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SUMMARY

In recent years several tools have been developed to automatically select test inputs from the code of
the system under test. However, each of these tools has different advantages, and there is little detailed
feedback available on the actual capabilities of the various tools. In order to evaluate test input generators
this paper collects a set of programming language concepts that should be handled by the tools, and maps
these core concepts and challenging features like handling the environment or multi-threading to 363 code
snippets respectively. These snippets would serve as inputs for the tools. Next, the paper presents SETTE,
an automated framework to execute and evaluate these snippets. Using SETTE multiple experiments were
performed on five Java and one .NET-based tools using symbolic execution, search-based and random
techniques. The test suites’ coverage, size, generation time and mutation score were compared. The results
highlight the strengths and weaknesses of each tool and approach, and identify hard code parts that are
difficult to tackle for most of the tools. We hope that this research could serve as actionable feedback to
tool developers and help practitioners assess the readiness of test input generation. Copyright c© 2016 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Testing is one of the most commonly used techniques to check and improve the quality of
software systems, where the system is executed under specified conditions defined by test cases.
A test case should include “test inputs, execution conditions, and expected results developed for
a particular objective” [1]. However, creating efficient and effective tests is a challenging and
resource consuming task. That is why extensive research has been performed in the last decades
to automatically derive the various test artifacts. For example, model-based testing methods can
generate test cases from behavioral models. Code-based methods start from the source or binary
code of the system under test and select test inputs according to some criteria, e.g. maximizing
achieved code coverage. Code-based methods primarily generate only test inputs without expected
outputs, and rely on assertions or exceptions to detect issues.†

Several techniques have been proposed for test input generation [2], e.g. symbolic execution [3],
search-based software testing [4] or variants of random methods [5]. Test input generation is an
active research topic with more and more tools developed. There exists tools for several platforms,
such as C, .NET, Java or x86 machine code. However, the majority of these tools are academic or
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research prototypes. Although these methods are quite successful for some objectives (e.g. white-
box fuzzing [6]), they are still not used generally by engineers.

As the problem at the heart of test input generation is computationally hard in general,
the development of such tools faces several theoretical challenges. Additionally, as modern
programming languages and platforms offer a wide variety of complex language constructs and
features, supporting all of them is a significant development task. Thus the available test generators
have varying capabilities.

Typically the publication of a new tool includes also experimental results to assess the tool’s
capabilities. However, some of the developers use their own sample programs, while others conduct
case studies on open source software. The used third-party software are usually different, thus
comparing the abilities of the tools is not trivial. The tool papers always describe the benefits of
the new tool and the innovation carried out during development. Nonetheless, only some of them
mention all limits of the tool. Several experiments [7, 8] have been published in which tools were
applied to complex software. These experiments communicate aggregated quantitative results (such
as average code coverage) in the first place and point out how the tools perform and handle the
challenges in real situations. However, we only found one general survey [9] containing fine-grained
feedback on what pieces of code can or cannot be handled by a certain tool. Thus the initial question
that motivated this work was:

How can the different test input generator tools be compared and evaluated?

Designing a common evaluation method and framework would help to identify general
challenges, would provide tool developers with actionable, reproducible feedback, and would help
practitioners assess the readiness of the tools and test input generation more precisely.

The following method was applied in this research. First, the programming language concepts
were collected and organized that should be handled by a test input generator (e.g. recursion,
complex structures). Then, minimal code snippets were defined that target these features and serve as
inputs for the test input generators. Next, the tools were executed on the above snippets, and based on
the results of the test generation, it was possible to conclude whether the given tool handles a certain
feature properly or not. Moreover, several other metrics including test suite size or generation time
were analyzed. Using all the snippets, detailed feedback could be obtained, which makes possible
to compare the tools.

Our initial paper [10] concentrated on tools using symbolic execution. This paper extends
the scope of the work by including search-based and random testing; extending the features
with handling environment, reflection, multi-threading and native code; adding a new tool and
a previously manually evaluated tool to the automatic evaluation framework; performing a large
number of experiments; and extending the analysis from only code coverage to several other
properties.

Thus the contributions of this paper include:

• collecting core and challenging features of imperative languages w.r.t. test generation;
• mapping part of these features to the Java and .NET languages and platforms and

implementing them in 363 code snippets;
• creating an extendable framework called SETTE for automatically evaluating the snippets on

selected tools;
• designing and conducting a large number of experiments on five Java and one .NET tools;
• analyzing the results by highlighting the significant differences and the ‘hard code parts’, i.e.

the features which are difficult to tackle for most of the tools.

The SETTE framework, the code snippets and all the experimental results are publicly available
from the tool’s website:

http://sette-testing.github.io
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Table I. List of evaluated test input generator tools

Name Platform OS Access Published Updated Technique
CATG [23] Java – open source 2012 2015 SE
EVOSUITE [24] Java – open source 2008 2016 SBST
jPET [25] Java Linux closed source 2009 2011 SE
PEX / INTELLITEST [26] .NET Windows closed source 2008 2016 SE
RANDOOP [27] Java – open source 2007 2016 RT
SPF [28] Java – open source 2012 2016 SE

2. OVERVIEW

Structural or white-box testing is a well-known method since the early days of software testing [11].
Even in the 1970s several algorithms and tools were proposed for automatic test input generation
starting from the source code [12, 13]. Since then numerous techniques have been developed (e.g.
using mutation analysis [14] or pre-/postconditions [15], etc.). This work focuses on tools using
symbolic execution, search-based and random testing.

Symbolic execution (SE) is a program analysis technique where symbolic variables are used
instead of concrete inputs and an execution path in the program is represented with an expression
over the symbolic variables (called a path condition or path constraint) [16]. The possible execution
paths are collected and the respective path constraints are solved by usually an SMT solver yielding
a set of concrete input values activating the given path in the program. Although the idea of symbolic
execution was born in the 1970s, it has been used for test generation in practice only recently because
of its high computational need [3].

Search-based software testing (SBST) is an area of search-based software engineering, i.e.
the application of metaheuristic search techniques to optimization problems found in software
engineering. In SBST the test input generation is formulated as a search problem: possible inputs to
the program form a search space and the test adequacy criterion is coded as a fitness function [17].

Variants of random testing (RT) have also been used for test input generation. Even in its simple
forms, random testing could be useful in practice, e.g. to find robustness failures [18]. More recently,
adaptive random testing and feedback-directed testing have been proposed as extensions.

Note that the distinction between these techniques are often blurred, e.g. in symbolic execution
various search techniques could be used to select the next path, and these techniques could be
combined in hybrid approaches [2].

Challenges However, like other hard problems, the practical application of test input generation
faces also several challenges [2]. Common important ones to deal with include path explosion
(exponentially increasing number of possible execution paths), complex and external arithmetic
functions, floating-point calculations, pointer operations, interaction with the environment and
multi-threading [19]; predicates with only a flag variable, nested conditions and enumerations [20];
complex strings and objects with internal state [4]; nun-functional requirements [21]; exception-
dependent paths [22]; and calling native code or interacting with non-native libraries.

Tools In the last decade several test input generator tools have been published. A list of tools can
be found in a recent orchestrated survey [2], or on the website of one the authors‡. Some tools are
open source, some tools are still actively developed while others are not available any more. The
tools also vary in their input language and platform (C, Java and .NET).

This paper concentrates on tools for Java, and evaluates the following tools: CATG [23],
EVOSUITE [24], jPET [25], RANDOOP [27], and Symbolic PathFinder (SPF) [28] and includes
additional results for INTELLITEST (formerly known as PEX [26]). Table I contains some details
about the tools.

‡“Code-based test generation methods and tools”, http://mit.bme.hu/˜micskeiz/pages/cbtg.html
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Figure 1. The approach for comparing test input generators

Our approach The work of code-based test generators usually consists of three phases:

• select inputs to reach different parts of the code,
• try to find possible errors in the reached part, e.g. dereference a null pointer,
• capture the (current) behavior in asserts, to be used as test oracles.

This work focused on the first phase, i.e. comparing the generated test inputs. The overview of
the approach is illustrated on Fig. 1.

1. The common language elements and program organizational structures for C/C++, Java and
.NET languages were collected ranging from basic data types and operators to complex
concepts like handling string manipulations or class inheritance. These are collectively
referred as “features”. The ones responsible for the challenges above were also included.

2. These features are later mapped to a specific programming language by creating code snippets
targeting a feature. A code snippet is an executable program code, like a general main
function. Several code snippets could be defined for a feature depending on its complexity.
The majority of the code snippets contain 10–20 lines.

3. The tools under evaluation are ordered to generate inputs for these snippets separately. The
generated inputs, the code coverage achieved by these inputs on the code snippets and several
other metrics are collected.

4. Using these results detailed feedback can be given and several tools can be compared.

The next sections detail the features (Section 3), the code snippets (Section 4), the design of the
experiments performed to evaluate the approach (Section 5), the obtained results (Section 6) and the
discussion of the experiences with the tools (Section 7).

3. FEATURES TO COMPARE

The goal of one feature is to check whether a tool supports a certain language construct or program
organizational structure (e.g. recursion). These features are grouped into categories and focus on
imperative programming languages. The guidelines during the selection of the features were the
following:

• Coverage: in order to get basic and detailed feedback on the tools, typical language elements
shall be covered at least once. It must be noted that because of the large number of elements
and combinations full coverage cannot be a reasonable objective.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2016)
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• Clarity: the methodology should be clear for each programming language since sometimes
the common concept in two different programming languages can have different meanings.

• Well-organized structure: it not only increases clarity and helps maintenance, but all the partial
and final results will have the same structure, which makes evaluation easier.

• Compactness: the number of code snippets should not be unnecessarily large, otherwise the
maintenance, the test execution and the evaluation would require more resource.

• Minimizing the dependencies: inevitably there will be dependencies between the features. For
example, to use a conditional statement, support for the used type is essential. Care must be
taken about that dependencies should be only present in one direction between two criteria
and there should be no circular dependencies. In addition, the number of dependencies should
be small.

Combination of features We generally tried not to combine the features to have small, isolated
snippets for each feature. However, this was not possible i) for some of the basics (types or operators,
which are used later in every feature), ii) where a feature builds on a previous one (objects usually
have fields, like structures), or iii) a feature is needed to trigger different behaviors (conditionals are
required to have multiple branches). Moreover, in order to have a reasonable number of snippets that
can be manually examined and comprehended, these combinations are also limited, e.g. conditionals
are used in the subsequent categories, but only if is employed and not switch.

Basic definitions Before discussing the concrete features, some notions must be clarified, as the
differences between C/C++, Java and C# can be significant:

• Function: a program routine which can be called directly several times without object
instantiation, i.e. functions in C/C++, static methods in Java and C#.

• Structure: a complex type which can contain other types (even another structure), but does
not have methods and all parts of it are accessible, i.e. structs and classes without methods
and with only public fields.

