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Abstract. Autonomous systems are used nowadays in more and more sectors 

from vehicles to domestic robots. They can make decisions on their own or in-

teract with humans, thus their robustness and safety are properties of crucial 

importance. Due to the adaptive and context-aware nature of these systems, the 

testing of such properties is especially challenging. In this paper, we propose a 

model-based testing approach to capture the context and requirements of such 

systems, to automatically generate test data representing complex situations, 

and to evaluate test traces and compute test coverage metrics. 
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1 Introduction 

An autonomous system (AS) can be defined as one that makes and executes decisions 

to achieve a goal without full, direct human control [1]. Notable characteristics shared 

by the different kinds of autonomous systems include reasoning, learning, adaptation 

and context-awareness. In many scenarios, several autonomous systems are working 

together to reach a common goal, thus communication and cooperation are also im-

portant, and the interacting partners form part of the context of an individual AS. 

A typical example of an AS is an autonomous robot, which is working in a real, 

uncontrolled environment, possibly in the presence of humans. Even if the task of a 

robot is relatively simple, e.g., to pick up garbage from the ground, it should be able 

to differentiate and recognize numerous types of objects and be prepared to take into 

account the unexpected movements of humans. Thus, it shall be robust in order to be 

capable of handling unforeseen situations and safe to avoid harmful effects with re-

spect to humans. The prerequisite of the application of autonomous systems is a thor-

ough verification of these requirements. 

In the R3-COP project
1
 our work is focused on testing the context-aware behaviour 

of autonomous robots, especially the robustness and functional safety of their behav-

iour. Precisely speaking, robustness is an attribute of dependability, which measures 

the degree to which a system or component can function correctly in the presence of 

invalid inputs or stressful environmental conditions. Thus, the goal of robustness 
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testing is the generation of these situations to detect the potential design faults that 

result in incorrect operation. Functional safety is defined as freedom from unaccepta-

ble occurrence of harm (characterized with a given probability and severity), which 

depends on the correct functioning of the system. Testing functional safety is per-

formed by executing the system in a controlled way to demonstrate the absence of 

unsafe behaviour. In our work we restrict the focus of testing robustness and func-

tional safety to the design faults affecting context-aware behaviour and do not deal 

with testing the effects of random operational faults. 

Testing the robustness and safety in autonomous systems is especially challenging 

and it requires the development of new methods due to the following characteristics. 

First, the behaviour is highly context-aware: the actual behaviour of an AS depends 

not only on the events it receives, but also on the perceived state of the environment 

(that is typically stored as a context model in the AS). Second, the context is complex 

and there are a large number of possible situations: in real physical world the number 

and types of potential context objects, attributes and interactions that need to be speci-

fied can be large. Third, adaptation to evolving context is required: as most of the 

autonomous systems contain some kind of learning and reasoning capabilities, their 

behaviour can change in time based on feedback from the evolving environment. 

These characteristics have also consequences on the specification of the require-

ments to be tested. Full behaviour specification can be impractical due to the com-

plexity of the behaviour and the diversity of the system environments, and require-

ments should include the evolution of the environment. It means that the developed 

test cases should not only include the input signals and messages to the system under 

test (SUT), but they should contain a sufficiently detailed description about the envi-

ronment of the system. 

As stated in a recent paper [6], testing autonomous systems is still an unsolved key 

area. In the project, considering our goals, we identified the following insufficiencies 

of existing testing approaches and proposed the following solutions: 

 Lack of easy-to-use mechanisms to express and formalize context-aware behaviour 

(although these mechanisms are a prerequisite of requirements-based automated 

test generation and test evaluation). Most noticeably, in existing standard test de-

scription languages there is no support to express changes in the context [2]. To 

overcome this problem of capturing test requirements, we defined a language 

which is based on context models and scenario based behaviour specification. The 

context model allows systematically capturing domain knowledge about the con-

text of the system. Hierarchy in the modelling can efficiently support handling of 

the types of diverse objects in the environment. Context models may also represent 

the existence of cooperating partners and humans, as well as the explicit messages 

and commands from them. With respect to the dynamics of the system behaviour, 

the scenario based language provides a lightweight formalism (that is close to the 

engineers’ way of thinking) to capture the behaviour (actions and messages) of a 

SUT in case of a test context. The application of modalities in the scenario lan-

guage allows expressing prohibited behaviour (that would violate safety) and po-

tentially allowed behaviour (this way capturing learning and adaptive behaviour). 



 

 

 Ad-hoc testing of stressful conditions and extreme situations: Previous research 

focused first of all on producing high fidelity simulators [4] or executing excessive 

field testing [5] for the verification of AS. There exist methods for testing the phys-

ical aspects; however, not all behavioural aspects are well-covered [3]. Our pro-

posed solution is based on context modelling: we included in the context models 

the constraints and conditions that determine the normal and exceptional situations 

and defined methods to systematically generate stressful test contexts by violating 

the constraints, reaching boundary conditions, and combining contexts from vari-

ous requirements (to test the implementation in case of interleaving scenarios). 

