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1 Introduction 

Scenario languages are widely used in software development. Typical usage scenarios, forbidden 
behaviors, test cases and many more aspects can be depicted with graphical scenarios. Several language 
variants were proposed over the years. The International Telecommunication Union’s (ITU) Message 
Sequence Chart (MSC) [6] was one of the first of such languages. It is widely used, since its first 
introduction in 1993 it was updated several times, and the specification defines also a formal semantics 
for the basic elements of the language based on process theory. Triggered Message Sequence Charts 
(TMSC) [8] proposed extensions to MSC to express conditions and refinement in a precise way. Live 
Sequence Charts (LSC) [9] concentrated on distinguishing possible and necessary behaviors. A special 
technique and a tool, the Play-Engine, were also developed for LSC to specify reactive systems [10]. 

Scenario languages were introduced into the Object Management Group’s (OMG) Unified Modeling 
Language (UML) [1] under the name of Sequence Diagrams. The 2.0 version of UML changed Sequence 
Diagrams significantly. Several elements were borrowed from MSC, many new complex elements were 
added to the language, the semantics and the underlying metamodel were rewritten. The 
expressiveness of the language was highly increased. However, this was carried out without defining a 
precise semantics for the language. This could lead to serious problems, as it is easy to create hard to 
interpret diagrams, as pointed out by several papers since the publication of the specification. 

We are currently working on the definition of testing languages for mobile systems based on UML 
Sequence Diagrams. When we tried to define the semantics of our extensions, we encountered the 
problem that there is no complete, formal semantics for Sequence Diagrams. Several approaches were 
proposed, but as far as we know, no one tried to collect all the reported problems, and there is no 
semantics, which covers all parts of the language. Thus, our aim with this paper is to (i) categorize the 
problems we found or have been reported with the current specification, (ii) review the proposed 
formal semantics and (iii) see how the problems are addressed in the approaches. 

The paper is divided into the following parts. Section 2 presents the syntax and semantics as defined in 
the OMG specification. We tried to highlight those parts, which are usually missing from published 
overviews about Sequence Diagrams, e.g. the complete abstract syntax or the mapping between the 
concrete and abstract syntax. Section 3 collects and categorizes the problems with the current 
specification. Section 4 introduces an example, and gives its semantics using two of the proposed 
approaches. Later, it presents the proposed formal semantics, and shows which problems were 
addressed by each approach. Finally, Section 5 collects which UML elements and problems were 
addressed by Section 4’s methods. 
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2 Sequence Diagrams' description in the specification 

The Unified Modeling Language is described in two specifications, which can be found at [1]: 

 UML Infrastructure Specification: describes a minimal set of elements that serves as a common base 
for defining more complex structures. 

 UML Superstructure specification: contains the user level constructs, like sequence diagrams, of UML. 

The second one presents the Sequence Diagrams, the rest of this section summarizes its relevant parts. 
Scenarios in UML are modeled with Interactions1. Interactions can be illustrated on several diagram 
types: Sequence Diagrams, Interaction Overview Diagrams, Communication Diagrams, and on the 
optional diagram notations Timing Diagrams and Interaction Tables. Thus, the syntax and semantics is 
defined for Interactions, Sequence Diagrams are just a concrete notation to depict them. 

2.1 Syntax of Sequence Diagrams 

The syntax defined in the specification consists of (i) a concrete syntax defining the graphical notation, 
and (ii) an abstract syntax given with a metamodel defining the relationships between the elements. 

2.1.1 Concrete Syntax 

This section summarizes the elements of the Interactions and their notations on Sequence Diagrams. 
Figure 1 illustrates a basic Interaction. Lifelines represent the individual participants in the Interaction, 
which communicate with Messages. 

 
Figure 1: Example Sequence Diagram [3] 

Message is a general term; it can be a synchronous or an asynchronous communication, it can mean 
calling an Operation or sending a Signal (specified by its MessageSort attribute). MessageKind defines 
whether the sender or receiver of the message is known (complete, lost or found messages). Messages 
have two MessageEnds. Figure 2 depicts several messages. GeneralOrdering can constrain the ordering 
of otherwise unrelated occurrences. ExecutionSpecification is a specification of the execution of a unit of 
behavior or action within a Lifeline. An ExecutionSpecification does not necessarily mean sending out 
messages; similarly, messages can be sent without an ExecutionSpecification on their Lifeline at their 
sending. OccurrenceSpecification (and its descendants) is the basic unit of semantics. Sending and 
receiving messages are marked with MessageOccurrenceSpecification, starting and ending of 
ExecutionSpecifications are represented with ExecutionOccurrenceSpecifications. Object creation can be 
illustrated with the createMessage MessageSort; object destruction with the DestructionEvent. 

                                                      
1 Throughout the text elements of the UML metamodel are written with CamelCase. 
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Figure 2: Examples for Messages 

More complex Interactions can be created with CombinedFragment. A CombinedFragment consists of 
one or more InteractionOperands. An InteractionOperatorKind specifies the purpose of the fragment. 
InteractionConstraints can guard each InteractionOperand. Messages on their own cannot cross the 
boundaries of CombinedFragments, they need a Gate which links the two parts of the message. An 
InteractionUse refers to another Interaction. It can be passed parameters and can have a return value. 
ConsiderIgnoreFragment is a special CombinedFragment, which operator is either ignore or consider, 
and has a list of messages which should be considered or ignored inside the fragment. 

sd example 2

alt
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m3
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OperatorKind
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Interaction-
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m4
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d : C
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Figure 3: Example for CombinedFragment 

StateInvariant is a runtime constraint on one of the participant of the Interaction. The Constraint is 
evaluated immediately prior to the execution of the next OccurrenceSpecification on the Lifeline. 
StateInvariants have two kind of notation, on one hand it can be an expression of attributes and 
variables, or they can refer to a state of the lifeline's object (both notations are used on Figure 3). 

Figure 4 shows constructs for specifying time and time constraints. These elements are defined in the 
SimpleTime package of CommonBehaviors. TimeObservation is a reference to an instant of time, while 
DurationObservation is a reference to a duration during an execution. TimeConstraints and 
DurationConstraints can be formed respectively. 
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Figure 4: Example for time and timing constraints (Fig. 14.26 of [3]) 

2.1.2 Abstract syntax 

The abstract syntax of Interactions is defined with meta-modeling, the model is presented in 14.2 
Abstract Syntax of [3]. The abstract syntax is presented in several separate diagrams, thus Figure 5 
illustrates the abstract syntax of the BasicInteractions package on one diagram. (Note that the various 
Events classes, the MessageSort and MessageKind classes and some of the association names and 
attributes are not depicted on the picture for readability.) 

 
Figure 5: The abstract syntax of the BasicInteractions package (fragment) 

An ExecutionSpecification can mean an execution of an action or a behavior. These are marked by its 
two descendants, ActionExecutionSpecification and BehaviorExecutionSpecification. 

To connect Interactions to the common run-time mechanism of UML several types of events are 
specified, namely CreationEvent, DestructionEvent, ExecutionEvent, ReceiveOperationEvent, 
ReceiveSignalEvent, SendOperationEvent, SendSignalEvent. 

Figure 6 illustrates the abstract syntax of the Fragments package. (Note that some of the association 
names and attributes are not depicted on the picture for readability.) 
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Figure 6: The abstract syntax of the Fragments package (fragment) 

A Continuation is a syntactic way to define continuations of different branches of an Alternative 
CombinedFragment. 

PartDecomposition is a description of the internal interactions of one Lifeline relative to an Interaction. 

InteractionFragment is an abstract class for Interaction, CombinedFragment, InteractionOperand, 
InteractionUse and Continuation, and also for OccurrenceSpecification, ExecutionSpecification and 
StateInvariant. 

The following two examples illustrate the relation between the concrete and abstract syntax. 

sd sd1

a : A b : B

m1

 

 

sd1:Interaction

a:Lifeline

b:Lifeline

m1:Message

s_m1:MessageOccurrance

Specification

r_m1:MessageOccurrance

Specification

fragment

fragment

lifeline
sendEvent

receiveEvent

covered

covered

 
Figure 7: A simple Interaction's concrete and abstract syntax (fragment) 

The right side of Figure 7 contains the metamodel elements of sd1 (without the various events). The 
Interaction is a container for all other elements. The OccurrenceSpecifications are linked to the 
appropriate Lifelines and Messages. 

Figure 8 depicts the abstract syntax of a complex Interaction. The Lifelines are connected to the 
CombinedFragments that cover them. The InteractionOperand contains the InteractionFragments 
(OccurrenceSpecifications, StateInvariants, other CombinedFragments, etc.) which are enclosed by this 
operand. An InteractionFragment can be enclosed only by one operand, thus the nesting is not 
contained in the model explicitly. 
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sd sd2

opt

a : A b : B

m2

[b.d > 5]

 

sd2:Interaction

a:Lifeline

b:Lifeline

m2:Message

s-m2:MessageOccurranceSpecification

r-m2:MessageOccurranceSpecification

fragment

enclosingInteraction

fragment

sendEvent

receiveEvent

covered

covered

opt-cf:CombinedFragment

opt-op:InteractionOperand guard:InteractionConstraint

fragment

coveredBy
coveredBy

enclosingOperand

fragment

fragment

 

 
Figure 8:  A complex Interaction's concrete and abstract syntax (fragment) 

Finally, an Interaction can be stored in an XMI (XML Metadata Interchange) format to exchange models 
between different tools. The XMI contains the Interaction's abstract representation, e.g. for Figure 8 the 
following XML is generated. 

<packagedElement xmi:type="uml:Collaboration" xmi:id="collaboration_id" 
 name="Collaboration1"> 
 <ownedBehavior xmi:type="uml:Interaction" xmi:id="sd2_id" name="sd2"> 
  <ownedConnector xmi:type="uml:Connector" xmi:id="connector_id"> 
   <end xmi:type="uml:ConnectorEnd" xmi:id="connectorend-1_id" role="a-instance_id" />  
   <end xmi:type="uml:ConnectorEnd" xmi:id="connectorend-2_id" role="b-instance_id" />  
  </ownedConnector> 
  <lifeline xmi:type="uml:Lifeline" xmi:id="a-ll_id" name="a" represents="a-instance_id" 
   coveredBy="opt-cf_id r-m2_id" />  
  <lifeline xmi:type="uml:Lifeline" xmi:id="b-ll_id" name="b" represents="b-instance_id" 
   coveredBy="opt-cf_id s-m2_id" />  
  <fragment xmi:type="uml:CombinedFragment" xmi:id="opt-cf_id" covered="b-ll_id a-ll_id" 
   interactionOperator="opt"> 
   <operand xmi:type="uml:InteractionOperand" xmi:id="opt-op_id"> 
    <guard xmi:type="uml:InteractionConstraint" xmi:id="guard_id"> 
     <specification xmi:type="uml:OpaqueExpression" xmi:id="guard-expression_id"> 
      <body>b.d > 5</body>  
     </specification> 
    </guard> 
    <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="s-m2_id"  
     covered="b-ll_id" event="sendEvent_id" message="m2_id" />  
    <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="r-m2_id"  
     covered="a-ll_id" event="receiveEvent_id" message="m2_id" />  
   </operand> 
  </fragment> 
  <message xmi:type="uml:Message" xmi:id="m2_id" name="m2" messageSort="asynchCall" 
   receiveEvent="r-m2_id" sendEvent="s-m2_id" connector="connector_id" />  
 </ownedBehavior> 
 <ownedAttribute xmi:type="uml:Property" xmi:id="a-instance_id" name="a" type="A_id" 
  end="connectorend-1_id"/> 
 <ownedAttribute xmi:type="uml:Property" xmi:id="b-instance_id" name="b" type="B_id" 
  end="connectorend-2_id"/> 
</packagedElement> 
<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="sendEvent_id"  
 name="SendOperationEvent3" operation="m2-operation_id"/> 
<packagedElement xmi:type="uml:ReceiveOperationEvent" xmi:id="receiveEvent_id" 
 name="ReceiveOperationEvent3" operation="m2-operation_id"/> 
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<packagedElement xmi:type="uml:Class" xmi:id="A_id" name="A"> 
 <ownedOperation xmi:type="uml:Operation" xmi:id="m2-operation_id" name="m2"/> 
</packagedElement> 
<packagedElement xmi:type="uml:Class" xmi:id="B_id" name="B"/> 

Every element in an XMI file is identified by a unique ID (xmi:id). These IDs were replaced in the above 
XMI with strings to ease the readability. The relations depicted on Figure 8 are all contained in the XMI, 
e.g. see coveredBy attribute of the lifeline elements. Moreover, this XMI includes all the related elements 
which were left out from the figure, e.g., the events triggered by the Message, or the instances 
represented by the Lifelines. 

2.2 Semantics of Sequence Diagrams 

There are two major challenges when dealing with the semantics given in the specifications. 

 The description of the semantics is scattered through the text. Some parts are in the introductory 
parts of the chapters, while some information is only in the constraints defined in the detailed 
description of a class. 

 The specification uses so called semantic variation points [5], i.e. some of the semantics is not 
specified in detail to allow using UML in many domains. When UML is used in a concrete domain, the 
modeler has to choose from the different possible variations. To make this even harder, sometimes 
these variation points are not marked explicitly, just different parts of the text use different variants. 

This section summarizes the parts that deal with the semantics of Interactions. 

2.2.1 Common Run-time Semantics 

The common run-time semantics is given in the following sections. 

Section 6.2 of [3] (On the Run-Time Semantics of UML) summarizes the basics. All behavior is caused by 
actions executed by active objects. It describes also the basic causality model: 

"The causality model is quite straightforward: Objects respond to messages that are generated by objects 
executing communication actions. When these messages arrive, the receiving objects eventually respond by 
executing the behavior that is matched to that message. (page 12 of [3])" 

The CommonBehaviors package (Chapter 13) deals with the fundamentals of behavior. A Behavior 
describes how the states of the objects, as reflected by their structural features, change over time. 
Behavior is an abstract metaclass; its subtypes are Interactions (Chapter 14), Activities (Chapter 12), 
State Machines (Chapter 15) and Use Cases (Chapter 16). These subtypes differ on how they model a 
behavior, e.g., what level of detail is captured. A Behavior is attached to a BehavioredClassifier (e.g., to a 
Class or to a Collaboration). A Behavior is the implementation of a BehavioralFeature, which can be an 
Operation or a Reception of a Signal. Behaviors can be invoked by Actions. An Action (Chapter 11) is the 
fundamental unit of behavior specification. "An action takes a set of inputs and converts them into a set of 
outputs, though either or both sets may be empty (page 217)." Examples for actions are 
CallOperationAction, SendSignalAction or WriteVariableAction. The execution of Actions can result in an 
Event. Possible Events include CallEvent or SignalEvent. For Events caused by InvocationActions a 
request (e.g., a Message) is generated and sent, which contains the arguments of the Action and the 
identities of the sender and receiver object. Similarly, at the receiving of the request an Event will occur. 
Events, through Triggers, may cause the execution of Behaviors. 

Figure 9 summarizes the inheritance relations between these elements. 

Figure 10 presents the relations of these fundamental concepts. Associations in red are not part of the 
specification; they illustrate only possible implicit relationships. E.g., a CallBehaviorAction Action causes 
a direct invocation of a Behavior, while the CallOperationAction does this via a BehavioralFeature. 
Likewise, Actions do not necessarily cause an Event, and not all Events are caused by Actions. 
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Figure 9: The inheritance relationship between some of the fundamental elements 

Behavior

BehavioralFeature
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method

specification

Trigger

event

BehavioredClassifier
ownedTrigger

invokes causes

 
Figure 10: Relations of the basic behavioral concepts (red associations are not part of the specification) 

These relationships and the semantic domain of behaviors are detailed in Section 13.1 Overview of the 
Common Behaviors chapter. 

