.0 3.65 420.0
EvoSuite 0.1 3.74 3.1 9.5 1.8 1123.3
jPET 1.0 26.37 4.0 2047.0 170.77 4747.0
Pex 1.0 3.52 3.0 9.0 2.20 1050.3
Randoop 0.0 535.27 8.0 4999.0 1393.37 152018.7
SPF 1.0 4.10 1.0 103.0 11.24 1068.0

Manual 1.0 2.29 2.0 8.0 1.38 687

Figure 8. Difference between the sample input size and the test size generated by the tools

0

10

20

30

CATG EvoSuite jPET Pex Randoop SPF
Tool

D
iff

er
en

ce
 v

s.
 s

am
pl

e 
in

pu
ts

Unfortunately jPET generates numerous test inputs which cannot be translated to compilable Java
code. Randoop generates more than 150 000 test cases for the 300 snippets which have to be run on

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



22 L. CSEPPENTŐ AND Z. MICSKEI

Table XI. Mutation analysis

Tool Covered mutants Killed mutants Mutation score
CATG 2028 (18.8%) 1284 (9.37%) 0.2946
EvoSuite 6016 (43.92%) 3682 (26.88%) 0.8449
SPF 3389 (24.74%) 2235 (16.32%) 0.5128

Table XII. Effect of increasing the time limit (variable time experiments)

Tool Metric 15s 30s 45s 60s 300s

EvoSuite Coverage [%] 85.11 85.94 86.14 86.45 87.72
Size 3.41 3.51 3.53 3.56 3.68

Randoop Coverage 57.84 58.18 58.18 58.18 58.18
Size 143.62 146.60 146.7 147.77 155.95

all the mutants. In addition, Major might generate such mutants which will result in infinite loops
for the generated inputs. (During our measurements, the mutation analysis has been running for 5
hours without writing any more lines to the output but using 100% of the CPU.)

The analysis was performed only once on one set of test suites (from the first experiment with
30 second timeout). From the 13 697 mutants 9 339 were not covered by any of the three tools (we
consider these as equivalent mutants). The results can be see in Table XI. The mutation score has
been calculated using the following formula:

score =
(killedMutants)

(allMutants)− (notKilledByAnyTool)

The results show that the tests generated by EvoSuite not only achieve higher coverage, they are
also able to detect a much larger number of mutants. The overall lower number of killed mutants
can be attributed to the fact that the tests usually just contain a simple assertion on the return value
and thus are able to detect fewer modifications in the snippets.

6.2.5. Experiments with variable time limit In the variable time limit experiments the change of the
mean coverage and size was analyzed with increasing time limits. Table XII summarizes the results.
Both EvoSuite and Randoop were able to increase the achieved coverage and generate more tests.
However, the increase was under 3% compared to the 30 s baseline, even when the time limit was
increased to five times. It is possible that with a much larger time limit (e.g. 20 minutes per snippet)
the results would increase significantly, but from these data sets it seems that the numbers from the
30 s experiments were a good indicator of the capabilities of the tools.

7. RELATED WORK

This section reviews the surveys, benchmarks and experiments related to test input generators.

7.1. Survey papers

There are several recent survey papers about test input generation. Anand et al. [2] performed
an orchestrated survey about different methods for test generation (namely symbolic execution,
model-based testing, combinatorial testing, adaptive random testing and search-based software
testing). Regarding symbolic execution Păsăreanu and Visser [20] summarized actual research
directions, Cadar et al. [19] collected experiences from tool developers and Chen et al. [18]
listed current challenges. Regarding search-based software testing McMinn [4] surveyed SBST
approaches focusing on the different algorithms used, Ali et al. [36] investigated the empirical
assessment of SBST papers, and Harman et al. [23] presented the trends in SBST research and

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 23

open problems regarding testing non-functional properties. Arcuri et al. [5] analyze random testing
and present its theoretical and real-world results.

These papers give an excellent overview of the topic, but they provide general and not tool-
specific observations.