3.1. Core Features

Table II lists the core features selected in our initial work [10], whose details will be discussed in
the next subsections.

3.1.1. Primitive Types and Operators (B) As our former experiences showed, it is not obvious that
a tool is capable of handling all the primitive types and constructs of a programming language,
thus the support for these features should be checked first. This category also includes operators,
control flow statements and both simple and complex mathematical problems. Arrays§ are checked
with safe and unsafe snippets: safe snippets handle illegal indices and null references, while unsafe
snippets do not. The ability of the tool to detect common exceptions is also checked in this category.
The main questions were whether a tool is able to

B1 handle all the basic language elements,
B2 solve simple and complex arithmetic problems,
B3 generate inputs for simple loops, loops with inner state and nested loops,
B4 use arrays and generate arrays as input values,
B5 dispatch function calls, cover called functions and handle recursion and
B6 detect exceptions and handle exception-specific language constructs.

3.1.2. Structures (S) The following step is to check support for complex (data) types. The goal is to
determine whether a certain tool is able to handle types containing other types, even in combination
with conditional statements and loops. The main questions were whether a tool is able to

§In Java, arrays are also objects, however, they are discussed here because of their special function.
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Table II. Selected core language features used in the evaluation

B Basic language constructs, operations and control flow statements

B1 Primitive types, constants and operators
B2 Conditional statements, linear and non-linear expressions
B3 Looping statements
B4 Arrays
B5 Function calls and recursion
B6 Exceptions

S Structures

S1 Basic structure usage
S2 Structure usage with conditional statements
S3 Structure usage with looping statements
S4 Structures containing other structures

O Objects and their relations

O1 Basic object usage
O2 Class delegation
O3 Inheritance and interfaces
O4 Method overriding

G Generics

G1 Generic functions
G2 Generic objects

L Built-in class library

L1 Complex arithmetic functions
L2 Strings
L3 Wrapper classes
L4 Collections
LO Other built-in library features

Others Other features

S1 use data fields of structures,
S2 use structures with conditional statements,
S3 use structures with looping statements and
S4 generate complex structures as input values.

3.1.3. Objects and Their Relations (O) A major part of modern programming languages support
object-oriented programming and these language concepts are commonly used by software. Objects
can have states and it is common that an object cannot have certain field values. In addition, other
OO concepts should be supported by an ideal tool such as delegation, inheritance, interfaces, abstract
classes and method overriding. Latter is not trivial since for example in C++ and C#.NET not all the
methods are implicitly virtual.

An ideal tool should be able to i) handle objects, ii) create instances of classes, iii) guess the
concrete type or create objects when using interfaces, and iv) it should never produce an object
which cannot be created with the available methods. The last requirement describes that e.g. given
a class whose integer field is ensured to be positive, a test input generator should never create an
instance of the class, which has a negative field value. The main questions were whether a tool is
able to

O1 use objects, generate objects for different criteria as input values,
O2 handle class delegation,
O3 handle inheritance and interfaces and
O4 handle method overriding.

3.1.4. Generics (G) Generics became widespread and commonly used in the last decade, therefore
a test input generator should not fail when it encounters generic function or objects. When designing

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2016)
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Table III. Selected extra features used in the evaluation

Env Working with the environment

Env1 Standard input
Env2 Files and directories
Env3 Sockets, ports
Env4 System properties

T Multi-threading

T1 Threads
T2 Locks
T3 Indeterminacy

R Reflection

R1 Classes
R2 Methods
R3 Objects

N Native code

N1 Native functions

concrete snippets for generics the features of the target platform should be seriously taken into
account since the implementation and behavior of generics is different for all the three major
platforms mentioned before. The main questions were whether a tool is able to

G1 handle and generate inputs for generic functions and
G2 use and create generic objects as input values.

3.1.5. The Built-in Class Library (L) Modern programming languages are shipped with a built-in
class library, whose components receive calls quite frequently. Since today’s class libraries are huge
(the Java 7 SE platform API specification contains 4024 classes), these features target only a little
part of it focusing on commonly used classes. The parts of the class library whose support was under
investigation can be seen in Table II.

3.1.6. Others The majority of programming languages have several unique concepts and language
constructs, like anonymous classes in Java or delegates and events in C#.NET. In addition, the
support for other common practices should also be checked. One of them is the usage of a third
party library for which only the binary is available. The goal is that a tool should be able to handle
even this code to reach the maximal coverage. This case is not trivial for source code-based test input
generators or for languages which compile to machine code. Code snippets have been implemented
for the following subset:

• anonymous classes,
• enumerations,
• third party library (no source code, only binary),
• variable number of arguments.

3.2. Extra Features

The previous features contained the core parts of imperative languages, but were limited to isolated,
single-threaded code (such as the code of a library). However, if complex applications are used as
inputs for test generators, then the tools should handle additional features as these could be quite
common. For example, Fraser and Arcuri [29] measured that in 110 randomly chosen open source
projects 42% of the classes manipulate the file system and 30% try to open a socket. Pinto et al. [30]
report that in 2 227 analyzed Java projects 77.5% contained at least one occurrence of a concurrent
programming construct.

From the challenges listed in Section 2 the following ones were selected (Table III).

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2016)
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3.2.1. Working with the environment (Env) Applications can communicate with or depend on the
environment in several ways. The most frequent methods are using the standard input or output,
working with the file system or communicating through the network. Moreover, even simple queries,
like getting the current date, a random number or an environment variable represent dependencies
that have to be handled and manipulated somehow by the test generator. The main questions were
whether a tool is able to handle code

Env1 reading or writing the standard input or output,
Env2 working with the file system,
Env3 opening network sockets and reading or writing to them¶,
Env4 querying system properties, system clock and random generator.

3.2.2. Multi-threading (T) Multi-threading is a commonly used feature that poses a special
challenge to test generators as the behavior of the tested code depends on the timing and ordering of
the different threads. More complex interactions need to be managed if threads start to use locking.
This could lead to many well-known problems (e.g. race conditions, deadlock or livelocks). The
main questions were whether a tool is able to handle

T1 code starting and manipulating individual threads,
T2 code creating and waiting on locks,
T3 typical problems in multi-threading and discover errors which have low chance to occur.

3.2.3. Reflection (R) Reflection can be used to access and manipulate class, field and method
information at runtime. A program can work with the already loaded types, or can use reflection
to dynamically load new classes, both cases should be taken into account. The main questions were
whether a tool is able to handle code

R1 querying class information with reflection,
R2 querying method information with reflection,
R3 querying information about objects at runtime.

3.2.4. Native code (N) An application can use external functions or libraries that are written in a
native language (e.g. a Java application calling into a C library). Only the most simple cases were
considered: calling a native function directly or using an object with a method implemented as a
native function. The main question was whether a tool is able to handle code

N1 calling native functions.

3.3. Evaluating the Selection of Features

The selection of the features was a systematic approach based on language references and the
challenges reported in related work.

Language The code snippets use 90% of the Java keywords, the omitted ones are the following:

• assert: assertions which should be never triggered in production code, not turned on by
default,

• const, goto: not used reserved words,
• transient: used to prevent the serialization of certain fields,
• strictfp: ensures that floating-point precision is the same on any platform,

¶For these snippets the server is running on a separate thread in the same JVM and its bytecode is accessible for the
tools.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2016)
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The code snippets contain 136 out of the 202 (67%) possible Java SE 8 JVM bytecode instructions
that can appear in class files. However, if instructions only differing in indexes (e.g. dload 0 vs.
dload 1) or in types (e.g. f2l vs. i2l) are not counted separately, then only 16 instructions are
missing. The main types of missing instructions are the followings:

• arithmetic and logical instructions (16 out of 36),
• array load and store (12 out of 16),
• load and store from local variables (11 out of 50),
• conversion (9 out of 15),
• jumping and return (4 out of 27),
• pushing and popping values from the stack (10 out of 26),
• other: invokedynamic, multianewarray, nop, wide (4 out of 32)

Challenges The features cover the following challenges from Section 2.

• Path explosion: loops (B3) and recursion (B5).
• Complex and external arithmetic functions: mathematical expressions (B2) and arithmetical

functions (L1).
• Floating-point calculations: conditions using floats (B2).
• Flag variables, nested conditions and enumerations: conditions (B2d), enumerations

(Others).
• Complex strings: string handling (L2).
• Objects with internal state: object usage (O1).
• Exception-dependent paths: exceptions (B6).
• Interaction with the environment: environment (Env).
• Multi-threading: threads (T).
• Calling native code: native functions (N).

The following challenges were not covered in the selected features.

• Pointer operations: as the targets of the current work were managed languages, pointers were
not covered.

• Non-functional requirements: were not covered.

The selected features cover also several typical features analyzed in the related work. For
example, Grechanik et al. [31] gathered the frequency of 32 Java language features from 2 080
projects. Most of these 32 features (e.g. nested or anonymous classes, inheritance or conditional
statements) are included in the current work, only assertions and volatile fields are missing.
Similarly, Eler et al. [22] analyzed how frequent loops, different basic types (integers, arrays,
objects...), external calls, and exceptions are in 147 open source Java projects, which are all included
in the selected features. However, it should be noted that frequency does not imply importance. For
example, Qu and Robinson [8] measured that while floats only appear in a very limited percentage
of functions in six large C and Java programs, they prevent successful test generation in many more
cases. Moreover, “coverage” of features is only partial. For example, while inheritance is included
in the code snippets, their maximal inheritance depth is two, while in the study of Grechanik et al.
[31] classes with inheritance depth of five were also found. Therefore, while the language keyword
and the general concept is included in the selected features, there are sub-cases that are not covered.

We aimed for a set of features and code snippets that are able to check tool support for not only
basic, but more complex language concepts and program organizational structures. On the other
hand we wanted to keep the number of features and snippets manageable, thus we had to find
the right balance (similarly to other testing activities). Nevertheless as the experiments showed the
selected features could provide useful insights and are able to identify issues in tools. Once the tools
will handle all the selected features, new ones could be added to extend the scope of this work.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2016)
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Table IV. Number of code snippets by categories

Feature Category # of code snippets Total

Core

Basic 62+31+27+18+10+21 169
Structures 4+4+6+3 17
Objects 21+2+8+4 35
Generics 4+6 10
Library 20+13+3+11+10 57
Others 1+4+3+4 12

Total 300

Extra

Environment 4+7+7+4 22
Multi-threading 3+2+4 9
Reflection 8+8+4+4+6 30
Native 2 2

Total 63

4. IMPLEMENTATION

The features defined in Section 3 were mapped to the Java language, and code snippets were created
implementing them: 300 for the core features and 63 for the extra features (Table IV). As it can be
seen, the majority of the code snippets focus on the basic features. The reason for this is because the
basic features should be individually checked, including all the types and operators.