 Lack of precise and objective test coverage metrics that can characterize the thor-

oughness of the testing process. On the basis of context models we defined precise 

coverage metrics, especially robustness related metrics that refer to constraints and 

conditions (to be violated), and combinations of context elements and fragments. 

Different coverage criteria were used to define the test goals and search-based 

techniques were applied to generate the required complex test suite. The formaliza-

tion of robustness and safety related requirements allows an automated evaluation 

of test executions (especially in a simulated environment) and thus deriving con-

crete success and coverage measures that characterize the testing process and help 

identifying weak points in testing. 

The rest of the paper presents our model based testing framework that is being final-

ized and validated in the R3-COP project. Section 2 specifies the testing approach 

(the goals and the components of the framework). Section 3 presents how the test 

requirements are captured, i.e., the context and scenario modelling. Section 4 outlines 

the test generation approach, while Section 5 presents the test evaluation and the main 

categories of the applied coverage metrics. The detailed presentation of all technical 

details will be publicly available in an R3-COP project deliverable (D4.2.1). 

2 Testing Approach 

Our work focuses on testing the control software of an individual AS that determines 

how the AS reacts (i.e., what actions it sends to the actuators) to the events from the 

perception or the communication components representing the (changes in the) con-

text of the AS. The control software is treated as a black-box and the testing is con-

centrated on the system-level behaviour: detecting misbehaviour with respect to safe-

ty and robustness properties in diverse situations. Although the scope of testing is the 

behaviour of an individual AS, cooperation among systems can also be represented in 

the requirements, since input messages and input events (with respect to the move-

ments of other systems and humans) as well as output messages are part of the context 

model. However, the overall goal of a cooperative behaviour is not tested. As safety 

and robustness failures manifest when several typical situations combine in an unex-

pected manner (e.g., an autonomous vehicle receives a new direction just when it 

detects that a pedestrian crossing and another vehicle approaching from the next lane), 

our approach focuses on covering such problematic complex (combined) situations. 



 

 

Testing is carried out in an interactive simulator environment, where different test 

situations can be prepared and the system under test can react to the changes in the 

context as obtained through its sensors. 

Fig. 1 gives a high-level overview of the testing process. Starting from the specifi-

cation of the AS and the knowledge of the application domain, the process evaluates 

the safety and robustness of the control software and computes coverage metrics. The 

key components (that are novel in our approach) are the context and scenario model-

ling, the search-based test data generation on the basis of robustness related coverage 

criteria, and methods for automated test evaluation. Related new tools are the test data 

generator and the test oracle generator. 
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Fig. 1. Overview of the proposed approach 

The rest of the paper walks through the steps of this testing process to show how the 

defined testing goals can be achieved by creating a context model, capturing require-

ments as scenarios, generating test data, executing the tests while recording test trac-

es, and finally evaluating test traces with respect to the requirements. 

To illustrate the developed testing approach a home vacuum cleaner robot is used 

as a running example. The robot is able to discover its surroundings when placed in a 

new room, create a map of its environment, and clean the room. The robot should 

avoid collision with living beings and should perform some limited surveillance tasks 

(e.g., detect unusual noises). Note that the purpose of the example is only to illustrate 

the testing concepts, and it is not intended to be a full system and test specification. 

3 Formalizing application requirements 

Usually application requirements are available as natural language specifications, as 

use case descriptions or as some text structured in tables. In order to use such re-

quirements in test evaluation or in automated test data generation, a more structured 

format is needed. In general, to implement the testing, the formalization of at least 

two artefacts is required. 

1. Test data. The input to the system under test should be specified. As described pre-

viously, in case of autonomous systems this should include (i) the initial state of 

the context of the system, (ii) its evolution in time, and (iii) the messages and 



 

 

commands received by the SUT. These concepts are captured in a context model. 

Outputs of the SUT are included in a separate action model. 

2. Test oracle. The responsibility of the test oracle is to evaluate the test outcome, the 

actions and output messages of the system. As specifying the exact outcome of 

every situation could be infeasible, a lightweight approach is used. The require-

ments are expressed as scenarios and are checked for every executed test (to detect 

potential safety and robustness failures). 

3.1 Context modelling 

In order to have a structured way of describing the test data, first a context model is 

created. It consists of two parts. The static part represents the environment objects 

and their attributes in a type hierarchy (in the vacuum cleaner example it includes 

concepts like room, furniture inside a room, humans or animals). The dynamic part 

contains events as distinguished elements to represent changes with regard to objects 

(i.e., an object appears, disappears) and their relations and properties (e.g., a relation 

is formed or a property is transformed). The events have attributes and specific rela-

tions to the static objects depending on the type of the event. 