7.2. Benchmarks

The experiments of tool papers usually use their own set of code samples, thus their results are not
directly comparable across tools. To overcome this the Software-artifact Infrastructure Repository
(SIR) [37] makes available programs together with test suites or fault data commonly used in
software testing research (e.g. the so called Siemens suite or the space program). More recently,
Fraser and Arcuri recommended the SF100 benchmark [38], a representative selection of 100 open
source projects from SourceForge. The Defects4J [39] dataset consists of 357 real faults from five
open source projects along with developer-written tests. The SBST Java Unit Testing Tool Contest
[40, 41] invited tool developers to run their tool on several Java classes selected from open source
projects, and the tools were ranked based on the coverage and mutation score achieved and the
time utilized. Benchmarks can also be created automatically, e.g. RUGRAT is a flexible tool for
generating Java programs that can serve as benchmarks for program analysis and testing tools [42].

7.3. Experiments

Several real-life experiments were performed to evaluate test generators. Lakhotia et al. [6]
investigated the coverage of CUTE and AUSTIN (a search-based tool) on five real-life open source
components. Braione et al. [43] performed an experiment on an industrial control software using
CREST, Pex and AUSTIN. Qu and Robinson [7] measured the coverage of CREST and KLEE on a
3.9M LOC realtime embedded system. Wang et al. return value compared automatically generated
tests by the KLEE tool with manual tests on 40 programs from the CoreUtils package. Fraser and
Arcuri [21] perfomed a large-scale evaluation of EvoSuite on the extended SF110 benchmark. Gay
et al. [44] compared test inputs generated to achieve different coverage criteria with randomly
generated ones on 7 industrial systems. Shamshiri et al. [45] performed experiments with Randoop,
EvoSuite and Agitar on real faults from the Defects4J dataset.

These papers provide a general feedback about the capabilities and limitations of the tools on real
code. However, as they experimented on a large code base, it is harder to trace back their findings.
Our approach complements these results by providing a small-scale but directed code base.

Galler and Aichernig [8] presented a survey on the capabilities of 7 test data generator tools.
The goal and approach of this paper was similar to ours (e.g. they also checked simple types,
structures). Their benchmark suite was smaller and its code is not available. However, they also
provided valuable feedback, and evaluated several tools which were not covered in our work.

7.4. Related problems

A related problem is comparing static analysis tools. The Juliet test suite [46] employed a similar
approach to the one used in this paper: 181 security weaknesses were collected (e.g. improper buffer
handling) and synthetic C/C++ and Java programs were created for them. The test suite consists of
“good” and “bad” program versions, the “bad” ones containing exactly one flaw representing a
weakness. The static analysis tools can be then compared based on how many or what types of
flaws they can detect.

Another related problem is testing and comparing code compilers, although in that case research
focused on generating test programs from syntactic and semantic definition rules [47].

8. CONCLUSION

The goal of this paper was to compare and evaluate test input generator tools. Based on the
current challenges and the language constructs of imperative C-like languages we identified a set of

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



24 L. CSEPPENTŐ AND Z. MICSKEI

features that these tools should cover, and designed 300 code snippets representing these features.
Initially we created these snippets for the Java platform, but later they were easily translated to
.NET. We implemented a framework called SETTE that can automatically perform experiments
and evaluations on test generators using these snippets. We performed several experiments on six
different tools including ones based on symbolic execution, search-based and random testing. The
results show that the evaluation can identify both strengths and weaknesses in the tools. Although
initially some of the features have specifically targeted symbolic execution, the experiments showed
that they could provide feedback on tools with different underlying techniques. Currently interaction
with the environment is not covered in our snippets, this would be an important future extension.

We made all source code and experimental results available online. Both new tools or code
snippets can be easily added to extend our work. We hope that our results would provide useful
insights both for tool developers and users.

ACKNOWLEDGEMENT

The authors would like to thank Ágnes Salánki for her help with the visualization of the results.

