

Wednesday, 17 December 200819:42:22 Page 1 of
118

IST-FP6-STREP-26979 / HIDENETS Confidential

DENETS
ghly DEpendable IP-based NETworks and Services

Project no.: IST-FP6-STREP-26979

Project full title: Highly dependable ip-based networks and services

Project Acronym: HIDENETS

Deliverable no.: D5.3

Title of the deliverable: Refined design and testing framework,

 methodology and application results
Contractual Date of Delivery to the CEC: 31

st
 Dec. 2008

Actual Date of Delivery to the CEC: xx xxx xx

Organisation name of lead contractor for this deliverable: P02 BME

Author(s): Gábor Huszerl
P02

 and Hélène Waeselynck
 P06

 (ed.), Zoltán Égel
 P02

, András Kövi
 P02

, Zoltán

Micskei
 P02

, Minh Duc N’Guyen
 P06

, Gergely Pintér
 P02

 and Nicolas Rivière
 P06

Participants(s): P02 BME, P05 FSC, P06 LAAS-CNRS

Work package contributing to the deliverable: WP5

Nature: R/P

Version: 1.0

Total number of pages: 118

Start date of project: 1
st
 Jan. 2006 Duration: 36 month

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Abstract:

This Deliverable summarises the results of the HIDENETS project related to two interconnected

software engineering aspects: i) application development and ii) testing.

The design framework is based on a UML model-based approach to support the formalized

description of the application level use case scenarios and the fault-tolerant protocols and

mechanisms developed in course of the project. Our main achievements are an application

Page 2 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

development framework that is based on OMG's Model Driven Architecture concept defining an

own UML profile for designing applications for the HIDENETS middleware platform. To achieve

this, we had to harmonize the models of the underlying HIDENETS middleware services in the ad-

hoc and infrastructure domains. To support the application of our approach, we have developed a

domain specific editor (support for designs using our UML profile), we have elaborated design

patterns (support for applications using the HIDENETS middleware services) and configuration

and code generation methods (support for implementation of designs relying on our approach).

The testing framework targeted at the removal of design faults that is well suited to address the

challenges and technical constraints raised by applications and services in the mobile, ad-hoc

nature of the typical HIDENETS applications. The special requirements of testing mobile

applications based on ad-hoc communication initiated the definition of a special, formally well-

founded modelling language for describing scenarios in mobile settings. To check whether an

execution trace satisfies requirements and covers test purposes, special graph matching methods

had to be elaborated to test the described scenarios against the requirements.

Keyword list: application development, testing, model-based.

Page 3 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Table of Contents

BIBLIOGRAPHY .. 4

ABBREVIATIONS .. 9

1 EXECUTIVE SUMMARY AND INTRODUCTION ... 11

2 DESIGN FRAMEWORK ... 12

2.1 GOAL OF THE FRAMEWORK .. 12
2.1.1 Design Methodologies ... 13
2.1.2 Standards and Specifications ... 13
2.1.3 HIDENETS Architecture.. 14

2.2 OVERVIEW OF THE MODELLING ACTIVITIES .. 15
2.2.1 Model Driven Architecture in the Context of the HIDENETS project 15
2.2.2 Key Phases of Modelling Activities ... 16
2.2.3 An Overview on the Tool-Chain .. 18

2.3 MODELLING HIDENETS RELATED APPLICATION FEATURES ... 19
2.3.1 Introduction on Metamodelling and Profile Construction .. 19
2.3.2 Ad-hoc Domain .. 20
2.3.3 Infrastructure Domain ... 29

2.4 APPLICATION DESIGN SUPPORT ... 39
2.4.1 Domain Specific Editor .. 39
2.4.2 Source Code and Configuration Generation ... 41

2.5 PROOF OF CONCEPT .. 49
2.5.1 Application Development on a Conceptual Level .. 49
2.5.2 Functional Decomposition – Actors & Use-Cases .. 50
2.5.3 Utilizing the Underlying Metamodels .. 54
2.5.4 Implementation .. 57

2.6 CONCLUSION .. 57

3 TESTING ACTIVITIES ... 59

3.1 SUMMARY OF THE TESTING CONTRIBUTION ... 59
3.1.1 Role of scenarios in the testing framework .. 59
3.1.2 Specificities of scenarios in mobile settings... 60
3.1.3 Automated treatment of scenario descriptions .. 62
3.1.4 Overview of the next sections... 63

3.2 TERMOS: A SCENARIO LANGUAGE FOR TESTING REQUIREMENTS .. 64
3.2.1 UML 2.0 Sequence Diagrams .. 64
3.2.2 Discussion of the design decisions for TERMOS ... 66
3.2.3 Syntax of the language ... 72
3.2.4 Example scenarios ... 78
3.2.5 Semantics of the language ... 82

3.3 GRAPHSEQ: A GRAPH MATCHING TOOL .. 94
3.3.1 Graph homomorphism building as a core facility ... 94
3.3.2 Reasoning on sequences of graphs .. 95
3.3.3 Algorithm with a fixed set of nodes in patterns.. 97
3.3.4 Accounting for nodes that appear and disappear .. 100
3.3.5 Validation of GraphSeq ... 105

3.4 CONCLUSION OF THE TESTING CONTRIBUTION ... 107

4 SUMMARY .. 109

APPENDIX A... 111

APPENDIX B ... 118

Page 4 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Bibliography

[ADS] Gergely Pintér, Zoltán Micskei, András Kövi, Zoltán Égel, Imre Kocsis, Gábor

Huszerl, András Pataricza: Model-Based Approaches for Dependability in Ad-

Hoc Mobile Networks and Services, In Rogério de Lemos, Felicita Di

Giandomenico, Cristina Gacek, Henry Muccini and Marlon Vieira (eds.):

Architecting Dependable Systems V. (LNCS 5135) pp. 150-174., 2008

[AIS] Service Availability Forum: Application Interface Specification
http://www.saforum.org/specification/AIS_Information/

[AP233] ISO TC 184 (Automation systems and integration) SC 4 (Industrial Data):

Industrial automation systems and integration – Product data representation

and exchange, Application Protocol 233 (Systems engineering data

representation)

[AUTOSAR] AUTomotive Open System Architecture
http://www.autosar.org

[Bai] F. Bai, N. Sadagopan, A. Helmy: The IMPORTANT Framework for Analyzing

the Impact of Mobility on Performance of Routing for Ad Hoc Network,

AdHoc Networks Journal - Elsevier Science, Vol. 1, Issue 4, pp. 383-403,

Nov. 2003

[CavFil] A. Cavarra and J.K. Filipe: Formalizing Liveness-Enriched Sequence

Diagrams Using ASMs, Abstract State Machines, 2004, pp. 62-77.

[D1.1] Markus Radimirsch, Erling V. Matthiesen, Gábor Huszerl, Manfred

Reitenspieß, Mohamed Kaâniche, Inge Einar Svinnset, António Casimiro,

Lorenzo Falai (HIDENETS Consortium): Use case scenarios and preliminary

reference model, HIDENETS D1.1 Deliverable
http://www.hidenets.aau.dk/Public+Deliverables

[D2.1] António Casimiro (editor), Andrea Bondavalli, Mário Calha, Marius

Clemetsen, Alessandro Daidone, Mônica Dixit, Zoltán Égel, Lorenzo Falai,

Felicita Di Giandomenico, Audun F. Hansen, Gábor Huszerl, András Kövi,

Marc-Olivier Killijian, Tom Lippmann, Yaoda Liu, Erling V. Matthiesen,

Henrique Moniz, Anders Nickelsen, Jimmy J. Nielsen, Thibault Renier,

Matthieu Roy, José Rufino, Hans-Peter Schwefel, Inge-Einar Svinnset

(HIDENETS Consortium): Resilient Architecture (final version), HIDENETS

D2.1.2 Deliverable, December 2007
http://www.hidenets.aau.dk/Public+Deliverables

[D2.2] António Casimiro (editor), Jesper Grønbæk, András Kovi, Anders Nickelsen,

Hans Reiser, Thibault Renier, Hans-Peter Schwefel (HIDENETS Consortium):

Service level resilience solutions for the infrastructure domain, HIDENETS

D2.2 Deliverable, June 2008
http://www.hidenets.aau.dk/Public+Deliverables

[D2.3] António Casimiro (editor), Henrique Moniz, Mônica Dixit, Luis Marques,

Marc-Olivier Killijian, Erling V. Matthiesen, Alessandro Daidone, Matthieu

Page 5 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Roy (HIDENETS Consortium): Service level resilience solutions for the ad-

hoc domain, HIDENETS D2.3 Deliverable, June 2008
http://www.hidenets.aau.dk/Public+Deliverables

[D4.1.2] Paolo Lollini, Andrea Bondavalli (editors), Jean Arlat, Marius Clemetsen,

Lorenzo Falai, Audun Fosselie Hansen, Martin Bøgstadt Hansen, Mohamed

Kaâniche, Karama Kanoun, Máté Kovács, Yaoda Liu, Melinda Magyar, István

Majzik, Erling V. Matthiesen, Anders Nickelsen, Jimmy J. Nielsen, Jakob

Gulddahl Rasmussen, Thibault Renier, Hans-Peter Schwefel (HIDENETS

Consortium): Evaluation methodologies, techniques and tools, HIDENETS

D4.1.2 Deliverable, December 2007
http://www.hidenets.aau.dk/Public+Deliverables

[D4.2.2] Paolo Lollini, Andrea Bondavalli (editors), Francesco Brancati, Andrea

Ceccarelli, Marius Clemetsen, Ludovic Courtès, Alessandro Daidone, Geir

Egeland, Lorenzo Falai, Jesper Grønbæk, Ossama Hamouda, Audun Fosselie

Hansen, Martin B. Hansen, Mohamed Kaâniche, Marc-Olivier Killijian, Máté

Kovács, István Majzik, Erling V. Matthiesen, Leonardo Montecchi, Anders

Nickelsen, Jimmy J. Nielsen, David Powell, Jakob G. Rasmussen, Thibault

Renier, Hans-Peter Schwefel (HIDENETS Consortium): Application of the

evaluation framework to the complete scenario, HIDENETS D4.2.2

Deliverable, December 2008
http://www.hidenets.aau.dk/Public+Deliverables

[D5.1] András Kövi, András Pataricza, Bálint Rákosi, Gergely Pintér, Zoltán Micskei

(HIDENETS Consortium): UML profile and design patterns library,

HIDENETS D5.1 Deliverable, March 2007
http://www.hidenets.aau.dk/Public+Deliverables

[D5.2] Hélène Waeselynck, Zoltan Micskei, Minh Duc N‟Guyen, Nicolas Rivière

(HIDENETS Consortium): Preliminary testing framework and methodology,

HIDENETS D5.2 Deliverable, December 2007
http://www.hidenets.aau.dk/Public+Deliverables

[D6.2] Irene de Bruin (editor), António Casimiro, Mario Calha, Geir Egeland,

Lorenzo Falai, Peter Frejek, Jesper Grønbæk, Sonia Heemstra de Groot,

Audun Fosselie Hansen, Gábor Huszerl, Mohamed Kaâniche, Marc-Olivier

Killijian, András Kövi, Tom Lippman, Yaoda Liu, Erling V. Matthiesen,

Anders Nickelsen, Jimmy Nielsen, Gergely Pintér, Matthieu Roy, Hans-Peter

Schwefel, Inge-Einar Svinnset (HIDENETS Consortium): Specification

HIDENETS laboratory set-up scenario and components, HIDENETS D6.2

Deliverable, October 2007
http://www.hidenets.aau.dk/Public+Deliverables

[D6.3] Manfred Reitenspieß (editor), Irene de Bruin, António Casimiro, Mario Calha,

Zoltan Egel, Geir Egeland, Lorenzo Falai, Bjarke Freund-Hansen, Sonia

Heemstra de Groot, Audun Fosselie Hansen, Gábor Huszerl, Marc-Olivier

Killijian, András Kövi, Tom Lippmann, Luis Marques, Erling V. Matthiesen,

Anders Nickelsen, Gergely Pintér, Matthieu Roy, Hans-Peter Schwefel,

Gaëtan Séverac, Inge-Einar Svinnset, Christophe Zanon (HIDENETS

Consortium): Experimental proof-of-concept set up HIDENETS, HIDENETS

D6.3 Deliverable, August 2008

Page 6 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

http://www.hidenets.aau.dk/Public+Deliverables

[D6.4] Zoltan Egel (editor), Irene de Bruin, António Casimiro, Mario Calha, Geir

Egeland, Lorenzo Falai, Bjarke Freund-Hansen, Sonia Heemstra de Groot,

Audun Fosselie Hansen, Gábor Huszerl, Marc-Olivier Killijian, András Kövi,

Tom Lippmann, Luis Marques, Erling V. Matthiesen, Anders Nickelsen,

Gergely Pintér, Matthieu Roy, Hans-Peter Schwefel, Gaëtan Séverac, Inge-

Einar Svinnset, Christophe Zanon, Manfred Reitenspieß (HIDENETS

Consortium): Documentation and Evaluation of the experimental work,

HIDENETS D6.4 Deliverable, December 2008
http://www.hidenets.aau.dk/Public+Deliverables

[Gue] M. K. Guennoun : Architectures Dynamiques dans le Contexte des

Applications à Base des Composants et Orientés Services, PhD Thesis,

University of Toulouse III, France, Dec. 2006

[Hal] H. H. Hallal, S. Boroday, A. Petrenko and A. Ulrich: A formal approach to

property testing in causally consistent distributed traces, Formal Aspects of

Computing, Volume 18, Issue 1 (March 2006), pp. 63 - 83.

[HaMa] David Harel and Shahar Maoz: Assert and negate revisited: Modal semantics

for UML sequence diagrams, Software and Systems Modeling, 7(2):237–253,

May, 2008

[HDoW] HIDENETS (EU Framework Programme 6 IST STREP) Project Proposal

Annex I – Description of Work
http://rcl.dsi.unifi.it/projects/HIDENETS-DoW.pdf

[Hua] Q. Huang, C. Julien, and G. Roman: Relying on Safe Distance to Achieve

Strong Partitionable Group Membership in Ad Hoc Networks, IEEE

Transactions on Mobile Computing 3, 2 (Apr. 2004)

[Klo] J. Klose: Live Sequence Charts: A Graphical Formalism for the Specification

of Communication Behavior, PhD thesis, C. v.O. Universitat Oldenburg (2003)

[Küs] J. Küster-Filipe: Modelling Concurrent Interactions, Theoretical Computer

Science, 351(2):203–220, 2006
http://dx.doi.org/10.1016/j.tcs.2005.09.068

[MARTE] A UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded

systems, Beta 2
http://www.omg.org/docs/ptc/08-06-08.pdf

[MDA] Object Management Group: Model Driven Architecture Guide v.1.0.1, 2003
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/mda/

[Mics] Z. Micskei, H. Waeselynck, M. D. Nguyen, and N. Riviere: Analysis of a

group membership protocol for Ad-hoc networks, LAAS Technical Report no.

06797, November 2006

[MiWae] Z. Micskei, H. Waeselynck: A survey of UML 2.0 sequence diagrams'

semantics, LAAS Report no. 08389, August 2008

[MOF] Object Management Group: Meta Object Facility

http://dx.doi.org/10.1016/j.tcs.2005.09.068

Page 7 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

http://www.omg.org/mof/

[MSC] Z. 120 ITU-T Recommendation Z. 120: Message Sequence Chart (MSC), ITU-

TS, Geneva, April 2004

[Ngu] M.D. Nguyen, H. Waeselynck, N. Rivière: Testing mobile computing

applications : towards a scenario language and tools, 6th Workshop on

Dynamic Analysis (WODA 2008), ACM Press, Washington D.C, USA, July

2008

[NS] S. McCanne and S. Floyd: ns Network Simulator
http://www.isi.edu/nsnam/ns/

[OCL] Object Management Group: UML 2.0 OCL Specification, 2003
http://www.omg.org/docs/ptc/03-10-14.pdf

[OpenAIS] The OpenAIS Standards Based Cluster Framework
http://www.openais.org

[OpenSAF] The Open Service Availability Framework
http://www.opensaf.org

[QoSFT] Object Management Group: UML Profile for Modelling QoS and FT

Characteristics and Mechanisms, v1.0, OMG Specification, 2006
http://www.omg.org/technology/documents/formal/QoS_FT.htm

[RAS] Object Management Group: Reusable Asset Specification, 2005
http://www.omg.org/technology/documents/formal/ras.htm

[RSA] IBM Rational Software Architect official home page,

http://www.ibm.com/software/awdtools/swarchitect/websphere/

[SAC] R Sangwan, C Neill, M Bass, Z El Houda: Integrating a software architecture-

centric method into object-oriented analysis and design, The Journal of

Systems & Software, 2008

[SAF] Service Availability Forum
http://www.saforum.org/home

[SPT] Object Management Group: UML Profile for Schedulability, Performance and

Time, version 1.1, 2005
http://www.omg.org/docs/formal/05-01-02.pdf

[Stö] H. Störrle: Trace Semantics of Interactions in UML 2.0, Technical Report.

Institut für Informatik, Ludwig-Maximilians-Universität München, 2004

[SysML] Object Management Group: Systems Modeling Language (OMG SysML™),

V1.1 http://www.sysml.org/docs/specs/OMGSysML-v1.1-AS-ptc-08-05-
16.pdf

[Szat] Szatmári Zoltán: Introducing dynamism to SA Forum cluster, MSc Thesis,

BME DMIS, 2008

[Urb] Urbanics Gábor: Introducing dynamism to SA Forum cluster, MSc Thesis,

BME DMIS, 2008

[UML TP] Object Management Group: UML 2.0 Testing Profile, V1.0, July 2005

Page 8 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 http://www.omg.org/technology/documents/formal/test_profile.htm

[UMLinf] Object Management Group: Unified Modeling Language (OMG UML),

Infrastructure, V2.1.2
http://www.omg.org/docs/formal/07-11-04.pdf

[UMLsup] Object Management Group: Unified Modeling Language (OMG UML),

Superstructure, V2.1.2
http://www.omg.org/docs/formal/07-11-02.pdf

[Waes] H. Waeselynck et al.: Mobile Systems from a Validation Perspective: a Case

study, Proc. of the 6th International Symposium on Parallel and Distributed

Computing (ISPDC‟07), IEEE CS Press, Austria, Jul. 2007

[XMI] Object Management Group: XML Metadata Interchange (XMI) Specification
http://www.omg.org/docs/formal/03-05-02.pdf

Page 9 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Abbreviations

ADTB Application Development Test-Bed

AIS Application Interface Specification

AMF Availability Management Framework

API Application Programming Interface

AUTOSAR AUTomotive Open System Architecture

CB Cooperative Backup

CM Conceptual Model

CORBA Common Object Request Broker Architecture

COTS Components off the Shelves

CSI Component Service Instance

CWM Common Warehouse Metamodel

DOM Document Object Model

DSE Domain Specific Editor

DTD Document Type Definition

ECU Electronic Control Unit

EMF Eclipse Modeling Framework

EMOF Essential MOF

FT Fault Tolerance

GMP Group Membership Protocol

GraphSeq Graph matching tool for Sequences of configurations

GRM General Resource Model

HA High Availability, Highly Available

HV Head Vehicle

JAXB Java API for XML Binding

LSC Live Sequence Charts

MARTE
UML Profile for Modeling and Analysis of Real-time and

Embedded systems

MDA Model Driven Architecture

MDD Model Driven Development

MOF Meta Object Facility

MSC Message Sequence Charts

MSD Modal Sequence Diagrams

Page 10 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

OCL Object Constraint Language

OEM Original Equipment Manufacturers

OMG Object Management Group

PA Performance Analysis

PDSS Platoon Driver Support System

PIM Platform Independent Model

PSM Platform Specific Model

QoS Quality of Service(s)

RAS Reusable Asset Management

RPC Remote Procedure Call

RSA Rational Software Architect

RT Real Time

SA Service Availability (see SAF)

SAF Service Availability Forum, SA Forum™

SD Sequence Diagrams

SI Service Interface

SPT Profile for Schedulability, Performance and Time

SU Service Unit

SUT System Under Test

SV Slave Vehicle

SysML System Modeling Language

TERMOS TEst Requirement language for MObile Setting

TTFD Timely Timing Failure Detection

UML Unified Modeling Language

V&V Verification and Validation

XMI XML Metadata Interchange

XML Extensible Markup Language

Page 11 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

1 Executive Summary and Introduction

The current deliverable summarizes the results of the HIDENETS project related to extending the

state of the art software engineering methods and tools in order to cope with the specific

requirements of highly dependable mobile system design. This work was carried out in two

cooperating tasks: (1) “UML design patterns and workflow” developing a UML based design

methodology for mobile applications and (2) “Testing methodology and framework” developing

methodologies to support the testing of resilient mobile applications and services. After this short

common introduction of the whole work, Section 2 and 3 report on the results of the two tasks and

Section 4 concludes the deliverable.

The HIDENETS project has focused on the challenges of offering highly dependable services over

(and for) an inherently unreliable – ad-hoc, mobile, IP-based – network of components. Other work

packages aimed at providing solutions for a resilient architecture, middleware and communication

and for the quantitative evaluation of these solutions, while our work targeted the special needs of

the design (development and testing) of applications running on the HIDENETS architecture in this

specific environment.

Following the actual state of the art, both of our application development framework and testing

framework are based on model driven methods. Both of them have defined their special extensions

of the standard Unified Modeling Language (UML) to support modelling of application systems and

worked on different models of the system.

The modelling languages have to be different because the aim of building application models differs

in the two frameworks. Modelling always means abstracting, i.e. focusing only on the relevant

aspects of the modelled entity. The relevant aspects are different when the goal of modelling is

application development or testing. When developing applications the focus is more on what a

single node perceives from the whole system, while testing focuses on a more global view. For

example, mobile nodes outside of the reachability of a given node cannot be present in the

application development oriented model of the given node, while they may play an import role in a

testing oriented one. Then again, both modelling languages are based on the same basis (UML and

the extending OMG standards), therefore they do not conflict anyway, they can be combined

whenever it is required, and they can be supported by the same modelling tools.

Both tasks started with a study of the existing solutions, continued with identifying the open

research points, elaborating new methods and then building prototype tools for the new methods.

The main results of the reported work are:

 A model based development approach for HIDENETS applications, its supporting tool-

chain and design patterns, and a conceptual model of HIDENETS-related features (Section

2.2)

 A formal model of the interfaces of HIDENETS middleware services in the ad-hoc and

infrastructure domain (Section 2.3)

 Support for the application design activities: a domain specific editor and source code and

configuration generators (Section 2.4)

 A scenario language for specifying test requirements of mobile systems (Section 3.2)

 A graph matching tool to support the evaluation of test traces with respect to the defined test

requirements (Section 3.3)

Page 12 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

2 Design Framework

Two complementary main activities could be distinguished in the tasks of the HIDENETS project

that are related to extending the state of the art software engineering methods and tools in order to

cope with the specific requirements of highly dependable mobile system design. The first one is

aimed at the development of a UML based design methodology. While other project tasks aim at

the improvement of the services of the HIDENETS middleware, this one focuses on the

development of applications using this middleware, that is, on the effective and efficient utilization

of the other project results. When speaking about application development we consider applications

that take advantage of those services rather than implementing mobility and dependability related

features for themselves.

This section summarizes the project achievements in the field of application development: First we

describe what could be utilized from the existing design methodologies and standards, and what

middleware concepts and solutions are provided by the other tasks of the project (a short and high-

level description of the HIDENETS middleware architecture), see Section 2.1. Then based on them

we outline our modelling approach, the heart of our model based application design framework in

Section 2.2. As the HIDENETS applications have to rely on the HIDENETS middleware services,

our application design framework has to incorporate a model of the concepts of that middleware.

The third subsection (Section 2.3) documents this HIDENETS metamodel. In Subsection 2.4 we

introduce our results for providing support for the application designers such as specific editors for

modelling and specific automatic generators for utilizing the well-known automation potential of

model based design methodologies in implementing and deploying HIDENETS applications. For an

overview how we have proved the applicability of our approach by completing a prototype

application development project, see Section 2.5. Preliminary versions of this framework were

reported in the HIDENETS project deliverable [D5.1] and in the book chapter [ADS].

When a (group of) application designer(s) decides to build a distributed application for a run-time

environment that is corresponding to the one targeted by the HIDENETS concept (highly

dependable IP-based networks and services), he may choose our application development approach:

 We support building application designs with a specific UML model based language that

includes model element types for HIDENETS specific concepts. The domain specific editor

is a tool to ease the work with this special modelling language.

 HIDENETS design patterns are reusable solutions to commonly occurring problems in the

application design in HIDENETS environment. Most of these patterns are related to the

application of the different HIDENETS middleware services.

 When the application design is already documented in details, there are some standard steps

that can be easily automated. Code generators and configuration generators take charge of

some non-creative tasks of translating the models into code fragments or configuration

descriptors. The manual execution of these tasks is usually highly inefficient and error

prone, but it can only be avoided if there is tool support for the given run-time environment.

That is why HIDENETS prefers standard solutions wherever it is possible.

2.1 Goal of the Framework

The goal of our application design framework is to provide support for the application developer

who has to efficiently design highly dependable distributed applications running on several nodes

both in the ad-hoc and infrastructure domains, where the nodes are connected by inherently

Page 13 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

unreliable IP-based networks. We started our work by studying the standard design methodologies,

the application domain specific standards and specifications, and the HIDENETS middleware

architecture that the applications have to rely on.

2.1.1 Design Methodologies

From the very beginning we aimed at technical solutions where “Resilience and availability of

services deployed either in an ad-hoc domain or on dedicated servers in the Internet, have to be

taken into account on a system design level, since the components are inherently unreliable.”(from

“HIDENETS – Description of Work” [HDoW])

We have worked on a design methodology that can reach this goal. We have chosen a modelling

based approach since modern design methodologies fit under the model-driven architecture (MDA)

[MDA] initiative in which applications are primarily designed and specified by their (semi-)formal

model. MDA and UML have been the glue to interlock our efforts in supporting both the

application development and testing.

Other modern design methodologies are based on a software architecture centric view [SAC]. This

approach is well known for primarily focusing on the quality attributes of the target system and

effectively supporting the development in dominantly distributed scenarios. However, the main

drawback is the omission of the finer grade design of the system components, wherefore we decided

rather for a model driven approach.