Several modelling languages exist to express such models; see e.g. [7] for context 

modelling approaches. An easy to use approach to capture domain concepts is the use 

of ontologies. Existing ontologies related to robots (like KnowRob [8]) can be reused 

when defining the context model. To ease the programmatic manipulation of these 

context models (which is needed when test data is generated), ontology models are 

transformed systematically to metamodels (see e.g. Fig. 2 in case of the vacuum 

cleaner robot) and instance models conforming to this metamodel. The metamodels 

are extended with domain-specific constraints that for example require specific attrib-

ute values or define restrictions with respect to the number of objects in a model. 
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Fig. 2. Context metamodel for the vacuum cleaner robot 

The structured context metamodel offers several advantages over an ad-hoc represen-

tation of context elements in the different requirements. It supports the automated 



 

 

generation of test data, including the completion and systematic combination of con-

text model elements from different requirements. The domain-specific constraints 

allow the automated generation of extreme contexts (as test data) that violate these 

constraints. Moreover, it is also the basis of the definition of precise test coverage 

metrics. In our framework we construct an OWL2 based domain ontology then map it 

automatically to metamodels to be manipulated in the Eclipse Modeling Framework
2
. 

3.2 Scenario modelling 

For test oracles, requirements are expressed as graphical scenarios in the form of ex-

tended UML 2 Sequence Diagrams that represent events/messages received and ac-

tions/messages sent by the SUT. Each diagram has two parts: (1) a trigger part (which 

means that the scenario is only relevant if its trigger part has been successfully trav-

ersed) that may have several fragments, like opt fragment for expressing optional 

behaviour, alt for expressing alternatives, neg for a negative fragment that should not 

happen and (2) an assert part that consist of an assert segment (that shall happen). 
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Fig. 3. Example scenario model R2: Alerting a living being 
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Fig. 4. Example scenario model R3: Detecting unusual noise 

Language extensions were added to refer to (changing) contexts. Using these exten-

sions, context model fragments are included as initial context of the scenario, interim 

                                                           
2 http://www.eclipse.org/modeling/emf/ 
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context in the trigger part that should occur during test execution, and final context (in 

the assert part) that is checked to determine the success of the test. 

Fig. 3 and Fig. 4 present two requirements (R2 and R3) of the vacuum cleaner. R2 

states that when a living being is detected nearby the robot then it has to be alerted. 

R3 states that if a noise is detected in the room then the robot should send a prede-

fined alert. Here the requirements with respect to the initial contexts are described 

using context fragments (model instances conforming to the context metamodel). 

4 Generating test data 

The context models provide a mechanism to describe environments, which could be 

later represented in a test execution setup (e.g., in a simulator). Requirements ex-

pressed as scenarios provide a way to check later these executions and search for 

misbehaviours. However, it is still missing how the different test data describing in-

teresting environments and situations are acquired. By creating these test data by 

hand, some of the situations can be covered, but there is no guarantee that every 

stressful context is represented in the test data, or that the combinations of situations 

are completely checked. 

We proposed an automated test data generation approach, which uses search-based 

techniques [9]. The key ingredients for the application of a search-based technique are 

the representation of the potential solutions and the definition of a fitness function. 

According to our approach, the solutions, i.e., the potential test data, will be generated 

as model instances conforming to the context metamodel. We use model transfor-

mation to manipulate the instances (adding/removing context elements and fragments 

to/from the candidate solutions) and a fitness function to guide the search. The fitness 

functions are based on the context requirements and on the test strategies (correspond-

ing to test coverage metrics, see Section 5) that include the following: 

 Creating the minimal number of context objects that are needed to test the satisfac-

tion of a requirement. Furthermore, completing the minimal number of context ob-

jects with more and more additional objects from the context metamodel, potential-

ly instantiating all types of the context metamodel in the set of test data. 

 Combining context models related to different requirements to test whether the 

combined contexts will violate these requirements. 

 Creating context models that are at the boundary or even violate systematically 

selected domain-specific constraints for robustness testing. 

Fig. 5 presents the minimal test data generated by combining the initial context frag-

ments belonging to requirements R2 and R3 as a stressful situation for the SUT. Alt-

hough this example is simple, the generation of test data for a given test strategy is a 

non-trivial task due to the high number of context model elements, their type hierar-

chy and relations, and the constraints that have to be fulfilled/violated to get meaning-

ful test data. 
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Fig. 5. Test data generated by combining the context fragments of requirements R2 and R3 

A similar testing approach is presented in [10]: it utilizes so-called stakeholder soft-

goals as quality functions and applies metaheuristic search-techniques to generate 

tests. However, there are essential differences in comparison with our framework. 