The run-time semantics of UML is also described in [5], where not only the concepts, but also the design 
decisions behind them are explained. 

Finally, in "Relation of trace model to execution model" (page 482) the relation between this general 
semantic domain and the elements of Interactions is described. Invocation occurrences and receive 
occurrences are modeled by OccurrenceSpecification. Actions are generally not described in 
Interactions. A request is modeled by a Message; an execution of a behavior is by 
ExecutionSpecifications. Although the CommonBehaviors package tries to unite the behavior described 
in the several different notations, sometimes this is not achieved yet completely. For example, both 
ReceiveSignalEvent (from BasicInteractions) and SignalEvent (from Communications) describe the 
receipt of a Signal, they both are descendants of MessageEvent, but have no relations with each other. 

2.2.2 Semantics for Iterations 

Several sections in the text define some part of the semantics; this section tries to collect them. 

2.2.2.1 Basic Interactions 

Interactions describe behavior with messages between objects. The focus is on the order and the types 
of the messages, although Interactions can contain reference to data in message parameters and 
constraints. The central concept of the semantics is a trace. 

"A trace is a sequence of event occurrences, each of which is described by an OccurrenceSpecification in a 
model." (page 482). 

An important question is what part of the complete behavior is modeled by the Interactions. 

"There are normally other legal and possible traces that are not contained within the described 
interactions" (page 457). 

The Interactions can not only model possible traces, but invalid ones also: 

"The semantics of an Interaction is given as a pair of sets of traces. The two trace sets represent valid 
traces and invalid traces. The union of these two sets need not necessarily cover the whole universe of 
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traces. The traces that are not included are not described by this Interaction at all, and we cannot know 
whether they are valid or invalid" (page 482). 

Although it is stated that invalid traces come only from negative CombinedFragments: "The invalid set of 
traces are associated only with the use of a Negative CombinedInteraction. For simplicity we describe only 
valid traces for all other constructs" (page 482), in other parts this statement is contradicted, e.g., in 
StateInvariant, "if the Constraint is false, the trace is an invalid trace" (page 503). Collecting all the 
similar references yields that invalid traces are defined by assert and negative fragments, and 
constraints such as StateInvariant, DurationConstraint and TimeConstraint.  

The semantics of Interactions is explained with an interleaving semantics, i.e. two events may not occur 
at exactly the same time. 

"By interleaving we mean the merging of two or more traces such that the events from different traces 
may come in any order in the resulting trace, while events within the same trace retain their order. 
Interleaving semantics is different from a semantics where it is perceived that two events may occur at 
exactly the same time. To explain Interactions we apply an Interleaving Semantics." (page 457) 

The orders of OccurrenceSpecifications are constrained by the following rules. 

 Occurrences on the same lifeline must occur in the same order as they are specified, even for 
receives from different objects (“The order of OccurrenceSpecifications along a Lifeline is significant 
denoting the order in which these OccurrenceSpecifications will occur.”, page 491). 

 Receiving a message should occur after the sending of the message (“The semantics of a complete 
Message is simply the trace <sendEvent, receiveEvent>” page 493). 

 GeneralOrdering can add further constraints to OccurrenceSpecifications, which are not related. ("A 
GeneralOrdering is introduced to restrict the set of possible sequences. A partial order of 
OccurrenceSpecifications is defined by a set of GeneralOrdering" page 481). 

Thus, the semantics defines a partial order on OccurrenceSpecifications, and valid traces are those, 
which can be generated satisfying these orders. 

The way to construct the resulting trace for an Interaction from its Fragments is defined by: 

"The semantics of Interactions are compositional in the sense that the semantics of an Interaction is 
mechanically built from the semantics of its constituent InteractionFragments. The constituent 
InteractionFragments are ordered and combined by the seq operation (weak sequencing) as explained in 
“Weak Sequencing” on page 468" (page 482). 

2.2.2.2 Fragments 

If no other operator is present on a diagram, then weak sequencing should be applied to the 
InteractionFragments. The rules for weak sequencing are the following. 

"Weak sequencing is defined by the set of traces with these properties: 

1. The ordering of OccurrenceSpecifications within each of the operands is maintained in the result.  

2. OccurrenceSpecifications on different lifelines from different operands may come in any order.  

3. OccurrenceSpecifications on the same lifeline from different operands are ordered such that an 
OccurrenceSpecification of the first operand comes before that of the second operand." (page 468) 

For the Interactions that use elements from the Fragments package, the semantics is mainly defined in 
the description of CombinedFragment when detailing the various operators (page 468-470). We 
grouped the operators into the following categories: 

I. Operators that make the representation of diagrams more compact (semantically equivalent diagrams 
can be created for these with unfolding the loops or splitting the branches of an alternate fragment to 
multiple diagrams): 

Alternatives "The interactionOperator alt designates that the CombinedFragment represents a choice of 
behavior. At most one of the operands will be chosen. The chosen operand must have an explicit or implicit 
guard expression that evaluates to true at this point in the interaction. An implicit true guard is implied if 
the operand has no guard. The set of traces that defines a choice is the union of the (guarded) traces of the 
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operands. An operand guarded by else designates a guard that is the negation of the disjunction of all 
other guards in the enclosing CombinedFragment. If none of the operands has a guard that evaluates to 
true, none of the operands are executed and the remainder of the enclosing InteractionFragment is 
executed." 

Option "The interactionOperator opt designates that the CombinedFragment represents a choice of 
behavior where either the (sole) operand happens or nothing happens. An option is semantically 
equivalent to an alternative CombinedFragment where there is one operand with non-empty content and 
the second operand is empty." 

Break "The interactionOperator break designates that the CombinedFragment represents a breaking 
scenario in the sense that the operand is a scenario that is performed instead of the remainder of the 
enclosing InteractionFragment. A break operator with a guard is chosen when the guard is true and the 
rest of the enclosing Interaction Fragment is ignored. When the guard of the break operand is false, the 
break operand is ignored and the rest of the enclosing InteractionFragment is chosen. The choice between 
a break operand without a guard and the rest of the enclosing InteractionFragment is done non-
deterministically. A CombinedFragment with interactionOperator break should cover all Lifelines of the 
enclosing InteractionFragment." 

Loop "The interactionOperator loop designates that the CombinedFragment represents a loop. The loop 
operand will be repeated a number of times. The Guard may include a lower and an upper number of 
iterations of the loop as well as a Boolean expression. The semantics is such that a loop will iterate 
minimum the ‘minint’ number of times (given by the iteration expression in the guard) and at most the 
‘maxint’ number of times. After the minimum number of iterations have executed and the Boolean 
expression is false the loop will terminate. The loop construct represents a recursive application of the seq 
operator where the loop operand is sequenced after the result of earlier iterations." 

II. Operators that alter the orderings of OccurrenceSpecification: 

Parallel "The interactionOperator par designates that the CombinedFragment represents a parallel 
merge between the behaviors of the operands. The OccurrenceSpecifications of the different operands can 
be interleaved in any way as long as the ordering imposed by each operand as such is preserved. A parallel 
merge defines a set of traces that describes all the ways that OccurrenceSpecifications of the operands may 
be interleaved without obstructing the order of the OccurrenceSpecifications within the operand." 

Strict Sequencing "The interactionOperator strict designates that the CombinedFragment represents a 
strict sequencing between the behaviors of the operands. The semantics of strict sequencing defines a strict 
ordering of the operands on the first level within the CombinedFragment with interactionOperator strict. 
Therefore OccurrenceSpecifications within contained CombinedFragment will not directly be compared 
with other OccurrenceSpecifications of the enclosing CombinedFragment." 

Note, the phrasing of this paragraph could raise questions, an example would be useful to clarify what is 
meant by the last sentence. 

Critical Region "The interactionOperator critical designates that the CombinedFragment represents a 
critical region. A critical region means that the traces of the region cannot be interleaved by other 
OccurrenceSpecifications (on those Lifelines covered by the region). This means that the region is treated 
atomically by the enclosing fragment when determining the set of valid traces. Even though enclosing 
CombinedFragments may imply that some OccurrenceSpecifications may interleave into the region, such 
as with par-operator, this is prevented by defining a region. Thus the set of traces of enclosing constructs 
are restricted by critical regions." 

III. Operators that alter the conformance relation, i.e., the way a trace is categorized as valid or invalid 
according to a diagram: 

Negative "The interactionOperator neg designates that the CombinedFragment represents traces that are 
defined to be invalid. The set of traces that defined a CombinedFragment with interactionOperator 
negative is equal to the set of traces given by its (sole) operand, only that this set is a set of invalid rather 
than valid traces. All InteractionFragments that are different from Negative are considered positive 
meaning that they describe traces that are valid and should be possible." 
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Assertion "The interactionOperator assert designates that the CombinedFragment represents an 
assertion. The sequences of the operand of the assertion are the only valid continuations. All other 
continuations result in an invalid trace. Assertions are often combined with Ignore or Consider as shown in 
Figure 14.24".  

Ignore "The interactionOperator ignore designates that there are some message types that are not shown 
within this combined fragment. These message types can be considered insignificant and are implicitly 
ignored if they appear in a corresponding execution. Alternatively, one can understand ignore to mean 
that the message types that are ignored can appear anywhere in the traces" (page 473). 

Consider "Conversely, the interactionOperator consider designates which messages should be considered 
within this combined fragment. This is equivalent to defining every other message to be ignored" (page 
473). 

A list of messages follows the ignore or consider keywords representing the ignored / considered 
message types. They have to be exact message names, no wildcarding is allowed. 

Other classes defined in the Fragments package are the following. 

InteractionConstraint: The InteractionsOperands of a CombinedFragment can have guards on them. 
The following rules apply to a guard. 

 "The dynamic variables that take part in the constraint must be owned by the ConnectableElement 
corresponding to the covered Lifeline" (page 484).  

 "The constraint may contain references to global data or write-once data" (page 484). What exactly 
the global data or write-once data should be is not detailed. 

 "Only InteractionOperands with a guard that evaluates to true at this point in the interaction will be 
considered for the production of the traces for the enclosing CombinedFragment" (page 486). 

InteractionUse: "The InteractionUse is a shorthand for copying the contents of the referred Interaction 
where the InteractionUse is. To be accurate the copying must take into account substituting parameters 
with arguments and connect the formal gates with the actual ones. The semantics of the InteractionUse is 
the set of traces of the semantics of the referred Interaction where the gates have been resolved as well as 
all generic parts having been bound such as the arguments substituting the parameters" (pages 487-488). 

Gate: "The gates and the messages between gates have one purpose, namely to establish the concrete 
sender and receiver for every message" (page 480). 

Gates make possible that messages cross the boundaries of Iterations, InteractionUses and 
CombinedFragments. 

Variables: Although representing data is not the focus of sequence diagrams, several elements can have 
reference to data and variables. 

 Local attributes of Interactions: "An Interaction diagram may also include definitions of local 
attributes with the same syntax as attributes in general are shown within class symbol 
compartments" (page 483). An Interaction is a Behavior, which is a descendant of Class, thus it can 
have attributes. However, it is not specified how these variables are stored or who can have access to 
these attributes. 

 Parameters of Interactions: They are mentioned in the notation part of Interaction ("The keyword sd 
followed by the Interaction name and parameters is in a pentagon in the upper left corner of the 
rectangle." page 483) and in the definition of InteractionUse. It is not specified, who will pass these 
parameters. 

 Arguments of Message: “Arguments of a Message must only be:  
o i) attributes of the sending lifeline.  
o ii) constants.  
o iii) symbolic values (which are wildcard values representing any legal value).  
o iv) explicit parameters of the enclosing Interaction.  
o v) attributes of the class owning the Interaction.” (page 492). 

This section summarized the semantics defined in the specification. As it can be seen from the next 
section, several issues can be raised regarding this semantics.  
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3 Semantically Challenging Sequence Diagrams 

The previous section provided an overview of the OMG specification. In this specification, the semantics 
is informally defined as a set of valid and invalid traces that can be generated from the diagram. Having 
a closer look at the semantics of Interactions, we now summarize issues found by our experience or 
reported in the literature. We first present the issues reported to OMG through its issue website 
(Section 3.1). Next, some easy-to-fix issues with the OMG definition are listed (Section 3.2). Then we 
raise more serious concerns about the ability to compute an ordering of events (Section 3.3), and to 
assign an interpretation to operators altering the conformance relation (Section 3.4). These concerns 
should be central to any attempt at defining a semantics for Sequence Diagrams. We show, among other 
things, that compositionality is problematic with respect to both the ordering of events and the 
categorization into valid and invalid traces, making it difficult to derive the meaning of a diagram from 
the meaning of its fragments and the syntactic composition operators. We conclude by a summary of 
problems (Section 3.5). 

When necessary, the discussion is illustrated by examples where it is especially hard to assign a 
meaning to a diagram. Besides the illustrative purpose, the examples may serve as a set of concrete 
cases against which candidate formal semantics could be checked. The examples include test traces, and 
we adopt the usual convention that !m (resp. ?m) denotes the sending (resp. receiving) 
OccurrenceSpecification of message m. 

3.1 Issues reported to OMG 

Issues about OMG's specifications can be reported on OMG's website [4]. The following issues were 
active on 24 January 2008 that concerned Interactions. (Note, because the issue list currently does not 
offer any search and categorization functionality of issues for non-members, the issues were selected by 
hand, thus this list may be incomplete.) The titles of the issues have been edited to show their content, 
because there were original titles like Section 14 or Section Interactions. 

Request for new features: 

 Issue 6082: Add suspension region concept from MSC 
 Issue 6088: Add parameterization of lifelines 
 Issue 7161: UML 2 Super/Interactions/Need constraints that cover multiple Lifelines 
 Issue 7397: add an exception handler interaction fragment 
 Issue 8414: How to show static calls 
 Issue 8700: Allow Lifeline to represent multiple instances 
 Issue 8765: Add xalt operator 
 Issue 9111: Is there a notation for broadcast? 
 Issue 10966: Notation to show whether a Lifeline is covered by a CombinedFragment or not 

Typos, minor corrections: 

 Issue 6409: UML 2 Super/Interactions/missing OCL constraints for some of constraints 
 Issue 8342: Typos in Section: 14.3.18 
 Issue 8698: CombinedFragment Loop notation of loop condition 
 Issue 8899: Message can display return values and variable assignments but has no attributes for 

these properties. 
 Issue 8964: Interaction::lifeline should be ordered 
 Issue 10529: Typo in the definition of InteractionConstraint 
 Issue 10590: Rephrase sentence in InteractionUse 
 Issue 10650: ReceiveSignalEvent is the same as SignalEvent 
 Issue 10967: Typo in MessageSort 
 Issue 11286: Number of operands in a CombinedFragment 

Problems, need for clarification: 

 Issue 6927: UML 2 Super / Interactions / Ambiguous diagram tags.  
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o Communication and timing diagrams use also the sd tag in the top left corner of the diagram. 
o see Issue 11273: Rename sd tag to id 

 Issue 8475: What object receives SendEvent, etc? 
 Issue 8760: Events in Sequence diagram 
 Issue 8761: Arguments of Message (Issue 8786 is a duplicate of this issue) 
 Issue 8788: What is the scope of the variables used in Interactions 
 Issue 8975: Use cases as contexts of Interactions 
 Issue 9923: Some of the concepts of Interactions are more general, and should go into 

CommonBehaviors 
 Issue 10591: Problems with InteractionUse's argument 
 Issue 10974: Explanation of Observation notation 
 Issue 11068: Lifeline representing an actor 
 Issue 11092: Timing Diagram: Continuous time axis 
 Issue 11815: InteractionUse on interaction overview diagram 
 Issue 12167: Inability to specify ordering of messages connected to gates is problematic 

Already solved: 

 Issue 7392: Interactions model sequences of events.  
o (This is solved in the actual version, but the issue was not closed.) 