2.1.2 Standards and Specifications

In order to facilitate re-use of previously published field expertise, conformance to the existing

standards was a main objective of our project. Thus emphasis was put on the integration of our

work to corresponding widely known and industrially accepted conceptual frameworks such as

 Unified Modeling Language (UML) 2.0 [UMLsup, UMLinf] as a general purpose

modelling language, for serving as basis notation for several specialized modelling

languages

 Reusable Asset Specifications (RAS) [RAS] for supporting reusability through consistent,

standard structuring and packaging

 Systems Modeling Language (SysML) [SysML] as the industry standard for modelling

complex software-intensive systems, widely applied for modelling in systems engineering

 Automotive Open System Architecture (AUTOSAR) [AUTOSAR] as standardized

automotive software architecture for modelling automotive industry specific artifacts

 OMG‟s UML Profile for Schedulability, Performance and Time (SPT) [SPT] and its (to be

accepted) successor OMG‟s UML Profile for Modeling and Analysis of Real-time and

Embedded systems (MARTE) [MARTE] for modelling application–platform interaction

 OMG‟s UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics

(2006) (QoS and FT Profile) [QoSFT] for deriving QoS related concepts

 SAForum‟s Application Interface Specification (AIS) [AIS] integrating the most important

means for HA assurance

into a unifying framework.

A primary objective in our work was the clarification of the relation between the HIDENETS

specific model-driven design and implementation approach and the standards in the field. The main

Page 14 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

policy was to assure compliance to the major standards as far as possible in order to support the

future reuse of development technologies in the mainstream of embedded applications. In this

context, SysML was taken into account as one of the evolving standards. An important domain-

specific standard package related to the target pilot field of application (automotive) is AUTOSAR

where the applicability of the AUTOSAR concepts in the HIDENETS project has already been

analyzed, but future compliance checks are needed as this package still undergoes rapid evaluations.

Our project focuses on the vehicle-to-vehicle or vehicle-to-roadside communication, while

AUTOSAR actually concentrates only on intra-vehicle (mainly E/E and control) systems, while

promising more in the software domain for the future. By the AUTOSAR currently covered intra-

vehicle components are usually hidden from the HIDENETS application developers, in this aspect

they only serve the implementation of the execution platform.

These last standards in the above list were used to derive general dependability and time concepts,

e.g. they clearly appear in the data type definitions of our HIDENETS specific profiles.

Fundamental time-related concepts are similar in SPT and MARTE. Our data types actually are

derived from the already accepted SPT standard, but they can be easily fitted to the new profile

once MARTE will be officially released. The middleware service interfaces offered to the

applications are aligned wherever possible with SA Forum interfaces (e.g. AIS). Because of the

significant functional differences between the relevant services in the ad-hoc and infrastructure

domain, it was dominantly possible in case of the services in the latter one. One of the lessons

learned in this project is that the integration to well-known standards is possible, even if working in

a very specific field like the one of HIDENETS, and that it enables efficient knowledge re-use.

In this deliverable we only give a short introduction of two of the studied standards and

specifications, for more details please read the HIDENETS deliverable D5.1. For the sake of

shortness Appendix A only discusses the two most important standards: OMG‟s UML and the SA

Forum interface specifications, because a basic knowledge of them is required in the further

sections.

The application of the standard UML profiles is not at all specific to the HIDENETS project. We

only elaborated special solutions for modelling HIDENETS specific aspects where there are no

standard ones; otherwise we prefer the application of existing standards. This way we have only

defined UML profiles which target aspects of the system under development that are orthogonal to

the aspects covered by the here introduced standards. We have designed our profiles to avoid any

conflicts with the existing standards. Therefore they can be simultaneously applied in a single

model without any modification.

2.1.3 HIDENETS Architecture

One of the main objectives of the HIDENETS project is “to define a resilient architecture and to

develop a range of middleware solutions (i.e. algorithms, protocols, services) for resilience to be

applied in the design of highly available, reliable, and trustworthy networking solutions” (from the

original project proposal). Other project deliverables (e.g. [D2.2] and [D2.3]) describe this

architecture in details. The HIDENETS architecture defines communication and middleware

services and provides them for the applications through programming interfaces. The application

developer has to study the provided functionalities and interfaces to be able to develop applications

on top of this HIDENETS middleware. Sections 2.3.2 and 2.3.3 describe the interface and usage of

some of these services (defined for nodes operating in the ad-hoc and infrastructure domains,

respectively) in more details.

Page 15 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

The architecture consists of the following services for direct access of the application components

running on the nodes in the ad-hoc domain (other oracle and communication services have not to be

used by the applications directly, therefore they are omitted here):

 Diagnostic and Reconfiguration Manager

 QoS Coverage Manager

 Replication Manager

 Proximity Map

 Cooperative Data Backup

 Intrusion-Tolerant Agreement

However, not all of them are directly accessible from the application layer.

Because of the differences in the requirements a different approach was taken for the server nodes

in the infrastructure domain. Since there are standard solutions that can satisfy the requirements of a

HIDENETS node in this domain, we suggest that a SA Forum compliant middleware will be used

there (this standard was shortly introduced in Section 2.1.2, for a more detailed description see

Appendix A).

In the following, we suppose that the applications have to run on HIDENETS nodes and therefore

they can rely on the services provided by the HIDENETS architecture.

2.2 Overview of the Modelling Activities

This section presents an overview on the modelling activities carried out in the HIDENETS project

focusing on the refined design framework. The section is built up of three subsections: (i) first we

outline the application of MDA principles in the organization of the work (Section 2.2.1) then (ii)

identify the key tasks to be carried out for achieving our goals (Section 2.2.2), and finally (iii)

briefly summarize the key features of the tool-chain developed by us for supporting model-driven

development in HIDENETS (Section 2.2.3).

2.2.1 Model Driven Architecture in the Context of the HIDENETS project

This subsection outlines the application of MDA principles in the organization of modelling

activities carried out in the framework of the HIDENETS project.

OMG's Model Driven Architecture (MDA) initiative aims at organizing the process of model

transformations and code synthesis into a well-structured framework. MDA considers two

abstraction levels: (i) the level of meta-models (i.e., meta-models of modelling or programming

languages) and (ii) the level of actual models (i.e., software models or source code). For the two

abstraction levels there are three key steps of the process: (i) platform independent modelling, (ii)

platform specific modelling and (iii) implementation.

 In the platform independent modelling (PIM) step engineers prepare an early model of the

system without taking into consideration the restrictions and benefits of the target platforms

(possibly chosen in the future). This step allows the modellers to focus only on the actual

task, re-use design patterns without being heavily influenced by platform specific features.

Platform independent models are usually constructed in the pure UML language without any

platform-specific extensions.

Page 16 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 During the platform specific modelling (PSM) step the PIM model is mapped to the

resources available on the actual target platform. PSM models are also prepared in UML

but with the application of a target specific modelling profile. UML profiles provide further

specialization of UML's built-in general concepts (e.g., device) according to the needs of the

target platform (e.g., the control domain may need to distinguish devices as sensors and

actuators).

 MDA's final step is implementation that according to the OMG's proposal should be carried

out by automatic code synthesis as much as possible. This automatic code synthesis step

transforms the PSM model to source code of the application. Although currently available

code synthesis solutions are still unable to fully eliminate the need for manual programming,

they have already been reported as beneficial solutions for significantly increasing

productivity and software quality.

Our modelling work in the context of the HIDENETS project was inspired and organized according

to the MDA initiative. Below we briefly highlight the MDA-related aspects of our work.

As outlined above the preparation of an application‟s platform independent model (PIM) does not

need much customization of the UML base language thus we expect application developers

preparing software for the HIDENETS platform to use UML as-is, in the PIM phase.

Our solutions enter the picture at the platform specific modelling (PSM) step: application

developers should be empowered with such HIDENETS-specific modelling artefacts that represent

the resources that are available for applications running on either the infrastructure or the ad-hoc

part of the HIDENETS platform. These language extensions are obviously prepared as UML

profiles (see Section 2.3.2 and 2.3.3 for an introduction to these profiles and the corresponding

metamodels).

With respect to the implementation step we provide (i) automatic source code generators that are

able to synthesize some key infrastructure-related parts of applications and (ii) configuration file

generators for the automatic construction of configuration descriptors for SA Forum/AIS

middleware implementations (see Section 2.2.3 for an overview of the tool-chain and Section 2.4

for further details on individual utilities).

2.2.2 Key Phases of Modelling Activities

According to the MDA organization outlined above we have to enable software modellers to

indicate HIDENETS-specific features in the PSM step. Below we indicate those steps that are

needed for constructing the HIDENETS profile for UML, providing a domain specific editor as

design support tool and communicating best practices in the form of design patterns.

In practice this means that for each group of HIDENETS-related application features we have to (i)

establish a conceptual model, (ii) construct a UML profile according to the conceptual model, (iii)

present some application examples of the profile in order to support its easy understanding and

widespread application, finally (iv) we have to provide design patterns to enable re-use of best

practices and successful software organization recipes:

 Constructing a conceptual model of a HIDENETS-related feature (e.g., replication of critical

components on the infrastructure side) actually means the collection of key concepts (e.g.,

service groups, service units, components, checkpoints, replication schemes, etc.) and

indicating their association relations (e.g., a service group contains the description of the

replication scheme) and packaging hierarchy (e.g., a service group as a package contains

any number of service units etc.). We present conceptual models as ordinary UML class

diagrams where key concepts appear as classes and their relations as associations,

Page 17 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

inheritance, packaging etc. At this point we are only aiming at the understanding of these

features without actually connecting these concepts to built-in UML artefacts.

 Having constructed the conceptual model and unambiguously discussed the meaning of

features appearing there, we are ready to connect them to built-in UML artefacts. This step

is necessary for profile construction since we have to indicate the relation of newly

introduced (HIDENETS-related) concepts to original UML artefacts. In this step

o The classes identified in the conceptual modelling step will be represented by newly

introduced metaclasses. For example, components whose state can be saved into a

checkpoint are to be represented by a new metaclass Replicable Component that is

derived from the built-in UML Component metaclass.

o Associations will be represented by instances of the built-in UML Association (or

Association Class) metaclass. For example, if service groups are represented by the

metaclass Service Group and replication schemes are represented by the metaclass

Replication Scheme, indicating the containment relation between service groups and

replication schemes is possible through an Association metaclass instance connecting

the two artefacts through Property features. (The metaclass Service Group is derived

from the built-in UML Component metaclass, and the metaclass Replication Scheme

is derived from the built-in UML Class metaclass)

o and packaging hierarchy can be indicated similarly.

The metamodel extension built this way provides the foundations of the corresponding

UML profile for HIDENETS-related applications, since we only have to

o assign stereotypes to newly introduced metaclasses,

o define some necessary tagged values and

o save the profile in a format suitable for the actual modelling environment

(see Sec. 2.3.1 for further details on meta-modelling, profiles etc.).

 Even a well-documented profile‟s application requires some understanding of the target

platform and considerable expertise in software modelling. In order to achieve the hoped-

for wide acceptance of the HIDENETS profile we should present some modelling examples

showing the application of the profile in practice. Examples are presented in this document

as HIDENETS-related fragments of software models shown in static structure diagrams

(class, package, component, etc. diagrams) where HIDENETS-related artefacts are indicated

by the stereotypes introduced in the previous step.

 Finally in case of some complex or even error-prone HIDENETS-related features it may be

beneficial to indicate the best practices of application organization. This knowledge is

delivered by the document as a set of design patterns that are collections of various model

fragments involving both static structure and dynamic diagrams (e.g., class, package,

component, statechart, interaction diagrams, etc.).

We will follow this four-step organization (conceptual modelling, metamodelling and profile

construction, application examples and design patterns) for presenting the modelling activities in

Section 2.3.

Page 18 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

2.2.3 An Overview on the Tool-Chain

Having organized our modelling and implementation efforts according to the MDA initiative there

is a straightforward way for the implementation of our design/modelling support tools into a

coherent tool chain whose components focus on the modelling, implementation and deployment

steps of application development (see Figure 1):

UML Model with HIDENETS-
Related Features

Core UML
Model

Extra Information added
through the UML Profile

for HIDENETS
Core UML

Model

Platform Independent

Models
Platform-Specific Models

Automatic
Code

Generation

Automatic
Configuration
Generation

Implementation
Source Code

Frames

Configuration and
Deployment
Descriptors

Implementation

Figure 1: Key Elements of the Tool-Chain

 Modelling HIDENETS-related features of application is obviously based on the application

of the UML profile for HIDENETS as outlined above. Although a model stereotyped

according to the HIDENETS profile carries all the information needed for automatic

processing, users may find beneficial a slightly easier to remember notation than pure

stereotypes and tagged values. In order to achieve this, our profile is extended with a user-

friendly visual notation (i.e., special icons assigned to HIDENETS-specific features). We

call this extended profile the Domain Specific Editor (DSE) for the HIDENETS platform.

The DSE is implemented as an extended profile to be used in the IBM Rational Software

Architect modelling environment (for more information on the modelling environment, see

[RSA]). Note that the DSE does not add conceptually new features to the concepts

introduced above: The model saved by the DSE is an ordinary UML model stereotyped

according to the HIDENETS profile. The key contribution of the DSE is to present this

model in a more user-friendly way that would be done barely using a modelling tool and the

plain profile. See Sec. 2.4.1 for further details about the DSE.

 The implementation of some key infrastructure-related features is based on the Service

Availability Forum‟s (SA Forum) middleware (see App. A). Since application development

for the SA Forum middleware enforces a specific application organization it is beneficial to

support the programmers by automatically synthesizing the necessary code structure on the

basis of the application model (obviously annotated according to the HIDENETS profile).

Sec. 2.4.2 presents an overview on our automatic code generator that is capable of

processing an application model and synthesizing the necessary code frames (i.e.,

declarations of methods, data structures, etc.) similarly to usual code wizards found in

modern integrated development environments.

 Another key task related to the SA Forum-based infrastructure implementation is the actual

deployment of application components to the distributed fault-tolerant computing resource

structure. The configuration of this middleware is by far not trivial and necessitates

considerable expertise in the field. Our configuration file synthesis solution discussed in

Sec. 2.4.2 aims at substituting this labour intensive and error-prone task by automatically

Page 19 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

generating configuration and deployment descriptors based on the application‟s model

(obviously annotated according to the HIDENETS profile).

To put together: our achievements are not only logically organized according to the MDA initiative

but their actual implementation also reflects this approach. Due to using UML, a standard modelling

language with a clearly defined profile, tool providers are free to develop further components for

the tool chain.

2.3 Modelling HIDENETS Related Application Features

After a short introduction to metamodelling and profile construction this section presents the

discussion of HIDENETS-related application modelling artefacts according to the four-step

organization scheme introduced above (i.e., conceptual modelling, metamodelling and profile

construction, application examples and design patterns).

2.3.1 Introduction on Metamodelling and Profile Construction

UML is a complex modelling language providing support for various modelling activities from

early specification phases until the planning of software deployment. Due to its wide application

area, the UML metamodel is built up of several hundred metaclasses resulting in a very complex

structure whose modification and extension requires a considerable expertise in metamodelling. In

order to enable the easy and straightforward extension of UML, the concept of profiles was

introduced into the language. A UML profile is a lightweight extension of the language i.e., profiles

are targeted for adding extra platform-specific features to the language without inherently changing

the structure of built-in metaclasses.

A profile may specify new metaclasses that are derived from built-in concepts. Since new

metaclasses are derived from already existing ones, the visualization of new artefacts in a modelling

environment does not need much effort either: when having to add a specialized element into the

model, the user has to insert the original (built-in) element and indicate that in this case she/he is not

referring to the plain built-in concept but some other metaclass derived from it. This indication of

instances of newly introduced metaclasses is carried out by applying a stereotype to the metaclass

instance in concern. Stereotypes are textual strings within guillemots (e.g., <<stereotype>>).

Theoretically there is no one-to-one correspondence between newly introduced metaclasses and

stereotypes, but it is a good practice to introduce one stereotype for each new metaclass and use the

same name for them (e.g., Sensor metaclass and <<sensor>> stereotype). The modelling

environment may enable the user to assign icons to stereotypes that may even replace the built-in

graphical symbol of the original metaclass.

As newly introduced metaclasses may have attributes, the modeller has to be able to assign values

to these attributes; this value assignment is carried out by tagged values. A tagged value

specification is a key-value pair whose key is the name of the attribute. Modelling environments

typically enable the user to specify these value assignments in a tabular format or a property view.

Profiles are extensively used for adapting UML to a platform-specific modelling task e.g., an

embedded system engineer may need to explicitly indicate sensor and actuator devices in a

deployment diagram but UML does not provide built-in concepts for this. Thus a UML profile for

embedded systems may introduce two new metaclasses: Sensor and Actuator from the built-in

Device metaclass and introduce the corresponding stereotypes <<sensor>> and <<actuator>>

possibly with easy to recognize icons assigned to them. It may be important to indicate the latency

of a sensor thus the Sensor metaclass can have an attribute latency and the modeller can specify the

latency of sensors in the model by a tagged value.

Page 20 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

2.3.2 Ad-hoc Domain

This sub-section discusses our modelling activities corresponding to HIDENETS-related

application features focusing on the ad-hoc domain by presenting the conceptual model,

metamodelling and profile construction, application example and design patterns. For easiest

understanding we chose here the cooperative backup and timely timing failure detection services as

examples, which are quite easy to understand for non HIDENETS experts. Conceptual model,

metamodel and design patterns were also developed for the remaining services and can be found in

the corresponding detailed UML model (see the prototype part of this deliverable).

2.3.2.1 Cooperative Backup

Conceptual Model

The conceptual model of an application‟s view about the cooperative backup feature involves two

key classes: (i) the CB_Client client (i.e., the actual application using the cooperative backup

feature) and (ii) the CB_Storage storage (i.e., the reliable storage facility where backup data is

saved to).

The class diagram in Figure 2 shows the key idea behind the conceptual model. Clients of a

cooperative backup scenario are ordinary classes (components, etc.) that access the storage in a

relatively raw form, i.e., the storage is seen as a stream that can accept a sequence of bytes. The

data stored previously can be retrieved from the storage again as a byte sequence.

Figure 2 : Conceptual Model of Cooperative Backup Activities

Metamodelling and Profile Construction

Having outlined the idea in the quite informal class diagram above, we have to assign metaclasses

to the concepts introduced above and derive these new metaclasses from built-in UML artefacts.

The newly introduced metaclasses and their relations to core UML features are shown in Figure 3.

Storage and client are represented by metaclasses CBStorage and CBClient respectively; both

derived from the UML Class metaclass.

There are two new operation kinds (derived from the UML Operation metaclass)

CBStoreOperation and CBRetrieveOperation corresponding to storing and retrieving backup data

in/from the storage respectively. These operations belong to the storage (metaclass CBStorage).

Storage and clients are connected through a specialized association CBAssociation (derived from

the UML built-in Association metaclass). As associations connect classes through properties, we

also introduced metaclasses CBClientProperty and CBStorageProperty derived from the UML

Page 21 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

built-in Property metaclass and representing the client from the point of view of the storage and

vice versa respectively.

Figure 3 : Metamodelling and Profile Construction for Cooperative Backup Activities

The brief description of newly introduced metaclasses is as follows:

 CBRetrieveOperation: An operation provided by the storage facility in a cooperative backup

scenario used for retrieving previously saved data.

 CBStoreOperation: An operation provided by the storage facility in a cooperative backup

scenario used for saving data.

 CBStorage: Cooperative backup storage. Instances of this metaclass represent stable storage

facilities used for cooperative backup. The actual implementation of the storage may be

application field specific e.g., flash memory, disk space etc.

Page 22 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 CBClientProperty: A property owned by a cooperative backup storage indicating the

client(s) associated to the storage.

 CBAssociation: Cooperative backup association. Instances of this association metaclass

indicate relations between client and storage facilities in a cooperative backup scenario.

 CBStorageProperty: A property owned by a cooperative backup client indicating the

storage(s) associated to the client.

 CBClient: Cooperative backup client class. Instances of this metaclass take part in a

coopertive backup scenario, i.e., their state can be saved into a stable store.

The newly introduced metaclasses are directly mapped to stereotypes in the HIDENETS profile (the

name of the stereotype exactly equals to the name of the corresponding metaclass):

 CBRetrieveOperation: Applicable to operations of classes that represent storage facilities.

Semantics of the stereotype: this operation can be used for retrieving data previously saved

into the storage facility.

 CBStoreOperation: Applicable to operations of classes that represent storage facilities.

Semantics of the stereotype: this operation can be used for storing data in the reliable

storage.

 CBStorage: Applicable to classes. Semantics of the stereotype: this class is a cooperative

backup storage facility providing operations for storing and retrieving data.

 CBClientProperty: Applicable to properties (association roles). Semantics of the stereotype:

this end of the association is a client class.

 CBAssociation: Applicable to associations. Semantics of the stereotype: this association

connects storage facilities and clients.

 CBStorageProperty: Applicable to properties (association roles). Semantics of the

stereotype: this end of the association is a cooperative storage facility.

 CBClient: Applicable to classes. Semantics of the stereotype: this class is a client of a

cooperative backup storage facility.

Application Example

Figure 4 presents an example for the application of the profile fragment introduced above in the

following case:

 There is a critical component in the application called SomeCriticalComponent.

 The component needs to be able to quickly restore its previously saved state even in case of

a hardware failure thus its state is periodically saved into a stable storage.

 The storage is implemented using hard disks, the storage facility is represented by the class

SomeDiskStorage that provides two operations saveToDisk and loadFromDisk for storing

and retrieving data respectively.

It is easy to see that the client class (SomeCriticalComponent) is stereotyped as CBClient while the

storage facility (SomeDiskStorage) is stereotyped as CBStorage. The association between them is

stereotyped CBAssociation whose ends are stereotyped as CBClientProperty and

CBStorageProperty respectively. Store and retrieve operations saveToDisk and loadFromDisk are

stereotyped as CBStoreOperation and CBRetrieveOperation respectively.

Page 23 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 4 : Application Example for Cooperative Backup Activities

Design Pattern

The actual application of the cooperative backup facility is quite straightforward, thus the

corresponding design pattern can be discussed in some easy to understand diagrams as shown

below.

The design pattern can be textually formalized as follows: “If some classes need cooperative backup

facility, then (i) indicate this requirement by the CBClient stereotype, (ii) indicate storage facilities

by the CBStorage stereotype, (iii) highlight the relation of clients and storage facilities by adding

the CBAssociation stereotype to their association, (iv) indicate store and retrieve operations within

the storage facility by stereotypes CBStoreOperation and CBRetrieveOperation respectively and (v)

periodically store the state of the critical component and restore it if necessary as shown in sequence

diagrams.” (Figure 5).

Figure 5 : Design Pattern for Cooperative Backup Activities (Class Diagram)

Page 24 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 6 : Design Pattern for Cooperative Backup Activities (Storing Internal State)

Figure 7 : Design Pattern for Cooperative Backup Activities (Retrieving Internal State)

Page 25 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

As shown in Figure 6 the client class should periodically call the storage operation store and upon a

crash or a restart the previously saved state should be restored by calling the retrieve operation as

shown in Figure 7.

2.3.2.2 Timing Failure Detection

Conceptual Model

The conceptual model of an application‟s view about the timing failure detection feature involves

five key classes: (i) a real-time service provider (CM_RealTimeServiceProvider) and (ii) its client

(CM_RealTimeServiceClient), (iii) a real-time service offered by the provider

(CM_RealTimeService), (iv) a timing failure notification operation in the client

(CM_TimingFailureNotificationOperation) and (v) the real-time service agreement between the

provider and the client (CM_RealTimeServiceAgreement) (Figure 8).

Figure 8 : Conceptual Model of Timing Failure Detection

Metamodelling and Profile Construction

Having outlined the idea of timing failure detection, we have to assign metaclasses to the concepts

introduced above and derive these new metaclasses from built-in UML artefacts. The newly

introduced metaclasses and their relations to core UML features are shown in Figure 9.

Real time service providers are represented by the RealTimeServiceProvider metaclass; its clients

are represented by the RealTimeServiceClient metaclass, both derived from the built-in UML Class

concept. The actual real-time service is represented by instances of the RealTimeService metaclass,

the timing failure notification operation is mapped to the TimingFailureNotificationOperation

metaclass both derived from the core UML Operation concept. As the agreement between the real-

time service provider and the client is a kind of association with some properties attached the

RealTimeServiceAgreement metaclass is derived from the UML AssociationClass concept. As

shown in the figure the original organization of built-in metaclasses enables the seamless expression

of the containment relations between our newly introduced metaclasses, e.g., since Operation is

Page 26 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

contained by Class (through the ownedOperation role) we do not have to introduce new

associations between our metaclasses.

Figure 9 : Metamodelling and Profile Construction for Timing Failure Detection

The brief description of newly introduced metaclasses is as follows:

 RealTimeService: This metaclass represents a real-time service.

 RealTimeServiceProvider: This metaclass represents a provider of a real-time service.

 RealTimeServiceAgreement: This metaclass represents an agreement between a provider and

a client of real-time services.

Page 27 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 RealTimeServiceClient: This metaclass represents the client of a real-time service.

 TimingFailureNotificationOperation: This metaclass represents a method of a client of a

real-time service; this method is to be invoked upon the violation of the real-time service

agreement enabling the client to take countermeasures.

The newly introduced metaclasses are directly mapped to stereotypes in the HIDENETS profile (the

name of the stereotype exactly equals to the name of the corresponding metaclass):

 RealTimeService: Applicable to operations of classes that represent real-time service

providers. Semantics of the stereotype: this operation delivers a real-time service.

 RealTimeServiceProvider: Applicable to classes. Semantics of this stereotype: this class

represents a provider of a real-time service.

 RealTimeServiceAgreement: Applicable to association classes. Semantics of this stereotype:

this association represents the agreement between a real-time service provider and its client;

attributes of the association class correspond to details of the agreement.

 RealTimeServiceClient: Applicable to classes. Semantics of this stereotype: this class

represents the client of a real-time service.

 TimingFailureNotificationOperation: Applicable to operations of classes that represent

clients of a real-time service. Semantics of the stereotype: this operation is to be invoked

upon the violation of the real-time service agreement.

Application Example

Figure 10 presents an example for the application of the profile fragment introduced above in the

following case:

Figure 10 : Application Example for Timing Failure Detection

Page 28 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 There is a real-time service provider in the system called MyRealTimeServiceProvider. The

service delivered by it is called callMe.

 In our case the real-time service provider has a single client called MyClientClass.

 The agreement between MyRealTimeServiceProvider and MyClientClass is represented by

MyRealtimeServiceAgreement. This agreement specifies a single real-time requirement, the

maximal latency (actually an integer number).

 Upon violation of the real-time service the client would like to be notified through its

timingFailureNotifier method.

It is easy to see that MyRealTimeServiceProvider, MyClientClass and MyRealtimeService-

Agreement are to be stereotyped as RealTimeServiceProvider, RealTimeServiceClient and

RealTimeServiceAgreement respectively. The callMe function is the actual real-time service thus it

is stereotyped as RealTimeService, while timingFailureNotifier is to be marked as

TimingFailureNotificationOperation. Finally the MyRealtimeServiceAgreement association class

representing the real-time agreement is obviously stereotyped as RealTimeServiceAgreement.