Their approach encodes the environment settings as a matrix of cells to represent 

object locations, while we propose the use of a high level metamodel to describe the 

possible contexts and use model instances conforming to this metamodel to represent 

concrete test data. We believe that this representation is more flexible and easy to use 

for domain experts. Another difference lies in the fitness calculation and execution of 

the tests. Their approach involves on-line testing: inserting the SUT into a test envi-

ronment (made up of the generated test data) and calculating the fitness of potential 

test data based on the execution of the SUT. The test generation stops if the SUT 

violates the soft goal or there is no improvement observed after a number of genera-

tions and executions. On the contrary, we apply off-line test generation: we do not use 

the results of the execution of the SUT to assess the test data. In order to calculate the 

fitness of test data, we search for patterns that may trigger the formalized require-

ments and satisfy the test goals (coverage criteria). While our test data generation 

concept may not be adequate for the validation of every kind of soft goals, it does not 

depend on the domain and implementation of the SUT. 

5 Evaluation of test results and coverage 

To be able to include the generated test data in a simulator, a lot of simulator-specific 

information should be hard-coded in the test data (e.g., how is the position of an ob-

ject encoded). To avoid this dependency from simulators, test data creation consists of 

two steps. First, so called abstract test data are generated and then a post-processing 

step produces concrete test data in a format dependent on the simulator. This way the 

formalized requirements use only general, abstract concepts and relationships (e.g., 

the robot is near to something). These are replaced in the post-processing step with 

compatible types defined in the simulator and the exact parameters (e.g., physical 

coordinates) are assigned. 

After test data are generated, the following steps have to be executed. The simula-

tor is fed with each generated test data (which describe the environment of the SUT) 

and then it processes the dynamic part of the test data (i.e., the evolution of the con-

text, sending and receiving of messages etc.). During test execution detailed test trac-

es are captured that record the events and actions of the SUT with their timing and 

also changes in the context. Finally, each captured test trace is checked against each 

of the scenarios to identify whether a scenario is triggered (checking the trigger part) 



 

 

and violation of any requirement is detected (in the “assert” part of the scenario). In 

this way, the proper handling of interleaving requirements can also be verified. 

The test evaluation consists of two different aspects. On one hand, the matching of 

events and actions has to be checked. On the other hand, the actual context has also to 

be matched to the context fragment specified in the requirement. 

 

Fig. 6. Illustration of a test trace in case of testing the vacuum cleaner robot 

Fig. 6 illustrates a test trace captured when the vacuum cleaner robot was tested using 

the test context presented in Fig. 5. According to this test data (the AppearEvent and 

MoveEvent) there was a change in the context: a human moved into the room and a 

noise appeared. When this test trace is evaluated with respect to requirements R2 and 

R3 (see in Fig. 3 and Fig. 4) the following can be derived: R3’s initial context frag-

ment can be matched with the second context, the message in its trigger part appears 

(there is a detectUnusualNoise message), and the action in its assert parts appears too, 

thus R3 is satisfied. In case of R2 the initial context fragment can be matched with the 

second context (when the distance between the position of the robot and the human 

satisfies the nearBy relation), the trigger part appears in the trace (there is a humanDe-

tected message), but the action in the assert part does not appear in the trace. This way 

R2 is violated. This example demonstrated how the improper handling of stressful 

situations (i.e., interleaving of several potential scenarios) can be detected using a test 

context generated by combining the initial context fragments of different require-

ments. (Note that the matching of contexts and messages is obvious in this example 

due to the simplicity of the scenario, but in general it could be more complicated.) 

Finally, when all the executed tests are evaluated, the quality of the testing should 

be assessed. One way to achieve this is to compute different coverage metrics. Con-

text related coverage metrics measure what part of the context model has been cov-

ered during testing (e.g., whether there are objects, which have not been present in 

any test runs) and what combinations of initial context fragments from different re-

quirements were covered. Scenario related metrics measure coverage on the scenari-

os, e.g., whether all scenarios have been triggered, or whether there were any violated 

requirements. Robustness related metrics measure the thoroughness of the generation 



 

 

of extreme contexts by considering the coverage of violated constraints and potential 

boundary values from the context model. 

6 Summary and Future Work 

This paper presented the challenges of testing autonomous systems and proposed a 

method to test the robustness and functional safety of the behaviour of the system’s 

control. The proposed approach uses context modelling and graphical scenarios to 

capture the context and requirements of the system and automatically generates test 

data and test oracle to test complex or unforeseen situations. Once the test data is 

executed, the satisfaction of the requirements is checked and the coverage with re-

spect to the context or scenarios is calculated. Currently we are working on the valida-

tion of the process using two real-world use cases, which involves refining the model-

ling notations, the test generation and the test evaluation algorithms. 
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