
1

Model-Based Automatic
Test Generation for Event-
Driven Embedded Systems

Using Model Checkers

Zoltan Micskei and Istvan Majzik
{micskeiz, majzik}@mit.bme.hu

Department of Measurement and Information Systems

Budapest University of Technology and Economics

DepCos-RELCOMEX ‘06 2006. 05. 27.

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 2

Testing concepts

� Goal: improving the quality of the system

� Test case: input events and expected output

actions representing a typical paths

� Test suite: set of test cases

� Test requirement: a specific sub goal for

testing, e.g. call a function

� Coverage criterion: determines a set of test

requirements, e.g. cover all statements

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 3

Problems in testing

� Test cases are written manually

� Time and resource consuming

� If the specification/code changes all the test

cases should be modified

� Detailed behavioural model can help

� Parts of the testing tasks can be automated

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 4

Testing framework

Test
Generation

Test
Generation

CriterionCriterion

System modelSystem model

ImplementationImplementation

Abstract

Test cases

Abstract

Test cases

Concrete

Test cases

Concrete

Test cases

Test results,

coverage

Test results,

coverage

Test

Transformation

Test

Transformation

Test

Execution

Test

Execution

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 5

Testing framework

Test
Generation

Test
Generation

CriterionCriterion

System modelSystem model

ImplementationImplementation

Abstract

Test cases

Abstract

Test cases

Concrete

Test cases

Concrete

Test cases

Test results,

coverage

Test results,

coverage

Test

Transformation

Test

Transformation

Test

Execution

Test

Execution

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 6

Mathematical
model

Mathematical
model

Engineering
model

Engineering
model

Testing
criterion

Testing
criterion

Model
checker

Model
checker

TL formulaeTL formulae

Test casesTest cases

Test generation using a
model checker

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 7

Mathematical
model

Mathematical
model

Engineering
model

Engineering
model

Testing
criterion

Testing
criterion

Model
checker

Model
checker

TL formulaeTL formulae

Test casesTest cases

Test generation using a
model checker

System model is transformed System model is transformed

into an input language of a into an input language of a

model checker toolmodel checker tool

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 8

Mathematical
model

Mathematical
model

Engineering
model

Engineering
model

Testing
criterion

Testing
criterion

Model
checker

Model
checker

TL formulaeTL formulae

Test casesTest cases

Test generation using a
model checker

Coverage criteria are Coverage criteria are

expressed using temporal expressed using temporal

logic formulae, e.g. all state logic formulae, e.g. all state

should be coveredshould be covered

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 9

Mathematical
model

Mathematical
model

Engineering
model

Engineering
model

Testing
criterion

Testing
criterion

Model
checker

Model
checker

TL formulaeTL formulae

Test casesTest cases

Test generation using a
model checker

To get traces that To get traces that

satisfy these formulae, satisfy these formulae,

the negated formulae the negated formulae

are checked in a are checked in a

model checkermodel checker

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 10

Mathematical
model

Mathematical
model

Engineering
model

Engineering
model

Testing
criterion

Testing
criterion

Model
checker

Model
checker

TL formulaeTL formulae

Test casesTest cases

Test generation using a
model checker

The counterThe counter--examples are in examples are in

fact a test suite satisfying the fact a test suite satisfying the

original testing criterionoriginal testing criterion

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 11

Implemented test generator

UML
Statechart

UML
Statechart

Coverage
criterion

Coverage
criterion

SPIN model
checker

SPIN model
checker

LTL formulaeLTL formulae

Promela
code

Promela
code

XML

test case

XML

test case

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 12

Implementation details

� Model transformation

� UML → Extended Hierarchical Automata → Promela

� Test generation input

� Model: UML Statechart representing the behaviour

� Criterion: coverage criterion on the model

� Currently: All or selected states/transition covered,

custom temporal logic formulae

� Output

� Events collected from the SPIN detailed trace

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 13

Efficiency of test generation

� Classical model checking: exhaustive

verification of the full state space

� Test generation: finding a minimal length

counter-example quickly

→ special configuration is necessary.

� Measurements:

� Effects of SPIN’s 10 parameters on runtime

� Goal: minimize time needed for test generation

while test suite is minimal in length

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 14

Analyzed SPIN parameters

� -dBFS: Breadth First Search

� -m: depth limit in Depth First Search

� -i and –I: minimal counter-example iteratively

� -w: size of the hash table to store states

� Other parameters (e.g. –dNOFAIR,

-dSAFETY) did not have significant effect

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 15

Experiment 1: Mobile model

� Statechart describing behaviour of a mobile phone

� 10 states, 21 transitions

Mobile example

0

50

100

150

200

250

300

350

Default Setting hash-table Hash-table and

depth limit

Time [sec]

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 16

Detailed results

31746.7s-m200 -w24

16971m 25.48s-m1000

4221m 46.64s-I -m1000

943852m 04.86sdefault

6252m 48.78s-I

3174m 47.23s-i -m1000

31711m 48.83s-dBFS

31722m 32.46s-i

Shortest testSum lengthDurationOptions

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 17

Detailed results

31746.7s-m200 -w24

16971m 25.48s-m1000

4221m 46.64s-I -m1000

943852m 04.86sdefault

6252m 48.78s-I

3174m 47.23s-i -m1000

31711m 48.83s-dBFS

31722m 32.46s-i

Shortest testSum lengthDurationOptions

Iterative search: short test
cases but long duration

BFS: good results, but ran
out of memory in more

complex models

Limiting the depth resulted

always in shorter execution

Limiting the depth and

setting the hash table was

the optimal setting

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 18

Real-life case study

� Industrial partner’s synchronization protocol

� 5 objects, 31 states, 174 transitions

� 2e+08 states visited

� Further techniques needed:
� State space compression – bit-state hashing

� Reduction of the model in a conservative manner

� Leaving out requirements already covered

� Finding minimal length/size test suite
is NP-complete

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 19

Synchronisation protocol - results

Synchronisation protocol - all state covered

0

50

100

150

200

250

300

Default (depth limit

and hash-table)

Model reduction

(channels)

Leaving out already

covered (65%)

Execution

time [min]

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 20

Testing framework

Test
Generation

Test
Generation

CriterionCriterion

System modelSystem model

ImplementationImplementation

Abstract

Test cases

Abstract

Test cases

Concrete

Test cases

Concrete

Test cases

Test results,

coverage

Test results,

coverage

Test

Transformation

Test

Transformation

Test

Execution

Test

Execution

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 21

Testing implementations

� Use the abstract test cases to test

conformance of an implementation

� Definition of a test interface (mapping)

� Conducted experiments

� Mobile model, with two implementation:

� manually coded using nested switch method

� Statechart Java code generator

� Two test execution framework:

� JUnit, Rational Robot

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 22

Code coverage results

Coverage - manual code

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Statement Method Condition

All State

All TransitionsTest cases contained

only valid events.
Testing of implicit

transitions are needed

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 23

Conclusion

� Tool chain for automatic test generation of

event-driven systems

� Multiple coverage criteria on the model

� Optimizing model checker for test generation

� Applying tests to implementation

� Code coverage on implementation

� Real-time systems: generating also

timing information