Design Pattern

The detailed explanation of the timing failure detection service‟s intended usage is shown in Figure

11 and Figure 12.

Figure 11 : Design Pattern for Timing Failure Detection (Class Diagram)

Page 29 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

The static part of the design pattern (shown in the class diagram of Figure 11) can be textually

explained as follows: “If you have a class providing some real-time service and a client depending

on this service then (i) indicate the server and client classes with the corresponding stereotypes, (ii)

indicate the real-time operation in the server and the timing failure notification operation in the

client with the corresponding stereotypes, (iii) indicate the agreement between them in a real-time

service agreement association class with the corresponding stereotype and (iv) obtain a HIDENETS

timely timing failure detection service implementation and indicate the client's dependency on this

feature.”

Figure 12 : Design Pattern for Timing Failure Detection (Sequence Diagram)

With respect to the dynamic part shown in Figure 12 we can say that: “(i) Before calling a real-time

service initiate a detection activity, (ii) then call the service. If (iii) the server delivers the response

within the agreed interval shut down the detection activity, (iv) otherwise the client class will be

informed about the time-out event by the HIDENETS timing failure detection service.”

2.3.3 Infrastructure Domain

Unlike in the ad-hoc domain, there are well established frameworks for providing highly available

services in the infrastructure domain. For the HIDENETS architecture the Service Availability

Forum‟s (SA Forum) Application Interface Specification (AIS) was selected as the basis which was

modelled and integrated with the services in the ad-hoc domain. This document does not aim to

give a thorough description of the AIS services but focuses on the modelling framework that was

developed in HIDENETS for those.

This sub-section discusses our modelling activities corresponding to HIDENETS-related

application features focusing on the infrastructure domain by presenting the conceptual model,

metamodelling and profile construction, application example and structural design templates for the

Availability Management Framework and the Checkpoint service.

Page 30 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

2.3.3.1 The Availability Management Framework (AMF)

In an AIS specifications-based system the Availability Management Framework is the entity that

coordinates and monitors the services and resources in order to minimize service outages and

provide fault tolerance.

Conceptual Model

In Figure 13 the simplified conceptual model of AMF is depicted. We have built this conceptual

model to have a basis for our application development methodology for applications with some of

their components in the infrastructure domain, as well. The model is simplified because the AMF

conceptual model is more granular, but it basically extends the model described here. (The detailed

conceptual model can be found in the prototype attached to this deliverable.) The base of the model

is the application (represented by the Application class). The application comprises the services it

provides and the various service providers that actually provide the service.

The applications are in fact designed to provide different types of services. Thus the Application

contains several ServiceTypes. These ServiceTypes describe what attributes the services have and

define the default value of configuration attributes that are set by the designer in the system

configuration. The Services are always instances of specific ServiceTypes. These services are under

the supervision of AMF which is responsible for monitoring their health status and controlling the

system to maximize their availability.

Lastly, the Services are assigned to RedundantServiceProviders, which are also under the control of

AMF. A service provider can take either the active or the standby role on behalf of a service, and

depending on its capabilities, it can take more than one assignment at a time.

The application itself is provided by a Cluster which is built up from ClusterNodes and the cluster

nodes host the RedundantServiceProviders. AMF is aware of the cluster and the different cluster

nodes but it has no control over those. The cluster management is the responsibility of the Cluster

Membership service and AMF can only do administrative operations like locking and restarting on

existing nodes but it is not able to add or remove nodes.

Figure 13 : Simplified Conceptual Architecture of AMF

The described model is the basis of the AMF conceptual model shown in Figure 14. The mapping

of the different concepts is the following:

 Application is represented by SaAmfApplication,

 Service is represented by SaAmfSI (Service Instance,)

 RedundantServiceProvider is represented by SaAmfSU (Service Unit,)

Page 31 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 ServiceType is represented by SaAmfServiceType; however, it is not visualized in the figure,

 Cluster is represented by SaAmfCluster,

 ClusterNode is represented by SaAmfNode.

Figure 14 : AMF Conceptual Model

In addition to the simplified model, there are extensions to enable more granule management and

representation of the system. These refinements are the following:

 SaAmfSU aggregates SaAmfComps. This refinement aims to enable the creation of simple

components that provide basic services, and the complex services are constituted of these

basic ones. Correspondingly, the SaAmfSI aggregates SaAmfCSIs (Component Service

Instance), which represent the basic workload that are assigned to components.

 There can be any number of SaAmfHealthchecks assigned to the SaAmfComponent. The

AMF uses these health checks to monitor the health state of the component.

 The SaAmfSG (Service Group) is the redundancy manager of SaAmfSUs and it is what

protects/responsible for provision of SaAmfSIs. The redundancy management is done

according to the policy defined as the redundancy model.

Further extensions provide ability to represent and configure assignments between different entities:

 SaAmfApplicationAssignment is used to configure the relationship between the cluster and

the application.

 SaAmfSUHostAssignment is used to represent the hosting relationship between the cluster

node and the service unit.

 SaAmfSIProtectionAssignment is used to represent the protection relationship between the

service group and the service instance.

 SaAmfSIAssignment is used to represent the assignment relationship between the service unit

and the service instance.

 SaAmfSIRankedSU is used to represent the preference relationship between the service

instance and the service units. If a service instance is more preferred to be assigned to a

service unit then that given service unit will have a higher ranking than other, less preferred

ones.

Page 32 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 SaAmfCSIAssignment is used to represent the assignment relationship between the

component and the component service instance.

Profile Construction

Since the AMF conceptual model is quite complex, the AMF UML profile is significantly bigger

than the ones previously described in preceding sections. The complete description would exceed

the size constraints of this document. However, there are two basic principles we followed during

its creation:

 Entities are modelled as UML Components,

 Relationships are association classes if they express many-to-many relations or simple

associations,

 Aggregation between entities is described as containment/packaging relation (see Figure

15.).

Figure 15 : AMF UML Profile Excerpt Showing the Packaging Relation between the

Application, Service Group, Service Unit and Component Entities

Application Example, Structural Design Templates and Design Patterns

As AMF is a generic, multipurpose framework, design patterns for its usage can range from

structural level to component implementation. In this document, structural design templates are

described in detail and other patterns are mentioned only since those are more application specific

and have to be adapted to the application domain.

Structural design templates are different from design patterns in the sense that they can be used as

repository entries to ease the creation of configuration models, but they describe only structural

Page 33 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

relations and, for example, service usage information cannot be assigned to them. In the description

of the design templates, application examples of the AMF UML profile will be shown.

The 2N design template (see Figure 16) is used to set up a service group with the 2N redundancy

model. This means that there are (at least) two service units in the service group. One of them will

get only active, while the other will get only standby assignments. The input parameters for the

template are:

 the name of the service group,

 the naming scheme of the service units (the final names are generated automatically),

 the ServiceUnitType which is the template for the actual service units (describes the

components in the service unit),

 naming scheme for service instances,

 the ServiceType which is the template for the service instances,

 number of service instances.

It is important to note here that the services based on the ServiceType have to allow to be assigned

to the service units based on the ServiceUnitType. In reality, the ServiceType has to contain a subset

of the functionality provided by the ServiceUnitType.

Figure 16 : 2N Design Template

The N+M design template (see Figure 17) is a generalization of the 2N design template where the

number of active service units is N and the number of standby service units is M. Correspondingly,

the input parameters of this design template are:

 the name of the service group,

 the naming scheme of the service units (the final names are generated automatically),

 the ServiceUnitType which is the template for the actual service units (describes the

components in the service unit),

Page 34 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 number of active service units,

 number of standby service units,

 naming scheme for service instances,

 the ServiceType which is the template for the service instances,

 number of service instances.

Figure 17 : N+M Design Template

Accordingly, several design templates can be created for the N-Way, N-Way Active, No Redundancy

redundancy models, too.

Design patterns have also been created for AMF. However, as it was mentioned before, these are in

most cases very application specific. It is also worth-while to note that most elements of the AMF

model are only logical elements and no code or executable belongs to them. The only entity that is

code and what provides the services is the Component. Any design patterns that concern business

functionality apply only to these elements. General design patterns for Components are for example:

 Threading

o Single threaded component. The component is implemented in a way that all assigned

Component Service Instances are running in one common thread.

o Multi threaded component. The component is implemented in a way that all assigned

Component Service Instances are running in separate threads.

o Multi process component. Instead of starting new threads, new processes are spawned

for each CSI.

 Main thread – worker thread communication

o Socket based communication. Operating system sockets (socket pairs) are used for

communication.

Page 35 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

o Shared memory based communication. Shared memory areas are used for

communication.

o Message queue based communication. Operating system message queues are used for

communication.

Besides these, there are several other patterns which are concerned with check pointing, health

checking or other application specific management functionalities.

2.3.3.2 Checkpoint Service

AMF monitors and manages the high availability state of components and applications. Stateless

services can be integrated with AMF without any further modifications; however, stateful services

need a way to store and restore their internal state. The Checkpoint service provides checkpoints for

this purpose.

Conceptual Model

The conceptual model of the checkpoint service is depicted in Figure 18. The Checkpoint service is

used by a CheckpointClient which can be an AMF component or any other component. Using the

interfaces provided by the Checkpoint service, the CheckpointClient is able to create, delete, write,

read Checkpoints. For each client, a node local CheckpointReplica is created
1
. This means if two

clients running on the same cluster node open the same checkpoint, then they will use the same

replica. The checkpoint service synchronizes the different replicas and ensures data consistency. All

checkpoint replicas are equal but one, the active replica. The active replica is used for read and

write operations and all the other replicas are just data stores, the data is propagated into those, until

one of them becomes the active one. There is at most one active replica at a time.

Figure 18 : Conceptual Model of Checkpoint Service

Metamodelling and Profile Construction

Based on the above overview of the entities and concepts of the checkpoint service, the metamodel

and the profile are created for the service. The metamodel contains metaclasses and the profile

describes how these are derived from the basic UML metaclasses. The newly created metaclasses

are directly mapped to stereotypes which can be applied to specific UML entities.

The checkpoint client is represented by the CkptClient metaclass, while checkpoint is modelled as

the SaCkpt metaclass. The fact that a client uses a checkpoint is manifested by the CkptUse

1
 Only if the „collocated” property of the checkpoint is set. If the checkpoint is not co-located, the checkpoint replica

may reside on a different cluster node.

Page 36 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

metaclass. Figure 19 shows the metamodel and its mapping to the basic UML concepts. The newly

created metaclasses and the profile are described shortly in the following.

 CkptClient metaclass. Applies to the Component UML metaclass. Represents a client to the

checkpoint service.

 CkptUse metaclass. Applies to the Association UML metaclass. Expresses the usage relation

between the client and a checkpoint.

 SaCkpt metaclass. Applies to the Component UML metaclass. Represents a checkpoint.

 SaCkptReplica metaclass. Applies to the Component UML metaclass. Represents a

checkpoint replica.

Figure 19 : Checkpoint Service Profile

Application Example

Figure 20 shows an example for the application of the checkpoint profile elements. (This and

following figures use some extra icons to represent domain specific entities. The introduction of

extra visual notation helps the modeller in working with these entities. For more details see Section

2.4.1.)

 There is an AMF component, called SomeComponent, a checkpoint client, which uses

CheckpointA to save its internal state regularly.

 The component and the checkpoint are connected with a CkptUse association.

Figure 20 : Checkpoint Entities Application Example

Page 37 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Design Pattern

An intended use of the checkpoint service may be when an AMF component is stateful and it has to

maintain its internal state despite component errors. Figure 21 shows the intended use of the

checkpoint service in this case.

The AMF component (SomeComponent) has three different operations:

 loadCheckpoint() is used for reading up the contents of the checkpoint and restoring the

saved state,

 saveCheckpoint() is used for saving the internal state into the checkpoint,

 stateUpdatedNotification() is used when a hot standby component is created that has to keep

its internal state in synch with the active component.

Figure 21 : Checkpointed Component Design Pattern

The basic use cases for the component are shown in Figure 22 and Figure 23. The first one shows

the case when the component is started, and it checks if there is any saved state that should be

restored, while Figure 23 shows what happens during the failover.

Figure 22 : Checkpointed Component Startup

Page 38 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

At failover, the component that previously had the standby assignment is assigned the active role by

the AMF. This process is called the failover. During the failover, the component reads up the state

data from the checkpoint and restores it as the internal component state.

Figure 23 : Checkpointed Component Failover

Figure 24 shows the regular state save operation and its extension for the hot standby case. During

state save, the component writes its internal state into the checkpoint. If the standby component is a

hot standby one, which means it keeps its internal state continuously in synch with the active

component to enable immediate service take over on failure, then after doing the state save, the

standby component is notified through the stateUpdateNotification() that new state information is

available. The standby component then reads up the new state information.

Figure 24 : Hot Standby Component State Save Scenario

Page 39 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

2.4 Application Design Support

The modelling techniques described in Section 2.2 outlay the basics of application development.

However, further support is required for the application designers and developers to ease and quasi

standardize their work. This section presents an overview on the three application design support

tools developed within the framework of the HIDENETS project i.e., the domain specific editor, the

configuration generator and a code synthesis tool.

2.4.1 Domain Specific Editor

In order to support seamless modelling and development activities for the HIDENETS platform we

constructed a domain-specific editor built on the advanced profile handling capabilities of the IBM

Rational Software Architect (RSA, see [RSA]) environment. RSA enables us to assign visual

notation to stereotypes (icons or even entirely new shapes) and provides a straightforward

lightweight extensibility mechanism through “pluglets” (typically used for performing some basic

well-formedness checking on software model (e.g., in our case we can check that a class marked as

a client of a cooperative backup service is actually connected to a cooperative backup storage).

Below we present some screenshots taken from the domain-specific editor. The examples were

intentionally designed to show the same model fragments as the application examples discussed

above. The stereotypes used in the domain specific editor are the ones discussed above prefixed

with “hi” (HIDENETS) to prevent namespace clashes. The icons and images used by our domain

specific editor were newly drawn by us, obtained from free sources or simply re-used Eclipse icons.

2.4.1.1 User Interface

Figure 25 : Overview on the User Interface of the Domain Specific Editor

Page 40 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 25 shows the user interface of RSA working as our domain specific editor. It is easy to see

that applying the HIDENETS profile to a model and enabling the visualization features of domain

specific editing does not disturb the well-known interface.

2.4.1.2 Application Examples

Figure 26 presents the application example for cooperative backup activities (see Figure 5 for the

original example using plain stereotypes). There are three novel visual notations in the figure:

 Cooperative backup storage is highlighted by an icon representing a hard disk and arrows

representing the data interchange operation (we re-used version control icons here). Since

there can be a large number of classes acting as clients of a cooperative backup facility we

decided not to override the usual icons here for clarity.

 Store and retrieve operations are depicted by small arrows targeting or originating in the

hard disk symbol.

Figure 26 : The Cooperative Backup Example in the Domain Specific Editor

Figure 27 presents the application example for timing failure detection (see Figure 11 for the

original example using plain stereotypes). Some of the novel visual notations shown in the figure:

 Real-time service provider class MyRealTimeServiceProvider is highlighted by a dark clock

icon. (The real-time service client class has no special stereotype due to the considerations

mentioned above.)

 The actual real-time service (method callMe) is indicated by a light clock icon.

 The real-time service agreement between the provider and the client is indicated by a clock

and a checklist icon entirely replacing the association class shape.

Page 41 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 27 : The Timing Failure Detection Example in the Domain Specific Editor

2.4.1.3 Visual Notations in Explorer Views

Having assigned icons to key profile entities the same icons are used in various model explorer

views, e.g., in the tree view of the RSA Project Explorer shown in Figure 28.

Figure 28 : Indication of Stereotyped Classes and Attributes in the Domain Specific Editor

2.4.2 Source Code and Configuration Generation

The AIS UML profile which is part of the HIDENETS UML profile can be used by any UML

modeller that supports the usage of profiles. However, only attaching the stereotypes to the

elements will not make it easier to create understandable application/system models. The following

types of diagrams may be used for thematic visualization of the application and system models.

 The Resource view visualizes the relations of AMF resource type entities, such as the

Application, Service Group, Service Unit and Component.

Page 42 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 The Architecture and Deployment view shows the Cluster and Node objects, and the

assignment between the resources and these nodes. Basically, it describes the cluster and the

deployment of the different resources (Service Units, Checkpoints…).

 The Service view is used to represent the service entities of the model, like Service Instance

and Component Service Instance.

2.4.2.1 Example Application

In order to demonstrate this modelling approach, an example platoon monitoring system

development is described in the following using the proposed framework. Monitoring is a very

important key factor in many fields. This is no different in the vehicle fleet management. The events

that the system has to observe are very rare and usually happen in a short period of time. So one of

the main requirements for a monitoring system is that it provides its services in a highly available

manner since the unavailability of these services can cause extremely costly or even unrecoverable

results.

Figure 29 : Monitoring System

Figure 29 shows the structure of the system that consists of sensors to monitor different attributes of

the platoon (velocity, position) and provides an administrative console to operators to visually

monitor and control the current status of the system. The application services that process the

measurement data and control the actuators – such as the fleet management system and platoon

command centre – do run in the Local Service Center.

Figure 30 : The Resource View of the Model

The Figure 30 shows the resource view of the Monitoring System service model. The Monitoring

System is represented by a component stereotyped SaAmfApplication. The application comprises

Page 43 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

one service group that consists of two redundant service units which are handled according to the

active-standby (failover-pair) redundancy scheme. Figure 31 shows that the service is realized using

two nodes that compose a cluster. The Monitoring System application is assigned to the cluster and

the Service Units, that contain the service provider components, are deployed on the nodes.

Figure 31 : The Deployment View of the Model

The service view of the model is depicted in Figure 32. The figure shows the service responsible for

monitoring the sensors by the <<SaAmfSI>>SensorSI component.

Figure 32 : The Service View of the Model

It is important to make sure that all services are supported by the Service Group they are assigned

to, thus, the assignments of the CSIs comprised in the Service Instance are calculated automatically

during validation. The figure shows the result of this step when associations between the

<<SaAmfCSI>> SensorCSI and the available components are calculated.

Page 44 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

This example application model will be used throughout this section for introducing configuration

and code generation facilities of the HIDENETS framework.

2.4.2.2 Implementation of the Framework

The implementation of the framework is based on the IBM Rational Software Architect (RSA)

modelling product, which is built on the extensible architecture provided by the Eclipse open source

development platform.

Figure 33 : The Architecture of the Rational Software Architect Platform

The RSA provides a modelling framework for standard UML models and supports the creation and

application of UML Profiles on those models. Additionally, it provides means for accessing and

modifying the models in a programmatic way through specific APIs.

The Eclipse environment that the RSA operates in enables a very high level of extensibility through

plugins. Actually, the RSA itself is a great number of plugins in the basic Eclipse environment too.

Similarly to plugins, the RSA supports an even more lightweight extension mechanism through

pluglets. Pluglets are Java applications integrated into the RSA framework, and they are able to

access the application model in the model space using the Eclipse Modeling Framework (EMF)

APIs.

2.4.2.3 Model Manipulation

The EMF API provides basic level of access to the model in the model space. Model entities can be

created, accessed, modified, deleted, etc. In order to support higher level of access to the service

model, utility functions have been created. The most important ones are:

 getApplicationObject(Object o) iterates recursively the model space and returns the list

of the objects that are stereotyped using the SaAmfApplication stereotype.

 getClusterObject(Object o) iterates recursively the model space and returns the list of

the objects that are stereotyped using the SaAmfCluster stereotype.

 getChildren(Component o, Stereotype s) returns the list of components that are

packaged in the given component o and are stereotyped using the s stereotype.

In Figure 34 the source code excerpt demonstrates the usage of the utility functions. First the cluster

object is retrieved, then an application associated to that is selected, and finally the application

configuration is recursively generated by enumerating the contained elements.

Page 45 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 34 : Sample Code for Model Access Using High Level APIs

2.4.2.4 Configuration Generation

One of the main objectives of our Framework is to help the creation of AIS implementation specific

configuration descriptors. For this purpose, we use the application models defined in the modelling

tool.

The configuration generator facility has to be implemented for each different AIS implementation

in the form of RSA pluglets. In the following, we introduce the pluglets created specifically for the

OpenAIS and OpenSAF middlewares.

Configuration for the OpenAIS middleware

OpenAIS [OpenAIS] is a simple and easy to use SA Forum compliant middleware. It stores the

configuration data using a simple text file. Using the high level utility functions described above,

the application model is traversed and the corresponding configuration data is generated.

Although the model describes the AIS service, not all of the attributes in the configuration file can

be generated automatically. There are a few specific attributes, e.g. the path of the binary

executables that should be manually set after the generation of the configuration file.

The OpenAIS configuration of the example service described earlier is generated using the

developed pluglet. Figure 35 shows the application model and the generated configuration.

Whenever the pluglet finds an attribute not specified in the application model, it uses the TODO tag

to indicate that the particular value should be given manually.

Page 46 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 35 : The Generated OpenAIS Configuration File

Configuration for the OpenSAF middleware

While OpenAIS defines a simple text configuration file, OpenSAF [OpenSAF] uses an XML

structured configuration file. In Java there exist a number of solutions for generating XML files:

 plain text method is a low level solution,

 the DOM provides standard XML construction, classes

 and a high level solution is provided by the JAXB.

For our implementation, we selected the DOM solution, since it is supported in all Java

environments.

Page 47 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 36 : The Generated OpenAIS Configuration File

Figure 36 shows a part of the generated configuration data for the OpenSAF middleware of the

example application.

Component code skeleton generation

Similarly to the configuration data, the skeleton of the component source code can be automatically

generated based on the constructed application model. Each component has similar structure and

thus all the generated entities can be created from a common code template.

As the first step, we analyzed the structure of AMF components in order to create the general

component code, and then based on our experience with configuration generation, we developed a

source code generator pluglet.

Structure of the code: Every AIS service has its own purpose but all of them are specified

according to the same programming conventions. This common functionality can be characterized

as lifecycle handling (initialization, finalization) and event dispatching for asynchronous operation.

Based on these patterns, the following sections can be found in the general components source

code:

 Lifecycle methods for every AIS service

 Event loop for dispatching events

 Callback method stubs that are called on events

 Component specific configuration attributes (e.g. AIS version number, healthcheck

keys)

 Business logic methods

Page 48 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 37 : The Structure of the Source Code

The structure of the source code is depicted in Figure 37. Modules are created for every AIS service

in the form of C source files, and a common header file, which defines the component specific

attribute values. These modules have certain dependencies, like all source files include the header

file and functionality of the corresponding AIS service modules.

Figure 38 : The Generated Source Code

Page 49 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

The code generation: The code generator pluglet was created similarly to the configuration

generators. It uses the general component template defined above.

Figure 38 shows the modules generated for a component. The generated source code contains three

major parts:

 the configuration header,

 the AIS service modules and

 the service itself.

This particular component (SensorComp01) has one healthcheck (SensorHealthCHK1) associated

with it.

Every component specific attribute manifests as a compiler definition in the configuration header.

For example, the key of the healthcheck appears in the configuration header as #define

AMF_INVOKED_HC "SensorHealthChk".

The executable component is built up by compiling and linking all these modules and the AIS

libraries together.

2.5 Proof of Concept

This chapter introduces the reader to the practical benefits of the aforementioned efforts, providing

an example application over the HIDENETS platform that was developed as a WP6 activity,

namely the Application Development Test-bed (ADTB), extending its previous deliverables with an

insight to the model-driven nature of those activities.

The Proof of Concept chapter is organized as follows. Section 2.5.1 introduces the application

giving an initial notion on its specifics, the entities taking part. Section 2.5.2 gives a good insight

into the use-case driven nature of MDD resulting in a functionally decomposed software

architecture. That is followed by the utilization of the underlying metamodel(s) and profile(s) of

HIDENETS in section 2.5.3, while 0 shows the benefits of the previous steps during the

implementation of the application.

For further details on ADTB specification, implementation and evaluation the reader is kindly

directed towards [D6.2], [D6.3] and [D6.4] respectively.

2.5.1 Application Development on a Conceptual Level

The initial goal of ADTB was (1) to show the benefits of the basic resilience mechanisms of

HIDENETS and (2) to give an example of using COTS solutions in utilizing SA Forum

specifications and middleware. Therefore we choose one of our safety-related use-cases from

[D1.1] where both car-to-car and car-to-infrastructure communication is involved

We decided to implement a Platoon Driver Support System (PDSS) application that is a simplified

version of the Platooning scenario [D1.1]. The implementation of a safety critical, hard real time

application like Platooning involves quite some extra efforts in an embedded environment using

direct links between components to ensure timeliness which does not completely match our scope

and intention. Therefore we decided to simplify it by

 removing hard real time requirements and

 reducing the application to a driver support facility instead of suggesting that our application

would be capable of actually replacing the driver.

Page 50 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Obviously the application we would like to develop is primarily a demonstration: the key

contribution of our work is not the application as software product, but the development process

itself.

2.5.1.1 Concepts

The context of the PDSS application is less critical than in case of a full featured Platooning

software (in the context of HIDENETS use case scenarios in [D1.1] this application can be defined

as a combination of parts of the Platooning and the Floating Car Data scenarios): in our case all

vehicles in the platoon are driven by human drivers, the PDSS application serves more like an

intelligent cruise control and platoon management software. The idea is as follows: the first vehicle

in the platoon is the platoon leader (called Head Vehicle or HV in this discussion) and the vehicles

following it (called Slave Vehicles or SV in this discussion) should adjust their speed according to

the head vehicle. This is supported by the PDSS software by collecting various parameters of

vehicles (speed, acceleration, etc.) and calculating the necessary actuations to be applied

(acceleration or braking) according to the reference head vehicle. This function of the application

only provides an intelligent support for human drivers of slave vehicles, the drivers may choose not

to use this service. Another feature of the software is to provide up-to-date information about the

traffic conditions in the area to the driver of the head vehicle and periodically send the actual

position of the platoon to the traffic administration centre (Infrastructure).

2.5.2 Functional Decomposition – Actors & Use-Cases

Now that we have the main concepts of our PDSS application, we have to identify the actors and

use-cases
2
. In this step we identify (i) direct actors (i.e., human users or external systems that

submit requests to the system) and (ii) direct use cases (i.e., the high abstraction level description of

requests submitted by direct actors) and collect those (iii) lower abstraction level use cases and (iv)

external systems that are used by direct use cases (no in-depth discussion just collection). The short

summary of the specification below highlights these concepts in the context of the PDSS

application:

The platoon consists of two or more vehicles. All vehicles are driven by human drivers whose work

is supported by the PDSS application. The PDSS application presents the driver of the head vehicle

(direct actor) with some important information by displaying traffic data (direct use case) related to

the actual area. The PDSS software periodically collects data from the behaviour of both vehicles

and calculates the optimal acceleration/braking etc. values to be applied to slave vehicles to adjust

their speed to the head vehicle; this feature can be enabled or disabled (direct use case) by drivers

of slave vehicles (direct actor). At the infrastructure side the company maintains an up-to-date

database of traffic conditions that may be important for the platoons (e.g., road reconstruction

works, accidents, special traffic conditions, etc.) and the actual position of platoons. Information

about traffic conditions are updated in the database (direct use case) by a transportation manager

(direct actor) of the company. She/he can also display the actual position of platoons (direct use

case) based on the database. The movement of platoons is automatically reported by the PDSS

software and stored in the database.