For each code snippet meta-data (goal, maximum reachable coverage etc.) and sample inputs
(with which the maximal reachable coverage can be achieved) were defined. Sample inputs can be
used for demonstration and validation purposes.

An example code snippet can be seen in Listing 1. It belongs to feature O1 in the Objects category,
and checks whether a tool can instantiate an object and perform state changing methods calls on
it to reach a desired state (in the example the SimpleObject class has an int field and an
addAbs(int) method to manipulate it). Sample inputs for the snippet can be seen in Listing 2.
Three inputs are defined, the first one (null) covers the branch with −1 return value, the second
the 1 return value, and the third the 0 return value respectively.

Since in Java a sequence of statements can only be defined inside classes, all code snippets are
defined in a final class which is called a snippet container. One or more snippets can be defined in
a snippet container. All the code snippets must be directly callable (i.e. they must be public static
methods) and they can require an arbitrary number of parameters. Annotations can be used to specify
the required statement coverage or included method coverage (i.e. methods whose coverages should
be also taken in account during evaluation). For example, in the example snippet all statements in
the getResult() and getOperationCount() methods should also be covered. For defining
sample inputs we first tried to use annotations too, but in this way complex inputs (like the second
one in the example, where also method calls have to be described) could not be reliable specified,
thus Java code was chosen as a format.

Listing 1: Example code snippet
@SetteRequiredStatementCoverage(value = 100)
@SetteIncludeCoverage(classes = {SimpleObject.class, SimpleObject.class},

methods = {"getResult()", "getOperationCount()"})
public static int guessObject(SimpleObject obj) {
if (obj == null) {

return -1;
}

if (obj.getOperationCount() == 2 && obj.getResult() == 3) {
return 1;

} else {
return 0;

}
}

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2016)
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Figure 2. Workflow of the SETTE framework

Listing 2: Defined sample inputs for the example code snippet
public static SnippetInputContainer guessObject() {

SnippetInputContainer inputs = new SnippetInputContainer(1);
// sample input 1
inputs.addByParameters((Object) null);
// sample input 2
SimpleObject obj = new SimpleObject();
obj.addAbs(3);
obj.addAbs(0);
inputs.addByParameters(obj);
// sample input 3
inputs.addByParameters(new SimpleObject());

return inputs;
}

The execution of these snippets for several different tools by hand is extremely expensive and
error-prone. First, the tools require different configuration files and test-drivers. Secondly, the format
of the output is different for each tool and a tool can have several output channels, e.g. standard
output, standard error output or an XML file containing the generated test inputs. In addition, each
execution has to be performed separately to guarantee the isolation between test input generations
for different code snippets. Some tools report on the achieved coverage, but as there exists several
different coverage measurement techniques (e.g. source or bytecode level), this information cannot
be reliably used for comparison.

To overcome these problems we have developed the SETTE‖ framework, with which (i) code
snippets can be defined and categorized, (ii) sample inputs for the code snippets can be specified,
(iii) the test input generators can be executed automatically on the code snippets, (iv) the results can
be collected into a common XML format, and (v) the reached coverage can be measured uniformly
using the JACOCO [32] code coverage library. The SETTE workflow is shown in Fig. 2.

Developing such an evaluator framework requires a great effort since it not only involves job
management, manipulation of Java classloaders and integration with the tools and the code coverage
library, but involves numerous trials. This is because the output format of the tools (standard output,
error output, XML) is often unspecified and there are many rare corner cases. After everything is
parsed into a common format, test source code compilation requires attention and larger resources
(out of memory compiler errors were encountered several times in the experiments).

‖Initially SETTE stood for Symbolic Execution-based Test Tool Evaluator.
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12 L. CSEPPENTŐ AND Z. MICSKEI

To support additional test generator tools, all the core code snippets have been manually translated
to C#.NET code, and differences between the Java and C# were taken into account (e.g. wildcard
generic types). However, translating the extra snippets was not that straightforward. One of the
snippets has no equivalent in .NET (Env4 System.setsProperty for system properties), and
some of the features are implemented quite differently in .NET with no direct mapping from Java
(e.g. multi-threading is implemented with delegates instead of subclassing).

5. EXPERIMENT PLANNING

To validate the approach experiments were performed on six test input generator tools. This section
presents the detailed design of the experiments.

5.1. Objective and Research Questions

The main objective of the research was to create a method and framework for comparing and
evaluating test input generators. Thus the experiments were designed to answer the following
research question: Is the approach able to produce fine-grained feedback on a tool’s capabilities?

More specifically:

• RQ1: Which of the defined core features are supported by each tool?
• RQ2: How do the generated test suites compare to each other with respect to typical metrics?
• RQ3: How do the tools behave when given more time for test generation?
• RQ4: How can the tools handle the extra features?

In RQ1 the outcomes are evaluated using simple categories, e.g. the tool threw an error during
test generation or was able to cover all statements in a snippet. RQ2 is concerned with more detailed
metrics (size of tests, duration of test generation...). For RQ1 and RQ2 the experiments use a fixed
time limit (30 seconds per snippet). Experiments for RQ3 gradually increase this time limit to study
its effects. RQ4 is concerned with features for environment, threads, reflection and native code.

Note that the goal was not to compare the techniques itself or draw conclusions whether tool X
is generally better than tool Y. This is not even possible with the current approach, as the size of the
study objects (the selected code snippets) is too small and they are biased.

5.2. Subjects of the Experiments

Five tools have been chosen for tool evaluation, which have been fully integrated into SETTE, thus
the execution and data collection is automatic for them.

• CATG [23] performs instrumentation and symbolic execution on Java bytecode.
• EVOSUITE [24] uses genetic algorithms and mutation to evolve and reduce test suites.
• jPET [25] translates Java bytecode to Prolog and performs symbolic execution on that.
• SPF [28] does not translate nor instrument the bytecode, but uses a custom Java Virtual

Machine, Java PathFinder (JPF) for execution.
• RANDOOP [27] uses feedback-directed random testing to generate tests.

To extend the findings of the experiments a tool for .NET was included and evaluated. In this case
the execution was automatic, but some steps in the analysis were manual.

• INTELLITEST / PEX [26] is a SE-based test input generator for .NET.

PEX was the academic tool developed by Microsoft Research, which was incorporated in the
newest version of Visual Studio as a feature called INTELLITEST. INTELLITEST uses the PEX
engine internally, just not all functionality of PEX is available through its user interface yet (e.g.
there is no command line or detailed configuration support). In our initial work [10] the PEX tool
was used, but it was replaced with INTELLITEST for the current paper.
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Table V. Configurations of test input generators used in the experiments

Tool Version Configuration

CATG v1.03 (Yices 2.4.1 64-bit) ./concolic 100 CODE-SNIPPET

EvoSuite 1.0.3 -class CODE-SNIPPET -Dsearch budget=TIMEOUT
-Dassertions=false -Dminimization timeout=10
-Djunit check timeout=10

jPET 0.4 -c bck 10 -td num -d -100000 100000 -l ff -v
2 -w -tr statements -cc yes

IntelliTest Visual Studio 2015 [PexMethod(Timeout=30)]

Randoop 2.1.4 gentest --timelimit=TIMEOUT
--inputlimit=5000 --string-maxlen=50
--randomseed=...

SPF rev. 4cd8ac11abee
(JPF rev. 820b89dd6c97)

Constraint solver: CORAL
Listener: gov.nasa.jpf.symbc.SymbolicListener

5.2.1. Selection procedure The following procedure was used to select these tools. Our initial work
starting in 2013 concentrated on tools using symbolic execution and working on the Java language
[10]. Tools were excluded that were not updated recently (e.g. jCUTE, jFuzz, LCT). Not many
tools remained. CATG was selected as it was open source, jPET as it used a significantly different
approach, and SPF as it builds on the mature JPF framework.

Next the search was broadened with search-based and random tools. EVOSUITE and RANDOOP
were added as they both are mature tools used in several case studies.

We tried to contact vendors of commercial Java test generator tools, but were not able to request
a version for evaluation. We explored the tools from the SBST Java Unit Testing Tool Contest
[33, 34]. GRT and JTEXPERT seemed to be not stable and robust enough in the initial trialing.
T3 seemed a good candidate, however it saves the generated tests only in binary format, thus only
limited evaluation could have been performed on it. Therefore the above six tools were used in the
evaluations.

5.2.2. Version and configuration General information about the subjects of the experiments were
presented in Table I. The used tool versions and configurations are shown in Table V. Note that
some parameters not influencing test generation (e.g. naming the resulting tests or specifying class
path) are omitted. These can be found in the repository of the SETTE framework.

The following non-default parameters are used. For CATG only the trial count is supplied: the
value 100 is commonly used by the tool’s developers. EVOSUITE uses the following main phases:
searching for tests, minimizing the generated tests suite, generating assertions, and checking the
resulting tests by compiling and running them. The generations of assertions is disabled, and a fixed
10 seconds timeout is used for minimization and test checking. For the search a variable timeout
is used, which will be explained later. For RANDOOP the length of generated strings are limited
to 50 characters and the number of generated tests methods to 5000, because both are sufficient
to cover the snippets, and otherwise RANDOOP would generate extremely large values and tests.
For SPF the randomized CORAL constraint solver is used. INTELLITEST sadly does not offer the
rich configuration options of PEX, it can only be customized with adding .NET attributes to the test
classes. These attributes allow to control and limit the test generation similarly to PEX, but report
generation and the functionality to generate tests from multiple classes is not available through
them. In the experiment only the timeout was specified, and INTELLITEST was started inside Visual
Studio through its GUI.

The most recent releases of the tools were used as of March 2016. These are different versions
from the ones used in our preliminary work [10] (except for CATG and jPET), thus their evaluation
results have changed with respect to the previously reported ones.
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5.3. Process and Data Collection

The objects of the study were the developed code snippets, and the subjects of the study the selected
test input generator tools. The process of the experiments was detailed in the workflow of SETTE
in Figure 2, which was repeated for each of the tools. To summarize it shortly:

1. The snippet project was transformed to the format required by the tool (e.g. adding
configuration or runner files).

2. The tool under study was executed to perform test generation for each of the code snippets
separately.

3. Detailed results (e.g. generated test input, log files, achieved code coverage and possible errors
raised) were collected for evaluation.

For evaluation purposes the following data was collected.

5.3.1. Status and coverage We defined a status variable to represent the overall outcome of each
execution. For each tool and each snippet exactly one flag from the followings was assigned.

• N/A: The tool was not able to perform test generation since the snippet’s code could not have
been specified for the execution or the tool signaled that it cannot deal with the code snippet.

• EX: Test input generation was terminated by an exception, which was thrown by the code of
the tool or the tool did not caught an exception thrown from the code snippet and stopped.

• T/M: The tool reached the specified external time-out and it was stopped by force without
result or the execution was terminated by an out of memory error. Note that if a tool stopped
the execution itself, the result is categorized as NC or C instead.