 Issue 7406: TimeObservationAction and DurationObservationAction 
o (This is solved in the actual version, but the issue was not closed.) 

 Issue 7951: Problem with referenced package is in wrong compliance level 
o (This is solved in the actual version, but the issue was not closed.) 

 Issue 9081: Wrong notation on Figure 14.11 
o (This is solved in the actual version, but the issue was not closed.) 

 Issue 9820: Typo in Figure, OccurrenceSpecification is not abstract 
o (This is solved in the actual version, but the issue was not closed.) 

There are quite a few issues, but as it can be seen from the following sections, they only cover a subset 
of the semantic questions. 

3.2 Loose definition of syntactic elements 

Among the problems reported to OMG, there are others that affect the abstract syntax in such a way that 
it allows diagrams that are patently ill-formed. An example is related with the following excerpt from 
the OMG specification: "If the interactionOperator is opt, loop, break, or neg, there must be exactly one 
operand" (page 467). For seq, alt, par, strict operators it is obvious that they can have more than one 
operands. But what is the meaning of a critical, assert, ignore or consider fragment that has multiple 
operands? (This is asked in OMG's Issue 11286, but only for assert.) 

Ill-formedness problems can be less trivial. The case of Gates is worth mentioning. As recalled in Figure 
6, Gates allow Messages to go inside and outside of Interactions (formalGate), InteractionUses (actual 
Gate) and CombinedFragments (cfragmentGate). We focus here on the latter type of Gates, discussion of 
the former two being delayed to Section 3.2 addressing the ordering of events. 

With the cfragmentGate type of Gate, messages can cross the boundaries of CombinedFragments (see 
Figure 14.10 of the OMG specification document [3]). Since cfragmentGate is allowed for any operator, it 
can lead to problems. 

As reported by Pickin in [14], this will cause issues with loops. If a message goes into a loop, then it will 
have one sending end, but multiple receiving ones (see Figure 11). The loop operator is defined as a 
recursive application of the seq operator. Thus if the loop is unfolded, the result is a Message which has 
more than one receiving MessageEnds, which violates its constraints.  
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sd p1

loop (0,2) 

a : A b : B

m2

c : C

m1

Here the sending 

MessageEnd of m1 

should be connected to 

multiple receiving ends.

Test trace:

!m1, ?m1, !m2, ?m2, 

?m1, !m2, ?m2

 
Figure 11: Message going into a loop 

If a message goes into a fragment with opt or alt operators, it can cause causality problems. In Figure 12 
if the guard is false, then there are no OccurrenceSpecifications on b's Lifeline before !m2, thus it can 
happen before !m1. However, the constraint should be checked right before the receiving of m1, which 
could be not even sent if the guard is false. 

sd p2

a : A b : B

m2

opt

c : C

m1

If the guard is false, then 

!m1 and !m2 are 

concurrent.

Test traces:

!m1, ?m1, !m2, ?m2

!m2, ?m2, !m1

[b.d > 1]

 
Figure 12: Message going into an opt 

As illustrated by these two simple examples, cfragmentGate can cause numerous issues, thus our 
recommendation is to remove it from the specification or heavily restrict its use. 

3.3 Ordering of OccurrenceSpecifications 

The elements on the diagram define a partial order between the OccurrenceSpecifications, but 
sometimes this order is not obvious to compute. We first explain how the presence of multiple parallel 
and alternate fragments, possibly with non-local choices, seriously complicates the identification of the 
predecessors/successors of one event. We then comment on the fact that the default composition 
operator for fragments (weak sequencing, according to the OMG specification) yields a counterintuitive 
ordering for a number of diagrams. Finally, we go back to the problem of gates, addressing formalGate 
and actualGate types. We show that these constructs deserve a specific treatment to account properly 
for the ordering of events. 

3.3.1 Finding cuts in complex diagrams 

The first step of many proposed semantics is to find all the legal cuts of a diagram. A cut C is a subset of 
events such that if e  C and e' ≤ e then e'  C. Informally, a cut is intended to represent a consistent 
global state (characterized by the events occurred so far), and it is meaningful to reason about the past 
or the future of this state. Finding cuts can be a relatively easy task for basic Interactions, but it could 
get complicated if complex fragments are used and asynchronous communication is modeled. Even 
finding the previous OccurrenceSpecification is not trivial if multiple alternate and parallel fragments 
are used in one diagram, as in Figure 13. See for example the sending of m5: its previous 
OccurrenceSpecification on the same lifeline could be ?m0 or ?m1 or ?m2 or ?m3. 
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sd p11

alt

alt

par

a : A b : B

m2

c : C

m1

[b.k == 1]

[a.l > 3]

d : D

m3

m4

m5

m0

 
Figure 13: Finding cuts in complex diagrams 

As exemplified by the upper alt operator, InteractionsConstraints (guards) may be involved in the 
determination of cuts. An alt offers much more flexibility than an IF construct would: there can be none, 
one, or several guards evaluated to true. The semantics should account for all these cases. Note that the 
OMG specification states that if none of the guards is true, then none of the operands are executed 
(hence, !m5 is possibly the immediate successor of ?m0). However, the OMG specification does not 
define which fragment should be executed when multiple guards are true. 

In the example, the accounting for guards is further complicated by the fact that they are placed on 
different lifelines. This yields a non-local choice, a problem well studied for MSC [7]. It is unclear who 
checks the guards, and who decides which one should be chosen if multiple guards are true. More 
importantly, from an event ordering perspective, it is unclear when to do the choice. In the OMG 
specification, the exact time when a guard is evaluated is never defined. The only reference is that "The 
chosen operand must have an explicit or implicit guard expression that evaluates to true at this point in 
the interaction." (page 468). If the guards are evaluated right before the next OccurrenceSpecification 
on the same Lifeline, like StateInvariants, then in the above example the first guard can only be 
evaluated after sending m0, but the OccurrenceSpecification right next to the second guard (sending of 
m2) does not have any ordering with the other OccurrenceSpecification. Thus, it is hard to choose a 
common point for evaluating all the guards. Note that the same problem arises with the other alt 
fragment in the figure, which has implicit true guards in each of its operands. 

It must be understood that, according to the OMG specification, there is no synchronization point for 
entering or exiting an operator (e.g., entering an alt box). Therefore, there may be no cut capturing a 
global state where all involved instances (or even a hypothetic global observer) are ready to evaluate 
the guards. The guards may then be evaluated at different points of time. Then, as pointed out in [28], 
what happens if the values referenced in the constraints are changed during the related time interval 
(InteractionConstraints can refer to global values, thus this is indeed possible)? 

Another interesting issue is raised by the following statement: “An InteractionConstraint is shown in 
square brackets covering the lifeline where the first event occurrence will occur, positioned above that 
event” ([3], 484). However, in some cases, it cannot be decided which is the first 
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OccurrenceSpecification in the InteractionOperand. E.g., in Figure 13, should the guard before the par 
be placed on Lifeline a or b? 

3.3.2 Counter-intuitive composition of orderings 

In our comments on the interpretation of non-local choice, we mentioned that there is no 
synchronization point for crossing the borders of an operator. Technically, entering or exiting an 
operator is not an OccurrenceSpecification. As far as we understand the OMG specification, the only 
OccurrenceSpecifications are (1) sending and receiving of Messages and (2) start and end of an 
ExecutionSpecification. These are the events that can appear in traces, and ordering constraints are 
defined for them only. In this section, we show that the lack of synchronization points for borders of 
boxes, combined with the fact that weak sequencing is the default composition operator for fragments, 
yields counterintuitive orderings. 

Let us first focus on weak sequencing, using the example of a loop (Figure 14). The meaning of the loop 
operator is given as the recursive application of the seq operator. Because weak sequencing is used 
between the successive iterations of the loop, the trace where all the sending of m1 and m2 happens 
first, and all the receiving comes after it, should be a valid trace. This is certainly not the intuitive 
meaning of a loop construct. 

sd p3

a : A b : B

loop (2, 2)

m2

c : C

m1

There is only weak 

sequencing between the 

iterations of loop.

Test trace:

!m1, !m2, !m1, !m2, 

?m1, ?m1, ?m2, ?m2

 
Figure 14: Loop means only a weak sequencing between the iterations of the loop 

Now, let us add some consideration for events occurring outside the borders of the operator. Placing 
something below a CombinedFragment does not necessarily mean that it comes after the messages 
inside the CombinedFragment. It does not help either, if the CombinedFragment covers all Lifelines. See 
for example Figure 15. Between the two diagrams, the only difference is that the loop was unfolded. 
Thus, one can assume that they have exactly the same meaning. From the diagram on the right hand 
side, it is clear that m2 has no ordering relations with messages m1, thus one would like to have the 
same (here, counterintuitive) meaning for the left hand side diagram. 

sd p6

a : A b : B

loop(2,2)
m1

c : C

m2

d : D

sd p6-u

a : A b : B

m1

c : C

m2

d : D

m1

 
Figure 15: Problem of whether a CombinedFragment is a synchronization point or not 

Using the alternate or optional fragment can yield scenarios where it is even harder to recognize these 
ordering problems. In Figure 16, it seems that there is an OccurrenceSpecification before m3 on its 
Lifeline, but of course this depends on the value of the opt guard. In addition, it seems that m1 always 
precedes m3, but such is not the case even if the opt body is executed. 
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sd p5

a : A b : B

opt

m2

c : C

m3

A CombinedFragment is 

not a synchronization 

construct.

Test trace:

!m3, !m1, ?m1, m3?

d : D

m1

[b.d > 1]

 
Figure 16: Ordering problems with optional and alternate fragments 

This can cause severe problems in the case of break as shown in Figure 17. The OMG specification 
prescribes that a break should cover all Lifelines. However, there is actually no difference between 
covering all lifelines, and covering only those lifelines that have OccurrenceSpecifications in the break 
(here, a and b). In the example, !m2 can come before !m1. This may violate the intended meaning of 
break that if the break operator is chosen, then m2 should not be sent. 

sd p4

a : A b : B

break

m1

c : C

m2

A CombinedFragment is 

not a synchronization 

construct.

Test trace:

!m2, ?m2, !m1, ?m1

d : D

[b.d > 1]

 
Figure 17: Messages drawn below a CombinedFragment 

3.3.3 Compositionality of Gates 

In Section 3.2, we discussed Gates allowing messages to cross the boundaries of CombinedFragments 
(cfragmentGate), which led the recommendation to avoid this construct. However, it may not be 
desirable to get rid of the two other categories of Gates, because they introduce a convenient facility for 
expressing complex scenarios: when a diagram includes a reference to another diagram, Gates make it 
possible to model the passing of messages. The referenced diagram has formalGates placed on its 
boundaries, allowing the representation of messages that come from, or go to, its environment. The 
environment is determined by the including diagram, where actualGates are placed at the borders of 
the ref box (see Figure 18). Gates are MessageEnds that connect the Messages inside and outside the 
referenced diagram. Thus, one could claim that a Gate is just added to satisfy the syntactic constraint 
that these messages should have proper MessageEnds, and does not have a semantic meaning. 

However, such a claim would fail to recognize that Gates do have an impact on the semantics. Because 
Gates are not OccurrenceSpecifications they are not included in the traces. (Again, they could not be 
included because crossing the borders of a box could not have an event associated with it in a real 
system.) Thus, an event ordering for the referenced diagram considered in isolation will leave out the 
Gates, that is, leave out the other end of the message outside the diagram. Similarly, in the including 
diagram, the actualGate has no event attached to it. When calculating the semantics for the whole 
Interaction by simply composing the semantics of its fragments, the ordering constraints linking the 
inside and the outside of the referenced diagram will be ignored. For this reason, we claim that Gates 
should be taken into account when defining a semantics, otherwise the given semantics will not be 
compositional. 
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sd p15

a : A b : B

m1

m2

c : C

ref

p16

sd p16

b : B

m2

c : C

m3

formalGateactualGate

m4

 
Figure 18: Formal and actual Gates 

The only way to keep Gates at the syntactic level is to require that any referenced Interaction is first in-
lined before computing the semantics. Otherwise, one has to assign extra (virtual) 
OccurrenceSpecifications to Gates, and to explicitly consider them in the composition of orderings. 

3.4 Conformance of traces with respect to Interactions 

The interpretation of conformance operators (see our classification in Table 1) is a central issue in the 
definition of the semantics. Many papers about UML 2.0 sequence diagrams deal with this issue (or at 
least mention it). Indeed, quoting from [14], “[assert/negate/ignore/consider] constructs open up a 
veritable pandora’s box of expressions whose meaning is obscure.” We try to provide here an overview 
of the problems. 

3.4.1 Default interpretation for Sequence Diagrams 

Let us start the discussion with a simple diagram without any explicit conformance operator (Figure 
19). What does it say about the traces of some target system? The intention in the OMG specification is 
that Interactions specify valid and invalid traces. Moreover, it is mentioned that that there can be other 
valid traces of the system not included in the traces of the Interactions. The way these concepts are 
defined raises several questions. 

 "… what does a ‘valid’ trace mean? Is it sometimes possible, initially possible, or always possible?" 
[30] 

 "It is stated explicitly that the union of valid traces and invalid traces does not necessarily constitute 
the trace universe. Clearly, then, a notion of trace universe also plays a part in the semantics, though 
exactly what part, is unclear! " [14] 

Figure 19 tries to capture these issues. There may be several interpretations to the shown diagram, 
each yielding a different categorization of the traces. The intended meaning of the diagram depends on 
its role in the development process. For example, if the role is to illustrate an example of interaction at 
some early stage of development, then the scenario may denote a potential, partial behavior, where 
partial means that not all lifelines and not all messages are represented. If the role is to describe a 
precise example of run, then the diagram completely represents all messages from the initialization. As 
can be seen, the intended meaning determines a default interpretation in terms of modality (e.g., 
initially possible) and of trace universe (e.g., involving only messages that appear on the diagram, or 
involving also other ones that may interleave). 

The interpretation for one diagram is only part of the story, since several diagrams may be used to 
describe the interactions of a target system. This raises questions about how to interpret a set of 
diagrams in terms of a language that accepts or rejects candidate system traces. 
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sd p7

a : A b : B

m1

m2

Are the following traces valid, invalid or 

other?

!m1, ?m1

!m1, ?m1, !m1, ?m1, !m2, ?m2

!m1, ?m1, !m3, ?m3, !m2, ?m2

 
Figure 19: Interpretation of a basic Interaction 

3.4.2 Assigning meaning to conformance operators and their nesting 

The default interpretation of the diagrams can be altered with explicit conformance operators. The 
assert, negate and StateInvariant constructs modify the categorization into valid or invalid traces. 
Moreover, with the consider and ignore operators, the messages appearing in the traces can be 
restricted or expanded. 

From the previous subsection, it should be obvious that there can be no interpretation of conformance 
operators unless the default interpretation is well defined. This may have an impact on the constructs 
that are actually needed. For example, as pointed out by [13], “if a valid trace can contain actions which 
are not in the alphabet of the interaction, is there a need for an ignore operator […]?”. Indeed, the ignore 
operator is useful only if there are actions that would otherwise not be “ignored” by the default 
interpretation. 