Below we present the direct users of the system with their short definitions and the services

accessed by them in a tabular form.

2
 The terms „use-case” and „actor” have formally defined meanings in the UML. In this document we refer with

these words to the corresponding UML model element types. Generally, the same terms may be used in a less strict

sense, as it is the case in other HIDENETS deliverables, for example in [D1.1], as well.

Page 51 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Actor Short definition

Use cases

accessed by

the actor

Head Vehicle

Driver

Driver of the head vehicle. Her/his decisions are supported by the

PDSS application (e.g., by the traffic information presented on a

display) but otherwise the driver has full and exclusive control

over the head vehicle.

Displaying

traffic data

Enabling or

disabling

PDSS control

Slave Vehicle

Driver

Driver of a slave vehicle. Her/his task is supported by the PDSS

application: when operating the PDSS software works as

intelligent cruise control device that adjusts the speed of the

vehicle according to the behaviour of the head vehicle. The slave

vehicle driver may switch off the PDSS control either explicitly or

by touching a pedal in the vehicle (in order to enable direct and

immediate human interception in dangerous situations).

Enabling or

disabling

PDSS

actuation

Transportation

Manager

An employee of the transportation company being responsible for

maintaining the traffic database. The transportation manager can

also display the actual position of platoons.

Displaying

platoon

movement data

Updating the

traffic database

Investigating these direct use-cases, we find that underlying services (like communication between

the HV and Infrastructure, i.e. “Traffic data communication”) and external systems (displays and a

database) are necessarily involved in executing these tasks (see Section 2.5.1.1).

https://wiki.inf.mit.bme.hu/twiki/bin/view/Hidenets/HIDENETSApplicationExampleAnalysis?sortcol=0;table=1;up=0#sorted_table
https://wiki.inf.mit.bme.hu/twiki/bin/view/Hidenets/HIDENETSApplicationExampleAnalysis?sortcol=1;table=1;up=0#sorted_table
https://wiki.inf.mit.bme.hu/twiki/bin/view/Hidenets/HIDENETSApplicationExampleAnalysis?sortcol=2;table=1;up=0#sorted_table
https://wiki.inf.mit.bme.hu/twiki/bin/view/Hidenets/HIDENETSApplicationExampleAnalysis?sortcol=2;table=1;up=0#sorted_table
https://wiki.inf.mit.bme.hu/twiki/bin/view/Hidenets/HIDENETSApplicationExampleAnalysis?sortcol=2;table=1;up=0#sorted_table

Page 52 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 39 : Direct Actors and Use Cases with Required Lower Level Services

We have to continue in the very similar way: iteratively refining our specifications and thus

defining implicit actors, use-cases and lower level services. The result is depicted in Figure 40.

Page 53 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 40 : A Color Annotated Overview on the Use Case Model

Having the use-case model, we can begin to design the application that will resemble the scheme

above. The following Figures (Figure 41, Figure 42) demonstrate that trait of MDD.

Page 54 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 41 : Key Classes of Actuation at Slave Vehicles

Figure 42 : Relation of Key Actuation Classes to the Use-Case Diagram

2.5.3 Utilizing the Underlying Metamodels

Now we can use our Domain Specific Editor (DSE) to design the application and utilize the built-in

features. Main functionalities (use-cases) are aggregated into components that consist of the classes

performing lower-level services. As for the previously used example, see Figure 43.

Page 55 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 43 : Slave Vehicle – Actuation

SVActuationModule is tagged with <<component>>, aggregating the actual actuation functionalities

as well as the necessary communication, while – through an association – it is also linked to the

Display that also has to be periodically refreshed to keep the driver up-to-date. When speaking of

periodicity, one has to consider the great importance that timeliness plays throughout the

application. Timely events are triggered by timers (marked teal in Figure 43) in the PDSS

application while their corresponding classes are stereotyped in DSE, making them not only easily

identifiable in the application model, but also enforcing the usage of the appropriate design pattern

and indicating their connection with the underlying TTFD service (see section 2.3.2.2 for further

details).

Figure 44 : Cluster Definition

As for the infrastructure domain, the task is more complicated. According to AIS specifications the

definition of the cluster organization is highly important thus making it impossible to directly map

Page 56 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

the use-case model into an application model, because use-cases here do not involve physical traits

or deployment issues in particular, while at the same time they would be essential for configuration

of applications running over SA Forum middlewares.

Figure 45 : AMF Entities

So we want our infrastructure domain components to run over a cluster consisting of two identical

nodes. That way we defined the physical deployment of the application (Figure 44).

Figure 46 : Checkpoint Assignment

As a next step, we have to define the deployed application in the sense of the Availability

Management Framework (Figure 45). Please note that the logical representation resembles that of

Page 57 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

the physical, the application consisting of a single Service Group that is composed of two identical

Service Units, each containing three AMF Components that together form our application in that

domain and that are all continuously health checked. Whenever a HealthCheck returns failed,

IPFailover is responsible for the cluster internal failover. The Frontend provides the visualization

towards the traffic administrator while the operation of the underlying database is shared between

the two components through checkpointing (see Figure 46).

2.5.4 Implementation

The ADTB is implemented in C language in both domains. In the ad-hoc domain we used the

defined HIDENETS middleware, more precisely the Reliable&SelfAwareClock, the

AuthenticationService and the TimelyTimingFailureDetection. These were implemented as stubs,

mimicking the defined interfaces, but providing a simplified functionality. While invoking those

functionalities we relied on the defined design patterns that way giving the code a uniform and easy

to understand structure at those parts closely related to the middleware. As the experimental set-up

is running on a laptop with virtual machines we used RPC calls in the communication of the

“vehicles” to resemble communication delays as best as possible.

The infrastructure domain components of the PDSS application were built over SA Forum

specifications using the open-source middleware implementation OpenAIS. The AMF components

were implemented using the model-based code-generator while the deployment to the cluster
3
 was

done using the configuration-generator tool (see Section 2.4.2 and the diploma theses [Szat, Urb]

for further details on code and configuration generation).

2.6 Conclusion

In the original project proposal, the work on “UML design patterns and workflow” has set an aim to

 elaborate an application development methodology that helps application designer in the

understanding and effective utilization of the (dependability, mobility and communication

related) domain knowledge that is manifested in the HIDENETS middleware,

 define a UML profile incorporating the peculiarities of this environment and allowing a

semi-formal formulation of user requirements and basic architectural solutions, and

 formulating design patterns to support the direct reuse of the HIDENETS architecture and

middleware solutions while application development.

This means, that our work focused on the development of applications of the HIDENETS

middleware. After reviewing the state of the art in application development and studying existing

standards in we have

 elaborated a model-based application development methodology, that is based on a multi-

step approach (see Sect. 2.2.2),

 defined domain specific metamodels and profiles for the HIDENETS applications,

 specified an application development tool-chain (see Sect 2.2.3 and Sect 2.4),

 gave a set of design patterns to help the use of HIDENETS services for application

developers, and

3
 The cluster was provided by Fujitsu-Siemens Computers in the form of a TX120 office server and three Lifebook

E8410 laptops.

Page 58 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 supported the modelling work of other work packages of the project.

Beyond this with our work we have contributed to an existing standard. The SA Forum standard

interfaces were chosen as a basis for the middleware architecture of HIDENETS nodes in the

infrastructure domain, and our results in supporting application development (metamodels,

application development methodology, code and configuration generation, mobility related results)

were presented to the SA Forum community, where they aroused general interest, and were

received as valuable contribution and basis for ongoing standardization activities in the

corresponding fields. Based on these results, FSC, BME and other partners in the SA Forum plan to

continue the enhancement and extension of the SA Forum standard interfaces beyond the time

frame of the HIDENETS project.

Furthermore, our work has demonstrated the wide extensibility of UML and the benefits of

applying model based techniques. Building formal models of the HIDENETS node architecture was

a necessary step in our task, while these models became a very useful tool in the project-intern

communication (documentation of the services, discovery of dependencies of services, consistency

and completeness checking, ...) for an international project team.

Page 59 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

3 Testing Activities

Software testing consists of executing a program with some valued inputs and then verifying

whether the outputs conform to the expected behaviour. In this section, we address the challenges

and methodologies for the verification of HIDENETS-like applications and middleware services

using testing. This contributes to the following project goal:

“Identify development tools and mechanisms like design patterns and testing methodologies to

assist in the implementation of said service qualities.” (from “HIDENETS – Description of Work”)

[HDoW]

A summary of the contribution is first given in Section 3.1. Then, a more technical presentation is

developed in Sections 3.2 to 3.3.

3.1 Summary of the testing contribution

Work was focused on the verification of the highest layers in the HIDENETS architecture, that is,

the application layer and possibly some high-level middleware services. We consider functional

(black-box) approaches to test whether applications fulfil their expected requirements. Note that

quantitative evaluation, e.g., reliability or availability assessment, is not addressed here (it is studied

in Deliverables D.4.1.2 and D.4.2.2 [D4.1.2, D4.2.2]). Our interest is on the correctness issue.

As a first step, a review of relevant literature has been performed together with a testing case study

that allowed us to gain concrete insights into validation problems. The results were detailed in

Deliverable D5.2 [D5.2] and published in [Mics, Waes]. One of the conclusions was the lack of

adequate formalisms to capture system-level behaviour and spatial topology in a mobile setting.

Work has then been directed toward the definition of a scenario-based testing framework [Ngu] that

covers (1) the definition of a language that describes interaction scenarios in mobile settings, and

(2) some automated support to analyze and implement scenarios on a test platform with simulation

facilities.

This section introduces the scenario-based testing framework developed in HIDENETS, and gives a

high-level view of the underlying technologies.

3.1.1 Role of scenarios in the testing framework

Scenario descriptions are useful to support various test-related activities, such as the representation

of requirements, of test purposes (i.e., interaction patterns to be covered by testing), of test cases, or

of execution traces. Accordingly, the testing framework depicted on Figure 47 shows scenario-

based artefacts that may be produced during different V&V phases.

This testing framework does not require commitment to heavyweight formal methods. Hence, the

transition from one test specification artefact to the other may be informal, as expressed by the

dotted lines. For example, test purposes may be derived informally from the important

requirements, and test cases may be proposed by the user to cover some intended purpose. Note that

the framework does not preclude the use of more formal approaches. Would a complete

specification of behaviour be available, then the framework could possibly be extended to support

formal treatments such as: the verification that the behaviour model exhibits the requirement

scenarios, or the automated generation of test cases from a model and a set of test purposes.

However, such formal treatments were not investigated within HIDENETS.

Page 60 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 47: Overview of the testing framework

Even if a complete specification of behaviour is not available, some automated treatments become

possible by simply using scenario descriptions. They are indicated by solid lines in the figure and

are the focus of our work. The treatments include:

 Checking whether a test execution trace satisfies a requirement scenario.

 Checking whether a test execution trace covers a test purpose.

 Assisting in the implementation of test cases (and more specifically in the production of

concrete contextual data).

Key issues are then the choice of an adequate scenario language, and the definition of a clean

semantics allowing the above treatments.

3.1.2 Specificities of scenarios in mobile settings

A number of scenario languages have been proposed to represent interactions in distributed

systems, like Message Sequences Charts [MSC] or UML Sequence Diagram [UMLsup]. They are,

however, not sufficient to account for mobile settings.

Mobile computing systems, such as the ones targeted by HIDENETS, involve devices (handset,

PDA, laptop, intelligent car…) that move within some physical areas, while being connected to

networks by means of wireless links (Blue-tooth, IEEE 802.11, GPRS…). Such systems, and more

specifically systems with applications in the ad hoc domain, can be distinguished from “traditional”

distributed systems by the following aspects:

 Dynamicity of the system structure. The number of mobile nodes is not fixed. It varies over

time, due to the dynamic creation, suspension or shutdown of nodes. Besides that, connectivity

between nodes is also highly dynamic. As the nodes are free to move arbitrarily, they can join or

leave the system in an unpredicted manner. Links may be established or destroyed, yielding an

unstable connection topology. The topological changes may be constrained by a mobility model

(e.g., vehicles move in one-way or two-way direction, speed is bounded…).

 Communication with unknown partners in local vicinity. In mobile ad hoc networks, a natural

communication is local broadcast. It is used as a basic step for the discovery layer in mobile-

based applications (for example, group discovery service for membership protocols, a route

discovery in routing protocols…). In this class of communication, a node broadcasts a message

Page 61 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

to its neighbours. As the topology of the system is unknown, the sending node does not a priori

know the number and identity of potential receivers. Whoever is at transmission range of the

sending node may listen and react to the message.

 Context awareness. Each node should have an explicit definition of context, of policies to

update the context and to react to contextual changes. The context includes any detectable and

relevant attribute of a device, of its interaction with other devices and of its surrounding

environment at an instant of time. For example, the context can be information collected by

means of physical sensors such as location, time, speed of vehicle, or it can be information

about network parameters, such as bandwidth, delay and connection topology. Due to mobility,

the context is continuously evolving, so that mobile applications have to be aware of, and adapt

to, the induced changes.

Existing scenario languages do not offer concepts to account for the dynamically changing structure

and context, nor do they offer concepts to represent broadcast communication in local vicinity. We

proposed extensions to fill these gaps, and integrated them into a widely used scenario language,

namely UML 2.0 Sequence Diagrams [UMLsup]. The extended Sequence Diagrams include two

connected views, the spatial view (describing the topological configurations of the system nodes, as

well as some contextual information) and the event view (describing communication events, and

their causal dependencies on configuration change events). More precisely:

 The spatial view consists of a set of labelled graphs, corresponding to the various

configurations that occur in the scenario. For a given configuration, the labels attached to

vertices and edges represent relevant attributes of system nodes and of communication links

between nodes.

 The event view makes it explicit which communication event occurs in which spatial

configuration, and configuration changes are introduced as global events.

 Broadcast communication in local vicinity is introduced by means of special symbols.

Figure 48 exemplifies how we defined the three above extensions in terms of UML elements. The

figure represents a simple requirement scenario from a testing case study we investigated, a

partitionable Group Membership Protocol (GMP) in the ad-hoc domain. In this protocol [Hua],

groups split and merge according to location information carried by hello messages. Decision is

based on the notion of safe distance, where the safe distance is strictly lower than communication

range. The requirement says that whenever a node detects a new neighbour at a safe distance, it has

to report the connection change. In the event view, note the global configuration change event, as

well as the <<broadcast>> stereotype attached to the hello message. In the spatial view, it is the

responsibility of the designer to determine convenient abstractions for the concrete configurations,

depending on the target application. Here, the GMP behaviour is governed by two relations, being

at communication range and being at a safe distance. This explains the chosen edge labels. Nodes

are merely characterized by their id (see label variables x and y), but tuple of labels are allowed for

applications needing a richer representation of node attributes.

While the three proposed mobility-related extensions are relevant whatever the role of the scenario

(requirements scenario, test purpose, or test case), the various roles may involve different profiles

for the core UML constructs. For example, the UML 2.0 Testing profile [UML TP] is an example of

profile defined for test cases. It differs from Modal Sequence Diagrams [HaMa], another UML-

based language that targets requirements scenarios. In order to concretely illustrate the usage of our

extensions, we focused on requirements scenarios for which we defined a language (TEst

Requirement language for MObile Setting, TERMOS) that is inspired from Modal Sequence

Diagrams and other similar languages.

Page 62 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

x y
<<communicationDistanceOnly>>

C1

x y
<<safeDistance>>

C2

(a) Spatial view (b) Event view

Figure 48: Example of requirement scenario

3.1.3 Automated treatment of scenario descriptions

In our testing framework (see Figure 47), scenario descriptions are not just for documentation. They

are intended to be compiled into programs that automatically analyze execution traces. The

execution traces are collected on a test platform composed of three categories of facilities
4
 (see

Figure 49):

 The context controller manages the relative position of nodes according to some mobility

model and produces contextual data (e.g., location-based data) needed by the application.

 The application execution support emulates the executive support for the application code

running on nodes.

 The network simulator is responsible for simulating the full functionality of a real wireless

network. It uses data from the context controller to control the delivery of messages based

on the context (e.g., radio communication in a local vicinity).

Note that existing tools may offer facilities that span several categories. For example, the topology

emulator developed within HIDENETS may play the role as a network simulator with parts of a

context controller and application support (see [D6.3], Section 6.4).

Figure 49: High-level view of the test platform

Basically, the data recorded by the context controller allow us to identify the concrete spatial

configurations of the tested system, and the configuration change events. This requires an

abstraction step to interpret the raw data in terms of labeled graphs that are then compared to the

4
 A more detailed discussion of test platforms can be found in Deliverable D5.2.

Page 63 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

configurations of the scenario. Communication events from the event view are observed by proper

instrumentation of the network simulator and application execution support.

The comparison of scenarios and traces serve different objectives, depending on the role of the

scenario. Requirements scenarios are used to check whether key properties are violated during

testing. This offers an automated solution to the test oracle problem, namely how to determine

acceptance or rejection of the test outputs. Test purposes are used to check whether desired

fragments of behaviour are covered at least once during testing. Test cases need concrete contextual

data (e.g., GPS coordinates) to implement the desired evolution of configurations, and the proposed

solution is to extract matching data from preliminary runs of the context controller. The found

matches provide concrete data that may be replayed to control the execution of the test case.

In each case, the identified treatments involve graph matching problems, at least for some part. This

is due to the need to determine whether the physical nodes appearing in the trace can match abstract

nodes appearing in the spatial view. We have developed a graph matching tool, GraphSeq (Graph

matching tool for Sequences of configurations), to fulfil this need. Determining whether one graph

G1 (here, coming from an abstract scenario) is matched by a subgraph of G2 (coming from a trace)

can be solved by graph homomorphism building, which has been extensively studied in the

literature. Here, the novelty of our tool consists in reasoning on sequences of graphs (i.e., sequences

of spatial configurations). It compounds the matching problem, because of the need to retain

consistent valuation choices across the sequences of matches. Specifically, the accounting for

abstract scenarios where nodes dynamically appear and disappear proved a tricky issue.

Once graph matching has determined which physical nodes can play the role of the nodes appearing

in the scenario, trace analysis can proceed by comparing their communication events with the ones

in the event view. This requires a well-defined semantics for the event view. We investigated this

issue for TERMOS. As a general comment, the problems we encountered did not originate from the

language extensions we proposed (broadcast communication, causal dependency on configuration

change events). Rather, they came from the core UML constructs. An overview of UML 2.0

Sequence Diagrams semantic problems can be found in [MiWae]. The semantics we retained avoids

some of these problems by syntactic restrictions in TERMOS (e.g., we do not allow nesting for

some language operators). We also made choices that depart from the standard (informal)

interpretation of sequence diagrams, e.g., weak sequencing is no longer the default composition

operator for language constructs
5
. These restrictions and choices make it possible to assign a clear

and unambiguous meaning to the diagrams. The semantics is then defined in a constructive way, by

transforming the sequence diagrams into automata capturing the partial order of events. Note that, at

the date of the writing of this deliverable, the transformation is specified but not yet implemented.

3.1.4 Overview of the next sections

After the high-level presentation of the testing contribution within HIDENETS, the next two

sections provide a more detailed account of the underlying technology.

Section 3.2 presents TERMOS, the scenario language we developed to describe requirements for

mobile-based applications. The language includes the three extensions we proposed to account for

interactions in mobile settings: introduction of a spatial view to describe system configurations,

representation of configuration changes as global events, and representation of broadcast

communication (e.g. for radio communication in a local vicinity). TERMOS provides a concrete

illustration of how these extensions, defined in terms of UML elements, can be used into a

specialized language profile. TERMOS also exemplifies one of the roles for scenarios in the

5
 This choice is non standard but not uncommon for existing semantics, as will be explained in Section 3.2.2.3.

Page 64 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

proposed testing framework (see Figure 47), namely the role of requirement scenarios. Requirement

scenarios allow an automation of the test oracle procedure. Their semantics is defined by

transforming diagrams into automata that categorize traces as valid or invalid. When analyzing test

traces against them, any violation of a requirement will yield a Fail verdict. The presentation of

TERMOS covers both the syntax and the semantics, hence allowing an illustration of all the above

issues.

Section 3.3 presents GraphSeq, a graph matching tool developed to process the spatial view of

scenarios. Note that GraphSeq is independent from the details of the UML profile used in the event

view. Hence, it could be used in relation with TERMOS, but also in relation with other scenario

languages including a spatial view and having global configuration change events in the event view.

The tool takes as inputs two sequences of labelled graphs, intended to come respectively from a

scenario and a trace, and generates the set of all possible matchings. Section 3.3 describes the

algorithms implemented in GraphSeq. They use a facility for graph homomorphism building, which

has been taken from another graph tool developed at LAAS-CNRS [Gue]. GraphSeq has been

validated by using hundreds of randomly generated sequences of graphs. We also performed

experiments using GraphSeq to analyze data traces supplied by a mobility simulator developed at

the University of South California [Bai].

3.2 TERMOS: a scenario language for testing requirements

TERMOS is based on UML 2.0 Sequence Diagrams, which are briefly presented in Section 3.2.1.

The original Sequence Diagrams specification was modified in the following way: (i) extensions

were added that help describing mobile settings, (ii) the usage of some of the core UML elements

were restricted to make the checking of requirements feasible, (iii) the interpretation of some of the

elements was modified to overcome some problematic situations. Section 3.2.2 details the rationale

behind our modifications. Section 3.2.3 presents the syntax of the language, and Section 3.2.4

exemplifies it by means of requirements scenarios extracted from case studies. Section 3.2.5

describes the semantics.

3.2.1 UML 2.0 Sequence Diagrams

Scenarios in UML are modelled with Interactions. A Sequence Diagram is a concrete notation to

depict Interactions. Figure 50 illustrates a basic Interaction. Lifelines represent the individual

participants in the Interaction, which communicate via Messages.

sd d53-2

a : A b : B c : C

m3

m4

d : D

m1()
m2

Lost

message

Found

message

Asynchronous

message

Synchronous

call

Message-

Occurrence-

Specification

LifelineName of

Interaction

Figure 50: Example Sequence Diagram

Page 65 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Message is a general term; it can be a synchronous or an asynchronous communication.

MessageKind defines whether the sender or receiver of the message is known (complete, lost or

found messages). Messages have two MessageEnds. OccurrenceSpecification (and its descendants)

is the basic unit of semantics. Sending and receiving messages are marked with

MessageOccurrenceSpecification.

More complex Interactions can be created with CombinedFragment as shown in Figure 51. A

CombinedFragment consists of one or more InteractionOperands. An InteractionOperatorKind

specifies the purpose of the fragment. In Figure 51, there is an alt operator (i.e., alternative

fragment). InteractionConstraints can guard each InteractionOperand. Messages on their own

cannot cross the boundaries of CombinedFragments, they need a Gate which links the two parts of

the message. An InteractionUse refers to another Interaction. It can pass parameters and can have a

return value.

StateInvariant is a runtime constraint on one of the participants of the Interaction. StateInvariants

have two kinds of notation, on one hand it can be an expression of attributes and variables, or it can

refer to a state of the lifeline's instance (both notations are used on Figure 51). Further constructs

exist, for a complete list see the OMG specification [UMLsup].

sd d53-3

alt

a : A b : B

m1

m2

m3

c : C

m3

[a.d < 5]

[else]
StateInvariant

Interaction-

OperatorKind

Interaction-

Constraint

Interaction-

Operand

Combined-

Fragment

Gate

m4

{ c.e > 5}

sendState

d : C

ref
anotherSD(31, „p2”) InteractionUse

Figure 51: Example for CombinedFragment

Table 1 lists the operators that can be used in CombinedFragments. We grouped the operators in

four major categories.

Page 66 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Operators that make the representation of diagrams more compact

alt "alt designates that the CombinedFragment represents a choice of behaviour."

opt
"opt designates that the CombinedFragment represents a choice of behaviour where either the

(sole) operand happens or nothing happens."

break

"break designates that the CombinedFragment represents a breaking scenario in the sense that

the operand is a scenario that is performed instead of the remainder of the enclosing

InteractionFragment."

loop
"loop designates that the CombinedFragment represents a loop. The loop operand will be

repeated a number of times."

Operators that modify the partial order of occurrences

par
"par designates that the CombinedFragment represents a parallel merge between the behaviours

of the operands."

seq
“seq designates that the CombinedFragment represents a weak sequencing between the

behaviours of the operands.”

strict
"strict designates that the CombinedFragment represents a strict sequencing between the

behaviours of the operands."

critical
"critical designates that the CombinedFragment represents a critical region. A critical region

means that the traces of the region cannot be interleaved by other OccurrenceSpecifications."

Operators that modify the conformance relation

neg "neg designates that the CombinedFragment represents traces that are defined to be invalid."

assert

"assert designates that the CombinedFragment represents an assertion. The sequences of the

operand of the assertion are the only valid continuations. All other continuations result in an

invalid trace."

ignore
"ignore designates that there are some message types that are not shown within this combined

fragment."

consider "consider designates which messages should be considered within this combined fragment.”

Table 1: Operators in CombinedFragment

3.2.2 Discussion of the design decisions for TERMOS

A TERMOS scenario can be seen as describing an observer to check invariant properties. It is

preferable to keep it simple, i.e. a “big” property should be decomposed into a set of smaller ones.

We do not allow hierarchical description of requirements with sequential composition of scenarios,

or references. A set of scenarios corresponds to a set of independent, self-contained checks. The

semantics should make it possible to unambiguously determine whether or not a test trace violates

any one of the required properties.

The 2.0 version of the UML specification vastly expanded the capabilities of Sequence Diagrams,

many elements were incorporated from Message Sequence Charts [MSC], and the semantics was

completely redesigned to fit it into the general run-time behaviour of UML. However, a precise

semantics was not defined for all of the new elements, which could result in hard to interpret

diagrams (see e.g., the discussion we conducted in [MiWae]). In this section, we review some of the

potential problems and justify the interpretation choices and syntactic restrictions we retained.