• NC: The tool has finished test input generation before time-out, however, the generated inputs
have not reached the maximal possible coverage.

• C: The tool has finished test input generation before time-out and the generated inputs have
reached the maximal possible coverage. If an execution is classified into this category it means
that the tool has generated appropriate inputs for the code snippet.

It can be easily decided whether a result of an execution should be categorized into the first three
or last two categories. However, to determine whether it goes to NC or C, the snippet must be
executed with the generated inputs and coverage should be measured. The evaluation is automatic
and is performed by SETTE. The method of coverage measurement is based on JACOCO [32] and
it is uniform for all the tools. Currently SETTE measures statement coverage. (Note that because
the snippets were designed in a way that usually every branch has a return statement in it, this is
also a good indicator of branch coverage.)

Code coverage are frequently used as a metric by tool developers. However, research [35, 36]
suggests that high code coverage is not necessarily correlated with the effectiveness of the tests.
Thus other metrics were included in the evaluation.

5.3.2. Size The size of the generated tests are also an important factor, because it increases the cost
of test execution and manual oracle definition. There are several choices how to measure “size” (e.g.
number of test cases or number of statements).

First, the number of generated test cases are collected for each snippet. For the tools which does
not generate any test cases but only test inputs (CATG, jPET, SPF), this number means the number
of generated test inputs since the SETTE framework generates one test case with an assertion for
each input.

Next, for those tools that generate test cases (EVOSUITE, INTELLITEST, RANDOOP) the length
of the tests cases (in bytes) are measured. Comments and code outside the test methods are not
counted, but comments and new lines inside a test method are included in this metric.

5.3.3. Duration The duration of each execution for each snippet is collected. For the Java tools time
is measured by SETTE from the start of the generation process until process termination (using the
System.currentTimeMillis() method).
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5.3.4. Mutation score Mutation analysis [37] can be used to assess the quality of a test suite by
injecting faults in the unit under test, and measuring how many faulty versions (mutant) can be
differentiated from the original version by the tests. An existing mutation framework is used with
the following settings to compute mutation adequacy scores.

• Mutation tool: Version v1.1.7 of the MAJOR [38] mutation framework was applied.
• Source of the mutants: For the mutation analysis the source of the core snippets were used.

Snippets containing unbounded or infinite loops were not included, because MAJOR did not
stop when executing these snippets.

• Number of mutants: Starting from the above snippets 6 236 mutants were generated using the
default settings of MAJOR with all its mutation operators enabled. This fixed set of mutants
were later used in the analysis of the test suites from the different tools.

• Equivalent mutants: Due to the high number of the mutants, non-killed mutants were not
checked manually. Mutants that were not killed by any tool were considered as equivalent with
the original. This is an overestimation, but this strategy is commonly used when comparing
different test suites [35, 39].

• Assertions: The number of killed mutants depends heavily on the number and quality of the
assertions in the test code. CATG, jPET and SPF only generate test inputs and no assertions,
RANDOOP and INTELLITEST generate assertions mostly stating the return value of the
snippet method, while EVOSUITE could use an extra phase to search for detailed assertions.
To have a fair comparison, EVOSUITE’s assertion generation functionality was disabled, and
the SETTE framework adds a JUnit assertion capturing the return value observed during the
test execution phase.

5.3.5. Process for IntelliTest For INTELLITEST a different process has to be used. Parametrized
tests methods are generated for each snippet inside Visual Studio. Next, INTELLITEST is started
manually. Because it does not produce PEX’s detailed reports, the data has to be assembled with
other tools. OPENCOVER∗∗ is used to measure statement coverage, and PowerShell scripts process
the coverage report and extract the necessary data from the generated tests. As INTELLITEST is
invoked through GUI, no reliable duration data could be collected for it (for most snippets the
duration of test generation in INTELLITEST is in the 100 ms magnitude). The mutation analysis is
carried out by transforming the C# test code to Java and running the analysis using the same method
as for the Java tools. This enables to compare all the tools using the same mutant set.

5.4. Experimental Setup

The next section describes the platforms running the experiments, and the chosen time limit and
repetition count.

5.4.1. Platform Two platforms were used in executing the experiments. Previously virtual
machines running on an internal server cluster were used, however the final experiments were
performed on a dedicated hardware to minimize distortions.

1. For all the tools (except INTELLITEST) a headless server running Ubuntu 14.04 64-bit and
Oracle’s Java 8 implementation was used. The server had 8 GB memory and two quad core
2.5 GHz E5420 Xeon processors. The server had no other background roles.

2. INTELLITEST was executed on a laptop with 12 GB memory and 1 dual core 1.7 GHz i3-
4010U processor running Windows 10 64-bit and Microsoft .NET 4.6.1.

5.4.2. Time limit Two sets of experiments were performed with different external time limits
enforced by SETTE.

∗∗OpenCover, URL: https://github.com/OpenCover/opencover
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Table VI. Number of snippets with different results when running 10 times with 30 s time limit

Tool Status Size Coverage
CATG 3 3 –
EVOSUITE 41 113 56
jPET – – –
INTELLITEST – 4 –
RANDOOP 8 103 13
SPF – – –

1. Fixed time limit: For the first set of experiments a fixed time limit, 30 seconds was chosen for
all 363 snippets.

2. Variable time limit: To validate the chosen time limit, in a second set of experiments a subset
of snippets were run with different time limits.

The rationale behind choosing 30 seconds was the following. Our experiences have shown
that in the given environment the SE-based test generators usually finish in 10 seconds and if a
test generator uses more than 20 seconds of runtime, it will run out of memory sooner or later
without finishing test input generation. However, it is advised to use a time limit greater than 10
seconds because heavyweight tools like SPF might need a couple seconds to initialize (in case
of SPF the JPF JVM has to be started on each execution). On the other hand, EVOSUITE and
RANDOOP use all the time for searching and could improve the results with more time given. The
developers of EVOSUITE and RANDOOP usually use a time limit of 2 minutes per class in their
experiments [27, 29], which is comparable with the current setting (the SETTE suite contains on
average 6.93 snippets per class, thus the 30 seconds per snippet limit means a 3.5 minutes per class
limit on average).

To validate the chosen time limit, a second set of experiments was performed with variable time
limits. For these experiments a subset of the snippets was chosen (129 from the core 300), which
are harder to cover for the tools, namely the categories B2, B3, O1–O4, G1, G2, L1–L4 and LO.
Experiments with the following time limits were run: 15, 45, 60, and 300 seconds. Then the impact
was analyzed of the increasing time limit on the test generation. The variable time limit experiments
have not been performed on INTELLITEST, as currently it cannot be automated, it can only be
invoked through its GUI.

5.4.3. Repetitions As some of the tools utilize random algorithms, it was necessary to repeat the
experiments several times [40]. The executions were performed 10 times for each tool as in previous
experiments from the tool’s developers [27, 29]. In case of EVOSUITE and RANDOOP a different
random seed was used each time.

The variability of the results are listed in Table VI. In case of EVOSUITE and RANDOOP there
were some snippets, where some of the executions were able to achieve the maximal coverage (C),
while others not (NC). This needed to be taken into account, as e.g. for EVOSUITE depending on
which run was analyzed the number of snippets categorized as NC differed significantly. To resolve
a C status was only assigned if more than 5 from the 10 repetitions resulted in C (a similar method
was used by Shamshiri et al. [41]). For size and coverage aggregated values were calculated (mean,
median, standard deviance. . . ). In case of CATG, only 3 extra snippets for multi-threading produced
different results. For INTELLITEST only the number of generated tests differed in some runs. For
jPET and SPF the 10 runs resulted in the same status, size and coverage values.

The repetitions resulted in 18 000 observations for the first experiment with the core snippets
(6 tools × 300 snippets × 10 repetitions), 3 150 observations for the first experiment with the
extra snippets (5 tools × 63 snippets × 10 repetitions), and 25 800 observations from the second
experiment (5 tools × 129 snippets × 10 repetitions × 4 time limit). This required approximately
400 hours just for the test generation phase (this does not include the time for preparing the context
of an execution, and later running and evaluating the generated tests). Note that the extra snippets
were executed only once for INTELLITEST.
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Table VII. Number of snippets categorized into the different statuses for all tools

Tool N/A EX T/M NC C
CATG 105 28 28 27 112
EVOSUITE – – – 47 253
INTELLITEST 2 – – 20 278
jPET 108 3 9 16 164
RANDOOP – – – 112 188
SPF 9 7 26 91 167

5.5. Threats to Validity

Reliability of the experiments: For the first five subjects the SETTE framework automated the whole
experiment to eliminate human errors. To reduce the risk of having errors in the framework itself,
the results were checked also manually (e.g. if an exception was produced then it was not because
of the framework). In case of INTELLITEST the status was partly automatically determined with a
Powershell script and partly checked by one of two authors.

Knowledge of the tools: These tools are fairly complex and configurable software (e.g. EVOSUITE
has 29 options and 296 parameters), and neither tool was developed by the authors. Care was taken
to examine the possible options and encountered errors of each tool, but it is likely that some of
the otherwise reported code snippets can be handled by the tool with advanced parametrization.
However, the results are a good indicator of what results could be produced by a tool user.

Selection of subjects: There are several other test generator tools. Initially only Java-based tools
were selected because Java was the platform for which the most tools are available. Later the
selection was extended to a tool with different platform (INTELLITEST). Note that the findings
are about the tools and not about the techniques they use (as shown by the great differences in the
results for all symbolic-execution based tools).

6. RESULTS

This section presents the results and discusses them in the context of the research questions. The
detailed experimental results can be downloaded from the SETTE website. For each tool the
followings were uploaded: the tool’s configuration, the tool’s full output, the generated test inputs
and codes and coverage colored snippet codes to help to validate the results.

The data analysis was performed using the R statistical framework [42] (version 3.2.2).

6.1. RQ1: Overview of the Tools’ Capabilities

Table VII presents a high-level overview of the results, the number of snippets categorized into the
different statuses for the core features. There is a significant difference in how the tools handled the
snippets, some had issues (statuses N/A, EX, T/M) with a large number of snippets, while others
were able to fully cover the majority of the snippets.

Note that as newer versions of the tools were used and the required coverage for some snippets
have been corrected, these results are slightly different from the ones reported in our preliminary
work [10]. Moreover, the results of only one execution was reported in our preliminary paper, which
limited the precision of the data (e.g. as discussed in Section 5.4.3 EVOSUITE’s results are varying
in the different executions).

A more detailed breakdown can be seen in Table VIII. For each tool and each feature category
the numbers of the code snippets classified as C, NC, T/M, EX and N/A are displayed.