An InteractionOperand of a CombinedFragment can also contain a CombinedFragment. If no syntactic 
restriction is put, this means that any construct can be nested into a conformance operator, including 
another conformance operator. Then, does a double negation yield a valid trace? Has a double assert the 
same meaning as a single one? What about the meaning of an assert into a negate, or a negate into an 
assert? With respect to the ignore/consider constructs, it has to be clarified how their nesting alters the 
set of messages of interest, including the case of conflict (when a message is both ignored and 
considered). Note that, for these two constructs, some problems arise even in the absence of nesting. 
Figure 20 shows hard to interpret diagrams. Does the left hand diagram yield an empty trace? In the 
right hand one, is message m forbidden (since it is explicitly considered, but does not appear in the body 
of the operator)? The situation can be further complicated by adding assert/negate operators, e.g. by 
ignoring a negated message. Again, all these questions can be answered only if the default modality and 
trace universe are clearly understood. Some nesting cases are possibly to be avoided if no reasonable 
meaning can be assigned to them. 

sd p12

ignore {m}

a : A b : B

m

sd p13

consider {m}

a : A b : B

n

 
Figure 20: Hard to interpret diagrams with ignore/consider constructs 

Finally, there is the issue of composing the conformance operators with the other ones. This yields 
tricky questions, such as the meaning of an optional negation, or the negation of an optional behavior, 
or the parallelism of messages of the same types, one being in the scope of a negation.  
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Table 1 collects the some of the nesting that can raise questions regarding the meaning of the diagram. 
Note, this table only lists those problems, which arise specifically from nesting. The other problems 
listed in this section, e.g., non-determinism or not defined scope for operators, can yield further issues 
with specific combinations (e.g., see seq and neg on Figure 22). 

Table 1: Can nesting the operator in the column in the operator in the row cause a problem? 

 seq alt opt break par strict loop critical neg assert ignore consider 
seq             
alt     ? 9    ? 4 ? 4 ? 4 ? 4 
opt         ? 4 ? 4 ? 4 ? 4 
break    ? 2         
par    ? 3     ? 5 ? 5 ? 5 ? 5 
strict             
loop             
critical             
neg  ? 1 ? 1      ? 6 ? 6 ? 7  ? 7 
assert  ? 1 ? 1      ? 6 ? 6  ? 7 ? 7 
ignore  ? 1 ? 1      ? 7  ? 7  ? 8 
consider  ? 1 ? 1      ? 7 ? 7 ? 8  
 
1 An opt or an alt can yield an empty trace. What is the meaning of an empty trace inside a conformance operator? 
2 What is the scope of the inner break? 
3 If the break is taken, should the messages in the other operand of the par be handled or not? 
4 Can the messages from the other operands be interleaved with the ones in the conformance operator? What if 
they are from the same message type as the ones in the operator? 
5 What happens, if the same message is inside both operators of a par, but one is negated/asserted? 
6 Does double negation yield a valid trace? Is double assertion the same as a single assertion? What if we combine 
assertion and negation? 
7 It could be problematic, if the context of an assert or a neg is not fully specified. E.g., what if messages are 
ignored inside a negate fragment? 
8 What if the same message is ignored and considered? 
9 Where to place the guard, if the first events in the par's operands are not on the same Lifelines. 

 

Generally speaking, if conformance operators are just considered as normal CombinedFragments with 
no specific syntactic restriction, then their semantics has to cope with non-determinism, parallelism, 
and weak sequencing as the default composition operator. As will be explained next, this yields 
ambiguous diagrams for which a given trace can be categorized as both valid and invalid. 

3.4.3 Both valid and invalid traces 

Taking the example of the negation operator, Figure 21 shows a trace that seems to be both valid and 
invalid. 

sd p10

neg

opt

a : A b : B

m1

Is the following trace 

valid or invalid?

!m1, ?m1

m1

 
Figure 21: Ambiguity due to non-determinism 
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This is due to non-determinism. A given event in the trace can be considered as occurring either inside 
or outside the scope of the conformance operator, depending on some non-deterministic choice. 
Parallel constructs come with similar ambiguities. Assume a message is ignored in one parallel operand 
and negated in the other. Will the message occurrence in the trace be considered as valid (that is, inside 
the scope of ignore) or invalid (inside the scope of negate)? 

These questions are further compounded by the fact that the notion of “scope” of an operator is unclear, 
from both temporal and spatial viewpoints. Remember that we discussed this problem when 
addressing the ordering of events. Crossing the borders of an operator is not an OccurrenceSpecification 
(temporal viewpoint). Hence, in Figure 22, it is not clear at which point of time the negation is exited 
and message m1 becomes allowed. As regards the spatial extension, i.e. the lifelines that are covered, let 
us recall that lifelines with no OccurrenceSpecification inside the box should actually be considered as 
outside it. This may cause problems with respect to the scope of ignore/consider operators. 

sd p14

neg

a : A b : B

m1

Is the following trace 

valid or invalid?

!m1, ?m1

m1

 
Figure 22: Ambiguous scope of a conformance operator 

Another important question is how the system model is obtained from all the diagrams. Up to now, we 
have mainly discussed how to interpret an individual diagram. But a system description may involve 
numerous interaction scenarios. What if separate diagrams contradict each other in terms of 
valid/invalid traces? 

3.5 Summary of problems 

Table 2 summarizes the problem classes we identified, and assigns to each of them a reference Pi to be 
used in the rest of the paper. Problem P1 can be fixed at the syntactic level to avoid some ill-formed 
diagrams. The other problems are more challenging for the semantics.  

Table 2: Numbering of problems  

P1. Gates on Combinedfragments 

P2. Finding cuts in complex diagrams 

P3. Counter-intuitive composition of orderings 

P4. Compositionality of gates 

P5. Default interpretation for Sequence Diagrams 

P6. Assigning meaning to conformance operators and their nesting 

P7. Both valid and invalid traces 

 

P2 is the classical problem of computing a partial ordering of events for languages with parallel and 
non-deterministic constructs. It also includes the consideration for non-local choices and for guarded 
constructs. P3 is identified by exploring the consequence of using weak sequencing as the default 
composition operator. It is shown that the scope of the operators to be composed is unclear from both 
temporal and spatial viewpoints, yielding possibly counterintuitive orderings of events. P4 concerns the 
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specific problem of Gates allowing messages to cross ref boxes, and how this affects the computation of 
a global ordering. 

Problems P5-7 are related to the conformance relation used to determine whether or not a candidate 
trace is valid. P5 involves the definition of a default interpretation for Sequence Diagrams, yielding an 
implicit conformance relation. P6 is concerned by the modifications induced by explicit conformance 
operators and how to assign a meaning to their nesting. P7 raises the problem of ambiguous diagrams 
for which a given trace may be categorized as both valid and invalid. This arises as a consequence of the 
parallel and non-deterministic constructs, weak sequencing and unclear scope of operators that were 
also identified as problematic from the perspective of computing a partial ordering. 
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4 Survey of Proposed Semantics 

Several formal semantics were proposed for UML 2.0 Sequence Diagrams over the years. This section 
collects the ones we are aware of. For the twelve proposed approaches, a short description is given, and 
the approach's recommendations for Section 3's problems are listed. For some of the approaches the 
semantics of a common diagram diagram is given. 

4.1 Types of semantics 

Several approaches exist for defining semantics for languages. 

 Denotational: in a denotational semantics approach the meaning of the language is mapped to 
mathematical objects (called denotations). 

 Operational: in an operational semantics approach the meaning of the language is interpreted as 
sequences of computational steps. 

For communicating processes an important decision is how parallel, independent events are 
represented [16]. 

 True-concurrency (non-interleaving): two distinct events can happen at the exact same time, the 
concurrency is visible in the semantic model. 

 Interleaving: at any moment only one event can happen in the system, i.e. there is a total ordering 
between the events. 

Based on how decision points are modeled two approaches can be distinguished. 

 Branching time: branching points are visible in the semantics model. 
 Linear time: branching points are not visible in the semantics model. 

The categorization of the semantics defined in the OMG specification was analyzed in [19], where it was 
classified as a linear time, interleaving semantics. 

4.2 Proposed semantics for UML Sequence Diagrams 

This section gives a summary about the different semantics that were proposed for Sequence Diagrams. 

Table 3: Summary of proposed semantics  

Name References Formalism Years Comments / Tools 

Störrle [19][17][18] traces of events 2003-2004  

MSD [30][31] 
alternating Büchi 
automaton 

2006-2007 
only synchronous systems 
S2A tool: MSD to AspectJ compiler 

STAIRS 
[33][34][35]
[36] 

traces of events, 
transitional systems 

2003-2007 Implemented in Maude 

Cavarra and Filipe [20] ASM 2004  

Küster-Filipe [22][23] event structures 2005-2006  

Cengarle and Knapp [24][25][26] traces of events 2004-2007  

P-UMLaut [28] M-nets 2005 P-UMLaut tool 

Knapp and Wuttke [27] 
interaction 
automaton 

2006-2007 HUGO/RT model checking tool 

Thread-tag based [29] pomsets 2007  

CPN [32] Colored Petri nets  2007 only synchronous systems 

Grosu and Smolka [38]  Büchi automaton 2005  

Hammal [39] partial orders 2006  
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To illustrate the approaches, for some of the methods the semantics in the proposed formalism is given 
for the following example. The diagram intentionally does not contain conformance operators, as we 
could see from the previous section that these would cause unending questions. However, it includes 
messages above and below a CombinedFragment, unrelated messages, and a guard, in this way showing 
the ordering problems detailed in the previous section. 

sd sdex

a : A b : B

opt

m2

c : C

m3

[b.d > 1]

m1

 
Figure 23: Example used for illustrating semantic approaches 

Depending on whether the guard is true or false, this yield the following diagrams. 

sd sdex

a : A b : B

m2

c : C

m3

m1

sd sdex

a : A b : B c : C

m3

m1

 
Figure 24: The two branches of the example diagram 

From these two diagrams the traces of the diagram are the following. 

{ (!m1, ?m1, !m2, ?m2, !m3, ?m3), (!m1, ?m1, !m3, ?m3), (!m1, !m3, ?m1 ?m3), (!m1, !m3, ?m3, ?m1), 
(!m3, !m1, ?m1, ?m3), (!m3, !m1, ?m3, ?m1), (!m3, ?m3, !m1, ?m1) } 

4.2.1 TeLa 

TeLa [13] is a language for testing based on UML Sequence Diagrams. It has a well-defined syntax and 
semantics, but it is based on UML 1.4/1.5. UML 2.0 changed dramatically, thus TeLa-s semantics cannot 
be directly used for UML 2.0. However, [13] contains a section about UML 2.0 also (Section 3, Suitability 
of UML 2.0 Sequence Diagrams), and it raises several good question about the semantic problems of 
UML 2.0. 

4.2.2 Trace semantics from Störrle 

4.2.2.1 Description 

Störrle was one of the firsts to propose a trace based semantics in [19] (previously published in 
[17][18]). It covers much of the elements of the OMG specification. At that time the OMG specification 
was in the Final Adopted specification version, since then a few names have changed (e.g., 
InteractionOperators is InteractionOperand and InteractionOperatorKind, EventOccurance is 
OccurrenceSpecification, thus Figure 7 and 8 in the paper are not accurate any more, etc.). 
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Section 3.1 analyzes the semantic approach used in the OMG specification and finally categorizes it as an 
interleaving, linear-time semantics of complete traces with abstract real time. 

First, the trace semantics is given for "plain InteractionFragments", i.e., ones without 
CombinedFragment. Later, for CombinedFragment the semantics of each operator is presented. Section 
5 deals with assert and negate in detail, and gives several potential meaning for the negate operator. It 
also points out many issues with the OMG specification. 

4.2.2.2 Notes 

Störrle states that "Gates are purely syntactic and are thus left out of the semantic considerations of this 
article". See Section 3.3.3 about our opinion on this topic. 

In 2.3 the semantics of Figure 3 is given as a set containing only one trace. However, { (A, snd, t1).(B, 
rcv, t2).(B, snd, t3).(B, snd, t5).(A, rcv, t4).(A, rcv, t6) } is also a valid trace, because the messages have 
an asynchronous arrowhead. 

It is not explicitly stated how to combine the traces if an Interaction has plain fragments and 
CombinedFragments also; possibly the weak sequencing operator should be applied between them. 

4.2.2.3 Semantics of the example 

Using Störrle's approach the semantics of the example could be constructed in the following way. The 
Interaction consists of three parts, two plain fragments and one CombinedFragment. Possibly their 
trace should be calculated separately, and then they should be combined by seq. We will call them F1, 
F2 and F3 as in Figure 25. 

We separated the example into the following steps. In Step 0, the basic structures of the diagram are 
defined. In Step 1, the traces for the two plain fragments are computed. This is done in two sub steps: 
first in Step 1.1 the partial orders are calculated, then in Step 1.2 the possible traces are obtained from 
these partial orders. Next, in Step 2 the traces of the CombinedFragment are generated. Finally, in Step 
3 the fragments are combined by weak sequencing to obtain the traces of the diagram. 

sd sdex

a : A b : B

opt

m2

c : C

m3

[b.d > 1]

m1
t1

t2

t3t4

t5 t6

F1

F2

F3

 
Figure 25: Störrle's Semantics for the example 

Step 0: First, the OccurrenceSpecifications are defined for the fragments as 

EO = L × A × T  

Here L is the set of Lifelines, A is the set of {snd, rcv, cr, des} representing the send, receive, create and 
destroy actions, and T is the set of symbolic timepoints. It is not defined, how these timepoints should 
be assigned for OccurrenceSpecifications, thus we assigned them as in Figure 25. This yields the 
following EO for the fragments. 

F1: EO = {(b, snd, t1), (b, rcv, t2)} 

F2: EO = {(b, snd, t3), (a, rcv, t4)} 

F3: EO = {(a, snd, t5), (c, rcv, t6)} 



UML 2.0 Sequence Diagrams' Semantics 

27 

Note, that the types of the messages are not included in the semantics, although it might be needed for 
checking the matching of messages at gates. A mapping between Messages and 
OccurrenceSpecifications are added later, but only for the consider and ignore operators. 

Step 1: F1 and F3 are plain fragments, thus their semantics is 

 InteractionFragment = st( EO, O ) 

Here st denotes a sequentialization operator (cf. Step 1.2), and O denotes the orderings of the diagram. 
O is computed as O = S  A, where S represents the orderings from the sequence of 
OccurrenceSpecifications on one Lifeline, and A are the orderings between the sending and receiving a 
message and the orderings obtained from GeneralOrdering constructs (if any). 

Step 1.1: S is computed with the help of function order. For each Lifeline order should be applied to all 
the OccurrenceSpecifications on that Lifeline, finally S is the union of all the orderings obtained from the 
different Lifelines. 

 order(ϵ) = ∅ 

order(x) =   x, x   

order(x. y. w) = (  x, x  x, y   ⋃ order(y. w))+ 

Note, that in the paper one closing ) is missing from the third rule, thus it is not clear whether the 
transitive closure should be computed only for order(y.w) or for the whole union, but the latter seemed 
more reasonable to us. 

The orderings in A are simply computed by the rules that message sending should come before its 
receiving. This yields: 

F1: O =   (b, snd, t1), (b, snd, t1) ,  (b, rcv, t2), (b, rcv, t2) ,
 (b, snd, t1), (b, rcv, t2)   ⋃ { (b, snd, t1), (b, rcv, t2) } 

F3: O =   (a, snd, t5), (a, snd, t5) ,  (c, rcv, t6), (c, rcv, t6)   ⋃ { (a, snd, t5), (c, rcv, t6) } 

Step 1.2: The operator st is the sequentialization of partial orders defined as: 

 
Figure 26: Störrle's definition of sequentialization of partial order [19] 

The notations used in the definition were not defined previously in the paper, so we assume the usual 

notation that Σp
∗  means all the possible words that can be generated from the letters in alphabet Σp ,  w  

is the length of w, and wi is the letter at position i. With this meaning, we have the following 
observations for the definition. 

 Partial order by definition is a transitive relation, thus we do not see any need for ≤p
+ instead of ≤p . 

However, O should be computed as O = (S ⋃A)+, because O does not contain the transitive 
orderings from multiple messages. On the other hand, if partial order was not meant to be transitive, 
then there is no need to compute the transitive closure in the order function either. 