REFERENCES

1. Institute of Electrical and Electronics Engineers. Systems and software engineering – Vocabulary 12 2010, doi:
10.1109/IEEESTD.2010.5733835. Standard 24765:2010.

2. Anand S, Burke EK, Chen TY, Clark J, Cohen MB, Grieskamp W, Harman M, Harrold MJ, McMinn P.
An orchestrated survey of methodologies for automated software test case generation. J. Syst. Software 2013;
86(8):1978 – 2001, doi:10.1016/j.jss.2013.02.061.

3. Godefroid P. Test Generation Using Symbolic Execution. Annual Conf. on FSTTCS, 2012; 24–33, doi:10.4230/
LIPIcs.FSTTCS.2012.24.

4. McMinn P. Search-based software test data generation: a survey. Software Testing, Verification and Reliability 2004;
14(2):105–156, doi:10.1002/stvr.294.

5. Arcuri A, Iqbal M, Briand L. Random testing: Theoretical results and practical implications. Software Engineering,
IEEE Transactions on 2012; 38(2):258–277, doi:10.1109/TSE.2011.121.

6. Lakhotia K, McMinn P, Harman M. An empirical investigation into branch coverage for C programs using CUTE
and AUSTIN. J. Syst. Softw. Dec 2010; 83(12):2379–2391, doi:10.1016/j.jss.2010.07.026.

7. Qu X, Robinson B. A case study of concolic testing tools and their limitations. Int. Symp. on Empirical Software
Engineering and Measurement, ESEM’11, 2011; 117–126, doi:10.1109/ESEM.2011.20.

8. Galler SJ, Aichernig BK. Survey on test data generation tools. STTT 2014; 16(6):727–751, doi:10.1007/
s10009-013-0272-3.

9. Cseppentő L, Micskei Z. Evaluating Symbolic Execution-based Test Tools. Software Testing, Verification and
Validation (ICST), 2015 IEEE 8th International Conference on, IEEE, 2015; 1–10, doi:10.1109/ICST.2015.
7102587.

10. Myers GJ. Art of Software Testing. John Wiley & Sons, Inc.: New York, NY, USA, 1979.
11. Miller EF, Melton RA. Automated generation of testcase datasets. SIGPLAN Not. 1975; 10(6):51–58, doi:

10.1145/390016.808424.
12. Howden W. Methodology for the generation of program test data. Computers, IEEE Transactions on 1975; C-

24(5):554–560, doi:10.1109/T-C.1975.224259.
13. DeMillo R, Offutt A. Constraint-based automatic test data generation. Software Engineering, IEEE Transactions

on 1991; 17(9):900–910, doi:10.1109/32.92910.
14. Boyapati C, Khurshid S, Marinov D. Korat: Automated testing based on Java predicates. International Symposium

on Software Testing and Analysis, ISSTA ’02, ACM, 2002; 123–133, doi:10.1145/566172.566191.
15. King JC. Symbolic execution and program testing. Commun. ACM 1976; 19(7):385–394, doi:10.1145/360248.

360252.
16. Harman M, Mansouri SA, Zhang Y. Search based software engineering: A comprehensive analysis and review of

trends techniques and applications. Technical Report TR-09-03, Dept. of Computer Science, King’s College London
2009.

17. Micskei Z, Madeira H, Avritzer A, Majzik I, Vieira M, Antunes N. Robustness testing techniques and tools.
Resilience Assessment and Evaluation of Computing Systems. Springer Berlin Heidelberg, 2012; 323–339, doi:
10.1007/978-3-642-29032-9 16.

18. Chen T, Zhang Xs, Guo Sz, Li Hy, Wu Y. State of the art: Dynamic symbolic execution for automated test
generation. Future Generation Computer Systems 2013; 29(7):1758 – 1773, doi:10.1016/j.future.2012.02.006.