3.2.2.1 Default interpretation of diagrams

Let us start with a simple diagram containing a basic interaction (Figure 52). What does it say about

the traces of some target system? As there is no assert or neg operators introducing mandatory or

forbidden modalities, the usual interpretation is that the diagram represents a potential behaviour,

Page 67 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

that is, it shows an example of valid trace. For some of the semantics [Stö, Küs], the valid trace is

exactly: “!m1,?m1,!m2,?m2” (where „!‟ denotes sending, „?‟ denotes receiving) and all other traces

are inconclusive. However, when it comes to representing requirements scenarios, it is more

convenient to adopt a different interpretation:

 The scenario represents a behaviour fragment, that is, there may be a prefix in the system trace

before the shown behaviour occurs, and the behaviour may occur several times in a given trace.

 Also, not all lifelines and not all interactions are represented. The shown events may interleave

with other events that are not explicitly mentioned in the diagram.

The second item raises the issue of the identification of events that are allowed to, or not allowed to,

interleave. Again, several interpretations are possible (see the discussion conducted in [Klo]). The

strict interpretation is that the diagram is complete with respect to occurrence specifications that are

given in it explicitly. In particular, duplicate messages are not allowed: for a trace fragment

“…,!m1,?m1,!m1,?m1,!m2,?m2, …”, the first m1 message does not match the m1 message

represented in Figure 52, while the second one does. Interleaving with other messages is always

allowed (e.g., interleaving with a hypothetical message m3), because a message that does not appear

explicitly in the requirement scenario is assumed irrelevant to its trace-language and its satisfaction

relation. The weak interpretation is less restrictive with respect to the shown occurrence

specifications. It only requires that the trace events occur in the specified order (e.g., the m2

interaction is in the future of m1) and may as well accept duplicates.

We have retained Klose‟s weak interpretation. The UML consider operator may then be used to

restrict the allowed interleavings (e.g., in Figure 52, considering m1 yields the strict interpretation

with no duplicate). The ignore operator is not needed, because the default interpretation already

“ignores” every event that may interleave with the represented ones.

sd d53-4

a : A b : B

m1

m2

Are the following traces valid, invalid or

other?

!m1, ?m1

!m1, ?m1, !m1, ?m1, !m2, ?m2

!m1, ?m1, !m3, ?m3, !m2, ?m2

Figure 52: Interpretation of a basic Interaction

3.2.2.2 What is a trace?

Since the purpose of the semantics of the language is to categorize test traces as valid or invalid, a

definition of traces is needed. In Figure 52, for the sake of simplicity, a trace was noted as a

sequence of message sending (denoted by !m) and receiving (denoted by ?m) events. However, this

is not sufficient. Some of the semantics [Stö, UMLsup] actually consider a tuple (!m, sender) or

(?m, receiver) for denoting events, while others use the tuple (!m, sender, receiver) However, this is

also not always sufficient. Consider for example a trace, where the same event appears between two

nodes several times:

“…, (!m1, a, b), (!m1, a, b), (?m1, a, b), (?m1, a, b), …”.

Does the first receiving event correspond to the first, or second sending event?

Page 68 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

In order to analyze traces, we need to match receiving events with the sending event that caused it,

which is only possible, if each message can be uniquely identified. See e.g. [Hal] for such a

definition of a trace, and for applications to monitoring distributed systems. Accordingly, in our

semantics, a concrete trace will be a tuple containing (?m, receiver, id) or (!m, sender, id), where m

is the name of the message sent or received, and id is an identifier generated by the monitoring

functions of the test platform. Note, that a send event may be aimed to several receivers (e.g., in the

case of a broadcast message), but a receive event involves only one receiver. The id serves the

purpose to match the sending and receiving events of a given message.

When comparing a concrete trace to a requirement scenario, we need to account for the consider

operators that restrict the allowed interleavings. A problem is that in standard UML, the granularity

of consider is the message, not the event. How should then a CombinedFragment “consider {m}”

be interpreted? Does it mean that none of the involved lifelines may send or receive messages with

type m others that the ones explicitly depicted inside the consider fragment? Or do we allow

receiving provided that the corresponding send event was not forbidden (for example, consider a

hello message sent by a node that is not involved in the scenario)? Moreover, the message

granularity limits the expressiveness of the language. In the requirements we analyzed, it was

sufficient to use consider in the scope of all lifelines, thus we settled with the following

interpretation for consider {m}. The sending of messages with type m is forbidden for all lifelines,

but it is allowed to receive a message with type m, if its sending was not forbidden.

3.2.2.3 Synchronization on entering and exiting fragments

The OMG specification uses weak sequencing as the default composing operator between messages

and fragments. This means that there is no synchronization mechanism amongst lifelines when

entering or exiting fragments.

sd d53-5

[x.l > 0]

[y.k == 1]

alt

x : Node y : Node

a

b

z : Node

c

Figure 53: No synchronization on entering fragments

In our testing framework for mobile distributed systems these kinds of diagrams could cause issues

in several ways:

 Operators having different meaning than in structured programming languages: E.g., there is no

strict sequencing between the iterations of a loop.

Page 69 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 No common point of time to evaluate guards: According to the OMG specification, guards

should be placed on the lifeline, which has the first event in that fragment6. Hence, the

specification allows non-local choices. This could be problematic in the case of test

requirements, because no common point of time could be selected to evaluate the different

guards. E.g., on Figure 53, checking of y‟s guard can happen only after the receiving of message

c, while checking x‟s guard can be done before even sending c.

 Unclear spatial or temporal scope of conformance operators: Instances can ever enter

independently into fragments with conformance operators (assert or negate, and consider or

ignore). This complicates the checking of requirements heavily, consider for example a scenario

where only one instance has entered an ignore fragment so far, while the others are still outside

of it.

Thus, we depart from the OMG specification‟s semantics, and introduce an explicit synchronization

on entering and exiting combined fragments among the lifelines covered by the fragment. This is

also not an uncommon design decision, see e.g. [HaMa] or [CavFil].

3.2.2.4 Restriction on guards and state invariants

In Figure 53, the synchronization on entering the alt box means that the guards must be evaluated

after the receiving of c. Since requirement scenarios describe partial behaviour, there may be other

communication events interleaving with the represented ones. Specifically, there may be events

occurring between the receiving of c, and the sending of either a or b. What about then if such

events modify the truth value of the guards? Similarly, unrepresented events may have a side effect

on the truth value of StateInvariant elements. Several strategies may be considered for deciding

when to evaluate predicates (see e.g., [Klo]), ranging from evaluation as soon as possible to

evaluation at an arbitrary instant. To avoid these problems, and have no side effect from

unrepresented events, we impose the following constraint on variables appearing in guards and state

invariants:

 Local predicates can only refer to (i) parameters of messages previously sent or received by this

lifeline, (ii) node label variables for the target lifeline in the current spatial configuration;

 Global predicates can only refer to (i) parameters of messages previously sent or received by

any of the involved lifelines, (ii) node label variables for any of the involved lifelines in the

current or previous spatial configurations.

The spatial view will be described in Section 3.2.3.1. As will be seen, the description of spatial

configurations accommodates label variables to represent node attributes. These variables are

assigned a value when a concrete match of the configuration is found in the trace. The assigned

values have to remain stable for the duration of the matching. Message parameters are processed

similarly to configuration parameters: they are symbolic constants, the value of which is determined

by matching. In Figure 54.a, when a concrete trace event matches the first Val(v) emission, it

determines the value of v for the rest of the scenario. In particular, a concrete Val message will not

match the second operand of par if v has not the expected value (in the absence of a consider

fragment, this means that inadequate Val messages are simply ignored). Specifiers should use

different variable names whenever they do not intend a unique concrete value.

6
 Note, that because of constructs like alt or par, there can be cases, where more than one possible next element exists

for an event. Thus, sometimes it is not even obvious where to place the guard. In the semantics part (and more

specifically Section 3.2.5.1), we will see that this problem does not occur for TERMOS scenarios.

Page 70 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Note that a clean treatment of predicates at the semantic level should involve checks for well-

definedness. Figure 54.b illustrates an ill-definedness problem: if v1 is not zero, the value of v2 is

undefined. How to detect such problems is presented in Section 3.2.5.3.

sd d53-6

par

[v > 5]

alt

x : Node y : Node

low

Val(v)

Val(v)

high

[v <= 5]

sd d53-7

assert

opt

x : Node y : Node

Val(v1)

{ v2 > v1 }

Val(v2)

[v1 == 0]

(a) (b)

Figure 54: Variables in guards and state invariants

3.2.2.5 Deterministic diagrams

As illustrated on Figure 55, ambiguous diagrams can be constructed, where a given trace can be

both valid and invalid.

An alt operator without guards indicates a non-deterministic choice between its operands. The result

of this non-deterministic choice in the current diagram is that if an a message appears in the trace, it

can be either a valid message (depicted in the second operand) or an invalid one (caused by the neg

operator in the first operand). Furthermore, because the specification of Sequence Diagrams

prescribes weak sequencing as the default composition operator, on first sight the orderings in the

diagram might not be obvious. The sending of message c is not related to the a messages, thus,

although it appears visually after the a messages, and after the alt fragment, actually it can be sent

before them.

The OMG specification contains several such other cases. If Sequence Diagrams are just used as a

high level overview of the system or as a draft specification, these might not cause problems. But in

the HIDENETS testing framework, scenarios should serve as a specification for test oracle checks,

thus such non-obvious cases must be handled.

Page 71 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

sd d53-8

alt

neg

x : Node y : Node

a

a

c

z : Node

Figure 55: Hard to interpret Sequence Diagram

Ambiguous cases are caused mostly by:

 Unclear scope of conformance operators (when do we start to forbid a),

 Non-deterministic constructs in the diagrams (alt with several guards true).

This is a problem when a given trace is checked, whether it satisfies a test requirement or not. Thus,

we tried to restrict the syntax of the language to make the diagrams deterministic:

 Introducing synchronization on entering and exiting fragments assigns a clear scope to

conformance operators in fragments.

 Alt is transformed to a deterministic if-then-else construct.

3.2.2.6 No nesting of conformance operators

The OMG specification allows the unlimited nesting of different operators. This could result in an

assert nested in a neg fragment, or in a par, where one of the operands contains the negated version

of the other operand. Again, checking of test requirements like these is unfeasible, thus we

recommended the following modifications:

 The diagram can have only one assert box at the end of the diagram, which should cover all

lifelines.

 Negative scenarios are expressed with a false global predicate in the assert box instead of a neg

fragment.

 Only one level of nesting of conformance operators is allowed.

 Table 2 summarizes the allowed combinations of operators.

Page 72 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 alt opt par assert consider

alt Y Y Y Y Y

opt Y Y Y Y Y

par Y Y Y Y Y

assert N N N N Y
1

consider N N N Y
2
 N

Table 2: Can the operator in the row be nested in the operator in the column?
1
 The consider should be at the main level of the diagram.

2
 The assert should be at the main level of the diagram.

3.2.3 Syntax of the language

In the description of the language‟s syntax, we put emphasis on the new elements we propose to

allow description of scenarios in mobile settings. The new elements concern the introduction of a

spatial view for the scenario (Section 3.2.3.1), the accounting for spatial configurations in the event

view (Section 3.2.3.2), and the representation of broadcast communication (Section 3.2.3.3). We

then provide an overview of the syntax of the event view (Section 3.2.3.4), recapitulating the

syntactic constraints put on the core UML elements to facilitate the definition of the semantics.

3.2.3.1 Syntax of the spatial view

The spatial view may contain several spatial configurations. Each configuration is given a name,

e.g., Figure 56 shows a configuration named C3.

A configuration is a labeled graph, where vertices represent system nodes and edges represent

different kinds of connection between nodes. The syntax of the labeled graphs presented below is

compatible with the input domain of the graph matching tool described in Section 3.3. Specifically,

we put constraints on the number and type of labels, and only consider undirected graphs.

Each node has a symbolic id. For example, Figure 56 shows three nodes having IDs “x”, “y” and

“z”. This means that any scenario referring to C3 must involve lifelines for nodes x, y and z. In

order to allow for a richer representation of configurations, nodes can have two additional attributes

of integral types (i.e., integers or enumeration types). The corresponding vertex labels in the graph

can take different forms:

 A constant value from the integral type. For example, in Figure 56, the two attributes of node y

have constant values 1 and 2.

 A variable name, denoting a value from the type. For example, the first attribute of nodes x and

z must be identical, but their precise value is let unspecified (variable v1). This value is intended

to remain stable in the configuration. Moreover, if a scenario involves several graph

configurations containing label variable v1, it must be substituted for a single value. Thus, v1

can be seen as a symbolic global constant for the scenario.

 A wildcard indicating a don’t care value, see e.g. the second attribute of node x. Don’t care

values do not need to remain stable in the given configuration.

Edges can be labelled by constant values or wildcards. In Figure 56, it is assumed that the

connection type is an enumerated type {safeDistance, communicationDistanceOnly}, like in the

GMP testing case study. Nodes x and y have a safeDistance connection; Nodes y and z are

disconnected; we do not care about the connection of nodes x and z, they may exhibit unstable

connections/disconnections during the configuration.

Page 73 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

l2 = v1

l3 = *

x

l2 = 1

l3 = 2

y

C3

l2 = v1

l3 = *

z

*

<<safeDistance>>

Figure 56: Example of spatial configuration

To be as compatible with the original UML specification as possible, we depict spatial

configurations using object diagrams. A package with the name of the configuration contains all

elements. Nodes are represented as instances, slots named l2 and l3 contain the additional labels

defined for the given node. Labels for edges are represented as stereotypes, because they

characterize the given connection between the two nodes.

3.2.3.2 Spatial elements in the event view

The event view of a scenario uses UML 2.0 Sequence Diagrams, with some extensions to explicitly

account for the spatial configurations defined in the spatial view.

An Interaction can be tagged with the termosScenario stereotype (Figure 57) to show that is a

requirement scenario in TERMOS. The termosScenario stereotype has an association named

initialConfiguration giving the initial configuration of the Interaction.

<<stereotype>>

termosScenario

<<metaclass>>

BasicInteractions::Interaction

<<metaclass>>

Kernel::Package

1

*

initialConfiguration

Figure 57: The termosScenario stereotype

This extension fits well into the UML framework, the only drawback is that because Interactions are

the abstract concepts representing scenarios, they visually do not appear on a Sequence Diagram. In

most of the modelling tools, assigning a stereotype to an Interaction is only reflected in the textual

properties view, but not on the diagram itself. Figure 58 illustrates the case, where the

termosScenario stereotype is assigned to an Interaction named ReportHello in Rational Software

Architect [RSA]. For this reason, in the examples used in this deliverable we depict the initial

configuration of the diagrams in a comment box containing the text INITIALCONFIG also. These

comments are not part of the semantic model, rather they ease the readability of the examples.

Page 74 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Figure 58: Assigning the termosScenario to an Interaction

Configuration changes are then represented by global events of the form CHANGE

(name_of_new_config) that induce a global synchronization for all lifelines. Configuration changes

cannot be nested into operators, except into a consider operator that is at the main level. In

particular, we cannot require a configuration change (nesting into assert). Configuration changes

are “decided” by the environment. Also, there is nothing such as an optional or parallel

configuration change (nesting into opt, alt and par). Configuration changes arise deterministically

and involve all lifelines at the same time. In this way, the diagram can be decomposed into

fragments, where each fragment takes place in a well-defined spatial configuration. This makes it

explicit which communication event occurs in which configuration. Predicates (guards of alt

operands, state invariants) may refer to variables of their current or past configurations (i.e., node

label variables), see Figure 59.

sd d53-9

assert

x : Node y : Node

m(p1)

{ x.l2 == p1 }

CHANGE(C3)

INITIALCONFIG = C2

Figure 59: Example for configuration changes

The configuration changes may involve the dynamic creation, shutdown and restart of nodes. For

example, a scenario may have three successive configurations C4, C5, C6, where:

 C4 contains a node with id x,

Page 75 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 C5 does not contain a node with id x, but contains a node with id y that was not present in

C4,

 C6 contains both nodes x and y.

x

C4

y

C5

x y

C6

Figure 60: Spatial configurations with node changes

There is no convenient way to describe such a dynamic structure in sequence diagrams. For

example, a lifeline can be stopped, but then it is not possible to restart it. Also, dynamic creation can

only occur as the result of an action performed by an existing lifeline.

sd d53-10

assert

x : Node y : Node

m1

CHANGE(C5)

m3

CHANGE(C6)

This message is

not valid

according to the

actual spatial

configuration

INITIALCONFIG = C4

m2

These messages

are not valid

according to the

actual spatial

configuration

This message

can be sent

according to the

spatial

configuration

Figure 61: Invalid message according to the spatial configuration

To solve this problem, we take the convention that the spatial configuration determines which node

is alive/dead at some point of the scenario. There is a lifeline for every nodes mentioned in any one

of the configurations. If a node is not active at some point of the scenario, then it is not supposed to

participate to any communication interaction (Figure 61). Checks can be provided to warn the

scenario specifier whenever communication is not compatible with the spatial view:

 Dead nodes sending and receiving messages,

 Active nodes exchanging messages while there is no path connecting them in the current

configuration.

3.2.3.3 Broadcast communication

UML sequence diagrams focus on point to point communication. There is no element dedicated to

the representation of broadcasts or multicasts. This is a serious drawback for representing local

broadcasts, i.e., communication with unknown partners in local vicinity.

Page 76 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

We propose to use the concepts of lost and found messages to represent such broadcasts. Lost

messages are messages with no explicit receiver. Similarly, found messages do not have an explicit

sender. Lost and found messages offer flexibility to represent partial behaviour, where not all

lifelines and not all communication events are of interest. Such flexibility is quite useful when

specifying requirement scenarios; hence we need lost and found messages independently of our

consideration for local broadcasts.

In order to distinguish broadcasts from “usual” lost/found messages, we assign them the

<<broadcast>> stereotype. A broadcast involves one send event followed by one or several receive

events. A tagged value is attached to the corresponding lost/found messages, so that each receive

event of the diagram can be paired to the send event that caused it. Figure 62 presents the definition

of the broadcast stereotype.

id: integer

<<stereotype>>

broadcast <<metaclass>>

BasicInteractions::Message

Figure 62: The broadcast stereotype

Figure 63 shows an example how the broadcast stereotype can be used. There are two broadcast

messages on the diagram, one send by node x (identified by id 1) and one by node z (identified by id

2). Every other node receives the broadcasts messages, as depicted by the found messages.

sd d53-11

par

x : Node y : Node

<<broadcast>> hello

<<broadcast>> hello

{id = 1}

{id = 1}

z : Node

<<broadcast>> hello

{id = 1}

<<broadcast>> hello

{id = 2}

<<broadcast>> hello

{id = 2}

<<broadcast>> hello

{id = 2}

Figure 63: Example of broadcast messages

3.2.3.4 Syntax of event view

The abstract and concrete syntax of the event view are derived from the syntax of UML 2.0

Sequence Diagrams. According to the decisions described in 3.2.2, some of the elements were

removed and some additional constraints were added to adopt it our environment.

Page 77 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Appendix B contains the complete abstract syntax of TERMOS. The changes to the original

abstract syntax are collected in Table 3.

Type of change Description of change

Remove
Removed elements: Events, Gate, PartDecomposition, GeneralOrdering, Continuation,

ExecutionSpecification.

Remove The following operators were removed: seq, strict, loop, ignore, neg, break, critical.

Change

Changed the multiplicity for the association going from StateInvariant to Lifeline from

1 to 1..* to allow global predicates. The concrete syntax remains the same, just now

StateInvariants can span to multiple Lifelines.

Constraint Only the following operators can have guards: alt, opt.

Constraint The following operators have only one operand: opt, assert, consider.

Constraint The assert and consider operators should cover all Lifelines.

Constraint There should be an assert fragment at the bottom of the diagram.

Constraint
If a FALSE global predicate is used, it is the only element in the assert, and covers all

lifelines.

Constraint The nesting of conformance operators is only allowed as in Table 2.

Constraint
The configuration change can only be in the main fragment of the diagram or nested in

a consider, provided that the consider is at the main fragment of the diagram.

Constraint The diagram should contain a note with the initial configuration in it.

Table 3: Changes to the original Sequence Diagram syntax

Automated checks can be implemented to verify that a diagram conforms to the above changes and

constraints. A prototype tool was created in the modelling tool IBM Rational Software Architect to

show the feasibility of the approach. Rational Software Architect calls such an extensibility tool

used for model manipulation as a pluglet. The pluglet implemented takes an Interaction as an input,

and outputs whether the diagram violates the above constraints. The Interaction is passed in the

internal format of the Eclipse UML2 component, which is basically a Java representation of the

Interaction stored in its abstract syntax. The following example presents a fragment from an

Interaction represented in that format.

org.eclipse.uml2.uml.internal.impl.InteractionImpl@f700f70 (name: Interaction1)

 org.eclipse.uml2.uml.internal.impl.LifelineImpl@6fb46fb4 (name: a)

 org.eclipse.uml2.uml.internal.impl.LifelineImpl@71667166 (name: b)

 ...

 org.eclipse.uml2.uml.internal.impl.MessageOccurrenceSpecificationImpl@73f873f8

 (name: <unset>, visibility: <unset>)

 org.eclipse.uml2.uml.internal.impl.MessageOccurrenceSpecificationImpl@75a475a4

 (name: <unset>, visibility: <unset>)

 org.eclipse.uml2.uml.internal.impl.CombinedFragmentImpl@3d803d80 (name:

 first_assert, visibility: <unset>) (interactionOperator: assert)

 org.eclipse.uml2.uml.internal.impl.InteractionOperandImpl@4c864c86 (name:

 <unset>, visibility: <unset>)

 org.eclipse.uml2.uml.internal.impl.InteractionConstraintImpl@179e179e

Page 78 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 (name: <unset>, visibility: <unset>) (visibility: public)

 org.eclipse.uml2.uml.internal.impl.OpaqueExpressionImpl@439a439a

 (name: <unset>) (body: [a.k > 5], language: null)

Figure 64 presents the pluglet in action. The tool currently analyzed Interaction1 selected from the

tree view on the left side. Interaction1 is depicted on SequenceDiagram2 showed in the center of the

screen. Finally, the result of the analysis is presented as console messages in the lower part of the

screen. It can be seen that the interaction violates several constraints: there are several assert

fragments in the diagram, some of the asserts are not covering all lifelines and they have guards,

etc.

Figure 64: The pluglet checking the extra constraints for the language

Apart from the simple constraints presented in Table 3, there are other, more complex checks that

could be done to validate whether a requirement scenario is also semantically well-formed.

 Check, whether messages depicted on the diagram can be sent and received in the current spatial

configuration.

 Check, whether predicates refer only to message parameters received so far and to configuration

labels from the current or past configurations.

These checks will be addressed later in the semantics part in Section 3.2.5.3.

3.2.4 Example scenarios

The following scenarios exemplify the recommended new elements in the language.

Page 79 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

3.2.4.1 Group Membership Protocol

The Group Membership Protocol we analyzed [Waes] provides a consistent view of nearby nodes in

mobile ad-hoc environments. Nodes form groups, and each group has a leader. A leader informs

the members of its group with SPGroupChange messages about a change in the group membership.

Figure 48 and Figure 63 showed already examples for the GMP with broadcast messages and

configuration changes. The next examples will present how local and global predicates can be used

in requirement scenarios.

<<Signal>>

SPGroupChange

leader : Member

members : Vector<Member>

connections : Hashtable

groupChangeSequenceNumber : Integer

Figure 65: SPGroupChange message

The SPGroupChange message contains a groupChangeSequenceNumber, which identifies the new

group. The following requirements can be defined for this protocol.

Local monotonicity: Group identifiers installed on each host are in increasing order.

This requirement can be captured with the following scenario.

x

C7

sd d53-12

assert

x : Node

SPGroupChange(l1, m1, c1, g1)

SPGroupChange(l2, m2, c2, g2)

{ g2 > g1 }

INITIALCONFIG = C7

Figure 66: Local monotonicity requirement for the GMP

This example showed how message parameters can be used in state invariants to express predicates.

An additional requirement for the GMP is membership agreement.

Membership Agreement: If hosts x and y have the same group id, then they have the same views.

The initial spatial configuration of the diagram shows that x and y are in safe distance (which is a

requirement for being in the same group).

Page 80 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

x y
<<safeDistance>>

C8

Figure 67: Spatial configuration for membership agreement requirement

The event view of the requirement depicts that if the two nodes receive a group change message for

the same group, then these messages should contain the same membership. Note that here a global

state invariant is used, i.e. one that refers to values belonging to different nodes.

sd d53-13

assert

x : Node

SPGroupChange(l1, m1, c1, g1) SPGroupChange(l1, m2, c2, g1)

y : Node

{ (m1 == m2) }

INITIALCONFIG = C8

Figure 68: Event view for the membership agreement requirement

3.2.4.2 Platoon Driver Support Software

The Platoon Driver Support Software (PDSS) [D6.3] is one of the demonstrators developed in

HIDENETS. It simulates the control of a platoon consisting of a head vehicle and several slave

vehicles. The head vehicle collects the speed, acceleration, etc. data from the slaves, and provides

them new actuation values in response. One of the requirements can be described as:

The head vehicle has to respond for every speed report with a new speed value.

headVehicle slaveVehicle

C9

Figure 69: Spatial configuration for the PDSS requirement

The requirement can be depicted with the scenario on Figure 70. The important part of the diagram

is the use of a consider fragment. Without the consider fragment, because of the weak

interpretation, several reportSpeed messages can appear before sending the setSpeed message.

However, the requirement states that the headVehicle has to respond to each report message. With

the consider fragment, this behaviour is achieved.

Page 81 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

sd d53-14

consider {reportSpeed}

assert

headVehicle slaveVehicle

setSpeed(s2)

INITIALCONFIG = C8

<<broadcast>>

reportSpeed(s1)

<<broadcast>>

reportSpeed(s1) {id = 1}

{id = 1}

Figure 70: Requirement for the PDSS application

3.2.4.3 Distributed black box application

The distributed black box application [D6.3] in HIDENETS backs up key data from a car to other

cars or infrastructure nodes. A requirement defined for this application can be described as follows.

After a car V1 backs up its data on an infrastructure server, it must not back up its data on another

car V2.

This is so because the memory space available on neighbouring cars is reserved for data that could

not be saved on the infrastructure yet.

The spatial configuration change of this scenario can be expressed as in Figure 71.

n1 : Mobile n3 : Infrastructure

C10

n2 : Mobile

*

n1 : Mobile n3 : Infrastructure

C11

n2 : Mobile

*

*

Figure 71: Spatial configurations for the black box application

In the spatial configuration C10, the car n1 is connected to the infrastructure node n3. The car n1

and the car n2 are not connected. The symbol „*‟ is to express any spatial relation between two

nodes.