Note that the total numbers should not serve as global indicators for tool quality. For example, if a
tool generates only trivial inputs (like zeros) and another only misses one branch, both are classified
as NC. Moreover, some code snippets represent corner cases that are not frequently seen. Instead,
the table should serve as a high-level overview to identify possible issues and then the details should
be consulted. Fig. 3 presents a visualization of the results that highlights the data with color codes.
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Table VIII. Number of snippets categorized into the different statuses by snippet categories for all tools

Basic Structures Objects Generics Library Others
B1 B2 B3 B4 B5 B6 S1 S2 S3 S4 O1 O2 O3 O4 G1 G2 L1 L2 L3 L4 LO

Total 62 31 27 18 10 21 4 4 6 3 21 2 8 4 4 6 20 13 3 11 10 12
C

AT
G

C 58 15 6 5 8 2 2 1 3 1 1 2 2 2 3 1
NC 1 2 1 2 1 3 10 1 6

T/M 21 1 1 5
EX 3 1 19 2 1 2

N/A 4 12 10 2 2 4 2 13 1 7 2 4 6 15 1 1 6 2 11

E
vo

Su
ite

C 62 23 24 14 7 21 2 2 3 16 2 7 4 4 5 19 9 3 11 4 11
NC 8 3 4 3 2 2 3 3 5 1 1 1 4 6 1

T/M
EX

N/A
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st C 62 28 27 18 10 21 4 4 6 3 20 2 8 4 5 18 10 3 7 7 11
NC 3 1 2 1 2 3 4 3 1

T/M
EX

N/A 2

jP
E
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C 42 17 24 14 9 9 4 4 2 3 19 2 1 4 2 2 1 5
NC 3 4 1 1 3 1 2 1

T/M 3 4 2
EX 3

N/A 20 11 11 4 2 3 18 13 3 11 9 3
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an

do
op

C 62 14 24 2 10 21 4 2 3 15 1 2 4 4 5 11 1 1 2
NC 17 3 16 2 3 3 6 1 6 1 9 13 2 10 10 10

T/M
EX

N/A
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C 60 25 9 4 7 21 2 2 1 1 4 1 1 2 18 3 2 4
NC 5 10 2 2 4 2 13 1 7 2 4 6 1 13 3 3 5 8

T/M 18 3 1 4
EX 1 3 3

N/A 2 4 1 2

Figure 3. Visualization of snippets status by categories for all the tools. Each color represents the percentage
of snippets assigned the given status in the given subcategory.
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6.1.1. CATG has no problem with basic features except that the tool does not support floating-
point numbers. Regarding conditional statements and loops CATG is able to handle simple cases
such as linear statements and loops with smaller state space, however, it cannot cover fully more
complex code parts. CATG cannot generate arrays as input and cannot solve constraints for array
indices. In addition, the tool does not catch all the exceptions coming from the code and this usually
results in tool shutdown.

In case of structures and objects, CATG is able to handle the fields but cannot generate objects as
input. However, when more complex constraint solving is needed, then in most of the cases CATG
exceeds the time limit. Generics and the majority of the arithmetic functions are not supported by
the tool. CATG is able to generate strings as input, but constraint solving is only supported for the
equals() method.

6.1.2. EVOSUITE generates test cases directly instead of just listing test input values. The tool
handles all the bytecode instructions and terminates when the time limit has expired, resulting in
no generations categorized as N/A, EX or T/M. EVOSUITE reaches high coverage on the majority
of the code snippets. It can handle snippets for objects and generics well, which are challenging
for the other tools. The not covered library cases focused on special features, such as not common
string methods, date and UUID guessing. However, EVOSUITE’s limit is handling floating-point
numbers, solving complex constraints and mathematical problems and covering codes with looping
statements.

6.1.3. INTELLITEST handled all the instructions, the tool detects exceptions and shuts itself down
after the time limit has expired. Thus, no generations were classified as EX and T/M. INTELLITEST
was able to satisfy statement coverage requirements in most of the cases. However, in some cases it
failed to cover all the statements.

Two executions were marked as N/A because INTELLITEST was unable to guess a valid generic
type when there is a condition for the base class. Three NC snippets focused on float or double
precision, 1 on object guessing, 3 on generics, 12 on built-in library features and 1 on enumerations.

6.1.4. jPET does not support the majority of the built-in Java objects. Although the tool supports
floating-point numbers, it does not support complex conditions, some primitive types, bitwise
operators and floating point number literals. Regarding conditional statements jPET underachieves
the other tools, but it has good support for loops. Because of the incompleteness of the Prolog
translation, jPET is only able to handle half of the exception code snippets.

However, in comparison with CATG and SPF, jPET has good support for arrays, structures and
objects. The mechanism of jPET is the following: the tool builds up a heap with constraints and
solves the heap during test input generation. This method seemed quite effective, however, input
generation can result in invalid inputs, like an array with less elements than its length, an array
having elements from different (not compatible) types or an object whose state cannot be reached
by using its methods. Support for generics and calls to the Java SE library is limited.

6.1.5. RANDOOP can handle the snippets and no execution results in N/A, EX or T/M. It can
cover most of the basic snippets, but conditions, arrays and some of the floating-point snippets
present a challenge to it. Regarding structures RANDOOP can cover snippets where the values of
the structure’s fields are given as parameters. However, RANDOOP cannot fully cover snippets with
structures as inputs, it only creates a default structure but does try to modify the fields of the structure
before passing it to the snippet. Objects are handled similarly, RANDOOP creates objects using its
constructors but does not try to modify the objects state with its methods before passing to the
snippet. RANDOOP can cover some of the snippets using arithmetic functions, but it was not able to
fully cover the snippets with string operations.
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Figure 4. Histogram of mean coverage of each snippet aggregated by the 10 runs for each tool. Snippets with
N/A, EX and TM statuses were counted as 0%.
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Table IX. Coverage [%] achieved by the tools (aggregates of snippet’s mean coverage values)

Tool Min Mean Median Max SD
CATG 0.00 42.42 0.00 100.00 47.07
EVOSUITE 0.00 89.54 100.00 100.00 21.30
INTELLITEST 0.00 92.70 100.00 100.00 19.00
jPET 0.00 54.09 79.00 100.00 47.74
RANDOOP 0.00 81.86 93.94 100.00 27.33
SPF 0.00 61.99 92.71 100.00 42.61

Manual 0.00 94.75 100.00 100.00 15.67

6.1.6. SPF supports all the basic types and operators except the modulo operator and only has
issues with the hardest conditional statements and loops. SPF was unable to generate arrays as
inputs and solve constraints for array indices. Exceptions are handled well by the tool.

Similarly to CATG, SPF has limited support for structures and objects. While CATG produces
compile time errors when using objects as input, SPF generates null values and does not create any
meaningful object. In addition, SPF has better constraint-solving capabilities. The tool is also able
to handle the majority of the arithmetical functions, however lacks generics, string and other library
support.

6.1.7. Summary of RQ1: RQ1 focused on high-level feedback. As it can be seen the selected
features and code snippets were able to detect issues with the subjects. For example, some tools
terminate on certain code snippets due to uncaught exceptions. Another common problem is that a
tool is not prepared for some cases, like floating-point numbers, cannot handle certain literals, other
language elements or bytecode instructions. The experimental results give a detailed list of these
issues and provide short code snippets that reproduce them.
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Table X. Duration [s] achieved by the tools (aggregates of snippet’s mean duration values). No duration data
was recorded for INTELLITEST.

Tool Min Mean Median Max SD Sum
CATG 0.45 2.00 0.51 27.39 3.49 1200
EVOSUITE 36.11 39.90 36.54 125.69 12.79 11970
jPET 0.04 0.53 0.06 22.31 2.52 372
RANDOOP 2.28 26.40 30.26 44.92 9.04 7919
SPF 0.69 1.39 0.70 10.38 1.29 1159

6.2. RQ2: Comparing the Detailed Metrics of the Generated Tests

Even if two tools fully cover a snippet, their generated test inputs can significantly differ. In order
to have a more detailed feedback several metrics were collected during the executions of the tools
and from the generated test suites. This section compares the coverage, size and mutation score of
the test suites, and the duration of the generation.

When analyzing the data an important question is how to handle executions with N/A, EX and
T/M statuses. They can either be removed or counted with 0 (as no information belongs to these
observations). In either case they distort results. If they are removed a tool with many removed
executions will contain only the easy snippets. On the other hand, if they count as 0, then a tool
missing a feature (e.g. handling floats) will distort several snippets, which are otherwise easy to
handle for all the other tools. Therefore each of the subsequent analysis steps will define which
option was used for N/A, EX and T/M statuses.

The subsequent analyses work in most cases on aggregated data, i.e. for each tool and each snippet
first the raw values form the 10 runs are aggregated to compute means. Next, for each tool these 300
mean values are reported or plotted. Therefore e.g. the raw maximum values could be higher than
the values in the next sections.

6.2.1. Coverage Table IX and Figure 4 report the coverage achieved by each of the tools for all
snippets. In this case missing coverage values are counted as 0%. The Manual row in the table
represents the sample inputs selected by us that achieve the maximal coverage that could serve as a
baseline.

The values are similar to the status overview, EVOSUITE and INTELLITEST were able to handle
relatively well the snippets, RANDOOP had more diverse values, while CATG, jPET and SPF had
varying results (high standard deviation).

As it can be seen a 40–60% mean coverage can easily be reached by even those tools who had
many issues with the snippets (several snippets with N/A, EX and T/M statuses).

6.2.2. Duration In case of the analysis of the duration values, the executions with N/A, EX and T/M
status were removed.

Figure 5 presents the distribution, and Table X the descriptive statistics of the mean duration
values computed for each snippet and tool.

CATG, jPET and SPF were fast, they usually finished well before the time limit (note that
however these tools had a large number of removed snippets).

For EVOSUITE the whole generation process (including search, test minimization, and test
execution) exceeded the 60 seconds range in 150 from the 3000 executions with a maximum of
205 seconds. These long snippets included unbounded loops or recursion. EVOSUITE in most cases
respected the 30 seconds time limit for the search, it only reported in 120 from the 3000 executions
that the search exceeded the time limit (with a mean of 6.8 seconds). The test checking phase was
responsible for the long delays as it had to execute the generated test cases calling unbounded loops
and terminate them after they reached the test checking timeout.

As discussed previously no duration data was recorded for INTELLITEST. However, the duration
of PEX was previously measured, and that data and our current informal observations both confirm
that it was the fastest tool. If dynamic symbolic execution can find a solution, then it can find it
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Figure 5. Histogram of mean duration of each snippet aggregated by the 10 runs for each tool. Dashed line
represents the 30 seconds time limit. Snippets with N/A, EX and TM statuses were removed.
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fast. Moreover, the overall low values were due to the fact that INTELLITEST has numerous built-
in default boundaries and timeouts, e.g. the constraint solver calls time out after 1 second or only
500 conditions are analyzed. Therefore INTELLITEST rarely needed more than 0.1 second and only
occasionally reached the 30 seconds timeout.