 Variables i and j are from the range 0 ≤ i, j ≤   w , which is  w + 1 values, but w has only  w  
letters. One of the relations should be corrected according to whether the letters have 0 or 1-based 
indexes. 

 If i = j is allowed, the criterion will fail for every w, because a partial order is reflexive, thus wi ≤p
+ wi 

is true and i ≮ i. 
 Apart from the above corrections, Σp

∗  contains also the traces which are shorter than  Σp  , even ϵ. 

This yields the following traces for the fragments (we left out the traces, which are longer than  Σp  ): 

 F1:  F1 =   ϵ, (b, snd, t1 ,  b, rcv, t2 ,  b, snd, t1 . (b, rcv, t2)  } 
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F3:  F3 =   ϵ, (a, snd, t5 ,  c, rcv, t6 ,  a, snd, t5 . (c, rcv, t6)  } 

Maybe this was not the intended semantics; it contains traces with just one receiving 
OccurrenceSpecification in it. For the rest of the example we will use the traces that contain also the 
sending and receiving: 

F1:  F1 = { b, snd, t1 . (b, rcv, t2)} 

F3:  F3 = { a, snd, t5 . (c, rcv, t6)} 

Step 2: To compute the semantics of F2, we will use that the semantics of opt is defined as: 

 opt(P) =  P ⋃{ϵ} 

Here P stands for the interaction fragment inside the CombinedFragment. Using this definition, the 
semantics of F2 is the following (the semantics of the InteractionOperand uses the corrected version of 
the above calculation): 

F2:  F2 = {ϵ,  b, snd, t3 . (a, rcv, t4)} 

Step 3: To obtain the semantics of the whole diagram, F1, F2 and F3 should be combined by the weak 
sequencing operator. 

 
The  is the shuffling operator (see Def. 4.1 in the paper), which resembles parallel composition. The 
min and max operators compute the first and the last OccurrenceSpecification on a given Lifeline. 

First, the semantics of seq(F1, F2) is computed. The Lifelines shared by F1 and F2 is L = {b}. For each 
pair of traces from the two fragments, all possible interleaving should be computed, and those should 
be kept, who satisfy the condition. There is one trace for F1, p1 =   b, snd, t1 . (b, rcv, t2), and two traces 

for F2, q1 = {ϵ} and q2 = { b, snd, t3 . (a, rcv, t4)}. This yields two combinations. 

1. For p1 =   b, snd, t1 . (b, rcv, t2)  and q1 = {ϵ}: 

max b, p1 = (b, rcv, t2) 
min b, q1 = 𝜖 
p  q = { b, snd, t1 . (b, rcv, t2)} 

This trace satisfies the conditions that max b, p1  is before min b, q1 . 

2. For p1 =   b, snd, t1 . (b, rcv, t2)  and q2 = { b, snd, t3 . (a, rcv, t4)}: 

max b, p1 =  b, rcv, t2  
min b, q2 =  b, snd, t3  

The trace satisfying the conditions that max b, p1  is before min b, q2  is 
{(b, snd, t1). (b, rcv, t2). (b, snd, t3). (a, rcv, t4)}. 

Thus, the result of the weak sequencing is:  

 seq(F1, F2) = { b, snd, t1 .  b, rcv, t2 ,  b, snd, t1 .  b, rcv, t2 .  b, snd, t3 .  a, rcv, t4 } 
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Similarly the traces for  seq(seq(F1, F2), F3)  can be computed. The traces for the whole Interaction are 
the one given with the original example. 

As it can be seen from this example, the discussions in the paper raise several good questions and ideas 
(about the issues in the OMG specification, about the possible meaning of negate, etc.), but the 
formalization part has some problems. 

4.2.2.4 Recommendations for problems in Section 3 

P3 

The semantics was defined only for the operators of CombinedFragments, thus some of the 
ordering problems of different fragments and basic interactions were not addressed. 

Instead of the unary operator break, a try/catch operator is introduced to overcome its issues. 

P5 
Traces are grouped into valid, contingent, and invalid traces. As for the trace universe, the set of 
all messages is mentioned at the description of consider, but it is not defined.  

P6, 
P7 

The meaning of assert and negate was analyzed in detail, and several possible interpretations 
were analyzed for negate, but all ended up in problems. For this reason, Störrle recommended 
that negation should be only used at the top level, and introduced it as a tagged value for 
Interactions. 

4.2.3 Modal Sequence Diagrams 

4.2.3.1 Description 

Modal Sequence Diagrams (MSD) [30] are an extension to UML Sequence Diagrams by Harel and Maoz, 
which adapts Live Sequence Charts (LSC) to the notation of UML. LSC extend MSC by allowing the 
specification of possible and mandatory scenarios. Since its introduction [9], numerous research papers 
analyzed it, a tool, called the Play-Engine was developed for it [10], and it was used not only in 
specification but also in testing and formal verification. 

As pointed out by the authors, the root of all the problems regarding negate and assert that these were 
introduced as simply operators, while they are rather modalities. UML Sequence Diagrams does not 
have a clear definition of the modalities of the diagrams, thus the authors apply the model of LSC to 
UML. The modal stereotype is attached to InteractionFragments to specify whether it describes a hot 
(universal) or cold (existential) behavior. A hot fragment represents a behavior that is mandatory, 
while the cold represents only a possible behavior. Assert and negate are used then just as syntactic 
notation to show whether the constructs inside them have hot or cold modality. The authors also treat 
the question how multiple diagrams should be handled, one important point that is often missing from 
other works. 

In the Appendix, a formal semantics based on weak alternating automata is sketched. First, the diagram 
is transformed into an intermediate format, an unwinding structure, from which the states (the cuts of 
the diagrams) and the transitions (message sending) of the automaton are derived.  

4.2.3.2 Notes 

The current semantics considers only synchronous messages, the sending and receiving is treated as 
one event. 

The transition of the automaton are labeled only with the message name, they do not include the 
information who and from whom received the message. This is not a problem in a system, where one 
diagram represents one flow of control (LSC and MSD are defined for these kind of systems). However, 
it could be not easy to extend later this approach to asynchronous, distributed systems. Because if there 
are multiple sender with the same message name, based on the information in the automaton it could 
not decided, which of the messages is valid. 

4.2.3.3 Semantics of the example 

The example diagram does not contain assert or neg fragments, this makes it an existential chart. An 
existential chart is transformed into a non-deterministic Büchi automaton, the trace-language of the 
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diagram is the word language accepted by the automaton. In Step 0, the unwinding structure is created, 
which contains the information about the diagram elements. In Step 1, the Büchi automaton is 
constructed from the unwinding structure. 

Step 0: The first step is to construct an unwinding structure from the diagram, which contains all the 
necessary information to create the automaton. The structure contains the following sets: 

Alphabet of system-model messages (we include here a bogus 
m4 message to show later some features of the semantics): 

Σ = {m1, m2, m3, m4} 

Messages appearing on the diagram M = {m1, m2, m3} 
Events, which are message and condition events: E = Em ∪ Ec =  em1 , em2, em3 , eb.d>1, eb.d≤1  
Set of cut-states S 
The transition relation R: S × E → S 

 
To define the unwinding structure, the legal cuts of the diagram should be obtained, which will be the 
states of the automaton. However, the unwinding is not detailed in the paper, papers about unwinding 
LSCs are referenced instead. When we tried to create the unwinding structure for the example diagram, 
we faced the problem that it is not trivial to apply the methods of the cited papers in the context of UML 
Sequence Diagrams (because of the differences between LSCs and UML SD). E.g., in [11] the high-level 
operators are defined as operations on automata, and in [12] there is no alt construct defined. As 
pointed out in the previous section, finding the cuts of a large diagram can indeed be a complex 
problem, for this reason it is crucial to give a precise method to find these cuts. 

The handling of guards is not detailed in the paper, but the authors confirmed in personal 
communication that guards are synchronized on all Lifelines covered by the fragment they are attached 
to. Moreover, they clarified that Lifelines covered by a fragment synchronize on enter and exit from the 
fragment, entering and exiting a sub chart (combined fragment), are “hidden events” with locations on 
all covered lifelines. 

sd sdex

a : A b : B

alt

m2

c : C

m3

[b.d > 1]

m1
l9

l10

l13

l3

[b.d <= 1]

l8l1

l7

l16

l17

l12

l14

l4

l2

l5

l6

l11

l15

 
Figure 27: Locations for the example 

For the rest of the example the diagram was labeled with the locations on Figure 27, and the following 
cuts were selected manually: 

  l1, l8, l16 ,  l1, l10, l16 ,  l2, l11,16 ,  l3, l12, l16 ,  l4, l13, l16 ,  l5, l14, l16 ,  l6, l15, l16 ,  l7, l15, l17   

The sending and receiving is treated as one event, thus when including a message in a cut, both its 
sending and receiving locations should be included. We treat now guards as synchronization points, 
thus m3 cannot be sent before the sending of m1. That is why (l7, l8, l17) is not selected as a cut.  

The transition relation R has the following values. 
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 l1, l8, l16 × em1 →  l1, l10, l16  

 l2, l11, l16 × eb.d>1 →  l3, l12, l16  

 l2, l11, l16 × eb.d≤1 →  l5, l14, l16  

 l3, l12, l16 × em2 →  l4, l13, l16  

 l6, l15, l16 × em3 →  l7, l15, l17  

The relations representing entering and exiting a fragment are missing currently from here. For 
simplicity, the Appendix of [30] only outlines the semantics for basic Interactions, but it could be 
extended to handle the alt construct. As described above, entering and exiting fragments should be 
handled as "hidden events". We will represent this hidden event with τ, and add the following relations 
to R: 

 l1, l10, l16 × eτ →  l2, l11, l16  

 l4, l13, l16 × eτ →  l6, l15, l16  

 l5, l14, l16 × eτ →  l6, l15, l16  

For each of the cuts, the following sets are defined. 

 EME: enabled message events, those events, for there is an outgoing transition from the current state 
 EM: enabled messages, the messages belonging to enabled message events 
 VM: violating messages, messages, which appear on this diagram, but are not enabled for this cut 
 ECE: enabled condition events 
 EC: enabled conditions 

Table 4 contains the sets computed for the example's cuts. 

Table 4: Structures defined in the unwinding structure for MSD 

s cut-state EME(s) EM(s) VM(s) ECE(s) EC(s) 

 l1, l8, l16   {em1} {m1} {m2, m3} ∅ ∅ 

 l1, l10, l16   ∅ ∅ {m1, m2, m3} ∅ ∅ 

 l2, l11,16   ∅ ∅ {m1, m2, m3} {eb.d>1 , eb.d≤1} {b. d > 1, 𝑏.𝑑 ≤ 1} 

 l3, l12, l16   {em2} {m2} {m1, m3} ∅ ∅ 

 l4, l13, l16   ∅ ∅ {m1, m2, m3} ∅ ∅ 

 l5, l14, l16   ∅ ∅ {m1, m2, m3} ∅ ∅ 

 l6, l15, l16   {em3}  m3  {m1, m2} ∅ ∅ 

 l7, l15, l17  ∅ ∅ {m1, m2, m3} ∅ ∅ 

 

Step 1: With this information the automaton can be constructed, the cuts plus a qrej rejecting state will 

be the states, and transitions are added according the following rules: 

 Σ labeled self transitions on qrej and qmax (the state representing the maximal cut), 

 Σ ∖ M labeled self transitions on all cut-states (representing messages not defined on the diagram), 
 Handling enabled messages according to EM(s) and R, 
 Handling violating messages, transitions going to qrej, 

 Handling conditions, transitions labeled with no-op message ε[condition]. 

With this rules the automaton on Figure 28 is obtained. We have the following two observations. 
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 Reject state: Appendix B.1 defines that a qrej state should also be added to an existential chart. 

However, on Fig. 9 of [30] in the example for an existential chart there is no qrej. Because an 

existential chart describes a possible behavior, for those transitions going into a rejecting state, 
maybe it would be better to go to the initial state. 

 Violating messages: According to the definition (∀q ∈ S \ {qin}, ∀m ∈ VM(q) : δ(q,m) =  qrej }), except 
the initial state, for every state s there should be a transition to qrej for every message in VM(s). This 

is problematic in the accepting states, the automaton can move to a non-accepting trace after a trace 
has satisfied the chart. Furthermore, in the states representing the evaluation of a constraint, there 
are now both constraint and message events, which makes it hard to decide which transition to take. 
(Note, for the states from which there is a transition with the τ hidden event we did not add the 
transitions representing the violating messages. However, a semantics handling 
CombinedFragments should also contain definitions for these states.) 

m2

m1

m3

m1,m2,m3

ε[b.d>1]

l2, l11, 

l16

m4

l3, l12, 

l16

m4

l4, l13, 

l16

l1, l8, l16

Σ

l7, l15, 

l17

Σ

qrej

Σ

l5, l14, 

l16

ε[b.d≤1]

m1,m3

m1,m2,m3

l1, l8, l12

τ

l6, l15, 

l16

m4

τ

τ

m1, m2

 
Figure 28: Büchi automaton for the example 

Because messages are synchronous, and synchronization on guards is included, the language only 
contains two traces:  (m1.[b.d>1].m2.m3), (m1.[b.d≤1].m3) . (The traces containing the extra m4 
messages are not counted here.) As described in Appendix B the conditions also appear in the trace. 

Note, because the example does not include conformance operators, it could not present the main 
contribution of the approach, namely the well-defined modalities. 

4.2.3.4 Recommendations for problems in Section 3 

P2 
Because MSDs treat only synchronous messages and there is no parallel construct, some of the 
problems of UML are not present in MSD. 

P3 
The paper recommends extending StateInvariant to multiple Lifelines, in this way its evaluation 
would be synchronized. 

P5 

The questions about the interpretation of Interactions were answered by introducing the 
modality of LSCs. A system satisfies an MSD specification if all its runs satisfy all universal 
MSDs, and for each of the existential charts there exists at least one run that satisfies it. 

All messages in the system, which are not used on the current diagram, can appear anywhere in 
the diagram’s trace. 
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P6, 
P7 

The operators were heavily redefined to overcome some of the problems. Assert is just a 
shorthand for assigning hot mode to all the OccurrenceSpecifications within. Negate is 
transformed to a hot, global, false condition. In ignore and consider not only messages, but 
interaction fragments can also be specified.    

4.2.4 STAIRS approach 

4.2.4.1 Description 

In [34] the authors introduce the STAIRS (Steps To Analyze Interactions with Refinement Semantics) 
approach. They define a denotational, trace-based semantics for Sequence Diagrams, where the focus is 
on the precise definition of refinement for Interactions. Three types of refinement are defined:  

 Supplementing: inconclusive traces are categorized as either positive or negative, 
 Narrowing: some of the positive traces are categorized now as negatives, 
 Detailing: introducing a more detailed description without significantly altering the externally 

observable behavior. 

In [33] the approach is extended to Timed STAIRS, the semantics is modified in a way, that the 
reception and consumption of messages is differentiated (this leading to three event types: 
transmission, reception, consumption). Furthermore, every event is assigned a timestamp in the formal 
representation, thus making it possible to include general time constraints. 

In [36] (and later greatly extended in [37]) an operational semantics is given complying with the above 
denotational semantics. In Section 7.3 of [37] a good overview is given of the challenges when defining 
semantics for UML Sequence Diagrams.  The operational semantics uses a reduced abstract syntax given 
by a grammar to represent Sequence Diagrams. The model of the operational semantics constitutes of 
an execution system, which stores the state of the communication channels and the sequence diagram, 
and a projection system, which finds the enabled events. The operational semantics is also implemented 
in the Maude language. 

4.2.4.2 Notes 

The basic semantic unit of a trace is called as an event, and not an OccurrenceSpecification (nor an 
EventOccurrence as it was called in the preliminary version of the UML specification). 