19. Cadar C, Godefroid P, Khurshid S, Păsăreanu CS, Sen K, Tillmann N, Visser W. Symbolic execution for software
testing in practice: preliminary assessment. Proc. of the 33rd Int. Conf. on Software Engineering, ICSE ’11, ACM,
2011; 1066–1071, doi:10.1145/1985793.1985995.

20. Păsăreanu CS, Visser W. A survey of new trends in symbolic execution for software testing and analysis. Int.
Journal on Software Tools for Technology Transfer 2009; 11(4):339–353, doi:10.1007/s10009-009-0118-1.

21. Fraser G, Arcuri A. A large-scale evaluation of automated unit test generation using EvoSuite. ACM Trans. Softw.
Eng. Methodol. 2014; 24(2):8:1–8:42, doi:10.1145/2685612.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



EVALUATING CODE-BASED TEST INPUT GENERATOR TOOLS 25

22. McMinn P. Search-based software testing: Past, present and future. Software Testing, Verification and Validation
Workshops (ICSTW), 2011; 153–163, doi:10.1109/ICSTW.2011.100.

23. Harman M, Jia Y, Zhang Y. Achievements, open problems and challenges for search based software testing.
Software Testing, Verification and Validation (ICST), 2015 IEEE 8th International Conference on, 2015; 1–12,
doi:10.1109/ICST.2015.7102580.

24. Sen K. CATG web page. https://github.com/ksen007/janala2 2013. Last accessed on 24/10/2014.
25. Fraser G, Arcuri A. Whole test suite generation. IEEE Transactions on Software Engineering 2013; 39(2):276 –291,

doi:10.1109/TSE.2012.14.
26. Albert E, Gómez-Zamalloa M, Puebla G. PET: a partial evaluation-based test case generation tool for java

bytecode. Proc. of workshop on Partial evaluation and program manipulation, PEPM’10, ACM, 2010; 25–28,
doi:10.1145/1706356.1706363.

27. Tillmann N, Halleux J. Pex – white box test generation for .NET. Tests and Proofs, LNCS, vol. 4966. Springer,
2008; 134–153, doi:10.1007/978-3-540-79124-9 10.

28. Pacheco C, Lahiri S, Ernst M, Ball T. Feedback-directed random test generation. Int. Conf. on Software Engineering,
ICSE’07, 2007; 75–84, doi:10.1109/ICSE.2007.37.

29. Păsăreanu CS, Visser W, Bushnell D, Geldenhuys J, Mehlitz P, Rungta N. Symbolic PathFinder: integrating
symbolic execution with model checking for Java bytecode analysis. Automated Software Engineering 2013;
20(3):391–425, doi:10.1007/s10515-013-0122-2.

30. Hoffmann MR. JaCoCo Java code coverage library. http://www.eclemma.org/jacoco/ 2014. Last
accessed on 24/10/2014.

31. Inozemtseva L, Holmes R. Coverage is not strongly correlated with test suite effectiveness. Int. Conf. on Software
Engineering, ICSE’14, ACM, 2014; 435–445, doi:10.1145/2568225.2568271.

32. Fraser G, Staats M, McMinn P, Arcuri A, Padberg F. Does automated unit test generation really help software
testers? a controlled empirical study. ACM Trans. Softw. Eng. Methodol 2014; To appear.

33. Offutt J. A mutation carol: Past, present and future. Information and Software Technology 2011; 53(10):1098 –
1107, doi:10.1016/j.infsof.2011.03.007.

34. Andrews J, Briand L, Labiche Y, Namin A. Using mutation analysis for assessing and comparing testing coverage
criteria. Software Engineering, IEEE Transactions on 2006; 32(8):608–624, doi:10.1109/TSE.2006.83.

35. Arcuri A, Briand L. A hitchhiker’s guide to statistical tests for assessing randomized algorithms in software
engineering. Software Testing, Verification and Reliability 2014; 24(3):219–250, doi:10.1002/stvr.1486.