For RANDOOP the stopping condition is reaching the time limit (timelimit parameter) or
reaching the limit for the number of generated test method candidates (inputlimit parameter)
or reaching the limit for number of generated tests (outputlimit parameter). RANDOOP keeps
generating as long as one of those limits has been reached. For 245 snippets RANDOOP reached the
time limit, for the others the input limit. There were only 6 snippets that slightly exceeded the 30
seconds time limit, and all those snippets were from B3 containing nested loops.

6.2.3. Size For analyzing the size metric, the executions with N/A, EX and T/M status were removed
as no tests were generated for them (and assigning 0 to them would distort the results).

Table XI summarizes the statistics of the generated test suite sizes. Our initial expectation was
that the SE-based tools would generate few tests as they target specific paths in the program, while
the random and search-based tools would generate (much) larger test suites.

INTELLITEST was confirming the expectation, it generated small test suites. In most cases it
generated only those tests that were necessary to reach every block in the code or trigger possible
exceptions (null reference, overflow, divide by zero, index out of range...). INTELLITEST only
generated larger test suites, if it had issues with covering some parts of the snippet’s code, e.g.
when generating UUIDs.

CATG and SPF generated relatively small suites. For CATG only some snippets with objects
and loops resulted in more than 10 tests. SPF generated more than 10 tests for 19 snippets. The
snippets with 103 tests were the three withContinueBreak snippets in B3 loops, all the other
snippets had at most 30 tests.
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Table XI. Number of the generated tests by the tools (aggregates per snippet’s mean size values)

Tool Min Mean Median Max SD Sum
CATG 1.0 3.44 1.0 46.0 5.64 478.0
EVOSUITE 1.0 3.78 3.0 9.0 1.90 1134.1
INTELLITEST 1.0 3.64 3.0 12.6 2.38 1083.9
jPET 1.0 26.93 4.0 2047.0 170.79 4847.0
RANDOOP 0.0 911.32 25.0 4999.0 1577.93 273394.5
SPF 1.0 4.34 1.0 103.0 11.49 1119.0

Manual 1.0 2.31 2.0 8.0 1.38 693.0

jPET generated 1026 and 2047 test inputs for 2 snippets in S3 (structures with loops and arrays),
but it had 16 other snippets with size values 20–200. These are also mostly snippets containing
loops, either in B3 loops or with objects or function calls.

EVOSUITE achieved similar sizes than the SE-based INTELLITEST, and its largest test suites
were much smaller than for the other SE tools. Thus its whole test suite generation approach and
minimization feature worked very well.

The much larger values for RANDOOP’s test suite sizes are consistent with expectations
(RANDOOP had a minimization feature, but it is not working in the current version). For many
snippets it generated the maximal number of test cases (limited by its inputlimit parameter).
The 0 minimum value requires explanation: the snippets with infinite loops are handled specially, if
a tool stops in time or detects the infinite loop, then it is considered a valid execution and receives a
C, even if it does not generate any test inputs.

Even if a tool is able to fully cover a snippet, it does matter how many extra or redundant tests did
it generate. Figure 6 compares the size of the tool’s test suites to the size of the manually selected
sample inputs. The manually selected inputs contain the minimal number of inputs to fully cover the
snippet’s code. The figure’s data contains for every tool, for every snippet with C status the size of
the tool’s generated test suite minus the sample input size. To increase the readability of the plot the y
axis was limited to a maximum value of 30, which excluded some snippets: 2 for CATG, 3 for SPF,
10 for jPET and 76 for RANDOOP. There are negative values for EVOSUITE, INTELLITEST and
RANDOOP on the figure. The reasons behind this are specific cases in the evaluations. If EVOSUITE
can only cover a snippet in less than 10 but more than 5 runs, then it receives a C status, but due to
the NC runs with fewer tests the mean size would be less than the size of the C runs. INTELLITEST
is able to fully cover two snippets in Structures with fewer inputs than the Java tools, as in .NET
structures are value types, and null cannot be assigned to them. Finally, for RANDOOP the special
handling of snippets with infinite loops discussed previously was the cause.

EVOSUITE and INTELLITEST were relatively close to the sample inputs, while for jPET and
RANDOOP there was a larger difference. The difference for CATG and SPF was also small, but
these tools had many snippets not categorized as C, which were excluded from the plot.

The size of the generated tests can be compared by measuring the bytes of code inside the
generated test methods. Table XII presents the statistics for the mean size in bytes of the generated
test methods. The table contains data only for snippets with status C. INTELLITEST generated the
shortest tests, followed by EVOSUITE. EVOSUITE had longer tests for loops and objects. RANDOOP
not only generated a large number of tests, but some of them were really long (especially for the
generics snippets). The data highlights that there is significant difference also in the length of the
generated tests (which is important for the understandability of the generated code). Note that
CATG, jPET and SPF were not added to the table, because these tools generate only test input
values, and the SETTE framework creates test code from the values.

6.2.4. Mutation analysis The analysis was performed on all 10 runs from the core snippets. Mean
numbers were calculated from the numbers obtained from MAJOR to average the different runs. The
results are presented in Table XIII. From the 6 236 mutants 1 714 were not covered by any of the

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2016)
Prepared using stvrauth.cls DOI: 10.1002/stvr



24 L. CSEPPENTŐ AND Z. MICSKEI

Figure 6. Boxplots of the difference between the number of manually selected sample inputs and number of
tests generated by the tools for each fully covered snippet (status C). Y axis was limited to 30.
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Table XII. Bytes in the generated tests by the tools (aggregates per snippet’s mean size values)

Tool Min Mean Median Max SD Sum
EVOSUITE 63 163.02 111.45 1090.78 175.46 42060
INTELLITEST 52 93.91 79.00 245.00 38.73 24792
RANDOOP 250 712.06 291.00 10276.00 1313.40 127459

Table XIII. Result of mutation analysis (mean numbers computed from 10 runs). Percentages are with
respect to the number of all mutants, while mutation score is computed taking into account the equivalent

mutants.

Tool Covered mutants Killed mutants Mutation score
CATG 2 079 (33.3%) 1 285 (20.6%) 0.2842
EVOSUITE 4 687 (75.2%) 2 886 (46.3%) 0.6381
INTELLITEST 5 198 (83.4%) 3 480 (55.8%) 0.7696
jPET 404 (6.5%) 215 (3.4%) 0.0475
RANDOOP 4 815 (77.2%) 2 818 (45.2%) 0.6231
SPF 3 344 (53.6%) 2 263 (36.3%) 0.5004

tools (these are considered as equivalent mutants). The mutation score has been calculated using the
following formula:

score =
(killedMutants)

(allMutants)− (notKilledByAnyTool)

The analysis results were the same for the different runs from CATG, jPET, SPF and
INTELLITEST. For EVOSUITE the results varied significantly, e.g. the number of killed mutants
were between 2 832 and 2 972. For RANDOOP this range was a bit narrower: 2 796–2 897.

The overall lower number of killed mutants can be attributed to the fact that the tests usually just
contain a simple assertion on the return value and thus are able to detect fewer modifications in
the snippets. Therefore, the results concentrate on the mutant-killing capabilities of the selected test
inputs.

The results are mostly similar to results obtained from the coverage analysis. The only notable
exceptions are the results for jPET, which are rather low. The reason behind this is a technical
problem: jPET generates only textual output even for constructing arrays of objects as test inputs.
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The SETTE framework has to parse this and construct JUnit test cases from them. However, in
many cases this parsing is not successful (e.g. jPET generates an invalid heap, inconsistent array
structure or simply too many inputs that do not compile). In these cases the SETTE framework can
check whether the coverage reported by jPET is acceptable, but it is not able create the test code for
all the generated inputs. Therefore the number of tests used in mutation analysis for jPET are lower
than the actually generated test inputs.

With respect to the other tools EVOSUITE and INTELLITEST can also achieve high mutation
score, the same as for coverage values. The very large number of generated tests makes it possible
for RANDOOP to cover a high number of mutants, and these tests are also able to kill a high number
of mutants. SPF follows these three tools, while CATG’s score is lower.

In summary the mutation analysis also confirmed that the test inputs generated by INTELLITEST
are the most thorough, followed by EVOSUITE and then RANDOOP.

6.2.5. Summary of RQ2 RQ2 showed that even if the tools are able to cover a snippet there are
significant differences in the speed of the generation or the size of the tests suites. The analysis of
the metrics collected during the evaluation offer additional details about the capabilities of the tools.

6.3. RQ3: Experiments with variable time limit

In the variable time limit experiments the effect of increasing time limit was analyzed. Table XIV
summarizes changes in mean coverage, mean size and status (number of snippets categorized as
C). In the analysis the executions with N/A, EX and T/M status were counted as 0% for coverage
and were removed for calculating size. As discussed in Section 5.4.2 these experiments were not
performed for INTELLITEST.

For CATG 15 s is too short for two snippets in the Objects category. Moreover, CATG needs 62 s
to fully cover B3a withContinueBreak, therefore it is assigned C only in 300 s executions. The
coverage also increases slightly with the time limit accordingly.

For EVOSUITE the coverage slightly increases, however the size marginally decreases with
increasing the available time for searching better test candidates. From the table it seems that with
increasing the time limit to 300 s EVOSUITE is able to fully cover nine more snippets. However,
EVOSUITE was able to cover sometimes those snippets in the 30 s experiments, just not in enough
repetitions to be eligible for a C status. For example, B2d threeParamsInt is fully covered out
of 10 runs in 2 for 15 s limit, 3 for 30 s limit, 4 for 45 s limit, 7 for 60 s limit, and finally 8 for 300 s
limit. The same was the case for ten other snippets.

However, for two O1 snippets quite the contrary happened, these were assigned C for 30 s limit,
but resulted in an NC for 300 s. In the snippets there is a loop in which a method of the target object
is called. The upper limit of the loop is part of the generated test input. In the 300 s executions the
minimization task succeeded, in the other executions it timed out and rolled back to the generated
test suite. Thus in the 300 s experiments fewer tests were retained. Next in the test checking phase
EVOSUITE removed those generated tests in every execution that exercised the loop over 10000
times. In the end there remained no tests in the 300 s executions that stepped into the loop.

For jPET increasing the time limit to 60s does not have any effect on the snippets.
However, jPET is able to finish 5 snippets (B2d quadraticIntNoSolution,
B2d threeParamsInt, O1 guessImpossibleResultAndOperationCount,
B2d threeParamsIntNoSolution and O1 guessResultAndOperationCount)
in the 300 s experiments (approximately at 90, 68, 210, 68 s). These snippets all timed out (T/M)
in the 30 s experiments. In these cases the Prolog solver simply needed more time to handle all
constraints generated from the snippets’ code.