4.2.4.3 Semantics of the example 

Instead of a single pair (p, n) of positive (valid) and negative (invalid) traces, the semantic model of 
STAIRS is a set of pairs {(p1, n1), (p2, n2), . . . , (pm, nm)}. A pair (pi, ni) is referred to as an interaction 
obligation. An implementation satisfying an Interaction should fulfill every interaction obligation, i.e. 
show the behavior for at least one of its positive traces and none of its negative. Interaction obligations 
were introduced to be able to specify mandatory and potential choices. A new operator xalt was 
introduced for mandatory choice, alt remains the potential choice. Initially the semantics of a diagram is 
represented by one interaction obligation. If an xalt operator is encountered, then the current obligation 
is split into multiple interaction obligations, if an alt is encountered, it just adds more traces in the 
current obligation. 

The semantics uses the following representations for basic elements: 

Lifelines: ℒ = {a, b, c} 

Messages: ℳ = { m1, b, b ,  m2, b, a , (m3, a, c)} (signal, transmitter, receiver) 

Events:  

 ℰ = { !,  m1, b, b  ,  !,  m2, b, a  ,  !,  m3, a, c  ,  ? ,  m1, b, b  ,  ? ,  m2, b, a  ,  ? ,  m3, a, c  } 

The diagram is represented as the following expression: 

sdex =  !,  m1, b, b   seq  ? ,  m1, b, b   seq   opt    !,  m2, b, a   seq  ? ,  m2, b, a     

 seq  !,  m3, a, c   seq  ? ,  m3, a, c   
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(Note, in Chapter 19 of [37] the syntax and semantics is extended to handle data, constraints, and 
guards, however these are not treated in the example to keep it less complex.) 

The operational semantics uses two transition systems. 

Execution system: [_ , _ ] ∈ ℰ𝒳 where ℰ𝒳 ∈  ℬ × 𝒟 are the possible states of the execution system 

Projection system: Π ∈  𝕡(ℒ) × ℬ ×𝒟 

where ℬ represent the state of the communication medium, 𝒟 the set of all syntactically correct 
sequence diagrams. 

The execution system represents the state of the diagram. The execution system can process a single 
event or a silent event, i.e. an event that represents the resolving of an operator, e.g. choosing a branch 
in an alt. When processing an event, the update of the communication medium depends on what model 
is used, [37] defines the following four: one FIFO buffer for each message, one FIFO buffer for each 
(ordered) pair of lifelines, one FIFO buffer for each lifeline, and one global FIFO buffer. The first one is 
the most general, it does not imply any further ordering on the messages. 

At each step of the execution system, a projection system is created to select the events or silent events 
that can be executed for the actual set of Lifelines. Which events are executed depends on a meta-
strategy defined by a meta-level. The reason for introducing a meta-level is to decouple the creation of 
the traces and handling negative behaviors from the execution system. In this way, the rules for the 
execution system are less complex, and several different strategies can be easily tested. In [37] the one 
random trace and all the possible traces strategies are detailed. For the all traces strategy the diagrams 
are limited to ones without assert and ones only with finite loop, in this way the resulting structures 
will be finite.  

The meta-system is defined for the all traces strategy in the following way, where ℋis the set of all 
possible traces. 

{|_ , _ , _ |} ∈ ℋ × ℰ𝒳 × 𝕡(ℒ) 

The first step is to transform the diagram to a normal form, where the xalt, alt and refuse (which was 
introduced instead of neg in [35]) operators are pushed to the top. The purpose of this step is to have a 
fixed order, in which the operators are evaluated, xalt first, alt next, etc. For the sake of simplicity in the 
forthcoming descriptions, the following shorter names are assigned to the events by us. 

sd sdex

a : A b : B

alt

m2

c : C

m3

[b.d > 1]

m1
e1

e2

e3e4

[else]

e5
e6

 
Figure 29: Event names used for the example  

For the example, the transformation to the normal form is the one depicted on Figure 30 (the 
transformation consists of three steps, here only the original and the result is displayed). 

Thus, the example is represented now by the following expression. 

sdex = (e1 seq e2 seq e3 seq e4 seq e5 seq e6) alt (e1 seq e2 seq skip seq e5 seq e6) 
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The semantics is defined using rewriting rules. The rules for the projection system are defined like 
patterns, and in each step, the projection system searches for possible matching in the state of the 
execution system. When a successful matching is found the appropriate part of the execution system is 
rewritten according to the appropriate rule. Finally, the meta-level updates the resulting traces and 
decides whether to change the positive or negative mode of the current execution system. 

seq

e1 seq

e2 seq

seq

e5 e6

alt

skipseq

e3 e4

 

alt

seq

skipseq

e3 e4

seq

e5 e6

seq

e1 seq

e2seq

seq

seq

e1 seq

e2

e5 e6

 

Figure 30: Transformation of the diagram to the normal form 

The initial values for the different transition systems are the following. 

Execution Meta system Interaction obligations 

[∅, sdex] {| <>, [∅, sdex], {a, b, c} |}      <>,  ∅, sdex ,  a, b, c    ,∅   

The projection system is always constructed at each step of the execution system from its values. 
Initially the execution systems contains the empty communication medium (we are using the one FIFO 
for each message model, and there are no Gates on the diagram) and the expression representing the 
whole diagram. The meta-system contains the empty trace, the execution system and all the Lifelines 
(the semantics collects only those events in the trace that are for the Lifelines specified here). The initial 
semantics model of the diagram is a set of interaction obligations containing only one obligation, which 
contains the meta-system as its positive trace and the empty set for the negative traces. A state of the 
meta-system will be eventually rewritten to a set of traces; this is the reason why it can be used as the 
set of positive traces in the initial interaction obligation. 

The first few steps of processing the example diagram will be the following. First, the alt is handled 
(Step1), then enabled events are searched in the weak sequencing (Step2), finally, the enabled events 
are sent (Step3). 

Step1: The handling of an alt is defined in the following rules for the different systems (the rule 
numbering of [37] is used). 

Projection 
system:  

(8.16) 

Execution 
system:  (8.6) 

Meta-level: 

 

(9.6) 

Step1.1: The projection system checks, whether in the current state of the execution system the silent 
event for alt is enabled. The function ll returns all the Lifelines in an expression. The diagram sdex is in 
the form f1 alt f2, and L ∩ ll. (f1 alt f2) =  a, b, c ∩ {a, b, c} is not empty, thus the projection system 
produces two τalt silent events. 
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Step1.2: The execution system updates itself by resolving the alt operator. It updates the expression of 
the diagram according to the projection system, and because it was a silent event, it does not change the 
communication medium. 

Step1.3: The meta-level processes the silent event by splitting the execution systems. In rule (9.6), O 
represents a possible empty set of interaction obligations, P a possible empty set of traces. The rule 
rewrites one element of the positive trace set, which is still in the form of a state of the meta-system. 
After applying the rule, the semantics of the diagram changes to the following interaction obligations. 

     <>,  ∅, f1 ,  a, b, c   ,   <>,  ∅, f2 ,  a, b, c    ,∅   

Step2: The next rewriting step could be the handling of f1, which is in the form e1 seq f3. The handling 
of seq by the projection system is governed by the following two rules. 

Projection 
system: 

 
(8.11) 

 

 
(8.12) 

Step2.1: The first one represents that an enabled event is selected from the left hand side. The event e1 
satisfies the condition that it is on the Lifelines analyzed, so it is possible that it is enabled, the 
projection system will check it in Step3. 

seq

e3 e4

seq

seq

e1 seq

e2

e5 e6

seq

f3

f4

L: {a,c}

L: {a,c}

 
Figure 31: Processing of the seq structures  

Step2.2: The second rule says that if the left hand side does not cover all the Lifelines, then there can be 
enabled events on the right hand side (because of the definition of weak sequencing, orders are only 
preserved between events on the same Lifeline). In the current case, if the substitute in (8.12): 

L ∖ ll. d1 =  abc ∖ ll. e1 =  abc ∖  b = {ac} 

The result is not the empty set, thus the right hand side (f3) should be also checked, but now with 
L={ac}. Because f3, the expression on the right hand side is a nested seq structure, the above two rule 
will be used recursively until the projection system reaches an event, where it checks the conditions on 
the Lifelines. 

Fragment f3 is in the form e2 seq f4. The rule (8.11) cannot be enabled, because its condition is false. 

ll. e2 ∩ L =  b ∩  ac =  ∅ 

Going further along f4 with rule (8.12), the remaining expression is checked similarly. In the end the 
processing is falling back to the left hand side of f1, on the right hand side no enabled event was found. 

Step3: The next table lists the rules for handling one event. 
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Projection system: 

 

(8.16) 

Execution system: 
 

(8.6) 

Meta-level: 

 

(9.6) 

Step3.1: The projection system checks the event. In the example, the current projection system is 
Π  b ,∅, e1 . The event e1 is on Lifeline b and it is a sending, thus the projections system produces an 
e1 event.  

Step3.2: The execution system updates the state of the communication medium, in the current 
communication model it means adding the signal of e1 to the set representing the medium.  

Step3.3: Finally, the event is on the observed Lifelines and it comes from an execution system in the 
positive trace, thus the meta-system adds the event to the positive trace, changing the semantic model 
to the following. 

     {(m1, b, b)},  ∅, f3 ,  a, b, c   ,   <>,  ∅, f2 ,  a, b, c    ,∅   

The processing of the diagram continues with the above rules. The Maude implementation gives the 
following interaction obligation as the semantics of the diagram. 

reduce in SDEX : allTraces([emptyComm,sdex], ll(sdex)) . 
rewrites: 4457 in 240ms cpu (562ms real) (18569 rewrites/second) 
result InteractionObligation: ( 
((!,m1,l(b),l(b)) . (!,m3,l(a),l(c)) . (?,m1,l(b),l(b)) . ?,m3,l(a),l(c)) + 
((!,m1,l(b),l(b)) . (!,m3,l(a),l(c)) . (?,m3,l(a),l(c)) . ?,m1,l(b),l(b)) + 
((!,m1,l(b),l(b)) . (?,m1,l(b),l(b)) . (!,m3,l(a),l(c)) . ?,m3,l(a),l(c)) + 
((!,m3,l(a),l(c)) . (!,m1,l(b),l(b)) . (?,m1,l(b),l(b)) . ?,m3,l(a),l(c)) + 
((!,m3,l(a),l(c)) . (!,m1,l(b),l(b)) . (?,m3,l(a),l(c)) . ?,m1,l(b),l(b)) + 
((!,m3,l(a),l(c)) . (?,m3,l(a),l(c)) . (!,m1,l(b),l(b)) . ?,m1,l(b),l(b)) +  
 (!,m1,l(b),l(b)) . (?,m1,l(b),l(b)) . (!,m2,l(b),l(a)) . (?,m2,l(b),l(a)) .  
 (!,m3,l(a),l(c)) . ?,m3,l(a),l(c)),emptyTSet 

As it can be seen it took 4457 rewriting steps to reduce the diagram, and it found all the possible traces. 

4.2.4.4 Recommendations for problems in Section 3 

P1 A restriction in the syntax disallowed Messages going into CombinedFragments. 

P2 
Guards are defined and handled as local constraints. The semantics allows non-local choices. 
However, it is not specified how to handle constraints if multiple guards are true.   

P3 
Weak sequencing is used when composing the elements, thus the semantics produces the 
behavior described in the OMG specification. 

P4 
In [37] the set of Gates is defined as a subset of Lifelines, and events are defined when Gates 
receive or send Messages. 

P5 

The trace universe is partitioned into valid, invalid and inconclusive traces. 

A new operator, xalt is introduced to represent a mandatory choice. All implementations must 
be able to handle every interaction obligations defined in the branches of xalt, while for alt they 
have to handle only some of the branches. 
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P6, 
P7 

The neg operator and the semantics for other operators are defined in a way that negative 
traces will always propagate as negative to the outermost level. The neg construct defines the 
empty trace as positive. Later in [35] the authors revisit the question of neg, and show several 
interpretations, which all turn out to have problems. For this reason they introduce the refuse 
operator, which defines all its positive and negative traces as negative. 

Furthermore, a number of syntax constraints are defined in 5.2.3 of [37] to overcome some of the 
problems: (i) a given event should syntactically occur only once in a diagram, (ii) if both the transmit 
event and the receive event of a message are present in a diagram, they have to be inside the same 
argument of the same high-level operator, (iii) there is no syntactical repetition of gates in a diagram, 
(iv) the operators refuse and assert are not allowed to be empty. 

4.2.5 ASM based semantics of Cavarra and Filipe 

4.2.5.1 Description 

In [20] the authors proposed a technique using Object Constraint Language (OCL) templates to express 
liveness properties in UML sequence diagrams, based on results of LSC. Using concepts from LSC, 
several problematic parts of the OMG specification was addressed. With temperature may and must 
behavior, universal and existential diagrams can be differentiated. In Fig. 2 the authors give a nice 
example that certain liveness properties cannot be expressed with assert or negate. Therefore, they 
propose an after/eventually OCL template, which says that that after a condition becomes true there is a 
guarantee that eventually another condition will become true. Moreover, they introduce global 
constraints and methods for synchronization at the beginning or end of CombinedFragments. 

In [21], the authors defined a semantics to this liveness-enriched sequence diagrams using Abstract 
State Machine (ASM). Locations are associated to each important point on the Lifelines. The signature of 
the ASM contains the constructs of the diagram. Functions are defined to specify the relation of each 
element, e.g., a given location is in which CombinedFragment. For each instance, a separate process is 
assigned. Finally, rules are defined to specify the progress of an instance depending on in what kind of 
fragment the instance currently is. In the conclusion, several good observations are made on the 
problems of UML. 

4.2.5.2 Notes 

A few functions are just used, but not defined: 

 no location types are defined for the beginning of an instance, although they are marked as locations 
on Fig. 1, 

 INTERACTION-CONSTRAINT is just referenced once, but not defined. 

Some functions are referenced with wrong name or called with wrong arguments. 

 In the definition of the curr-cf function, the curr-loc function is written as curr-loc-num. 
 In the rule EnterAltCombFrag the function alt-done is called twice with a location as its second 

parameter, although it is defined as alt-done: INSTANCE x COMBINED-FRAGMENT, 
 In the progress macro, in the par case the interleaved-progress macro is called with the parameter 

opnd. It probably refers to the operands of the current fragment. Also, the selector of the case, curr-
cf(Self) returns a COMBINED-FRAGMENT, while the values of the case structure are the operators of 
the fragment. 

 In the enabled predicate strict-curr-loc is called without the INSTANCE parameter. 
 In the definition of the completed-par predicate par-curr is written instead of par-curr-loc twice. 

Moreover, loc-type is called without the INSTANCE parameter twice. 

The location types receive(msg, inst) and send(msg, inst) contain the receiver and sender instance, 
although MESSAGE already contains that. 

It seems that the rule EnterAltCombFrag does not handle if none of the InteractionConstraints are true, 
the rules just keeps jumping to the next separator. 
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A predicate synchronized is added to entering and exiting CombinedFragments to guarantee that 
instances synchronize each other at that point. However, because it is defined as an instance could not 
proceed until all the instances arrived to the same location type, in the case where there is a fragment 
that does not cover all Lifelines, those instances covered by the fragment will be stuck at the beginning. 

4.2.5.3 Semantics of the example 

We structured the example in three steps. First, the locations, and next the elements of the ASMs are 
defined. Finally, the instances progress using the rules of the ASMs to produce the traces. 

Step 0: As the first step, the locations of the diagrams are assigned as in Figure 32. Opt is not defined in 
the paper, thus it is transformed to an alt with a second empty operand. All locations are treated as cold 
locations, thus they must not happen. 

Step 1: The next step is to define the signature of the machine. 