Page 82 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

sd d53-15

assert

n3 : Infrastructure

put (d1)

n1 : Mobile

request

n2 : Mobile

CHANGE(C11)

put (d1)

FALSE

INITIALCONFIG = C10

Figure 72: Event view of the black box scenario

Figure 72 depicts the event view of the scenario. The example illustrates how negative scenarios

can be expressed using a global, false invariant. A request from the user on n1 asks for the backup

of n1‟s data to the infrastructure. Then, if car n1 is connected to another car (n2) by transmission

range (spatial configuration C11), it should not back up the same data on n2, as the data is already

on the infrastructure.

3.2.5 Semantics of the language

The semantics of TERMOS has been inspired by the semantics proposed for LSC, more specifically

the one defined by Klose [Klo]. The approach builds an automaton from the diagram, the states of

the automaton being determined by the valid cuts of the diagram. Informally, a cut is intended to

represent a consistent global state characterized by the events occurred so far, and it is meaningful

to reason about the past or the future of this state. The automaton transitions then stand for the

successor relation among the cuts. Klose‟s approach has been extended (i) to incorporate UML SD

elements not present in LSC, e.g. alt or par combined fragments, and (ii) to handle the mobile

settings related elements, e.g. broadcast messages and configuration changes. Also, the details of

the construction of the automaton differ in several aspects:

 Klose builds a Büchi automaton to accommodate infinite traces. Since we are dealing with finite

test traces, we are building a standard automaton.

 Klose has a separate treatment for the pre-chart (for us, the analogous would be everything

before the assert fragment) and chart (for us, would be the content of the assert fragment). Our

semantics builds a single automaton for the whole diagram.

 We have an interleaving semantics, while Klose allows several events to occur at the same time.

As regards the last two points, our choices are similar to the ones made for a UML variant of LSC,

called MSD [HaMa], which also has an interleaving semantics captured in one automaton.

Our definition of the semantics closely follows the steps identified by Klose.

First the diagram is parsed, its basic building blocks and the orderings between them are identified

(Section 3.2.5.1). Next, the automaton is constructed using the structures built in the first step

Page 83 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

(Section 3.2.5.2). As stated in Section 3.2.3.4 the diagram has to conform also to complex well-

formedness rules, which can be checked based on the formal semantics (Section 3.2.5.3). Finally,

the automaton built for the event view has to be connected to the spatial view (Section 3.2.5.4). The

details of the semantics will be illustrated by taking example scenarios and defining their semantics.

3.2.5.1 Pre-processing the diagram

To create an automaton capturing the semantics of a diagram, first the elements of the diagram are

identified.

Definition 1. The basic building block of a TERMOS diagram is called an atom. The following

elements are atoms:

 Lifeline heads, denoted by l for Lifeline l,

 Lifeline ends, denoted by Tl for Lifeline l,

 MessageOccurrenceSpecifications, i.e. sending a message or receiving a message,

 StateInvariants (for global StateInvariants every Lifeline has a separate StateInvariant atom),

 configuration changes,

 entering a CombinedFragment,

 exiting a CombinedFragment,

 guards.

sd d53-17

par

x : Node y : Node

m1

par

m2

m3

m4

{y.k > 4}

0

1

2.par(1).0

2.par(2).0

2.par(2).1.par(1).0

2.par(2).1.par(2).0

2.par(2).2

2.par(2).3

3

4

sd d53-16

par

x : Node y : Node

m1

par

m2

m3

m4

{y.k > 4}

0

1

2.par(1).0

2.par(2).0

2.par(2).2.par(1).0

2.par(2).2.par(2).0

2.par(2).3

2.par(2).4

3

4

2.par(2).1

Figure 73: Example for assigning atom position to par fragments

The orderings of the atoms on one Lifeline are defined by their position. Klose uses an integer as

the position of atoms, however this is not sufficient in our case. In the case of parallel or alternate

fragments, the visual positioning of atoms does not necessarily mean a temporal relation between

them, i.e., the elements inside the second operand of a par fragment are drawn below the elements

inside the first operand, but they should not necessarily happen after the atoms in the first operand.

Page 84 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

To solve this issue, instead of an integer value a path expression is assigned to each atom, similarly

to the approach used in [Küs]. The method is illustrated by the following example.

The left side of Figure 73 contains the example diagram, while the right side is annotated with the

atom positions. The idea is that for the elements inside the main fragment or for the elements inside

one operand, every atom is assigned a number according to their visual position starting from zero.

If we enter a CombinedFragment, then a path expression is added to the position quantifying in

which operand the current atom resides. In the current example this translates to the following

positions.

 The head of Lifeline x is assigned position 0.

 The atom for entering the first par fragment still belongs to the main fragment, thus it gets

position 1.

 The par gets the next position, which is 2.

 Elements inside the par inherit the position of the par fragment (namely 2 in the current

example), and an expression describing in which operand of the par they reside. Thus, sending

m1 on x gets 2.par(1).0, meaning that it is in the par identified by position 2, it is in the first

operand of the par, and it is the first atom of that operand.

 Entering the second par fragment is in the second operand of the outer par, thus it is assigned

2.par(2).0. Sending of m2 is inside the nested par, its position reflects this nesting:

2.par(2).1.par(1).0. The second par has the position 2.par(2).1, this position is prefixed to every

elements inside that fragment.

 Exiting a fragment belongs to the same level as the fragment itself, thus exiting the first par gets

the position 3, showing that it is at the main diagram fragment.

 Atom positions are only unique per lifelines, and atoms representing the same event (e.g.

entering the same fragment), can have different positions assigned. This is illustrated with the

help of positions on lifeline y.

Thus the definition of the atom position is the following.

Definition 2. The atom position identifies the position of an atom on one lifeline. It has the form

path.id, where path is a string identifying in which CombinedFragment the atom is, and id is an

integer giving the order of the atom compared to the other atoms inside that fragment. Path is

empty if the atom is in the main fragment of the diagram, otherwise it is in the form p.opr(o), where

p is the position of the CombinedFragment the atom is in, opr is the operator of the fragment, and o

is the number of the operand the atom is in.

The example on Figure 74 shows how atom positions can be assigned to an alt fragment.

Guards of operands are grouped to the next atom on the Lifeline, forming a cluster with that atom.

However, care must be taken, because sometimes there is no next atom inside the guard‟s operand

(e.g., in an empty [else] operand coming from an opt fragment). In this case, the cluster contains

only the guard. In the original UML specification, there can be several immediate successor of an

atom also (e.g., if the atom is right before a par with several operands). With the introduction of a

separate atom for the beginning of a fragment, this is not the case in TERMOS.

Page 85 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

sd d53-18

alt

x : Node y : Node

par
m1

m2

m3

[x.l > 5]

[else]

sd d53-19

alt

x : Node y : Node

par
m1

m2

m3

[x.l > 5]

[else]

0

1

2.alt(1).0

2.alt(1).2.par(1).0

2.alt(2).0

2.alt(2).1

3

4

2.alt(1).3

2.alt(1).1

2.alt(1).2.par(2).0

0

1

2.alt(1).1.par(1).0

2.alt(2).0

3

4

2.alt(1).2

2.alt(1).0

2.alt(1).1.par(2).0

Figure 74. Example for assigning atom position to alt fragments

Definition 3. If the a atom is a guard with a position p.i and there exists an atom with a position

p.(i+1), then the two form a cluster. Every other atom forms a cluster with only that atom in it.

To handle the positions of clusters with multiple elements, the concept of location is defined.

Definition 4. The location(cl) function returns the minimum of the positions of the atoms inside the

cluster, where min (p.i, p.(i+1)) = p.i.

Several elements provide synchronization across Lifelines, e.g. configuration changes or entering a

fragment, the clusters corresponding to these elements have to be mapped together. Simultaneous

classes, SimClasses, serve this purpose.

Definition 5. A simultaneous class, SimClass, is a set of clusters from separate Lifelines. The

clusters representing the following elements form a SimClass together, every other cluster forms a

SimClass with only that cluster as its member:

 the beginning of the same CombinedFragment,

 the end of the same CombinedFragment,

 the same configuration change,

 the same global StateInvariant.

Figure 75 illustrates how atoms, clusters and SimClasses are defined for a diagram. To sum up:

atoms are “points” on lifelines; clusters are used to group simultaneous atoms on a given lifeline;

SimClasses group clusters that are simultaneous at a diagram-wide level, that is, non singleton

Simclasses represent synchronization of several lifelines.

Page 86 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

sd d53-20

alt

x : Node y : Node

par
m1

m2

m3

[x.l > 5]

[else]

Atom

Cluster

SimClass

Figure 75: Atoms, clusters and Simclasses on a diagram

Two relations are defined between clusters on one Lifeline. Causality, denoted by

, defines a

partial order between clusters. Conflict, denoted by #, defines which events cannot appear in the

same trace, e.g. atoms from different operands of an alt.

Definition 6. Local causality: let cl1, cl2 be two clusters on lifeline l with their location in the form:

location(cl1) = p1.i.p2 and location(cl2) = p1.j.p3, where p1, p2, p3 can be the empty string.

cl1 cl2 iff j > i

Definition 7. Local conflict: let cl1, cl2 be two clusters on lifeline l with their location in the form:

location(cl1) = p1.alt(i).p2 and location(cl2) = p1.alt(j).p3

cl1 # cl2 iff i ≠ j

Definition 8. The predecessors function calculates the immediate predecessor(s) of a cluster cl on

its lifeline l.

}cl''cl'cl:)l(Clusters''clcl'cl|)l(Clusters'cl{:)cl(rspredecesso

For example, on Figure 74, the predecessor of the cluster with location 2.alt(1).0 is 1, while the

predecessors of the cluster 2.alt(1).3 are 2.alt(1).2.par(1).0 and 2.alt(1).2.par(2).0.

For handling the causality between clusters on different Lifelines, the message sending and

receiving events have to be mapped. To achieve this, every message is assigned a unique symbolic

Page 87 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

id in the form $i, where i is an integer. Let ID be the set of identifiers generated that way, and let

MessageSends(sd) and MessageReceives(sd) be the sets of all message sending and receiving atoms

of the diagram sd.

Definition 9. The messageID: MessageSends(sd) MessageReceives(sd) → ID function returns,

for each sending or receiving atom, the id of the corresponding message.

The predecessors function can be extended to SimClasses to contain also the causality relations

implied by the connection between message sending and receiving. Let SimClasses(sd) represent

the set of all SimClasses of diagram sd.

Definition 10. The immediate predecessors of a SimClass scl in the sequence diagram sd are given

by the prerequisite function:

Prerequisite(scl) := {scl’ SimClasses(sd) | cl scl, cl’ scl’ : cl’ predecessors(cl)

 (a cl MessageReceives(sd), a’ cl’ MessageSends(sd) :

 messageID(a) = messageID(a’))

The conflict relation is extended to SimClasses using the conflict function.

Definition 11. The conflict(scl) : SimClass → (SimClass) function returns the SimClasses which

have clusters that are in different operands of an alt fragment than the operand in which the clusters

of scl are.

We then have scl2 conflict(scl1) if and only if the two SimClasses respectively contain a cluster

cl1 and a cluster cl2 such that:

 the location of cl1 on its lifeline l1 has a form prefix1.k1.alt(i).suffix1 (i.e., cl1 is in an alt operand)

 the location of cl2 on its lifeline l2 has a form prefix2.k2.alt(j).suffix2 with j≠i (i.e., cl1 is in an alt

operand having a different number)

 the alt coincide, that is, the following clusters belong to the same SimClass:

o cl’1 Clusters(l1) having location prefix1.k1-1

o cl’2 Clusters(l2) having location prefix2.k2-1

Note that the local conflict relation (#) corresponds to a special case of the global conflict, when

l1=l2.

3.2.5.2 Unwinding algorithm

The aim of the unwinding algorithm is to build a symbolic automaton that characterizes traces as

valid or invalid according to the requirement scenario. Inspired from [Klo], the principle is to

gradually unwind the SimClasses of the diagram, until all of them have been processed.

The symbolic automaton is a tuple (, Q, qO, FT, FS, , Var, Def) where:

 is a set of transition labels with possibly symbolic variables in Var.

 Q is the set of states,

 qO is the initial state,

 FT Q and FS Q are two disjoint subsets of accept states. They are used to distinguish

trivial satisfaction of the requirements (the trigger before the Assert did not match) and

stringent satisfaction (the content of the both the Assert and the trigger did match).

Page 88 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 Q Q is the set of transitions.

 Var is the set of variables extracted from the TERMOS scenario. It includes all variables

appearing in the spatial view (symbolic labels of vertices), in the event view (message

parameters, free variables in OCL expression of guards and state invariants), and all

symbolic message IDs $i produced by the preprocessing of the diagram.

 Def Q (Variables) gives the subset of variables that are defined for each state. If

(q, {v1, v2}) belongs to Def, then variables v1, v2 have a value in q, and all other variables are

undefined in q.

The unwinding algorithm is based on the notion of phase, defined as a tuple (Ready, History, Cut,

Variables) where:

 History is the set of SimClasses which have already been unwound,

 Ready is the set of SimClasses which are currently enabled to be unwound,

 Cut is a tuple (cl1, …, cln) where each clj is a cluster from lifeline j. The current cut is

intended to represent the borderline between already unwound elements and those that are

currently enabled.

 Variables is the set of variables which are currently valuated.

The computed phases will correspond to automaton states. Like Klose, we assume that there is a

function STATE(ph: Phase) assigning a unique state name for a phase. Note that if the same phase

is encountered several times, the function is able to return the name already assigned at the previous

steps of the unwinding algorithm.

The initial phase considered by the algorithm is (History0, Ready0, Cut0, Variables0) defined as

follows:

 History0 = {{{1}}, {{2}}, …, {{n}}}

 Ready0 = { scl Simclasses (sd) | Prerequisite (scl) History0}

 Cut0 = ({1}, {2}, …, {n})

 Variables0 = set of variables appearing in the initial spatial configuration of the scenario

(this includes the symbolic IDs of the nodes participating to the scenario).

That is, at the initial phase, only the lifeline heads have been unwound. We also assume that we

start analysis in a state where the system is in the initial spatial configuration. This will be ensured

by connecting the graph matching tool to the verification program (see Section 3.2.5.4). The graph

matching tool also allows us to get concrete values for the IDs of nodes and all other variables

defined by the initial configuration, which are then marked as valuated.

STATE(Phase0) is added to the set Q of the automaton states and to the FT subset (Figure 76).

From the initial phase, the algorithm proceeds by computing successor phases (see Figure 77}.

Given a phase ph = (Historyi, Readyi, Cuti, Variablesi), the STEP function returns the next phase

obtained by firing a ready SimClass scl in a sequence diagram sd.

STEP (ph, scl) returns ph’= (Historyi+1, Readyi+1, Cuti+1, Variablesi+1) defined as follows:

 Historyi+1 = Historyi {scl} conflict (scl), that is, both the fired scl and its conflicting

SimClasses are considered unwound,

 Readyi+1 = { scl’ Simclasses (sd) \ {{{T1}}, …{{Tn}}} |

Page 89 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Prerequisite (scl’) Historyi+1 scl’ Historyi+1 }

 Cuti+1 = {cl’1, … cl’n} is produced from Cuti = {cl1, … cln} by letting cl’j = clj if lifeline j is

not concerned by any cluster of the unwound SimClass. Other elements cl’k are replaced by

the corresponding cluster of the unwound SimClass, for each involved lifeline k.

 Variablei+1 is the union of Variablesi and of the set of newly valuated variables. Note that

there are newly valuated variables only if ph contains communication events or

configuration change events.

The new phase may, or not, correspond to an accept state. In the algorithm, this is governed by the

currentMode variable. While the trigger is being matched, current mode is AcceptTrivial and the

produced states are put in FT. When the entering of an Assert box is unwound, current mode

switches to Reject. It switches to AcceptStringent when the Assert is exited, and the successor is put

in the set FS. Transition labels and self-loops remain to be explained.

Roughly speaking, transition labels are obtained by conjoining the individual labels obtained from

the atoms (of the clusters) of the unwound SimClass (The details are in Figure 78). If there are

newly valuated variables, then the transition label also contains an explicit update action. For

example, let us assume that we are currently unwinding a guard “x>3” and a send event “(!m(x),

n1, $4)”. Let us also assume that the values for x and n1 are currently defined, but not the symbolic

message id $4 assigned by the preliminary analysis. Then, the corresponding transition will be

labelled: “x>3 (!m(x), n1, $4) [update ($4)]” which can be interpreted as follows: if x>3 holds

with the current valuation, and the next event of the trace can match (!m(x), n1, $4) with an

appropriate assignment of $4, then the transition can be taken. Taking the transition consumes the

event of the trace, and the current valuation is updated with the concrete message id of this event.

Entering and exiting boxes is simply represented by a true transition. Note that there could be

further optimization to remove the unnecessary states.

Self loops must be added as soon as at least one of the exiting transitions contains a trace event, be

it a communication event or a configuration change event. For example, if the next event of the

trace does not match (!m(x), n1, $4), are we allowed to consume this event and remain in the same

state? Conversely if it matches, do we still have the choice to remain in the same state? The answer

to the latter question is negative, hence the self-loop is labelled (!m(x), n1, $4). The answer to the

former question is generally positive according to our interpretation (see Section 3.2.2.1), but can be

negative if the event is in the scope of a consider box. Let us also remind that our interpretation of

consider {m} is (from Section 3.2.2.2): the sending of m is forbidden for all lifelines, but it is

allowed to receive a message m, if its sending was not forbidden. Accordingly, the self-loop is

concerned by sending events only. Finally, note that unexpected configurations change events are

always forbidden, hence the self-loop label always contains “¬CHANGE(-)”.

// Initialization

Phases := {Phase0}

Q := {STATE(Phase0)} // set of states

q0 := STATE(Phase0) // initial state

FT := {STATE(Phase0)}

FS := Ø

currentMode := AcceptTrivial

SelfLoopLabel := “¬CHANGE(-)” // unexpected config changes should never happen

// Unwinding loop: See Figure 77

Figure 76: Initialization of the unwinding algorithm

Page 90 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

// Unwinding loop

While (Phases ≠ Ø)

 Extract ph = (Historyi, Readyi, Cuti, Variablesi) from Phases

 If (Readyi ≠ Ø)

 SelfLoop := false

 AddedSelfLabel = “”

 For all sc Readyi
 successor := STEP(ph, sc)

 // compute the label of the triggered transition

 UpdatedVariables := Ø

 Label := “”

 For all cl sc

 For all a cl
 Switch a

 entering of an assert box: See Figure 78

 // Note: changes the CurrentMode to reject

 exiting an assert box: See Figure 78

 // Note: changes the CurrentMode to AcceptStringent

 entering of a consider box: See Figure 78

 //Note: changes SelfLoopLabel by forbidding considered send events

 exiting a consider box: See Figure 78

 //Note: changes SelfLoopLabel by discarding the forbidden events

 entering or exiting a par or alt box: See Figure 78

 Guard or state invariant: See Figure 78

 Change in Configuration: See Figure 78

 // Note: change UpdatedVariables to account for new variables in Ci

 // Also, a selfloop is needed. SelfLoopLabel already contains

 // a negated change event

 Send or receive event: See Figure 78

 // Note: change UpdatedVariables to account for new variables in

 // the event

 // Also, a selfloop is needed. If SelfLoopLabel does not already

 // contain a negated form of the event (due to a consider),

 // AddedSelfLabel is changed.

 End Switch a

 End For // all atoms of the cluster processed

 End For // all clusters of the unwound Simclass processed

 // Update the transition set

 If (UpdatedVariables ≠ Ø)

 Build a label ll of the form [list of updated variables]

 Append ll to Label

 Endif

 := {STATE(ph), Label, STATE(successor)}
 // Put successor in automaton states and in Phases

 Q := Q {STATE(successor)}

 If (CurrentMode = AcceptTrivial)

 FT := FT {STATE(successor)}
 Else if (CurrentMode = AcceptStringent)

 FS := FS {STATE(successor)}
 End if

 Put successor in Phases

 End for // All ready SimClasses processed

 // Add a self-loop if needed

 If (SelfLoop = true)

 If (AddedSelfLabel is not empty)

 Build label ll conjoining AddedSelfLabel and SelfLoopLabel

 Else ll = SelfLoopLabel

 Endif

 := {STATE(ph), ll, STATE(ph)}
 Endif

 Endif

End While

Figure 77: Unwinding loop

Page 91 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

entering of an assert box:

 If (Label =””) then

 // first atom processed

 currentMode = reject

 Label = “true”

 Endif // Else nothing to do

exiting an assert box:

 If (Label =””) then

 // first atom processed

 currentMode = AcceptStringent

 Label = “true”

 Endif // Else nothing to do

entering of a consider box:

 If (Label =””) then

 // first atom processed

 for all considered message name m

 For all symbolic node id li in the current valuation

 build label ll of the form: ¬(!m(-), li, -)

 SelfLoopLabel := SelfLoopLabel conjoined with ll

 End For

 End For

 Label = “true”

 Endif // Else nothing to do

exiting a consider box:

 If (Label =””) then

 // first atom processed

 SelfLoopLabel := “¬CHANGE(-)”

 Label = “true”

 Endif // if not the first atom, nothing to do

entering or exiting a par or alt box:

 If (Label =””) then

 // first atom processed, or other atoms yielded a non empty Label

 Label = “true”

 Endif // if non empty label, no need to conjoin with true

Guard or state invariant

 Make a label ll with the predicate

 If (ll does not already appear in Label)

 Label := Label conjoined with ll

 Endif

Change in Configuration

If (Label =””) then

 // first atom processed

 UpdatedVariables := {variables in new config Ci} \ Variablesi

 SelfLoop := true

 Make a label ll of the form CHANGE(Ci)

 Label = ll

 Endif // if not the first atom, nothing to do

Send or receive event

 UpdatedVariables := {variables in message parameters or message id} \ Variablesi

 SelfLoop := true

 Make a label ll for the event

 Label := Label conjoined with ll

 If (the atom is receive event, or the atom is a send event that does not appear

 under the form ¬(!m(-), li, -) in SelfLoopLabel)

 AddedSelfLabel := AddedSelfLabel conjoined with ¬ll

 Endif // Else the event is already forbidden by an embodying consider

Figure 78: Processing of atoms

Page 92 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

The use of this algorithm is illustrated by the scenario of the distributed black box application

shown in Figure 72.

In Figure 79, we can see the automaton constructed from the sequence diagram. The states are the

nodes qi of the graph with the set of valuated variables (e.g. {n1,n2,n3,$1} for state q1). In the

figure, double circle nodes are representing trivial accept states, single circle nodes the reject states

and triple circle nodes the stringent accept states.

Figure 79: Automaton of DBB scenario

3.2.5.3 Well-formed diagrams

Well-formedness is not a purely syntactic issue. Some checks depend on the semantics. At the end

of Section 3.2.3.4, we mentioned two checks:

 Check, whether messages depicted on the diagram can be sent and received in the current spatial

configuration.

 Check, whether predicates refer only to message parameters received so far and to configuration

labels from the current or past configurations.

The second check can only be performed on the automaton. It suffices to verify that, for each state

q, the predicates appearing on the outgoing transitions do not refer to free variables that are

undefined in q. The implementation is straightforward since, by construction, we know which

Page 93 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

variables are defined for which state. The check could be integrated into the unwinding algorithm,

i.e. when the transition labels for guard and state invariant atoms are computed.

The first check does not require consideration of the automaton. It can actually be performed as

soon as the preprocessing step, when the orderings are computed. Using the position, it is

straightforward to determine the current spatial configuration for a communication atom. Moreover,

the message ID allows us to identify the sender of receiving events. It suffices then to verify that for

each lifeline i:

 Each communication atom of i occurs in a configuration where i exists, i.e., there is a vertex

with symbolic ID i in the configuration graph.

 If the atom is a receive event and lifeline i’ of the diagram was the sender, then there is a

path connecting i and i' in the current configuration graph such that all edge labels in the

path have constant values.

Finally, there is the issue of whether the diagram may be ambiguous, that is, whether traces can be

categorized as both valid and invalid. The automaton may exhibit states for which the outgoing

transitions are not exclusive. For example, consider a state where two SimClasses are ready to be

unwound, containing respectively a local invariant on lifeline i and a send event on lifeline j. There

is a non-deterministic choice between evaluating the local invariant now, or delaying evaluation

after the send event has been unwound.

This specific case should not be a problem, owing to the constraints put on predicate variables. If

the corresponding well-definedness check passes, then the exact time for evaluating the predicate

does not matter: whether it is evaluated now or later, the result will be the same. Note also that the

alt operator should not be a problem either, because we impose a deterministic if-then-else form.

However, problems with the par operator are still possible. Assume that the diagram defines two

parallel send events (!m(x1), n1, $1) and (!m(x2), n1, $2) that are ready at the same time. The

verdict assigned to a trace:

(!m(1), “140.93.130.95”, 101) . (!m(2), “140.93.130.96”, 102) . …

may depend on which trace event is taken to match which scenario event, yielding either (x1:=1,

x2:=2), or (x1:=2, x2:=1). We then propose the following check:

 For each state of the automaton with multiple outgoing transitions, verify that there is no

pair of transitions having unifiable communication events.

Note that this check may generate false alarms. Back to the previous example, there will be a false

alarm if variables x1 and x2 are both defined for the state, and the send events are in the scope of an

alt operand guarded by x1≠x2. Hence, the check merely generates warnings and it is the

responsibility of the user to determine whether a warning reveals a real problem.

3.2.5.4 Combining the spatial and event view

The analysis of the event view of a TERMOS scenario produces a symbolic automaton with

variables that depend on the spatial configuration. The automaton must be instantiated in the

framework of the concrete configurations that occurs during system execution. Checking whether a

system trace satisfies or violates the scenario is done under the following conditions:

 Analysis is started in a state where the system is in a concrete configuration that matches the

initial configuration of the scenario.

 The concrete values for the configuration variables, including the concrete IDs of nodes

participating to the scenario, are known.

Page 94 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 The trace includes configuration change events.

Such conditions are fulfilled by using the GraphSeq tool. GraphSeq will be presented in the next

section. It returns a set of matches for the desired sequence of spatial configurations where a match

includes: (i) a valuation for all configuration variables, (ii) the temporal window for each individual

configuration. This allows us to verify the trace against the scenario requirement as described in

Figure 80.

For all matches returned by GraphSeq

 Extract the subtrace t of communication events occurring during the match

 Insert configuration change events according to the start date of each

individual configuration

 while (t is not empty and its first event occurs in the initial configuration)

 check whether t is accepted by the automaton

 let t = e.t’

 t:=t’

 End while

End for

Figure 80: Test oracle check against the scenario

3.3 GraphSeq: a graph matching tool

In our testing framework, scenarios descriptions involve graph constructs that describe the

successive spatial configurations. The formal treatment of scenarios has thus to include graph

matching algorithms. This section presents GraphSeq, the tool we have developed to search for the

matches of spatial configurations in an execution trace.