With increasing the time limit RANDOOP generates slightly larger test suites (14.5% increase
compared to the 30 s experiments in the mean size), but coverage is only improved minimally.
The change in the number of covered snippets is due to snippets G2 guessInteger and
G2 guessIntegerNoHelp. Here the number of executions with C status out of the 10 runs
are 8 in 30 s, 4 in 45 s, and finally 8 in 300 s). Otherwise there are no major differences in the
generated test suites.
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Table XIV. Effect of increasing the time limit (variable time experiments)

Tool Metric 15 s 30 s 45 s 60 s 300 s

CATG
Coverage [%] 24.58 26.13 26.13 26.82 27.68
Size 3.21 4.86 4.86 6.98 9.0
Nr. of C 21 23 23 24 25

EVOSUITE
Coverage [%] 85.82 86.18 86.51 86.60 86.96
Size 3.73 3.74 3.74 3.67 3.65
Nr. of C 100 101 103 104 110

jPET
Coverage [%] 31.86 31.86 31.86 31.86 35.09
Size 14.33 14.33 14.33 14.33 15.27
Nr. of C 44 44 44 44 49

RANDOOP
Coverage [%] 71.10 71.40 71.25 71.33 71.40
Size 959.95 977.52 994.26 1009.32 1101.97
Nr. of C 57 58 56 58 58

SPF
Coverage [%] 46.28 46.28 46.28 46.28 46.28
Size 4.07 4.07 4.07 4.07 4.07
Nr. of C 46 46 46 46 46

Figure 7. Histogram of snippet distributions by durations colored by status with 300s time limit. Dashed line
represents 30s, the limit used in the fixed time experiments.
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SPF produces the same results for all time limits, expect the snippets with T/M status are running
longer. The duration of the longest successful execution is 10.56 s, thus the selected 30 s time limit
was appropriate for SPF.

Figure 7 depicts the durations of the executions with 300 s time limit. For CATG and jPET the
few snippets are visible, which could finish with the increased time limit. EVOSUITE tries to use
the available time to improve the tests for every snippet. For RANDOOP the snippets finished before
300 s are those, where the input limit has been reached. For SPF snippets with longer executions
are only those that will reach a timeout anyway.
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Table XV. Number of snippets categorized into the different statuses for all tools (extra features)

Tool Environment Multi-threading Reflection Native

N/A EX T/M NC C N/A EX T/M NC C N/A EX T/M NC C N/A EX T/M NC C

CATG 1 7 4 10 1 5 3 18 12 2
EVOSUITE 12 10 8 1 23 7 2
INTELLITEST 1 18 2 4 5 26 4 2
jPET 22 4 5 30 1 1
RANDOOP 19 3 8 1 30 2
SPF 4 17 1 5 4 30 2

6.3.1. Summary of RQ3 RQ3 analyzed the effect of increasing the time limit available for test
generations. Coverage increased minimally (1% on average), but for some of the tools the evaluation
status of the snippets changed. It is possible that with a much larger time limit (e.g. 20 minutes per
snippet) the results would increase significantly, but from these data sets it seems that the numbers
from the 30 s experiments were a good indicator of the capabilities of the tools.

6.4. RQ4: Extra snippets

This section analyses the results of the snippets for handling the environment, multi-threading,
reflection and native functions.

Table XV presents the overall categorization of the results for the extra snippets. Note that for
these snippets NC usually means that the tool called the code with an empty or null parameter, but
was not able to handle the given feature.

Because most of the extra snippets were not handled properly by the majority of the tools, only
status results are analyzed, and detailed metrics (coverage, size...) are not compared.

6.4.1. Handling the environment Handling the features defined in these snippets could be separated
into two tasks. On one hand, the language elements or library calls used in the snippets need to be
be processed by the test generators. This is not trivial, half of the tools could not handle this step.
After that, the test generator should possibly divert or replace these calls to be able to manipulate
their results or it should find a way to replay them when the generated tests are executed.

CATG does not write anything to the standard input, thus the Env1 snippets are waiting until the
time limit is reached. It tries to execute the snippets working with the file system (Env2), but only
uses empty inputs and could not guess the name of files or directories. CATG throws an exception
for the network snippets as it was not able to parse their bytecode.

EVOSUITE uses a custom sandbox and Java security manager that by default restricts potential
modifications to the environment (e.g. writing to a file). Moreover, it has its own test harness and
creates a scaffolding file for every tests that stores e.g. the actual system properties and the number
of current threads. EVOSUITE has special utility classes that can write to the standard input and
with the help of these it can cover snippets in Env1. EVOSUITE could use strings with valid IPv4
address formats as inputs, and has special wrappers for network addresses and connections and can
use these to open virtual network sockets in the tests. With these EVOSUITE is able to cover half of
the snippets in Env3, but does not manage to provide suitable data for the communication protocol.
EVOSUITE detects in two out of four snippets in Env4 that they manipulate system dependencies
(current time and next random number), and stores the required values for these in the tests.

INTELLITEST gives a detailed warning whenever it encounters a dependency that it cannot handle
(called testability issues and uninstrumented methods in the tool’s output). As INTELLITEST is
aimed at unit testing, its manual recommends to mock such dependencies. INTELLITEST has special
mechanisms only for replaying console input and output (using PexPConsoleInContext and
PexChoose), thus these are the only snippets it can fully cover. INTELLITEST does not stop when
one of the networking snippets waits indefinitely, hence the one T/M result.
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jPET could not handle any snippet in this category, as classes in the Java class library (File,
Socket...) are not supported by the tool.

RANDOOP generates no tests for snippets in Env1. For the snippets working with file or directory
names it tries a large number of random string. The manual of RANDOOP explicitly warns about
running the tool on code working with the file system as the it can delete or create a large number
of files. RANDOOP opens various sockets by calling the snippets in Env3 with random parameters,
and is able to trigger numerous exceptions (e.g. address already in use or unknown hostname).
RANDOOP does not recognize that the dependencies inside Env4 need special handling.

SPF throws a NullPointerException for all the snippets in Env1. SPF calls the snippets
in Env2 and Env3 with empty or null inputs, but reports that the underlying JPF framework does
not contain the classes in java.io, java.net, therefore it could reason about them. It detects
only for two out of the four snippets in Env4 that system properties are accessed.

6.4.2. Multi-threading In most cases the tools could not detect or handle multi-threading code.
They simply start the snippets, but they are not aware that its behavior depends on the different
threads started inside the code.

CATG only tries to call the snippets, but does not control the threads thus most of the snippets
reach a timeout. Moreover, it produces various internal errors for some of the snippets.

EVOSUITE calls the snippets, but is not able to manipulate the threads.
INTELLITEST calls the snippets, but is not able to manipulate the threads. One snippet in T1, and

most of the ones in T3 exceed the time limit and INTELLITEST does not stop them forcefully.
jPET could not handle most of the snippets. It calls the ones without parameters, but is not able

to manipulate the threads started by the snippets.
RANDOOP can start the snippets, but is not able to manipulate the threads. For the snippet

that starts a configurable number of new threads given as a parameter RANDOOP produces an
OutOfMemoryError by starting too many threads.

SPF calls the snippets but could not extract path conditions from their codes. However, it properly
detects the deadlock.

6.4.3. Reflection The tools are usually not able to handle class or method type parameters, and
could not guess class or method names either.

CATG could not handle snippets that have a class type as their parameter. CATG only tries the
empty string for the other snippets expecting a class name to load.

jPET could not load the bytecode of any snippets in this category, and throws an exception for
each of them.

INTELLITEST is able to generate objects with different types and cover 4 snippets in R3.
However, for the snippets that have Type as parameter, it only tries some built-in types
from System.Reflection, but not the primitive types or types in the current assembly.
INTELLITEST could not guess that string parameters are type or method names (R1b and R2b).

EVOSUITE is able to work with class types, and generates inputs from built-in classes (String,
Integer) and also from custom classes in the tested code. However, it is not able to generate
method types or guess that these snippets with string parameters are waiting class or method names
(e.g. java.lang.String). EVOSUITE generates objects from the classes defined in the tested
code. Altogether EVOSUITE is able to cover 3 snippets in R1, 0 in R2, and 4 in R3.

RANDOOP could not generate any tests for the snippets accepting a class or method type. For
the other snippets accepting a class or method name string it tries numerous random strings until it
reaches its input limit. For the snippets in R3 accepting an object it tries to instantiate various objects
and then casts them to java.lang.Object

SPF calls every snippet with null inputs, but could not extract any path constraints from the
snippets.

6.4.4. Handling native functions The snippets calling the native library were executed separately,
because they needed special handling when running the experiments (e.g. compiling and loading
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the native library). The native functions called by the snippets have an integer parameter, and the
functions return different values based on whether the parameter is equal to a hard-coded “magic
number” or not.

CATG tried only 0 and 1 as inputs. jPET throw an exception for one of the snippets, and
called the other with only 1 as a parameter. INTELLITEST detected that the code was calling
an external method and warns that it could not generate inputs to cover that code. EVOSUITE
tried to load the native library for its mocking runtime, but was unable and stopped with a
MockRuntimeException without generating any tests. RANDOOP tried various random integer
values, but was not able to guess the magic numbers. SPF generated only one test case for each
snippet with 1 as an input value.

To summarize, neither tool was able to handle the native functions.

6.4.5. Summary of RQ4 Snippets for the extra features posed a significant challenge for most of the
tools. Except for INTELLITEST and EVOSUITE they usually could not handle the required language
constructs and library calls, or were not able to affect the execution of the snippets. RQ4 confirmed
that these features are indeed still challenging for test generator tools.

7. DISCUSSION

7.1. Experiences with the tools

While performing the experiments we had to work extensively with the test generator tools. There
are differences not only in the capabilities of the tools, but in their usability and level of maturity.

These tools belong to the following informal categories:

1. prototype tool used only by its authors,
2. tool used already by other users for limited case studies,
3. tool used already in several, complex case studies,
4. tool with commercial support used already in several, complex case studies.

Note, there are more exact methods to categorize maturity, e.g. Technology Readiness Levels
(TRL) [43]. The goal here is not to evaluate the tools with respect to these, rather to share our
subjective experiences about the tools.

Interested readers are recommended to look into the source of the tool-specific *Runner and
*Parser classes in the SETTE framework to see how many special cases needed to be handled
for each of the tools.

7.1.1. CATG belongs to the first category, it is a research prototype. It is open source, but there
is no documentation for the tool. CATG generates only test inputs written to the standard output
as plain text. It is not able to reliably handle exceptions coming from the code under test and can
produce various errors.