 INSTANCE = {a, b, c} 
 COMBINED-FRAGMENT = { combined-frag(alt, {alt#1, alt#2}, {a,b}) } 
 INTERACTION-OPERAND = {alt#1, alt#2} (the format of this was not defined, thus we chose this 

notation) 
 STATE-INVARIANT = {} 
 LOCATION: "we can identify LOCATION with the set of integers INT".  
 MESSAGE = {message(b,m1,b), message(b,m2,a), message(a,m3,c)} 

The following functions are defined. 

 loc-type : INSTANCE × LOCATION → LOCATION-TYPE, e.g. 
o loc-type(a,1) = begin-cf(combined-frag(alt, {alt#1, alt#2}, {a,b}) ) 
o loc-type(b,5) = separator(alt#2, combined-frag(alt, {alt#1, alt#2}, {a,b})) 

 next: INSTANCE × LOCATION × LOCATIONTYPE → LOCATION, e.g. 
o next(b,2,end-cf) = 6 

 int-constr: INTERACTIONOPERAND → INTERACTION-CONSTRAINT, e.g. 
o int-constr(alt#1) = b.d > 1 

 frag: INSTANCE×LOCATION→COMBINED-FRAGMENT, e.g. 
o frag(a,3) = combined-frag(alt, {alt#1, alt#2}, {a,b}) 
o Note, it is not explicit, whether the border of a fragment, e.g. (a,5) is inside the fragment or not. 

 curr-cf(inst) = frag(inst,curr-loc(inst)) 
 recMsgSet: INSTANCE → P(MESSAGE), the set of messages pending to be executed by an instance. 
 curr-loc : INSTANCE → LOCATION, dynamic function containing the current location. 

sd sdex

a : A b : B

alt

m2

c : C

m3

[b.d > 1]

m1
1

2

4

1

3

[else]

0

3

6

5

0

5

6

4

0

1

 
Figure 32: Locations for the example in the ASM-based semantics  



UML 2.0 Sequence Diagrams' Semantics 

40 

The following rules can update the ASM. 

 SendMessage, ReceiveMessage 
 EnterAltCombFrag, EnterStrictCombFrag, EnterParCombFrag, EnterNegCombFrag, ExitCombFrag 
 StateInvariant 

The following macros are used for shorthand: 

 progress, strict-progress, interleaved-progress 

Step 2: The run where the condition is true and all three messages are sent could be obtained with 
applying the following rules. 

Table 5: Applying rules in sdex. The location columns represent the locations after applying the rule  

Step Rule curr-loc(a) curr-loc(b) curr-loc(c) 

0  0 0 0 

1 a: ?, b: ?, c: ? 1 1 1 

2 b: SendMessage 1 2 1 

3 b: ReceiveMessage 1 3 1 

4 a: EnterAltCombFrag, b: EnterAltCombFrag 2 4 1 

5 b: SendMessage 2 5 1 

6 a: ReceiveMessage 3 5 1 

7 ?    

In the steps: 

 0: initial state 
 1: no messages should be sent or received, no fragment to enter, only the current location of the 

instances should be incremented. However, as far as we can understand, there is no rule to start the 
instances. 

 2: a could not step, because it has to synchronize at the beginning of the fragment. Instance c is 
waiting for the receiving of the message, thus only b can progress. 

 3: after applying the rule, a and b are at the beginning of the same fragment, thus they are allowed to 
enter it (if we alter the synchronization construct as described in the Notes section). 

 4: Note, that a and b are evaluating the guard of the operands in their EnterAltCombFrag rules. Now, 
a is waiting for the receiving of m2 message. 

 5, 6: sending and receiving of m2. 
 7: Both a and b are now on the separator of the operand. It seems to us, that they could not proceed: 

EnterAltCombFrag cannot be chosen because alt-done is true, there are no messages 
(ReceiveMessage, SendMessage), no StateInvariants (rule StateInvariant), no fragment to enter 
(EnterStrictCombFrag, EnterParCombFrag, EnterNegCombFrag) and neither can chose 
ExitCombFrag, because they are on a separator and not on an end-cf location. 

As it can be seen, there are good ideas for handling the problems (locations, explicit synchronization at 
border of fragments), but in our opinion there are issues with formalization. 

4.2.5.4 Recommendations for problems in Section 3 

P2 
Global OCL constraints were introduced to handle the synchronization of constraints defined for 
several instances. 

P3 
The vast majority of the problems with CombinedFragments were solved by introducing explicit 
synchronization at the beginning of CombinedFragments. 

P5 The interpretation of the diagrams was redefined by introducing the modality of LSCs. 
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4.2.6 True-concurrency semantics from Küster-Filipe 

4.2.6.1 Description 

Küster-Filipe defined a true-concurrent semantics based on event structures in [22]. In [23] the 
semantics is extended to handle the InteractionUse construct. It considers only a smaller number of 
operators and constructs (alt, par, seq and StateInvariant), but gives them a very well defined 
semantics. 

The semantics uses the temperature (hot and cold messages) concept from LSC to express mandatory 
or possible behavior. Furthermore, it uses LSC's location concept to mark occurrences on a Lifeline. 

For every Lifeline a labeled prime event structure is constructed. The model takes into account the 
possible nesting of CombinedFragments, and gives a very clear definition for the predecessors of every 
event. Finally, the event structures for the different Lifelines are combined according to the Messages 
sent between them. 

In the end of a paper a two-level temporal logic is presented, which can be used to specify Interactions. 

4.2.6.2 Notes 

By the time of the writing, the UML Superstructure specification was still in the Final Adopted 
Specification phase. CombinedFragments are referenced as interaction fragments, but 
InteractionFragment is a broader term. 

It is not exactly defined, what a location is, it can just be seen from the example. Locations are also 
associated to points for which no OccurrenceSpecifications can be mapped, like StateInvariants or 
border of boxes. 

4.2.6.3 Semantics of the example 

The semantics is defined only for the alt operator, thus the opt in the example is converted to an alt with 
one empty InteractionOperand.  

We structured the example in the following steps. In Step 0, a tuple is created for the diagram capturing 
its elements. In Step 1, a number of helper functions are evaluated for each of the Lifelines. These 
functions calculate the predecessors of each event, the possible event sequences leading to a given 
event, etc. They will be summarized in Tables 6-8. The tables are used in Step 2 to create a separate 
event structure for each Lifeline. Finally, in Step 3 the event structures are combined according to the 
Messages sent between them. 

Step 0: First, a location is associated to every important point on Lifelines. Note, that locations are also 
created for the borders of the CombinedFragment and guards. 

sd sdex

a : A b : B

alt

m2

c : C

m3

[b.d > 1]

m1
l1

l2

l5

l10

l11

[else]

l0

l3

l4

l6

l7

l8

l9

l12

l13

l14

l15

l16

l17

 
Figure 33: Locations of the example 
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For defining the semantics labeled event structures will be used. An event structure is a triple 

E = (Ev,→∗, #) 

where Ev is a set of events and →∗, #  ⊆ Ev × Ev are binary relations called causality and conflict (see 
Def. 1 in [22]). A labeled event structure is a pair (E, l : Ev → L), where L is a set of labels and l is a 
labeling function (see Def. 2 in [22]). 

A sequence diagram SD is a tuple. The tuple defined for the example is: 

sdex = (I, Loc, Locini , Mes, Edges, Path, XI) where 

 I = {a, b, c} is the set of instance identifiers; 
 Loc = {l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l16, l17} is the set of locations; 
 Locini = {l9, l0, l15} is the set of initial locations; 
 Mes = {m1, m2, m3} is the set of message labels; 
 Edges ⊆ Loc × Mes × Loc is the set of edges, Edges = { (l1,m1,l2), (l5,m2,l11), (l13,m3,l16) }; 
 Path is a given set of well-formed path terms for the diagram used to capture the relative positions of 

locations within a diagram; 
 XI is a family of I-indexed sets of constraint symbols. A constraint symbol can be a local integer 

variable or a state. Thus, the else guard is transformed to b.d ≤ 1. In this way XIntb
= {d}, XInta

and 

XIntc
are the empty set, because they do not have constraints. 

Step 1: For each location the following additional functions are evaluated. 

 time: associates to each location a number according to its visual time on the Lifeline. 
 scope: associates to each location a path term. This path term captures the position of the location in 

the diagram, e.g., it is in the main fragment, it is in one of the operands of the alt, etc. 
 pre_loc: calculates which the immediate previous locations of a given location are. On a complex 

diagram with multiple alt and par fragments nested, this is not trivial to identify. 
 alt_occ: returns the number of possible alternative scenarios that lead to a given location. 
 l-leading scenario: returns the set of locations building a path across a Lifeline and leading to l. 

The values calculated for the diagram’s locations are summarized in Tables 6-8. (For the cells marked 
with ! or ? see the comments later in this section.)   

Table 6: Values for a's locations  

l time(l) scope(l) pre_loc(l) alt_loc(l) l-leading scenarios 
l9 0 sdex ∅ 1 {l9} 
l10 1 sdex.alt(2) {l9} 1 {l9, l10} 
l11 2 sdex.alt(2)#1 {l10} 1 {l9, l10, l11} 
l12 3 sdex.alt 2 . alt(2)         {l11} (!) 1 (!) { l9, l10, l11, l12} (!) 
l13 4 sdex.alt 2 . alt(2)        .sdex (?) {l12} 1 (!) { l9, l10, l11, l12, l13} (!) 
l14 5 sdex.alt(2)        . sdex       {l13} 1 (!) { l9, l10, l11, l12, l13, l14} (!) 

Table 7: Values for b's locations 

l time(l) scope(l) pre_loc(l) alt_loc(l) l-leading scenarios 
l0 0 sdex ∅ 1 {l0} 
l1 1 sdex {l0} 1 {l0, l1} 
l2 2 sdex {l1} 1 {l0, l1, l2} 
l3 3 sdex.alt(2) {l2} 1 {l0, l1, l2, l3} 
l4 4 sdex.alt(2)#1 {l3} 1 {l0, l1, l2, l3, l4} 
l5 5 sdex.alt(2)#1 {l4} 1 {l0, l1, l2, l3, l4, l5} 
l6 6 sdex.alt(2)#2 {l3} 1 {l0, l1, l2, l3, l6} 
l7 7 sdex.alt 2 . alt(2)         {l5, l6} 2 {l0, l1, l2, l3, l4, l5, l7}, 

{l0, l1, l2, l3, l6, l7} 
l8 8 sdex.alt(2)        . sdex       {l7} 2 {l0, l1, l2, l3, l4, l5, l7, l8}, 

{l0, l1, l2, l3, l6, l7, l8} 
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Table 8: Values for c's locations 

l time(l) scope(l) pre_loc(l) alt_loc(l) l-leading scenarios 
l15 0 sdex ∅ 1 {l15} 
l16 1 sdex {l15} 1 {l15, l16} 
l17 2 sdex.sdex       {l16} 1 {l15, l16, l17} 

 

The values of the functions were calculated according to the following rules. 

scope: scope is defined for the following classes of locations. 

 Locations inside the main diagram have the scope α. name, where name is the name of the diagram, 
and α is a possibly empty path term. In our opinion the value of α is only defined partially; the paper 
says only that it "contains enough information on previous interaction fragments". E.g., in case of l1, 
α is empty and scope(l1) is just the name of the diagram. 

 Locations marking the start of a CombinedFragment have path terms in the form α. o(n) where 
o ∈ {alt, par, seq} and n is the number of operands of the CombinedFragment, e.g., sdex.alt(2) for l3. 
Note, the part sdex is now a path expression, it shows that the CombinedFragment is inside the main 
fragment. 

 Locations inside an operand of a CombinedFragment have the form α. o n #k where k means that 
this is the kth operand of the fragment, e.g. sdex.alt(2)#1 for l4. 

 The end of a CombinedFragment is in the form α. o n . o(n)      , e.g. sdex.alt 2 . alt(2)         for l7. 
 The end of the diagram is in the form α. o(n)      .  

In the example we had problems for assigning a path to l13. It is in the main fragment, and the first rule 
of scope should be applied. Thus, it should have a path in the form α. name. If α is the empty term, then 
l13's scope would not have the information that it is placed under the alt fragment. It could not be just, 
sdex.alt(2). 2 . alt(2)        , because it is for the location marking the end of the fragment, thus 
sdex.alt(2). 2 . alt(2)        .sdex was written for l13 (sdex.alt 2 . alt(2)         being α). 

pre_loc: The rules for pre_loc are the following. 

 pre_loc assigns the empty set to the initial locations.  
 From [22]: "Any location that does not mark the end of a par or alt only has one previous location, 

namely the one that is above it (given by the time function) or, in case the location is in the beginning of 
an operand, the location marking the beginning of the fragment."  

 The locations at the end of par and alt fragments have multiple previous locations, the last one from 
each of the operands.  

Note that there is a problem with the formal definition of pre_loc, as it can be seen from the case of l12. 
The second operand of the alt has no locations inside the operand on Lifeline a, thus no locations could 
be selected from that operand. The problem would be even worse, if c would have been included in the 
fragment, because the location corresponding to the end of the fragment on c would have no previous 
locations. The problem cannot be easily corrected by selecting the beginning of the CombinedFragment 
as the previous locations for an empty fragment. For example, let us imagine that c is also included in 
the fragment, with both its operands being empty. If we assigned the beginning of the 
CombinedFragment as the previous location of an empty fragment, then the location of the end of the 
CombinedFragment would have only one previous location instead of two (meaning that it is not an end 
of an alt fragment). Thus, even in this approach, where the ordering of events are very precisely 
defined, handling all possible cases is challenging. 

alt_occ: The rules of alt_occ are defined in the following way. 

 If a location has only one previous location, then it has the same alt_occ as its predecessor.  
 At the end of CombinedFragments, for alt the alt_occ values of predecessors are summed, for par 

they are multiplied. 

l-leading: l-leading scenarios are constructed recursively by including the predecessors of previous 
locations depending on whether they are in an alt or not. 

In the subsequent part of the example corrected values in Table 9 are used for instance a. 
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Step 2: These functions from the previous step help defining the event structure. Each location l will be 
associated to alt_occ(l) events, representing the scenarios in which the location could participate. The l-
leading scenarios will help defining which events are in conflict or causality relation. Figure 34 
represents the structures built for the instances. Recall that → denotes causality, and # means conflict. 

Table 9: Corrected values for a's locations  

l time(l) scope(l) pre_loc(l) alt_occ(l) l-leading scenarios 
l9 0 sdex ∅ 1 {l9} 
l10 1 sdex.alt(2) {l9} 1 {l9, l10} 
l11 2 sdex.alt(2)#1 {l10} 1 {l9, l10, l11} 
l12 3 sdex.alt 2 . alt(2)         {l11, l10} 2 { l9, l10, l11, l12}, 

{ l9, l10, l12} 
l13 4 sdex.alt 2 . alt(2)        .sdex (?) {l12} 2 { l9, l10, l11, l12, l13}, 

{ l9, l10, l12, l13} 
l14 5 sdex.alt(2)        . sdex       {l13} 2 { l9, l10, l11, l12, l13, l14}, 

{ l9, l10, l12, l13, l14} 
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Figure 34: Separate event structures for the example, labels are in red 
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Figure 35: Event structure for the whole diagram, elements in blue were added for the diagram 
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Step 3: The event structure of the whole diagram (Figure 35) is obtained from the instance's structures. 
In this approach, asynchronous messages can be lost. This is modeled by the extra events ExLcsend

 (ex1, 

ex2, ex3_1 and ex3_2 in the example). Causality relations are added between the sending and receiving 
of messages, e.g., e13_2 → e10. Furthermore, conflict relations are added to events, which are in 
different operands of an alt fragment, e.g., e11#e6. In this way, different Lifelines select the same 
operand of an alt. Figure 35 depicts the event structure of the diagram, from which the traces of the 
diagram can be obtained. 