GraphSeq uses graph homomorphism building as a core facility, as explained in Section 3.3.1. This

allows us to determine whether one graph G1 (coming from a scenario) is matched by a subgraph of

G2 (coming from a trace). Based on this facility, the tool reasons on sequences of graphs (i.e.,

sequences of spatial configuration). Some high-level principles of the sequential reasoning are

provided in Section 3.3.2. After that, we gradually introduce the algorithms implemented in

GraphSeq, starting from the case with a fixed number of nodes in scenarios (Section 3.3.3), and

then adding consideration for nodes that are dynamically created and destroyed (Section 3.3.4). The

validation of the tool is presented in Section 3.3.5, using both randomly generated graphs and

outputs from a mobility simulator.

3.3.1 Graph homomorphism building as a core facility

Let LV and LE denote sets of labels for vertices and edges, and let G = (V, E, ,) denote a graph

structure, where:

 V is the set of vertices,

 E V V is the set of edges,

 : V LV is a function assigning labels to the vertices,

 : E LE is a function assigning labels to the edges.

A graph homomorphism is a mapping between two graphs that respects their structure. It can be

mathematically defined as follows.

Definition. Let G1 = (V1, E1, 1, 1) and G2 = (V2, E2, 2, 2) be two graphs. A function f : V1 V2

is a graph homomorphism from G1 to G2 if and only if:

Page 95 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 It is injective,

 (v1) = (f(v1)) for all v1 V1,

 For any edge e1 = (v1s, v1e) E1, there exists an edge e2 = (f(v1s), f(v1e)) such that 1(e1) =

2(e2).

The definition captures the idea of G1 being matched by a subgraph of G2. In our work, G1 is

expected to come from a scenario description, and will be called the pattern graph. G2 is extracted

from a simulation trace and will be called the concrete configuration graph.

In practice, the basic definitions of graph structure and graph homomorphism need to be slightly

extended to fulfil our needs. First, it may be convenient to assign tuple of labels to vertices and

edges in order to allow a richer representation of nodes and relations between nodes. For example,

assume that an application involves both mobile and infrastructure nodes. A node could be

characterized by a 2-tuple <id, type>, where id would be a value uniquely identifying the physical

node, and type would be an element of {Mobile, Infrastructure} that differentiates the mobile and

infrastructure nodes. Second, we need to allow label variables in the pattern graph. In a scenario

description, a node may be assigned labels <n1, Mobile> and it should be possible to detect a

matching by a physical node <“140.93.130.95”, Mobile> with substitution n1:= “140.93.130.95”.

As can be seen in this example, introducing variables means that the graph homomorphism building

needs to exhibit a valuation that consistently unifies the labels.

The problem of graph homomorphism building has been extensively studied in the literature. It is

thus possible for us to use an existing tool as the basis for the comparison of scenario descriptions

and concrete traces. One of the existing tools has been developed by colleagues at LAAS-CNRS

[Gue] in the framework of research on dynamically reconfigurable architectures. The tool searches

for the set of all homomorphisms (f,Val) from a pattern graph G1 to a concrete configuration graph

G2, where f is a mapping and Val is a valuation. In the definition of graph structures, the tool offers

the following features (that were integrated in the definition of TERMOS, see Section 3.2.3.1):

 Vertices may be assigned at most 3 labels, yielding a 3-tuple of type STRING INT INT.

 Edges have at most one label of type INT.

 Label variables are supported for vertices only. Wildcards are supported for edges. We made

a slight extension so as to have wildcards for vertices as well
7
.

The complexity of the search is polynomial in the number of vertices of G2, but exponential in the

number of vertices of G1 (which is not surprising, since the search problem is known to be NP-

complete).

GraphSeq uses this tool as a core facility to search for matches in the case of sequences of graphs.

3.3.2 Reasoning on sequences of graphs

GraphSeq takes as input two sequences of graphs:

 A sequence P0, … Pm-1 of m pattern graphs,

 A sequence C0, …Cn-1 of n concrete configuration graphs.

It computes the set of all matches, where a match has the following data structure:

7
 Variables and wildcards are treated differently by GraphSeq. When trying to match sequences of graphs,

variables are assigned a unique value, while wildcards are allowed to vary arbitrarily.

Page 96 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Structure Match

 Valuation val

 int index[0..m]

End Structure

The valuation val assigns a concrete value to every label variable appearing in the sequence of

pattern graphs. Note that all pattern vertices have at least one label variable: the one corresponding

to the STRING type. This label is intended to serve as an ID that uniquely identifies the

corresponding system node, so that this node can be traced from one graph to the other. In the

patterns, nodes have a symbolic ID, hence the label variable.

The index table gives the temporal window for each pattern. It is defined as follows:

 index[0] is the start date of the matching for P0. That is, the matching starts at Cindex[0].

 For i>0, index[i] is the end date of the matching for Pi-1. That is, the matching ends at

Cindex[i].

These notions are best illustrated by an example. Figure 81 shows a sequence of two patterns, as

well as the beginning of a sequence of concrete configurations.

Patterns

(id1,1,2) (id2,2,3)

v1 v2
3

(id1,1,2) (id2,2,x)

v1’ v2’
4

P0 P1

Concrete

Config.

3

21

("N1",1,2) ("N2",2,3)

("N3",1,1)

V1 V2

V3

4

42

("N1",1,2) ("N2",2,3)

("N3",1,2)

V1’’ V2’’

V3’’

C0 C2

3

31

("N1",1,2) ("N2",2,3)

("N3",1,2)

V1’ V2’

V3’

C1

4

("N1",1,2) ("N2",2,1)

V1’’’ V2’’’

C3

…

Figure 81: Example of graphs with a match starting at date 0 and ending at 2

One of the computed matches is:

val: { (id1,“N1”), (id2, “N2”), (x, 3) }

index: 0 1 2

The construction of this match uses homomorphism building as follows. First, P0 and C0 are

compared. The tool finds a homomorphism (f0, val0) with:

f0: v1 V1 val0 = { (id1,“N1”), (id2, “N2”) }

 v2 V2

The mapping f0 involves vertex references v1, v2, V1, V2 that are specific to the encoding of the

graphs. Here, the interesting information is the valuation provided to build the homomorphism:

from now on, we will try to go on matching with concrete node N1 playing the role of abstract node

id1, and N2 playing the role of id2.

Page 97 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

We must now determine the end date for the matching of P0. Does it persist at C1? To check it, we

must retain the valuation choices made at the previous step. For this, we use a basic utility offered

by the LAAS tool: VALUATE_VERTICES(G,Val) takes as inputs a graph and a valuation, and rewrites

all vertices according to the valuation. We create a pattern P0‟ = VALUATE_VERTICES(P0, val0) and

compare P0‟ and C1. The tool finds one homomorphism, meaning that the searched configuration

persists in C1. It is however no longer in C2, hence index[1] = 1.

We go on with the next pattern of the sequence. Again, we need to retain the previous valuation

choices. We thus search for a homomorphism from VALUATE_VERTICES(P1, val0) to C2. The tool

finds one with valuation val1 = { (x, 3) }. We then merge the valuations found so far, yielding val =

{ (id1,“N1”), (id2, “N2”), (x, 3) }. The end date for matching is 2, because there is no

homomorphism from VALUATE_VERTICES(P1, val) to C3: the last integer label of vertex V2''' does

not have the expected value 3.

From what precedes, it is obvious that the main issue is to retain consistent valuation choices across

the sequence. It may become tricky when nodes dynamically appear and disappear in the patterns.

Figure 82 shows an example with node creation. For the sake of simplicity, the vertices of the

graphs are labelled by their ID, and we omit all other labels. Assume that we are currently building

a match that starts at i with valuation { (n1, “1”) }. Pattern P1 introduces a new node, with ID n2,

that was not present in P0. The problems are then the following:

 P0 is matched by the concrete configurations until step i+3 (and possibly later). Still, a

transition to P1 may be detected at intermediate steps i+2 (appearance of concrete node “3”),

i+3 (appearance of concrete node “4”) or later. These alternative choices must be taken into

account to build the set of all possible matches.

 If transition to P1 is searched at step i+2, then care must be taken not to retain concrete node

“2” to play the role of n2. This is so because this concrete node already existed at step i,

while it is required not to exist in configurations matching P0.

Patterns n1 n1 n2

P0 P1

Concrete

Config.
1 2 1 1 23 1 4

Ci Ci+1 Ci+2 Ci+3

.

Figure 82: Example of problem with node creation

Such concerns complicate the search for matches. Hence, we first present the GraphSeq algorithm

in the simpler case where patterns involve a fixed set of nodes. We then explain how the search is

modified to account for nodes that appear and disappear.

3.3.3 Algorithm with a fixed set of nodes in patterns

GraphSeq uses the existing LAAS tool for building graph homomorphisms [Gue]. This tool is

implemented in C++. It provides us with convenient definitions of data types:

 Homomorphism (and ListOfHomomorphisms),

 Valuation, which is used by Homomorphism,

Page 98 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 Graph, with all necessary facilities to encode constant labels, variable labels (for vertices)

and wildcards (for both vertices and edges, with the slight extension we introduced).

The existing tool also provides us with the following functions:

 SEARCHHOMOMORPHISMS (G1: Graph, G2: Graph) that returns the list of all homomorphisms

from G1 to G2.

 VALUATEVERTICES (G: Graph, V: Valuation) that returns a copy of G with the vertex labels

rewritten according to the valuation V.

 MERGEVALUATIONS (V1: Valuation, V2: Valuation) that returns valuation V1 V2 if its

input valuations are compatible. If they are not compatible, i.e., they assign different values

to a variable, the function returns NULL.

GraphSeq uses them to implement the search for matches. In order to gradually build matches, it

uses an intermediate data structure called PartialMatch:

Structure PartialMatch

 Valuation val

 int index[0..m]

 int depth

End Structure

PartialMatch is thus like the Match structure presented in the previous section, but with an

additional depth field. The depth value gives the number of patterns that have been successfully

matched so far. For example, a depth of i indicates that patterns P0, … Pi-1 have been matched, but

Patterns Pi, …, Pm-1 are still to be processed. The values index[j] are meaningful only for j≤i, since

the end dates of unmatched patterns are not determined yet. In our implementation, they are

assigned a spurious value -1. Back to the example of Figure 81, the first partial match found by

GraphSeq is:

val: { (id1,“N1”), (id2, “N2”) }

index: 0 1 -1

depth: 1

A partial match of depth i is extended by the processing of the next pattern Pi, yielding a partial

match of depth i+1. For example, a one step extension to the previous partial match is:

val: { (id1,“N1”), (id2, “N2”), (x, 3) }

index: 0 1 2

depth: 2

When a partial match has been extended up to depth m, then a (complete) match has been found.

GraphSeq uses depth-first search (DFS) to extend partial matches. That is, if a partial match has

several possible extensions, the tool will explore as far as possible along each branch before

backtracking. The DFS control structure is shown in Figure 83. It uses a LIFO stack L to store the

partial matches to be processed. Note that the outmost for() loop imposes that the matching of P0

Page 99 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

starts no later than date n-m. This is so because if it starts later, the remaining number of concrete

configurations will be lower than the number of patterns to be matched.

Let L be an empty stack of PartialMatch elements

For (i=0; i≤n-m; i++)

 build all partial matches of depth 1 with start date index[0] = i,

 push each of them in L

 While L is not empty

 Let pm = pop (L)

 If (pm.depth < m)

 Build all one step extensions of pm,

 push each of them in L

 Else // found

 Write pm.val and pm.index in output file

 Endif

 End While

End For

Figure 83: DFS control structure of GraphSeq

Given a candidate start date i, the search is initialized by looking at all possible partial matches for

P0, hence yielding a set of partial matches of depth 1. The corresponding algorithm is described in

Figure 84.a, with auxiliary functions in Figure 84.b. Note that the valuation of an homomorphism

yields a partial match only if:

 i is really a start date, and

 the end date is not too late.

Also, note that the checks of the dates use a valuated version of P0.

// build all partial matches of depth 1

// with start date i,

// push each of them in L

Let H = SEARCHHOMOMORPHISMS (P0, Ci)

While H is not empty

 Extract h from H

 Let P’ = VALUATEVERTICES (P0, h.val)

 // Is i a start date for P0?

 Let start_OK = true

 If (i > 0)

 Let H’ = SEARCHHOMOMORPHISMS (P’, Ci-1)

 If (H’ is not empty)

 // previous config did match

 // --> not a start date

 start_OK = false

 Endif

 Endif

 // Now, check the end date

 If (start_OK = true)

 Let end = COMPUTEENDDATE(P’, i)

 If (end ≤ n-m)

 // end date is not too late

 let pm = CREATEPARTIALMATCHD1 (h.val,

i, end)

 push pm in L

 Endif

 Endif

End While

int COMPUTEENDDATE (Graph G, int start)

 Let i = 1

 Repeat

 Let H = SEARCHHOMOMORPHISMS (G, Cstart+i)

 If (H is not empty) then

 i = i+1

 Endif

 until (H is empty or start+i = n)

 return (start+i-1)

End COMPUTEENDDATE

PartialMatch CREATEPARTIALMATCHD1 (Valuation v,

int start, int end)

 Let pm be a Partial match

 pm.val = v

 pm.index[0] = start

 pm.index[1] = end

 For (i=2; i≤m; i++)

 pm.index[i] = -1

 End For

 pm.depth = 1

 return (pm)

End CREATEPARTIALMATCHD1

(a) Core algorithm for building the matches (b) Auxiliary functions

Figure 84: Partial matches of depth 1 starting at date i

Page 100 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

The extension of a partial match of depth d, to produce partial matches of depth d+1, is described in

Figure 85. Here, the start date is fixed: it comes just after the end of matching of the previous

pattern. For each candidate continuation, the end date must be computed and checked. The check

uses a valuated version of the pattern, after the valuations have been successfully merged.

// Build all one step extensions of pm,

// push each of them in L

// Here, pm.depth < m

Let start = 1+pm.index[pm.depth]

Let P’ = VALUATEVERTICES (Pdepth, pm.val)

H = SEARCHHOMOMORPHISMS (P’, Cstart)

While H is not empty

 Extract h from H

 Let v = MERGEVALUATIONS (pm.val, h.val)

 If (v!=NULL) // compatible valuations

 Let P’’ = VALUATEVERTICES (Pdepth, v)

 Let end = COMPUTEENDDATE(P’’, start)

 If (end ≤ n-m+pm.depth)

 // end date is not too late

 let pm = CREATEEXTENDEDMATCH (pm, end,

v)

 push pm in L

 Endif

 Endif

End While

PartialMatch CREATEEXTENDEDMATCH (

PartialMatch father, int end, Valuation v)

 Let pm be a PartialMatch

 pm.val = v

 For (i=0; i≤father.depth; i++)

 pm.index[i] = father.index[i]

 End For

 pm.index[father.depth+1] = end

 For (i= father.depth+2; i≤m; i++)

 pm.index[i] = -1

 End For

 pm.depth = 1+ father.depth

 return (pm)

End CREATEEXTENDEDMATCH

(a) Core algorithm for extending the match (b) Auxiliary function

Figure 85: Extending a partial match pm

3.3.4 Accounting for nodes that appear and disappear

Let us now account for sequences of patterns that involve varying sets of nodes. The DFS structure

of the algorithm does not change, but the following parts are impacted (see Figure 86, with

modifications indicated in bold):

 A preprocessing step is performed before the search is entered. Pattern graphs are analyzed

to identify nodes that appear or disappear.

 The information extracted from the pre-processing step has an impact on both the

computation of partial matches of depth 1, and their gradual extension up to complete

matches.

 A final check is added before retaining a candidate complete match.

Page 101 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Preprocessing of pattern data

Let L be an empty stack of PartialMatch elements

For (i=0; i≤n-m; i++)

 build all partial matches of depth 1 with start date i,

 push each of them in L

 While L is not empty

 Let pm = pop (L)

 If (pm.depth < m)

 Build all one step extensions of pm,

 push each of them in L

 Else // found

 If (FINALCHECK(pm))

 Write pm.val and pm.index in output file

 Endif

 Endif

 End While

End For

Figure 86: Impact on the DFS control structure of GraphSeq

The preprocessing step extracts, for each pattern Pj, the set Nj of symbolic node IDs that label the

vertices. Then, it computes the following information to be stored in a global data structure:

 For 1≤j≤m-1, NewNodes(j) is the set of node IDs that are present in Pj, and did not occur in

P0, .., Pj-1.

 For 1≤j≤m-1, ForbiddenNodes(j) is the set of node IDs that occur at least once in P0, .., Pj-1,

but that are not present in Pj.

 ForbiddenNodes(0) is the set of node IDs that occur at least once in P1, .., Pm-1, but that are

not present in P0. The meaning is thus different from the one of ForbiddenNodes(j) where

j>0.

 For 0≤j≤m-2, StopBefore(j) is a Boolean value indicating whether the transition from Pj to

Pj+1 can occur before Pj ceases to be matched. Such is the case when the appearance of a

node (either new or appearing again), is the only trigger for the transition: there is no node

disappearing, and no inconsistency between constant labels in Pj and Pj+1. An example was

given in Figure 82, where transition from P0 to P1 was caused by a new node having

symbolic ID n2.

Figure 87 describes the corresponding computations. The initial extraction of the Ni, as well as the

comparison of labels in the computation of StopBefore(i), are not detailed here because they depend

on the precise encoding of the graphs in the existing tool.

The computed information is used to implement additional checks during the search for matches, as

shown from Figure 88 to Figure 90 where the new parts are indicated in bold characters. If no node

appears or disappears in the patterns, then the algorithms are equivalent to the ones shown in the

previous section. Note that for a fixed set of nodes in patterns, NewNodes(j) and ForbiddenNodes(j)

are empty, and StopBefore(j) is false for all j.

Page 102 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

// Auxiliary computation AllNodes to be used for NewNodes and ForbiddenNodes

Let AllNodes(0) = N0

For (j=1; j≤m-1; j++)

 Let AllNodes(j) = Nj AllNodes(j-1)
End For

// New nodes

NewNodes(0) =
For (j=1; j≤m-1; j++)

 NewNodes(j)= Nj \ AllNodes(j-1)

End For

// Forbidden Nodes

For (j=1; j≤m-1; j++)

 ForbiddenNodes (j)= AllNodes(j-1) \ Nj

End For

ForbiddenNodes (0) = AllNodes(m-1) \ N0

// Stop before?

For (j=0; j≤m-2; j++)

 If (Nj+1 Nj)
 // No node expected to appear

 StopBefore(j) = false

 Else If (Nj ForbiddenNodes(j+1) ≠)
 // At least one node expected to disappear

 StopBefore(j) = false

 Else

 if there exists vertices v1 from Pj and v2 from Pj+1 such that

 v1 and v2 share the same symbolic IDs, and one of the vertex integer label

 is constant in both cases, but with different values

 // At least one vertex label is expected to change

 StopBefore(j) = false

 Else

 if there exists edges e1 from Pj and e2 from Pj+1 such that

 they connect pairs of vertices with the same symbolic IDs, and the edge label

 is constant in both cases, but with different values

 // At least one edge label is expected to change

 StopBefore(j) = false

 Else // transition from Pj to Pj+1 may occur before Pj ceases to be matched

 StopBefore(j) = true

 End if

End For

StopBefore(m-1) = false

Figure 87: Preprocessing of pattern data

The impact on the search for partial matches of depth 1 is shown in Figure 88. There are two major

modifications, corresponding on additional checks of the start and end dates respectively. The check

of the start date now depends on ForbiddenNodes(0). If this set is empty, decision is the same as in

the previous section: we do not retain i as a candidate start date if Ci-1 already matched P0. But if the

set is not empty, we always retain i. The reason for this decision can be explained by referring to the

example in Figure 82, reproduced below for the sake of clarity:

Page 103 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

1 2 1 1 23 1 4

Ci-1 Ci Ci+1 Ci+2

n1 n1 n2

P0 P1

.

In this example, i is retained because ForbiddenNodes(0) is not empty (it contains n2). Indeed, i is a

start date for a complete match with valuation {(n1, 1), (n2, 2)}. Deciding whether i is really a start

date cannot be done at depth 1 steps, because we would need the valuation for all symbolic IDs in

ForbiddenNodes(0). Decision is taken by the final check we introduced (see the general control

structure in Figure 86), that will be described later.

As regards the end date, the new part is when StopBefore(0) is true. In that case, we must

accommodate several candidate end dates, ranging from the start date i to min(end, n-m). A partial

match is created in each case.

A last difference lies in the prototype of function COMPUTEENDDATE, which has now two

additional parameters. At this step, the additional values , NULL passed to the function induce the

same behaviour as in the previous version. In the general case, the two parameters allow detection

of end of matching when concrete configuration graphs contain any node in the list of forbidden

ones. This facility is used when computing the 1-step extensions of a partial match.

// build all partial matches of depth 1

// with start date i,

// push each of them in L

Let H = SEARCHHOMOMORPHISMS (P0, Ci)

While H is not empty

 Extract h from H

 Let P’ = VALUATEVERTICES (P0, h.val)

 // Is i a start date for P0?

 Let start_OK = true

 If (i > 0 && ForbiddenNodes (0)=)

 Let H’ = SEARCHHOMOMORPHISMS (P’, Ci-1)

 If (H’ is not empty)

 // previous config did match

 // --> not a start date

 start_OK = false

 Endif

 Endif

 // Now, check the end date

 If (start_OK = true)

 Let end = COMPUTEENDDATE(P’, i, ,NULL)
 If (StopBefore(0))

 // can stop at an intermediate date

 For (j=i; j<=min(end,n-m); j++)

 let pm = CREATEPARTIALMATCHD1

(h.val, i, j)

 push pm in L

 End for

 Else If (end ≤ n-m)

 // end date is not too late

 let pm = CREATEPARTIALMATCHD1 (h.val,

i, end)

 push pm in L

 Endif

 Endif

End While

ListOfHomomorphisms NEWSEARCHHOMOMORPHISMS

(Graph G1, Graph G2,SetOfStrings ForbidIds,

Valuation v)

 // None of the forbidden IDs in G2?

 For each f in ForbidIds

 Let concreteId be v(f)

 If (concreteId exists in G2)

 Return (empty list)

 End if

 End For

 Return (SEARCHHOMOMORPHISMS (G1, G2))

End NEWSEARCHHOMOMORPHISMS

int COMPUTEENDDATE (Graph G, int start,

SetOfStrings ForbidIds, Valuation v)

 Let i = 1

 Repeat

 Let H = NEWSEARCHHOMOMORPHISMS (G, Cstart+I,

ForbidIds,v)

 If (H is not empty) then

 i = i+1

 Endif

 until (H is empty or start+i = n)

 return (start+i-1)

End COMPUTEENDDATE

PartialMatch CREATEPARTIALMATCHD1 ()

 Same as previously

 See Figure 84.b

End CREATEPARTIALMATCHD1

(a) Core algorithm for building the matches (b) Auxiliary functions

Figure 88: Impact on building partial matches of depth 1 that start at date i

Page 104 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

The new version of the extension of partial matches is shown in Figure 89. Note that the search for

homomorphisms now takes the ForbiddenNodes sets into account (calls to

NEWSEARCHHOMOMORPHISMS and to COMPUTEENDDATE). Lest us recall that when 1≤j≤m-1,

ForbiddenNodes(j) is the set of node IDs that occur at least once in P0, .., Pj-1, but that are not

present in Pj. These IDs have already received a concrete valuation in partial match pm. We thus

know the identity of nodes that must not be present in concrete configurations matching Pj and use

this information to reject candidate extensions.

A special check for new nodes has been introduced. Their symbolic IDs receive a concrete

valuation at the current step (in h.val). Care must be taken that the valuation really corresponds to

new nodes, that is, there must be a check that the nodes did never appear in Cpm.index[0], …,

Cpm.index[pm.depth].

Finally, the processing of the end date is made according to the value of the StopBefore Boolean, as

already explained for partial matches of depth 1.

// Build all one step extensions of pm,

// push each of them in L

// Here, pm.depth < m

Let start = 1+pm.index[pm.depth]

Let P’ = VALUATEVERTICES (Pdepth, pm.val)

H = NEWSEARCHHOMOMORPHISMS (P’, Cstart,

 ForbiddenNodes(pm.depth), pm.val)

While H is not empty

 Extract h from H

 Let v = MERGEVALUATIONS (pm.val, h.val)

 If (v!=NULL && CHECKNEWNODES (pm.depth,

 pm.index[0], pm.index[pm.depth], h.val))

 // compatible valuations

 // and new nodes are really new

 Let P’’ = VALUATEVERTICES (Pdepth, v)

 Let end = COMPUTEENDDATE(P’’, start,

 ForbiddenNodes(pm.depth), v)

 If (StopBefore(pm.depth))

 // can stop at an intermediate date

 For (j=i; j<=min(end,n-m+pm.depth); j++)

 let pm = CREATEEXTENDEDMATCH (pm, j, v)

 push pm in L

 End for

 Else If (end ≤ n-m+pm.depth)

 // end date is not too late

 let pm = CREATEEXTENDEDMATCH (pm, end, v)

 push pm in L

 Endif

Endif

End While

Boolean CHECKNEWNODES (int i, int start,

int end, Valuation v)

 For each f in NewNodes(i)

 Let concreteId be v(f)

 // Is concreteId new?

 For (j=start, j≤end, j++)

 If (concreteId exists in Cj)

 Return (false)

 End if

 End for

 End For

 Return (true)

End CHECKNEWNODES

PartialMatch CREATEEXTENDEDMATCH ()

 Same as previously

 See Figure 85.b

End CREATEEXTENDEDMATCH

(a) Core algorithm for extending the match (b) Auxiliary functions

Figure 89: Impact on extending a partial match pm

It remains to explain the final check, shown in Figure 90. Remember that in the case where

ForbiddenNodes(0) is not empty, we retained potential start dates i even if Ci-1 already matched P0.

We must now decide whether or not i is a real start date. Decision will be negative if Ci-1 matches P0

and does not contain any of the forbidden nodes. Back to the example:

Page 105 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

1 2 1 1 23 1 4

Ci-1 Ci Ci+1 Ci+2

n1 n1 n2

P0 P1

.

The check will accept i as a start date for a match with n2:=“2”, but not for n2:=“3” or n2:=“4”.