7.1.2. EVOSUITE belongs to the third category. EVOSUITE is now open source, and is actively
developed. It has been extensively used with complex case studies, and is stable and robust. It could
handle various exceptions from the code under test and detect infinite loops. EVOSUITE monitors
also itself (it starts a master process, and tests are generated in separate child processes), and can
tolerate internal errors. Logging is available, and there are lots of configuration parameters (although
there is minimal documentation for them and they are not always evident to an outsider). EVOSUITE
generates not just test inputs, but full test code. It has several additional features, e.g. test suite
minimization, non-trivial assertions or running tests and removing problematic ones. EVOSUITE
uses a custom test harness to handle calls to the environment. However, one consequence of being
a randomized search-based tool is that every execution could be different, which can be a new
concept for some developers. (EVOSUITE has plugins for the Eclipse and IntelliJ IDEs, but we have
no experiences with them.)
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7.1.3. jPET belongs to the first category. It is not developed any more, and only a binary is
available. jPET only generates a plain text output describing the test inputs. Objects are generated
in the following format:

[ref(A),-100000] Heap = heap([ (A,object(’.../SimpleObject’,
[field(’operationCount:I’,0)|B]))|C],D)

Moreover, as it can create large output files (in the range of 10 MBs) and sometimes invalid heaps,
parsing its output required much effort.

7.1.4. RANDOOP belongs to the third category. It is open source, actively developed, and has a good
manual explaining its behavior and parameters. RANDOOP is stable and could handle the exceptions
of the tested code. However, due to the its random testing nature it could quickly generate really
large number of tests, which can pose its own challenges. For example, just compiling the tests with
Ant lasts 5 minutes and it requires increasing memory allocated to Ant to at least 4 GB. The test
execution times are also considerably longer than for the other tools. Fortunately, the number of
generated tests cases can be limited with various configuration parameters.

7.1.5. PEX / INTELLITEST now belongs to the fourth category, it is commercially supported in
Visual Studio 2015. PEX was a really mature tool, with extensive documentation and tutorials,
detailed reports, integration with Visual Studio and offered customization through command line
parameters or .NET attributes attached to the code. INTELLITEST kept the PEX engine, however,
the reporting and customization mechanisms have not been ported yet (or at least they are not
available on its public UI). INTELLITEST integrates seamlessly into Visual Studio, but due to
lack of a command line interface or an API it is hard to use it in experiments. A unique feature
of INTELLITESTamong the evaluated tools are the helpful warning and error messages and great
default limits (called boundaries). For example, INTELLITEST tries to guess how various classes
can be instantiated, and if it is not successful, then it asks the user to supply a factory method. Every
step of the test generation has boundaries with short default values, which makes test generation
really fast as INTELLITEST is intended to be used during development by the developer inside an
IDE.

7.1.6. SPF belongs to the second category. There are users outside of the core contributors, but
it is not as stable as some of the other tools. SPF is open source, and has only some limited
documentation. SPF generates plain text output with the input values and the symbolic constraints.
It is not able to handle all the exceptions from the code under test. However, with the not so frequent
newer versions it is improving.

8. RELATED WORK

This section reviews the surveys, benchmarks and experiments related to test input generators.

8.1. Survey papers

There are several recent survey papers about test input generation. Anand et al. [2] performed
an orchestrated survey about different methods for test generation (namely symbolic execution,
model-based testing, combinatorial testing, adaptive random testing and search-based software
testing). Regarding symbolic execution Păsăreanu and Visser [44] summarized actual research
directions, Cadar et al. [45] collected experiences from tool developers and Chen et al. [19]
listed current challenges. Regarding search-based software testing McMinn [4] surveyed SBST
approaches focusing on the different algorithms used, Ali et al. [46] investigated the empirical
assessment of SBST papers, and Harman et al. [21] presented the trends in SBST research and
open problems regarding testing non-functional properties. Arcuri et al. [5] analyze random testing
and present its theoretical and real-world results.
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These papers give an excellent overview of the topic, but they provide general and not tool-
specific observations.

8.2. Benchmarks

The experiments of tool papers usually use their own set of code samples, thus their results are not
directly comparable across tools. To overcome this the Software-artifact Infrastructure Repository
(SIR) [47] makes available programs together with test suites or fault data commonly used in
software testing research (e.g. the so called Siemens suite or the space program). More recently,
Fraser and Arcuri recommended the SF100 benchmark [48], a representative selection of 100 open
source projects from SourceForge. The Defects4J [49] dataset consists of 357 real faults from
five open source projects along with developer-written tests. The SBST Java Unit Testing Tool
Contest [33, 34] invited tool developers to run their tool on several Java classes selected from open
source projects, and the tools were ranked based on the coverage and mutation score achieved and
the time utilized. Benchmarks can be created automatically, e.g. RUGRAT [50] is a flexible tool for
generating Java programs that can serve as benchmarks for program analysis and testing tools.

8.3. Experiments

Several real-world experiments were performed to evaluate test generators. Lakhotia et al. [7]
investigated the coverage of CUTE and AUSTIN (a search-based tool) on five open source
components. Braione et al. [51] performed an experiment on an industrial control software using
CREST, PEX and AUSTIN. Qu and Robinson [8] measured the coverage of CREST and
KLEE on a 3.9M LOC realtime embedded system. Wang et al. [52] compared automatically
generated tests by the KLEE tool with manual tests on 40 programs from the CoreUtils package.
Fraser and Arcuri [29] performed a large-scale evaluation of EVOSUITE on the extended SF110
benchmark. Gay et al. [53] compared test inputs generated to achieve different coverage criteria
with randomly generated ones on 7 industrial systems. Shamshiri et al. [41] performed experiments
with RANDOOP, EVOSUITE and AGITARONE on real faults from the Defects4J dataset. Eler et al.
[22] measured how frequent are some of the challenging features in 147 open source Java projects.

These papers provide a general feedback about the capabilities and limitations of the tools on real
code. However, as they experimented on a large code base, it is harder to trace back their findings.
Our approach complements these results by providing a small-scale but directed code base.

Galler and Aichernig [9] presented a survey on the capabilities of 7 test data generator tools.
The goal and approach of this paper was similar to ours (e.g. they also checked primitive types
and objects). Their benchmark suite was smaller (31 code fragments) and its code is not available.
However, they also provided valuable feedback, and evaluated several tools which were not covered
in our work (AGITARONE [54], CODEPRO ANALYTIX††, AUTOTEST [55], C++TEST [56] and
JTEST [57]). Their general conclusion was the same: most tools handled the simple cases, but some
of the tools did not manage more complex constructs (e.g. non-linear conditions over primitive
types or constraints over objects’ attributes). Their specific results for the tools in common were
also similar to ours: PEX performed well by handling all fragments, while RANDOOP had mixed
results (although our detailed results suggest that RANDOOP has improved in the recent years by
handling more types).

8.4. Related problems

A related problem is comparing static analysis tools. The Juliet test suite [58] employed a similar
approach to the one used in this paper: 181 security weaknesses were collected (e.g. improper buffer
handling) and synthetic C/C++ and Java programs were created for them. The test suite consists of
“good” and “bad” program versions, the “bad” ones containing exactly one flaw representing a
weakness. The static analysis tools can be then compared based on how many or what types of
flaws they can detect.

††CodePro AnalytiX was acquired by Google, but it is not available anymore.
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Another related problem is testing and comparing code compilers, although in that case research
[59] focused on generating test programs from syntactic and semantic definition rules.

9. CONCLUSION

The goal of this paper was to compare and evaluate test input generator tools. Based on the
current challenges and the language constructs of imperative C-like languages a set of features
was identified that these tools should cover, and 363 code snippets were designed representing these
features. Of these snippets 300 targeted core features (conditionals, objects, generics, etc.), while
63 contained extra features like multi-threading or handling the environment and dependencies.

A framework called SETTE was implemented that can automatically perform experiments and
evaluations on test generators using these snippets. Several experiments were performed on six
different tools including ones based on symbolic execution (CATG, INTELLITEST, jPET, SPF),
search-based (EVOSUITE) and random testing (RANDOOP). Although initially some of the features
have specifically targeted symbolic execution, the experiments showed that they could provide
feedback on tools with different underlying techniques.

The results showed that the evaluation can identify both strengths and weaknesses in the tools.
INTELLITEST and EVOSUITE performed very well on the 300 core snippets both with respect to
achieved code coverage and size of the generated test suite. RANDOOP was not able to fully cover
a greater number of snippets, but generated tests for all the snippets. The three other tools produced
exceptions or timeouts for some of the snippets. The extra snippets posed a greater challenge, most
tools were not able to handle them.

Both new tools or code snippets can be easily added to extend our work. For example, currently
mostly academic tools were included, but there exists some commercial tools (e.g. AGITARONE
or JTEST) that could be integrated with SETTE. The extra snippets only covered the basics of
environmental dependencies, multi-threading or native calls.

All the source code and results are available at http://sette-testing.github.io. We
hope that our results would provide useful insights both for tool developers and users.
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The authors would like to thank Ágnes Salánki for her help with the visualization of the results, and the
anonymous reviewers for their detailed and valuable comments.

REFERENCES

1. Institute of Electrical and Electronics Engineers. Systems and software engineering – Vocabulary 12 2010, doi:
10.1109/IEEESTD.2010.5733835. Standard 24765:2010.

2. Anand S, Burke EK, Chen TY, Clark J, Cohen MB, Grieskamp W, Harman M, Harrold MJ, McMinn P.
An orchestrated survey of methodologies for automated software test case generation. J. Syst. Software 2013;
86(8):1978 – 2001, doi:10.1016/j.jss.2013.02.061.

3. Godefroid P. Test Generation Using Symbolic Execution. Annual Conf. on FSTTCS, 2012; 24–33, doi:10.4230/
LIPIcs.FSTTCS.2012.24.

4. McMinn P. Search-based software test data generation: a survey. Software Testing, Verification and Reliability 2004;
14(2):105–156, doi:10.1002/stvr.294.

5. Arcuri A, Iqbal MZ, Briand L. Random testing: Theoretical results and practical implications. Software
Engineering, IEEE Transactions on 2012; 38(2):258–277, doi:10.1109/TSE.2011.121.

6. Bounimova E, Godefroid P, Molnar D. Billions and billions of constraints: Whitebox fuzz testing in production.
Proc. of the Int. Conf. on Software Engineering, ICSE ’13, IEEE, 2013; 122–131, doi:10.1109/ICSE.2013.6606558.

7. Lakhotia K, McMinn P, Harman M. An empirical investigation into branch coverage for C programs using CUTE
and AUSTIN. J. Syst. Softw. Dec 2010; 83(12):2379–2391, doi:10.1016/j.jss.2010.07.026.

8. Qu X, Robinson B. A case study of concolic testing tools and their limitations. Int. Symp. on Empirical Software
Engineering and Measurement, ESEM’11, 2011; 117–126, doi:10.1109/ESEM.2011.20.

9. Galler SJ, Aichernig BK. Survey on test data generation tools. STTT 2014; 16(6):727–751, doi:10.1007/
s10009-013-0272-3.
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