36. Ali S, Briand L, Hemmati H, Panesar-Walawege R. A systematic review of the application and empirical
investigation of search-based test case generation. Software Engineering, IEEE Transactions on 2010; 36(6):742–
762, doi:10.1109/TSE.2009.52.

37. Do H, Elbaum S, Rothermel G. Supporting controlled experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Software Engineering 2005; 10(4):405–435, doi:10.1007/s10664-005-3861-2.

38. Fraser G, Arcuri A. Sound empirical evidence in software testing. Int. Conf. on Software Engineering, ICSE’12,
2012; 178–188, doi:10.1109/ICSE.2012.6227195.

39. Just R, Jalali D, Ernst MD. Defects4J: A database of existing faults to enable controlled testing studies for
Java programs. International Symposium on Software Testing and Analysis, ISSTA, 2014; 437–440, doi:10.1145/
2610384.2628055.

40. Bauersfeld S, Vos TE, Lakhotia K. Unit testing tool competitions – lessons learned. Future Internet Testing, LNCS,
vol. 8432. Springer, 2014; 75–94, doi:10.1007/978-3-319-07785-7 5.

41. Rueda U, Vos TE, Prasetya I. Unit testing tool competition – round three. Search-Based Software Testing (SBST),
2015 IEEE/ACM 8th International Workshop on, 2015; 19–24, doi:10.1109/SBST.2015.12.

42. Hussain I, Csallner C, Grechanik M, Xie Q, Park S, Taneja K, Hossain BM. RUGRAT: Evaluating program
analysis and testing tools and compilers with large generated random benchmark applications. Software—Practice
& Experience 2014; To appear.

43. Braione P, Denaro G, Mattavelli A, Vivanti M, Muhammad A. Software testing with code-based test generators: data
and lessons learned from a case study with an industrial software component. Software Qual J 2014; 22(2):311–333,
doi:10.1007/s11219-013-9207-1.

44. Gay G, Staats M, Whalen M, Heimdahl M. The risks of coverage-directed test case generation. Software
Engineering, IEEE Transactions on Aug 2015; 41(8):803–819, doi:10.1109/TSE.2015.2421011.

45. Shamshiri S, Just R, Rojas JM, Fraser G, McMinn P, Arcuri A. Do automatically generated unit tests find real
faults? An empirical study of effectiveness and challenges. Int. Conf. on Automated Software Engineering (ASE),
2015. To appear.

46. Boland T, Black P. Juliet 1.1 C/C++ and Java test suite. Computer Oct 2012; 45(10):88–90, doi:10.1109/MC.2012.
345.

47. Kossatchev A, Posypkin M. Survey of compiler testing methods. Programming and Computer Software 2005;
31(1):10–19, doi:10.1007/s11086-005-0002-z.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://github.com/ksen007/janala2
http://www.eclemma.org/jacoco/

	1 Introduction
	2 Overview
	3 Features to Compare
	3.1 Primitive Types and Operators (B)
	3.2 Structures (S)
	3.3 Objects and Their Relations (O)
	3.4 Generics (G)
	3.5 The Built-in Class Library (L)
	3.6 Others
	3.7 Evaluating the Selection of Features

	4 Implementation
	5 Experiment Planning
	5.1 Objective and Research Questions
	5.2 Subjects of the Experiments
	5.3 Process and Data Collection
	5.3.1 Status and coverage
	5.3.2 Size
	5.3.3 Duration
	5.3.4 Mutation score

	5.4 Experimental Setup
	5.4.1 Platform
	5.4.2 Time limit
	5.4.3 Repetitions

	5.5 Threats to Validity

	6 Results and Discussion
	6.1 RQ1: Overview of the Tools' Capabilities
	6.2 RQ2: Comparing the Generated Tests
	6.2.1 Coverage
	6.2.2 Duration
	6.2.3 Size
	6.2.4 Mutation analysis
	6.2.5 Experiments with variable time limit


	7 Related Work
	7.1 Survey papers
	7.2 Benchmarks
	7.3 Experiments
	7.4 Related problems

	8 Conclusion