Boolean FINALCHECK (PartialMatch pm)

 If (pm.index[0]=0 || ForbiddenNodes(0) =)
 return (true)

 Else

 Let P’ = VALUATEVERTICES (P0, pm.val)

 Let H= NEWSEARCHHOMOMORPHISMS (P’, Cpm.index[0]-1, ForbiddenNodes(0), pm.val)

 If (H is empty)

 Return (true)

 Else return (false)

 Endif

 Endif

End FINALCHECK

Figure 90: Final check before outputting

3.3.5 Validation of GraphSeq

We performed a number of tests to validate GraphSeq. We first started with small examples that

were manually produced (e.g., the example in Figure 82 was included as one test case), but quickly

came to the conclusion that we would need an automated solution for both the generation of graphs

and the analysis of results. We developed a tool that produces random sequences of graphs Pi and Ci

such that, by construction, Ci contains at least one match. The GraphSeq results can then be

automatically analyzed and a fail verdict is issued if the expected match is not found. Note that

GraphSeq may find several matches, but the oracle check only concerns the one known to be there

by construction.

The first version of the test tool produced test cases with a fixed set of nodes in patterns. We then

extended the tool to accommodate nodes that appear and disappear. The random generation can be

parameterized, and we produced about 900 test cases exhibiting various characteristics:

 Number of patterns from 1 to 5,

 Number of concrete configurations from 1 to 100,

 Number of nodes in patterns from 1 to 5,

 Number of nodes in concrete configurations from 1 to 25,

 For each individual Pi, duration of a matching from 1 to 20 steps in the concrete

configurations.

 The transitions from Pi to Pi+1 may involve a change in a node label, in an edge label, a node

that appears, that disappears, or any combination (up to 5 changes).

The test tool proved very useful to debug GraphSeq, and to perform regression verification after

changes in the C++ code.

We also experimented the connection of GraphSeq with a tool producing location-based data. We

chose a mobility simulator developed at the University of South California, USA, as part of the

IMPORTANT (Impact of Mobility Patterns On Routing proTocol in the mobile Ad hoc NeTworks)

Page 106 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

framework [Bai]. The tool is freely available on the web
8
. It offers a rich set of parameterized

mobility models, including Reference Point Group, Freeway and Manhattan mobility models. The

generated traces are compatible with the ns-2 simulator [NS].

The connection of GraphSeq to such a mobility simulator requires the development of an

interfacing component (see Figure 91) that abstracts the raw simulation data into a sequence of

configuration graphs. In our experiments, the raw data are the position of nodes at each simulation

step. Then, the abstraction consists in assigning edge labels according to the distance of nodes.

Figure 91: Connecting GraphSeq to a mobility simulator

We made trials with various mobility models and different parameterizations of the models. We

describe here an example of run using the freeway model.

The freeway model has the following characteristics:

 Each mobile node is restricted to its lane on the freeway.

 The velocity of mobile node is temporally dependent on its previous velocity.

 If two mobile nodes on the same freeway lane are within the Safety Distance, the velocity of

the following node cannot exceed the velocity of the preceding node.

Table 4 provides the parameters used for the example run. The map was built using predefined

fragments of freeways and lanes, available in the simulation environment.

Parameters of the mobility model Value

Number of simulation steps 350

Number of nodes 15

Acceleration (Max Speed/10) 4 m.s
-2

Max Speed 144 km/h

Map:

Number of freeways

Number of lanes

2

6

Safety Distance 40 m

Transmission Range 300 m

Table 4: Parameters used for the simulation run

Our format translator extracts 350 configuration graphs from the simulation trace. The concrete ID

of mobile nodes are labelled “N0”, “N1”, “N2”,… The edges representing the spatial relations

between two mobile nodes depend on their distance d and are defined as follows:

 0<d<140m: edge = 1

 140≤d≤300m: edge = 2

 d>300m: nodes are disconnected (300 m is the transmission range).

8
 http://nile.usc.edu/important/

Page 107 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

The pattern graphs are arbitrarily defined as in Figure 92.

n1 n2

n4 n3

1

P0

2

2

2

n1 n2

n4 n3

1

P1

2

2

2

2

n1 n2

n4 n3

1

P2

22

2

2

Figure 92: Pattern graphs of the example

GraphSeq is applied to search for the patterns in the sequence of concrete configurations, and

returns the following result with four matches:

val: { (n1,“N14”), (n2, “N6”), (n3, “N0”), (n4, “N5”) }

Index: 124 127 141 153

val: { (n1,“N13”), (n2, “N6”), (n3, “N0”), (n4, “N5”) }

Index: 124 127 140 153

val: { (n1,“N13”), (n2, “N6”), (n3, “N3”), (n4, “N5”) }

Index: 126 136 140 153

val: { (n1,“N14”), (n2, “N6”), (n3, “N3”), (n4, “N5”) }

Index: 128 136 141 153

3.4 Conclusion of the testing contribution

The testing activities in HIDENETS focused on verifying whether applications running in mobile

environments fulfil their high-level requirements. Based on the review of the state of the art and on

a testing case study, we identified the main open research challenge to be the lack of an adequate

formalism to capture system-level behaviour and spatial topology in a mobile setting. For this

reason, the two main contributions of the work have been:

 the definition of a language to capture the mobility-related specificities in system-level

interaction scenarios,

 the development of some automated treatment for matching test traces with the specified

scenarios.

Scenarios may serve several roles to support testing activities, and our contribution focused on the

definition of requirements to be tested. A new scenario language, called TERMOS, has been

proposed. The language is based on UML, the same language used for specifying the applications in

the design framework in Section 2. In this way the models capturing the test requirements can be

included next to the design models. They are complementary to the latter models in the sense that

Page 108 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

they provide a system-level view, while the design adopts a node-centric perspective. The technical

details of the TERMOS language definition can be summarized as follows:

 UML Sequence Diagrams have been analyzed in detail and have been tailored to the need of a

deterministic, verifiable, test requirement language that accounts for mobile settings;

 An abstract and concrete syntax based on UML metamodelling have been proposed for

TERMOS, as well as a formal semantics based on automata.

Example scenarios taken from HIDENETS use cases and the testing case study were given to

demonstrate the language concepts.

The formal semantics of TERMOS makes it possible to consider the automated verification of test

traces against requirements. The symbolic automata produced from the sequence diagrams must be

instantiated with parameters that depend on the spatial configurations of the system nodes. A graph

matching tool, called GraphSeq, has been designed and developed to extract these parameters from

the traces. Raw location-based data are first abstracted by labelled graphs, and GraphSeq then

reasons on sequences of such graphs. The technical results include:

 The development of algorithms for handling sequences of configurations, with possibly mobile

nodes appearing and disappearing in the test traces. These algorithms have been implemented

with the help of an existing facility for graph homomorphism building.

 The resulting tool, GraphSeq, has been validated using test data produced by random traces and

by traces created with a mobility simulator.

The coupling of the TERMOS language and the GraphSeq tool should provide a useful way to

express and validate requirements in mobile settings. GraphSeq could also be used in association

with other language variants that would concentrate on other testing aspects, e.g. test purposes or

test cases in mobile settings. While such language variants have not been investigated in

HIDENETS, we believe that the experience gained during the design and development of TERMOS

would greatly facilitate their definition.

Page 109 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

4 Summary

The work to “the extension the state of the art software engineering methods and tools in order to

cope with the specific requirements of highly dependable mobile system design” [HDoW] resulted

in the fulfilment of the common target. It was carried out in two cooperating tasks: (1) “UML

design patterns and workflow” developing a UML based design methodology for mobile

applications and (2) “Testing methodology and framework” developing methodologies to support

the testing of resilient mobile applications and services. The cooperation with the other work

packages of the project was productive:

 From WP1 (Use case scenarios and reference model) we have obtained the identified use

case scenarios and dependability requirements. With our application, middleware, domain

concept and scenario models we have contributed to the reference model and fault model.

 From WP2 (Resilience architecture and middleware) and WP3 (Resilient communication)

we have obtained the middleware (the middleware, oracle and communication services, and

the middleware architecture). With our formalisation work we have contributed to the

consistency and completeness analysis of the middleware. Our application development and

testing frameworks provided basis for means and tools of the future industrial utilization of

the middleware.

 For WP4 (Quantitative Evaluation) we have provided application and middleware models

and their semi-automatic translation into quantitative models. The testing framework and the

holistic evaluation approach provide complementary analysis methods.

 In WP6 (Proof-of-concept experimental set up) our application development approach,

development supporting tools and design patterns are demonstrated in the ADTB.

In the last 2,5 years several researchers, doctorate and graduate students worked together at three

project partners in three different European countries, spending about 65 person-months to gain new

results and to publish them in project deliverables, scientific journals, book chapters, conference

and workshop presentations, technical reports and diploma theses. The results inspire both further

scientific research and industrial development.

Our original concept, basing both of our application development framework and testing framework

on model driven methods, is proved by the results. We have defined

 an application development framework that enables the efficient use of the HIDENETS

middleware for application developers without deeper knowledge in the implementation

details of the single services and

 a testing framework that provides an adequate formalism to capture system-level behaviour

and spatial topology in a mobile setting

This deliverable documents the main results of our work:

 elaborating an application development methodology that helps application designer in the

understanding and effective utilization of the (dependability, mobility and communication

related) domain knowledge that is manifested in the HIDENETS middleware,

 defining a UML profile incorporating the peculiarities of this environment and allowing a

semi-formal formulation of user requirements and basic architectural solutions,

Page 110 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

 formulating design patterns to support the direct reuse of the HIDENETS architecture and

middleware solutions while application development,

 the definition of a deterministic, verifiable, test requirement language (TERMOS) based on

the UML Sequence Diagrams to capture the mobility-related specificities in system-level

interaction scenarios,

 the development of the algorithms and tooling of some automated treatment for matching

test traces with the specified scenarios.

Our work justifies the wide applicability of the model driven concept in special environments and

for working with special requirements, and that a common basic modelling notation can support

collaboration even if the actually applied modelling language extensions are different.

Page 111 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Appendix A

UML Based Modelling and Metamodelling

As nowadays‟ systems are getting more-and-more complex new ways had to be found to keep the

control over the creation and maintenance of them. As a result, different modelling languages have

been created that provide abstract, domain specific views and thus simplify the overview of these

tasks. One of these languages is the Unified Modeling Language.

The Unified Modelling Language (UML) [UMLsup][UMLinf] is a standard of the Object

Management Group (OMG). UML is a visual language for specifying, constructing and

documenting the artefacts of systems. It is a general-purpose modelling language that can be used

with all major object and component methods, and that can be applied to all application domains

and implementation platforms. During the last few years UML has emerged as the software

industry‟s dominant modelling language. It is widely accepted among system designers, analysts

and programmers. The UML specification is defined using a metamodelling approach that adapts

formal specification techniques. While this approach lacks some of the rigor of a formal

specification method, it offers the advantages of being more intuitive and pragmatic for most

implementers and practitioners.

UML was designed as a general modelling language. However, instead of defining all the modelling

concepts of the domains where UML could be used, the specification contains only some core

elements and a standardized extension mechanism is given. These extensions include the

Constraint, Stereotype and TaggedValue constructs. A constraint is an expression that restricts the

structure or the behaviour of an element, usually written in the Object Constraint Language (OCL)

[OCL]. A stereotype defines how an existing class may be extended, and enables the use of

platform or domain specific terminology or notation in place of or in addition to the ones used for

the extended class. A stereotype can be attached to a modelling element to further classify it and

add additional properties to it. A tagged value is a property defined for a stereotype.

Metamodelling is the precise definition of a modelling language. A metamodel consists of the

concepts and rules that can be used in a model for a specific problem. More precisely, for the

definition of a modelling language the followings shall be given i) the abstract syntax defining the

concepts of the given domain and their relations, ii) the concrete syntax defining the textual or

graphical notations of the concepts, iii) well-formedness rules defining further constraints for the

concepts, and iv) the formal semantics defining the dynamic behaviour of the models.

One of the first metamodelling frameworks is OMG‟s standard Meta-Object Facility (MOF)

[MOF]. The MOF specification defines an abstract language and a framework for specifying,

constructing, and managing technology neutral metamodels. A metamodel is in effect an abstract

language for some kind of metadata. Examples include the metamodels for UML, CWM, SysML

and the MOF itself.

The specification of MOF includes the following aspects:

 a formal definition of the MOF meta-metamodel; that is, the abstract language for specifying

MOF metamodels,

 an XMI format for MOF metamodel interchange.

The XML Metadata Interchange (XMI) [XMI] specification defines technology mappings from

MOF metamodels to XML DTDs (Document Type Definition) and XML documents. These

Page 112 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

mappings can be used to define an interchange format for metadata conforming to a given MOF

metamodel.

UML and MOF are normally viewed in the context of a conceptual layered metadata architecture.

Although the metamodels for MOF and UML are designed to be architecturally aligned, sharing a

common subset of core object modelling constructs, this does not bind the modeller to stick to UML

as the modelling language. Just on the contrary, the whole metamodelling mechanism is useful to

provide a common modelling framework where model instantiation can occur using different

modelling languages.

The classical framework for metamodelling is based on an architecture with four metalayers. These

layers are conventionally described as follows:

1. the information layer with the data that should be described;

2. the model layer with an abstract representation of the data in the information layer;

3. the metamodel layer with the descriptions that define the structure and semantics of

metadata;

4. the meta-metamodel layer with the description of the structure and semantics of meta-

metadata.

Figure 93 depicts this classical four layer framework illustrated with a HIDENETS, Platooning use

case related example. The metamodel layer contains a metaclass (PhysicalNode) taken from the

metamodel discussed below. The model layer presents a fragment of a software model building on

the HIDENETS metamodel (introducing classes FirstVehicle and FollowingVehicle as possible

members of a platoon) while the information layer presents an actual platoon (in the form of an

object diagram) where the platoon consists of a first vehicle and two following vehicles.

Metaclass

PhysicalNode

<<hiPhysicalNode>>

FirstVehicle
<<hiPhysicalNode>>

FollowingVehicle

theFirstVehicle:

FirstVehicle

followingVehicle1:

FollowingVehicle

followingVehicle2:

FollowingVehicle

Meta-metamodel:
Basic concepts of metamodeling

Metamodel:
Fundamental HIDENETS
related modeling concepts (i.e.,
the HIDENETS metamodel)

Model:
A software model using the
HIDENETS metamodel (e.g.,
first and following vehicles of a
platoon are physical nodes)

Information:
Instances of the classes defined
above (e.g., the platoon consists
of a first vehicle and two
following vehicles)

Figure 93: Illustration of the MOF 4-layer Framework

As the first adopted technologies specified using a metamodelling approach, the UML, MOF, and

XMI provide the foundation for OMG's Model Driven Architecture (MDA). Future metamodel

standards should reuse MOF and UML‟s core semantics and emulate their systematic approach to

architecture alignment.

Specifications of the Service Availability Forum

The Service Availability™ Forum (SA Forum) [SAF] aims at providing standardized solutions for

making services highly available. The Application Interface Specification (AIS) [AIS] of the Forum

Page 113 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

defines the standard interfaces for accessing Highly Available (HA) middleware and infrastructure

services that reside logically between applications and the operating system. All AIS services are

designed to operate in a cluster environment where computation nodes are connected to each other

and work together for a specific goal. The interfaces are defined in the form of sub-specifications,

namely:

 Availability Management Framework (AMF)

The Availability Management Framework is a general approach for high availability needs

in environments which run redundant components. Its goal is to ensure application

availability by detecting component failures and shifting service load from failed

components to sane components.

 Checkpoint Service (CKPT)

A checkpoint contains application-specific data partitioned in sections. It is a cluster-wide

entity designated by a unique name. A checkpoint is made highly available by replication.

The Checkpoint Service is responsible for the handling and the replication of checkpoints.

The application component requests the creation, the update and the deletion of checkpoints

which are replicated according to configured or application-defined rules.

 Cluster Membership Service (CLM)

The Cluster Membership Service provides information about the current cluster

configuration and the nodes that are members of the cluster. The cluster consists of a set of

configured nodes.

 Event Service (EVT)

The Event Service permits an M:N communication between event publishers and event

subscribers. It supports the distribution of information (by the publishers) to a set of

“interested” applications (the subscribers), that can select this information according to

specified filter criteria. Communication takes place over event channels. Multiple publishers

and subscribers can communicate over the same event channel.

 Information Model Management Service (IMM)

The Information Model Management Service provides the information base of all objects

handled by services attached to it. It is intended as a repository especially for the SA Forum

services, but not restricted to them. It keeps information about various objects belonging to

the attached services, e.g. the configuration and runtime attributes of services (called service

units here), checkpoints, message queues, etc.

 Lock Service (LCK)

The Lock Service provides cluster-wide lock resources and the ability to set or release locks

on them. Locks are used to synchronize accesses from competing processes or nodes to

shared resources.

 Logging Service (LOG)

The Log Service provides interfaces through which applications can act as loggers. They

can log events of different categories (alarms, notifications, system information, application

information) into cluster-wide resources maintained by the Log Service, the log streams.

 Message Service (MSG)

Page 114 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

The Message Service provides queues and queue groups for the M:1 resp. M:N

communication between Message Service clients within a cluster.

 Naming Service (NAM)

The Naming Service provides the storage and the retrieval of named objects.

 Notification Service (NTF)

The Notification Service provides APIs to work with notifications in a producer, subscriber

or reader role. A notification is a data structure that describes an important event (in its

natural meaning, not in the one of the SA Forum Event Service) during the lifetime of an

HA cluster.

 Timer Service (TMR)

The Timer Service provides a mechanism by which client processes get notified when a

timer expires. A timer is a logical object that is dynamically created and represents either

absolute time or duration (i.e. an interval relative to a time reference point).

For more detailed description of these services see the corresponding section in [D2.1].

The SA Forum Information Model. The entities defined in the AIS specifications (e.g. service

units, message queues, applications, etc.) are described semi-formally by the SA Forum Information

Model (IM) in the form of UML classes.

From the perspective of the HIDENETS project the most relevant entities are the ones defined by

the Availability Management Framework specification. In the following we introduce the

metamodel of the AMF entities.

The AMF is the software entity that provides service availability by coordinating redundant

resources within a cluster to deliver a system with no single point of failure. AMF defines two types

of entities, the physical and the logical entities.

Physical entities. Every physical entity managed by the Availability Management Framework is a

resource. These physical entities are either hardware equipment or software abstractions

implemented by programs running on that hardware. In Figure 94 the hierarchy of physical entities

is depicted. The Resource class represents the resource abstraction and it is also the base class for

the specialized resource entities. These entities are the following:

 the Physical Node, which represents a computer with an operating system;

 the Local Resource, which represents a local resource from fault containment point of view,

so that if the host physical node fails all of the hosted local resources become inoperable;

 all other resources are called External Resources, and failures of external resources are

independent of physical node failures.

Figure 94 : Physical Entities of the Availability Management Framework

Page 115 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Logical entities are the abstract bricks of a high availability service. Each level of the service can

be represented by a logical entity. The component is the smallest logical entity on which the

Availability Management Framework performs any action, and the application represents the

highest level of the service. The hierarchy of the AMF logical entities is depicted in Figure 95.

Figure 95 : Logical Entities of the Availability Management Framework

The Component represents a set of resources to the Availability Management Framework. The

resources represented by the component encapsulate specific application functionality. This set can

include hardware resources, software resources or a combination of the two. It is the smallest

logical entity on which the Application Management Framework performs error detection, isolation,

recovery, and repair. The scope of the component must be small enough so that its failure has as

little impact as possible on the services provided by the cluster. Furthermore, the component should

include all the important functions that cannot be separated.

The Component class is an aggregated notion that may refer to either a Local or an External

Component. A Local Component represents a subset of the local resources contained within a

single node while an External Component represents a set of resources that are external to the

AMF cluster.

The Local Component class is further specialized into SA-Aware and Non-SA-Aware Component

classes that refer to whether the given Local Component implements the interfaces that enable the

AMF to monitor the health of the component or not. In case of Non-SA-Aware Components and

External Components a Proxy Component, which is a special SA-Aware Component, has to be

used that uses proprietary communication methods to forward the health check requests of the AMF

to the designated components.

Page 116 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

A Service Unit is a logical entity that aggregates a set of Components combining their individual

functionalities to provide a higher level service. A Service Unit can contain any number of

Components but a given Component can be configured in only one Service Unit. Using this model,

the Components can be developed in isolation, and the developer might be unaware of which

Components constitute a Service Unit since they are defined at deployment time only.

From the perspective of the Availability Management Framework the Service Unit is the unit of the

redundancy so that it is the smallest logical entity that can be instantiated in a redundant manner.

Service Units are aggregated into Service Groups. The Service Group prescribes the manner in

which the Service Units are instantiated in order to make the individual services that are provided

by the Service Units highly available. This manner is called the redundancy model. The redundancy

model of the Service Group can be for example the “2N”, which means a simple failover behaviour,

or the “N+M” model for N active, M standby behaviour.

As mentioned above, the Application represents the highest level of the service, which is provided

by the cluster. It contains one or more Service Groups and combines the individual functionalities

of the constituent Service Groups to provide the higher level service. An Application can contain

any number of Service Groups, but a given Service Group can be configured in only one

Application.

A Component Service Instance represents the workload that the Availability Management

Framework can dynamically assign to a Component. High availability (HA) states are assigned to a

Component on behalf of its Component Service Instances.

Each Component Service Instance has a set of attributes (name/value pair), which characterize the

workload assigned to the Component. These attributes are not used by the Availability Management

Framework, and are just passed to the Components. The Availability Management Framework

supports the notion of Component Service Instance Type. All Component Service Instances of the

same type share the same list of attribute names.

In the same way as Components are aggregated into Service Units, the Availability Management

Framework supports the aggregation of Component Service Instances into a logical entity called a

Service Instance. A Service Instance aggregates all Component Service Instances to be assigned to

the individual Components of the Service Unit in order for the Service Unit to provide a particular

service.

When a Service Unit is available to provide service, the Availability Management Framework can

assign HA states to the Service Unit for one or more Service Instances. When a Service Unit

becomes unavailable to provide service, the Availability Management Framework removes all

Service Instances from the Service Unit. A Service Unit might be available to provide service but

not have any assigned Service Instance.

The Availability Management Framework assigns a Service Instance to a Service Unit

programmatically by assigning each individual Component Service Instance of the Service Instance

to a specific Component within the Service Unit.

AMF Cluster and Node entities. An AMF Node is the logical representation of a Physical Node

that has been administratively configured in the Availability Management Framework

configuration. An AMF Node is also a logical entity whose various states are managed by the

Availability Management Framework using designated administrative operations that are defined

for such nodes.

The complete set of AMF Nodes in the Availability Management Framework configuration defines

the AMF Cluster. The AMF Cluster is one of the entities that are under the Availability

Page 117 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Management Framework control, and its various states are managed by the Availability

Management Framework. There are Availability Management Framework administrative operations

that are defined on the AMF Cluster.

The restart of an AMF Node will only stop and start entities under Availability Management

Framework control, without any impact on the cluster membership. The restart of the AMF Cluster

will restart all AMF Nodes.

Applications to be made highly available are supposed to be configured in the Availability

Management Framework configuration. Each Application is configured to be hosted in one or more

AMF Nodes within the AMF Cluster.

One or more Service Units can be assigned to an AMF Node to provide service.

Compliance to HIDENETS objectives: The Application Interface Specification standardizes the

access interfaces to several commonly used services such as the checkpointing or messaging. These

interfaces cover the required functionalities of a HIDENETS node in the infrastructure domain,

therefore it was decided that any HIDENETS node in the infrastructure domain has to offer these

standard interfaces. In this way our design support can utilize the advantages of the existing

standard.

Industrial relevance: SA Forum specifications are widely accepted in the industry. There is a

dynamically growing number of technology adapters and implementers.

Extensibility: The SA Forum interfaces are designed to be used as is and thus there is no support

for customizing them.

Extension requirements: During the HIDENETS project the weakness in supporting mobility was

identified. The project results were presented to the standardization body where the work on the

extension started.

Tool support: Since the SA Forum specifications are emerging standards currently there is no wide

range of tools that support the development for SA Forum based systems.

Openness: The SA Forum specifications are freely accessible and there are several open source

implementations e.g. OpenAIS [OpenAIS], OpenSAF [OpenSAF].

Page 118 of 118

IST-FP6-STREP-26979 / HIDENETS Confidential

Appendix B

The following figure depicts the abstract syntax of the test requirement language.

	Bibliography
	Abbreviations
	Executive Summary and Introduction
	Design Framework
	Goal of the Framework
	Design Methodologies
	Standards and Specifications
	HIDENETS Architecture

	Overview of the Modelling Activities
	Model Driven Architecture in the Context of the HIDENETS project
	Key Phases of Modelling Activities
	An Overview on the Tool-Chain

	Modelling HIDENETS Related Application Features
	Introduction on Metamodelling and Profile Construction
	Ad-hoc Domain
	Cooperative Backup
	Conceptual Model
	Metamodelling and Profile Construction
	Application Example
	Design Pattern

	Timing Failure Detection
	Conceptual Model
	Metamodelling and Profile Construction
	Application Example
	Design Pattern

	Infrastructure Domain
	The Availability Management Framework (AMF)
	Conceptual Model
	Profile Construction
	Application Example, Structural Design Templates and Design Patterns

	Checkpoint Service
	Conceptual Model
	Metamodelling and Profile Construction
	Application Example
	Design Pattern

	Application Design Support
	Domain Specific Editor
	User Interface
	Application Examples
	Visual Notations in Explorer Views

	Source Code and Configuration Generation
	Example Application
	Implementation of the Framework
	Model Manipulation
	Configuration Generation
	Configuration for the OpenAIS middleware
	Configuration for the OpenSAF middleware
	Component code skeleton generation

	Proof of Concept
	Application Development on a Conceptual Level
	Concepts

	Functional Decomposition – Actors & Use-Cases
	Utilizing the Underlying Metamodels
	Implementation

	Conclusion

	Testing Activities
	Summary of the testing contribution
	Role of scenarios in the testing framework
	Specificities of scenarios in mobile settings
	Automated treatment of scenario descriptions
	Overview of the next sections

	TERMOS: a scenario language for testing requirements
	UML 2.0 Sequence Diagrams
	Discussion of the design decisions for TERMOS
	Default interpretation of diagrams
	What is a trace?
	Synchronization on entering and exiting fragments
	Restriction on guards and state invariants
	Deterministic diagrams
	No nesting of conformance operators

	Syntax of the language
	Syntax of the spatial view
	Spatial elements in the event view
	Broadcast communication
	Syntax of event view

	Example scenarios
	Group Membership Protocol
	Platoon Driver Support Software
	Distributed black box application

	Semantics of the language
	Pre-processing the diagram
	Unwinding algorithm
	Well-formed diagrams
	Combining the spatial and event view

	GraphSeq: a graph matching tool
	Graph homomorphism building as a core facility
	Reasoning on sequences of graphs
	Algorithm with a fixed set of nodes in patterns
	Accounting for nodes that appear and disappear
	Validation of GraphSeq

	Conclusion of the testing contribution

	Summary
	Appendix A
	UML Based Modelling and Metamodelling
	Specifications of the Service Availability Forum

	Appendix B