As it can be seen from the example, apart from the problem with the empty operands, the semantics is 
well defined, and gives for each location, what exactly its scope is. 

4.2.6.4 Recommendations for problems in Section 3 

P2 
By defining precisely the scope and the predecessor of locations, several problems relating the 
ordering were answered by this semantics. 

P3 
The borders of CombinedFragments are also locations, but as far as we understand, they do not 
count as synchronization points, because they are not in causal relations with locations on other 
instances. 

P4 In [23] the semantics is extended to handle the InteractionUse and the Gate constructs. 

P5 The approach introduces the universal/potential modality approach from LSC. 

4.2.7 Trace-based semantics of Knapp and Cengarle 

4.2.7.1 Description 

In [24] the authors define a denotational semantics for the traces of Interactions using pomsets 
(partially ordered multisets [15]). Later, in [25] an operational semantics is given for Sequence 
Diagrams. The semantics of the positive fragments is similar to the one defined by Störrle. The authors 
concentrate on the interpretation and definition of negative fragments. Rules are given for each of the 
operators specifying whether a trace positively or negatively satisfies a fragment with that operator. 
The authors point out that with the basic interpretation of negative fragments it is easy to construct 
overspecified Interactions, i.e., an Interaction that can be satisfied positively and negatively from the 
same trace. For example, the trace for the basic interaction B1 and the interactions strict(neg(B1), B1) 
or par( assert(B1), neg(B1) ). Later in the paper the operator not is introduced instead of neq and assert 
to overcome some of the problems with negative satisfaction. 

4.2.7.2 Notes 

The abstract syntax of Interactions is given with a context-free grammar, which is a bit more restricted 
than the one in OMG's specification. E.g., it does not allow messages to go into a CombinedFragment or 
CombinedFragments not covering all Lifelines. 

4.2.7.3 Recommendations for problems in Section 3 

P1 The abstract syntax defined does not allow Messages to go inside CombinedFragments. 

P5 

The semantics defines for each operator whether a trace positively or negatively satisfies that 
fragment. If a trace does neither, it is regarded as inconclusive. 

A notation for the universe of messages is used with consider, but it is not defined. 

A process I is an implementation of an Interaction S, if there exists at least one trace of I that 
positively satisfies S, and there exists none that negatively satisfies S. 

P6 

A new operator not is introduced to replace assert and neg. 

For a given interaction, any trace is negative if it completely traverses a negative region, 
independently of the steps performed afterwards, if any. 
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P7 
Interactions that can be positively and negatively satisfied from the same trace are called 
overspecified interactions. They are not disallowed, but later they should be refined. 

4.2.8 M-nets based semantics of the P-UMLaut project 

4.2.8.1 Description 

In [28] a semantics is given for sequence diagrams based on M-nets (multivalued nets), which is an 
algebra based on high level Petri nets. The method handles basic data types (Boolean and integers), 
thus, it can include the local attributes of Interactions, the arguments of Messages and the evaluation of 
conditions in the semantics. The M-nets fragments are given for basic constructs, like starting of a 
Lifeline or sending and receiving of a message. These are then connected by composition operators 
according to the enclosing CombinedFragment's operator. The semantics defined in the paper assumes 
that all behavior is explicitly specified in the diagrams, no conformance operator is used. 

4.2.8.2 Notes 

In the translation part for Actions and EventOccurrences, page 8, the word EventOccurrence (the name 
for OccurrenceSpecification in the preliminary version of the specification) is used instead of 
ExecutionOccurrence (the name for ExecutionSpecification in the preliminary version of the 
specification), cf., "EventOccurrences, denoted as thin rectangles covering the part of the lifeline the 
activity is running, define a scope". 

The operator strict is used as an unary operator in the sense, that it imposes a total ordering for all the 
OccurrenceSpecifications in the operand as depicted by their vertical positions. In our opinion the OMG 
specification describes strict as an operator with multiple operands, which restricts that the 
OccurrenceSpecifications in the operands depicted vertically higher should all occur before the one 
from a lower operand, but leaves undecided the ordering inside an operand. 

4.2.8.3 Recommendations for problems in Section 3 

P2, 
P3 

In the translation, entering and exiting a CombinedFragment includes an explicit 
synchronization between the covered Lifelines, otherwise, the authors argue, the values in the 
condition can be changed whilst the different Lifelines enter the fragment (see the beginning of 
Section 4.4 in [28]). 

P4 Places representing the Gates are created in the transformation. 

 

4.2.9 Operational Semantics from Knapp and Wuttke 

4.2.9.1 Description 

In [27] an interaction automaton is produced by unwinding the Interaction. One single interaction 
automaton is created for the entire Interaction. The authors apply some restrictions to overcome the 
problems of Sequence Diagrams (e.g., replace neg with a binary logic variant not, restrict the use of not 
only to basic interactions, restrict loops to only allow basic interactions, etc.). Later, this interaction 
automaton is used as an observer process in the SPIN model checker to check the communication 
produced by UML State Machines. 

4.2.9.2 Recommendations for problems in Section 3 

P2 
Evaluating the guards of an alt fragment is done in one step to ensure that only one of the 
operands is selected. 

P3 The operator sloop is introduced, which enforces strict sequencing. 

P6 The operator not is used instead of neg. Not fragments can only contain basic Interactions. 
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4.2.10 Thread-tag based semantics 

4.2.10.1 Description 

In [29] a trace semantics was proposed for specifying object oriented programs with multiple threads 
on the same lifelines. The authors claim that if the instances of the Interaction are multi-threaded 
objects then the ordering should not be specified for messages originating from the same Lifeline, 
instead only for those messages which are from the same Lifeline and from the same thread of the 
Lifeline. For this reason they extend messages with "thread tags", i.e. IDs specifying which the sender 
and receiver threads for that message. Later, a trace based semantics is given for the operators, where 
the ordering rules are defined with respect to thread tags. Interpretation and conformance operators 
were not considered in the paper. 

4.2.10.2 Notes 

In our opinion some of the problems presented in the paper can be solved without modifying the 
original semantics with the help of inline PartDecompositions, i.e., when an instance is decomposed to 
multiple Lifelines representing its inner connectable elements, like the threads of an object. 

4.2.10.3 Recommendations for problems in Section 3 

P3 The ordering rules were redefined to take thread tags into account. 

4.2.11 Semantics based on CPN 

4.2.11.1 Description 

In [32], the authors propose a translation, that produces a Coloured Petri Net from UML use cases and 
sequence diagrams. For the basic operators (opt, alt, par, loop and ref), templates are assigned to show 
what kind of CPN fragment should be created. The translation does not consider modalities. It seems, 
although it is not stated explicitly in the paper, that each diagram contains initially only one active 
instance (it can later fork into several executions with a par). Only synchronous messages are handled, 
because the sending and receiving of a message are represented by the same transition. 

4.2.11.2 Recommendations for problems in Section 3 

P2  

The orderings are greatly simplified with the use of only synchronous messages, and with the 
representation of each diagram as one control flow. 

The evaluation of guards is synchronized, all transitions representing the different branches 
originate from the same place. 

P3 Entering CombinedFragments is a synchronization point for all Lifelines. 

4.2.12 Safety-liveness Semantics from Grosu and Smolka 

4.2.12.1 Description 

In [38] the authors propose to interpret valid and invalid parts of an Interaction as liveness and safety 
properties, respectively. The Sequence Diagrams are first transformed to hierarchic, non-deterministic 
automata, then the high-level automata are flattened, and finally liveness Büchi automata are 
constructed from the positive automata, and safety Büchi automata from the negative ones. Based on 
the languages these automata accept, refinement of Sequence Diagrams is defined. 

The paper only treats the combination of basic diagrams with no CombinedFragment and bounded 
high-level Interaction Overview Diagrams. In this way, their trace language is regular, but it is a 
restriction of the OMG specification. 
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4.2.12.2 Recommendations for problems in Section 3 

P2 
Choices on Interaction Overview Diagrams are explicit, all conditions of the branches are 
evaluated at the same time. 

P6 Negation can be applied only to basic Interactions, operators cannot be nested. 

4.2.13 Branching Time Semantics from Hammal 

4.2.13.1 Description 

[39] presents a denotational semantics based on partial orders. It assigns to each fragment a graph 
containing the OccurrenceSpecifications and their relations. The structures are later enriched with 
timing information using the timing constraints on the diagram. 

4.2.13.2 Recommendations for problems in Section 3 

P2, 
P3 

Entering an alt fragment and evaluating the guards is synchronized, it is done in one state for all 
Lifelines. 
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5 Discussion and Conclusion 

The previous section presented a number of approaches and formalisms that were proposed to define 
the semantics of UML 2.0 Sequence Diagrams. This section synthesizes the insights that can be gained 
from the previous collection of approaches. We first look at which UML elements were covered in each 
approach. We will see that some of the elements were only addressed in a small number of approaches. 
Next, the solutions to problems of Section 3 are analyzed. Finally, we give some guidelines how an 
appropriate method can be found for a given environment and modeling purpose. 

5.1 Handling of UML elements 

The following table collects which constructs are mentioned in the different approaches. Note that the 
different approaches sometimes redefine the meaning of the original constructs, and handle the given 
elements at very different level of detail. Thus, the goal of this table is not to calculate a percentage of 
how much of the specification is covered by each work, instead it may serve as a reference to search 
which publication mentions a given element. 

Table 10: Overview of the mentioned elements in each approach  
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Interaction + + + + + + + + + + + + 
 Local attributes - - + - - - + - - - - - 

GeneralOrdering + - - - - + + + + - - - 
Message + + + + + + + + + + + + 
 argument - - + - - - + + - - - - 
CombinedFragment + + + + + + + + + + + + 
 guard - + + + + - + + - - - + 
Operators + + + + + + + + + + + + 
 alt + + + + + + + + + + + + 

opt + + + - - + + + + + - + 
loop + + + - - + + + + + + + 
break + + - - - - + - - - - + 
par + - + + + + + + + + - + 
seq + + + + + + + + + + + + 
strict + + + + - + + + + - + + 
critical + - - - - - + - - - - - 
neq + + + + + + - + - - + - 
assert + + + + + + - - - - - - 
ignore + + - - - + - + - - - - 
consider + + - - - + - - - - - - 

InteractionUse (ref) + - + - + - + - - + + - 
 argument - - - - - - + - - - - - 
Gate - - + - + - + - - - - - 
StateInvariant - + + + + - + + - - - - 
DurationConstraint, 
TimeConstraint 

+ - + - - - - - - - - + 

PartDecomposition - - - - - - - - - - - - 
 

If we look through the table, the following observations can be made.  

 Conformance operators were not considered in one third of the approaches. Even if it is one of the 
most important aspects of the language, it is really hard to formalize it and solve its issues. Moreover, 
consider and ignore were not mentioned in four of the eight, who dealt with conformance. 

 Gates were handled explicitly in only a small number of papers. 
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 Variables, arguments were also not mentioned in several approaches. It is understandable, they are 
not in the focus of Sequence Diagrams, and not easy to express in some of the formalisms. 

 Handling time and time constraints was also not common. 

Each formalism and approach has its advantages and disadvantages. Büchi automata could express 
modalities, when a trace is accepted or rejected, how the system should react to events not defined in 
the diagram. With derivatives of Petri nets it was feasible to include variables and attributes and include 
the evaluation of constraints into semantics. With event structures and pomsets the ordering of events 
could be presented in an easy to understand way. 

5.2 Papers Citing each other 

The following table summarizes which work refers to which other ones. (Note, the references to LSC 
were not counted as references to MSD [30].) 

Table 11: Each row: paper only citing (c) or including in the discussion (d) other approaches  
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Störrle -            
MSD d - d d  c  c   d  
STAIRS d d - d  d     d  
Cavarra and 
Filipe 

c  d -         

Küster- 
Filipe 

  d c - d       

Cengarle 
and Knapp 

d  d   -       

P-UMLaut c      -      
Knapp and 
Wuttke 

c c c c  c  -     

Thread-tag c c c   c   -  c  
CPN       d   -   
Grosu and 
Smolka 

  d   d     -  

Hammal c  c        c - 

5.3 Handling of Section 3’s problems 

As can be seen from this paper, if one would like to use Sequence Diagrams for testing or other rigorous 
verification methods, then the current natural language semantics is not enough. Going through the 
proposed approaches, the problems collected in Section 3 were handled as follows. 

P1. Gates on Combinedfragments: It was not explicitly mentioned in the discussed approaches, some of 
the papers disallowed it by their reduced, grammar-based abstract syntax. 

P2. Finding cuts in complex diagrams: In the approaches, where only synchronous messages are used, 
this is usually not an issue. Otherwise, one needs a very precise definition of sets of pre/post locations 
to handle every possibility. Regarding the constraints, some approaches extended the guards and 
StateInvariants to several Lifelines and introduced it as an explicit synchronization. However, this 
solution may not always be appropriate, e.g. for distributed systems, where a guard can be evaluated by 
only one Lifeline. 

P3. Counter-intuitive composition of orderings: New operators were recommended to solve some of the 
issues (try/catch, sloop). Others included an explicit synchronization at the beginning and ending of the 
CombinedFragments to overcome these problems. 
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P4. Compositionality of gates: In some approaches, Gates were treated as some kind of 
OccurrenceSpecification, and they were included in the semantic domain. 

P5. Default interpretation for Sequence Diagrams: Several approaches introduced the modalities from 
LSC instead of the ones defined in the specification. Others kept the original approach, but tried to more 
precisely define when a trace satisfies positively or negatively a diagram, or when it is inconclusive. 

P6. Assigning meaning to conformance operators and their nesting: Some approaches placed syntactic 
restrictions that prohibited the nesting. Others allowed nesting, but redefined the negate operator that 
nested negative traces always remain negative. 

P7. Both valid and invalid traces: Many papers redefined the operators in the specification to overcome 
this issue. Several interpretations were published, which each slightly differ from the others. Some of 
the approaches explicitly accept that, saying that in the early phase of the specification this can happen. 
Later in the design, these traces should be refined. 

5.4 Impact of the modeling domain on the semantics 

Looking through all the problems, all the approaches, and all the purposes Sequence Diagrams my be 
used for, one can conclude that there is no “all-in-one” semantics. Sequence Diagrams can be used just 
for too many different goals, e.g. partial specification of distributed systems, description of synchronous 
calls between objects, description of test cases. The current notation is just too rich and too permissive.  

Therefore, one should ask questions to characterize the actual environment.  

 First the default interpretation of diagrams should be fixed (P5). Will the diagrams be a partial 
specification, are other messages allowed to interleave (consider, ignore)? Do I want to model 
invalid behaviors (assert, negate)? If the answer to the previous questions is yes, then be prepared 
for the problems of conformance operators (P6, P7). 

 Will I model a synchronous or a truly distributed system? Depending on the answer the order of 
events (P2, P3) could be a complex problem. 

 What kind of UML elements are used in the diagrams? E.g., do I need variables and data in arguments 
and constraints? Table 10 could help to search for formalisms, where it was easy to express such 
elements. 

When the goals of the models are fixed, the goal of the semantics should also be classified.  

 Do I need to generate all the possible traces from a diagram? Is it feasible to generate all the traces? 
Usually the denotational semantics could generate only all the traces, but could not decide about just 
one trace.  

 Do I need to decide whether a given trace is or could be valid, invalid or inconclusive? Do I need to 
decide it on-the-fly? Some of the semantics consider a trace negative as soon as it traverses a 
negative region, while others decide after the whole trace is processed. 

 If a trace can be generated by distinct paths in the diagram, do they need to be differentiated?  
Usually this is not possible with denotational semantics. 

We hope that this paper will help those, who search for a suitable semantics or would like to define a 
new semantics for Sequence Diagrams in their own problem domain. 

Acknowledgements:  This report was written while the first author was at CNRS-LAAS, Toulouse. 
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