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Testing concepts

� Goal: improving the quality of the system

� Test case: input events and expected output 

actions representing a typical paths

� Test suite: set of test cases

� Test requirement: a specific sub goal for 

testing, e.g. call a function

� Coverage criterion: determines a set of test 

requirements, e.g. cover all statements
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Problems in testing

� Test cases are written manually

� Time and resource consuming

� If the specification/code changes all the test 

cases should be modified

� Detailed behavioural model can help

� Parts of the testing tasks can be automated
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Implementation details

� Model transformation

� UML → Extended Hierarchical Automata → Promela

� Test generation input

� Model: UML Statechart representing the behaviour

� Criterion: coverage criterion on the model

� Currently: All or selected states/transition covered, 

custom temporal logic formulae

� Output

� Events collected from the SPIN detailed trace
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Efficiency of test generation

� Classical model checking: exhaustive 

verification of the full state space

� Test generation: finding a minimal length 

counter-example quickly

→ special configuration is necessary.

� Measurements:

� Effects of SPIN’s 10 parameters on runtime

� Goal: minimize time needed for test generation 

while test suite is minimal in length
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Analyzed SPIN parameters

� -dBFS: Breadth First Search

� -m: depth limit in Depth First Search

� -i and –I: minimal counter-example iteratively 

� -w: size of the hash table to store states

� Other parameters (e.g. –dNOFAIR, 

-dSAFETY) did not have significant effect  
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Experiment 1: Mobile model

� Statechart describing behaviour of a mobile phone

� 10 states, 21 transitions

Mobile example
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Detailed results
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943852m 04.86sdefault

6252m 48.78s-I 

3174m 47.23s-i -m1000

31711m 48.83s-dBFS

31722m 32.46s-i

Shortest testSum lengthDurationOptions

Iterative search: short test 
cases but long duration

BFS: good results, but ran 
out of memory in more 

complex models

Limiting the depth resulted 

always in shorter execution

Limiting the depth and 

setting the hash table was 

the optimal setting
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Real-life case study

� Industrial partner’s synchronization protocol

� 5 objects, 31 states, 174 transitions

� 2e+08 states visited

� Further techniques needed:
� State space compression – bit-state hashing

� Reduction of the model in a conservative manner

� Leaving out requirements already covered

� Finding minimal length/size test suite
is NP-complete
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Synchronisation protocol - results

Synchronisation protocol - all state covered
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Testing implementations

� Use the abstract test cases to test 

conformance of an implementation

� Definition of a test interface (mapping)

� Conducted experiments

� Mobile model, with two implementation: 

� manually coded using nested switch method 

� Statechart Java code generator

� Two test execution framework:

� JUnit, Rational Robot
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Code coverage results

Coverage - manual code
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Conclusion

� Tool chain for automatic test generation of 

event-driven systems

� Multiple coverage criteria on the model

� Optimizing model checker for test generation

� Applying tests to implementation

� Code coverage on implementation

� Real-time systems: generating also

timing information


