Budapest University of Technology and Economics
Department of Measurement and Information Systems

Zoltan Micskei and Istvan Majzik
{micskeiz, majzik}@mit.bme.hu

DepCos-RELCOMEX ‘06 2006. 05. 27.

Testing concepts

e Goal: improving the quality of the system

e [est case: input events and expected output
actions representing a typical paths

e [est suite: set of test cases

e [est requirement: a specific sub goal for
testing, e.g. call a function

e Coverage criterion: determines a set of test
requirements, e.g. cover all statements

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers

Problems in testing

e [est cases are written manually
Time and resource consuming

e If the specification/code changes all the test
cases should be modified

e Detailed behavioural model can help
Parts of the testing tasks can be automated

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers

Testing framework

System model

Test Abstract
Generation Test cases

Criterion

Test Concrete
Transformation Test cases

Test R Testresults,
Execution coverage

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers

Implementation

Testing framework

System model

Test Abstract
Generation Test cases

Criterion

Test Concrete
Transformation Test cases

Test R Testresults,
Execution coverage

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers

Implementation

Test generation using a
model checker

Engineering Mathematical
model model

Model

Test cases
checker

Testing
criterion

TL formulae

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 6

Test generation using a
model checker

Engineering Mathematical
model model

System model is transformed Test cases
Into an input language of a
model checker tool
Testing - pum—
criterion

TL formulae

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 7

Test generation using a
model checker

Engineering Mathematical

g =
model e Coverage criteria are

expressed using temporal
logic formulae, e.g. all state
should be covered

el

Testing
criterion

== TL formulae

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 8

Test generation using a
model checker

i ; - ~thematical
To get traces that nodel

satisfy these formulae,
the negated formulae
are checked in a Model

model checker checker Test cases

Testing

L TL formulae
criterion

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 9

Test generation using a
model checker

Engineering Mathematical
model model

Model

checker r Test cases

Testing o The counter-_examples: are in
criterion (fact a test suite satisfying the
original testing criterion

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 10

Implemented test generator

UML Promela
Statechart code

SPIN model XML

Coverage

o LTL formulae
criterion

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 11

Implementation details

e Model transformation
UML — Extended Hierarchical Automata — Promela

e [est generation input
Model: UML Statechart representing the behaviour

Criterion: coverage criterion on the model

e Currently: All or selected states/transition covered,
custom temporal logic formulae

e Output
Events collected from the SPIN detailed trace

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 12

Efficiency of test generation

e Classical model checking: exhaustive
verification of the full state space

e [est generation: finding a minimal length
counter-example quickly
— special configuration is necessary.

e Measurements:

Effects of SPIN’s 10 parameters on runtime

Goal: minimize time needed for test generation
while test suite is minimal in length

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 13

Analyzed SPIN parameters

e -dBFS: Breadth First Search

e -m: depth limit in Depth First Search

e - and —I: minimal counter-example iteratively
e -W: size of the hash table to store states

e Other parameters (e.g. -dNOFAIR,
-dSAFETY) did not have significant effect

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers

14

Experiment 1: Mobile model

e Statechart describing behaviour of a mobile phone
e 10 states, 21 transitions

Mobile example

350
300
250
200 -
150 A
100
50

B Time [secC]

Default Setting hash-table Hash-table and
depth limit

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers

Detailed results

Options Duration Sum length Shortest test
-i 22m 32.46s 17 3
-dBFS 11m 48.83s 17 3
-1 -m1000 4m 47.23s 17 3
| 2m 48.78s 25 6
default 2m 04.86s 385 94
-1 -m1000 1m 46.64s 22 4
-m1000 1m 25.48s 97 16
-m200 -w24 46.7s 17 3

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers

16

Detailed resultEiCiErIEEEEIREs

cases but long duration

>
Options Duration BFS: good results, but ran
out of memory in more
| 22m 32.468 complex models
-dBFS 11m 48.83s |—=

-1 -m1000 4m 47.23s

Limiting the depth resulted
| GUBERES always in shorter execution

default 2m 04.86s <0
-1-m1000 1)l Limiting the depth and
sV R RS setting the hash table was

“m200 -w24 16, the optimal setting

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 17

Real-life case study

e Industrial partner’'s synchronization protocol
e 5 objects, 31 states, 174 transitions
e 2e+08 states visited
e Further techniques needed:
o State space compression — bit-state hashing

e Reduction of the model in a conservative manner
o Leaving out requirements already covered

e Finding minimal length/size test suite
Is NP-complete

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 18

Synchronisation protocol - results

300

Synchronisation protocol - all state covered

250
200 -
150
100
50 -

B Execution
time [min]

W I

Default (depth limit ~ Model reduction ~ Leaving out already
and hash-table) (channels) covered (65%)

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers

19

Testing framework

System model

Test Abstract

e Generation Test cases

Test Concrete
Transformation Test cases

Implementation

Test Test results,
Execution coverage

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers

20

Testing implementations

e Use the abstract test cases to test
conformance of an implementation

e Definition of a test interface (mapping)

e Conducted experiments

e Mobile model, with two implementation:
o manually coded using nested switch method
e Statechart Java code generator

e Two test execution framework:
e JUnit, Rational Robot

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers

21

Code coverage results

Test cases contained
only valid events.
Testing of implicit

transitions are needed

Coverage - manual code

—

=N WS 0100000 O
O OO OO OOOOOO

0000009000090
0 0 0 00 00 00 00~
| [— [— |

Statement Method Condition

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 22

Conclusion

e Tool chain for automatic test generation of
event-driven systems

e Multiple coverage criteria on the model

e Optimizing model checker for test generation
e Applying tests to implementation

e (Code coverage on implementation

e Real-time systems: generating also
timing information

Model-Based Automatic Test Generation for Event-Driven Embedded Systems Using Model Checkers 23

