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Abstract: The probabilistic modeling of a high dimensional domain includes the 
modeling of the joint distribution over the domain variables on numeric, 
qualitative and possibly causal levels. Additionally, it includes the combination of 
statistical data with domain knowledge acquired from experts and the usage of the 
result in a decision theoretic framework. We overview the Bayesian network 
representation and the Bayesian statistical framework, which are successfully 
applied tools for these challenges. We consider a special learning problem related 
to Bayesian networks, the Monte Carlo, particularly the Markov Chain Monte 
Carlo (MCMC) estimation of the posteriors of structural properties i.e. features. 
We introduce a special classification oriented feature called Markov Blanket 
(sub)Graph or Mechanism Boundary (sub)Graph and propose a specialized 
order-MCMC method for its estimation. Finally, we discuss the composition of 
and Bayesian inference about complex statements including structural properties 
of Bayesian networks and textual annotations corresponding to the  network 
elements, which extension is proposed in a wider context as a step towards 
probabilistic first-order logic. The proposed methods are demonstrated in a 
biomedical field related to the diagnosis of ovarian cancer. 
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1 Introduction 

In the paper we overview the Bayesian network representation and its frequent 
corresponding statistical framework, the Bayesian statistics. In Section 4. we 
discuss the Bayesian inference over structural properties and introduce a 
classification oriented feature called Markov Blanket (sub)Graph or Mechanism 
Boundary (sub)Graph. In Section 5. we discuss the composition of complex 
statements including structural properties of Bayesian networks and textual 
annotations corresponding to the  network elements. Section 6. contains examples 



of the applications of the proposed methods in a biomedical field related to the 
diagnosis of ovarian cancer. 

2 Bayesian Statistics and Models 

The basic goal of Bayesian statistics is to provide the axiomatic foundations of 
inference based on observations and background knowledge, the uncertainty of 
which may result from e.g. the method of knowledge acquisition and data 
collecting, or the lack or ignorance of knowledge. 

For handling uncertainty, the probabilistic framework is used, accepting the 
subjectivist interpretation, regarding probabilities as measures of our prior beliefs 
in the happening of events. It can be proven [2], that in a decision problem we can 
order a positive real number (probability) and a utility value to every event, so 
representing our preferences exactly, so that rational decisions can be met. 

Representational theorems [2] state that any sequence of random variables can be 
generated by a proper sampling model class and a distribution over it, if the 
sequence satisfies the exchangeability property.  

Based on the subjectivist interpretation and the existence of the above model 
classes, the framework of Bayesian statistics can be proposed. Here observation 
data is considered to be generated by ensembles of models parameterized by 
random variables. In practice, this parameterization is organized hierarchically: 
the model space consists of discrete elements (structures), to which numeric 
parameters belong.  

2.1 Inference 

The task of inference is to estimate the probability of an event (predictive 
inference) or of a model (parametric inference), conditioned on observation data 
and prior knowledge. From Bayes’ theorem, we can derive the following equation 
for parametric inference (in the followings ‘D’, ‘G’ and ‘θ’ denote data, structure 
and parameterization, respectively): 
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The posterior of a given structure can be calculated by integrating out θ from 
equation (1). In predictive inference the probability in question is calculated for 
every possible structure and parameterization, then these quantities are averaged 
using the posterior probabilities of models as weights: 
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As the exact calculation of the above integrals and summations are usually 
intractable in practice, often some approximation is used, typically one of the 
Monte Carlo methods. We discuss these methods in detail in Section 4. 

2.2 Advantages of Bayesian Approach 

Opposing to its computational complexity, Bayesian methods have many 
advantages over classical statistics. First, by the exclusive use of probabilities for 
representing uncertainty of parameters, we get an efficient tool, supporting 
automatized methods, like learning or knowledge base building. Second, prior 
distributions can represent our prior knowledge (or even the total lack of it), and 
subsequently gained priors can be regarded as the phases of the knowledge 
acquisition process. Third, Bayes’ theorem can combine normatively the 
information of prior knowledge and data, and formalizes exactly that inversion, 
which we need for parameter estimation. Fourth, using posterior distributions 
instead of point estimations considers not only the most likely configuration but 
the less likely ones as well. For a more complete overview, see [15]. 

3 Bayesian Networks 

Nowadays, Bayesian networks are used primarily for the probabilistic modeling of 
domains without systematic structure (as against e.g. picture or sound processing). 
Bayesian networks store variables and their relations in a directed acyclic graph 
(DAG): each node symbolizes a variable, and a local conditional dependence 
model belonging to every node describes the connections. 

As a representational tool, a Bayesian network can be interpreted in three different 
ways, having stronger and stronger semantics in the order of the enumeration. It 
can be regarded as (1) an effective tool for representing joint distributions, (2) a 
map of probabilistic independences and dependences of the domain, or (3) a 
causal domain model in which edges are direct cause-effect connections. 

3.1 Probabilistic Definition: Syntax and Semantics 

The connection between a structure of a Bayesian network and the represented 
distribution can be based on the following, equivalent conditions [4]: 

(1) The distribution ‘P(X1,..Xn)’ is Markov relative to DAG ‘G’ or factorizes w.r.t. 
‘G’, if ( ) ( )( )∏= iin XPaXPXXP |,..1

, where ‘Pa(Xi)’ denotes the parents of ‘Xi’.  



(2) The distribution ‘P(X1,..Xn)’ obeys the ordered Markov condition w.r.t. DAG 
‘G’, if 

Pijii XPaijXXPaXIni ))(\}|{|)(|(:..1 )()()()( ππππ <=∀ , where ‘π’ is an 

ancestral ordering w.r.t. ‘G’. 

(3) The distribution ‘P(X1,..Xn)’ obeys the local (parental) Markov condition w.r.t. 
DAG ‘G’, if 

Piii XantsNondescendXPaXIni ))(|)(|(:..1=∀ , where 

‘Nondescendants(Xi)’ denotes the nondescendants of ‘Xi’ in ‘G’. 

(4) The distribution ‘P’ obeys the global Markov condition w.r.t. DAG ‘G’, if 

PGi yzxIyzxIXzyx )||()||(:}{,, ⇒⊆∀  , where ‘I(X|Y|Z)’ denotes that ‘X’ 

and ‘Y’ are d-separated1 by ‘Z’. 

A definition based on the properties of the dependence system given by the 
Markov conditions could be [14]: The ‘G’ DAG is the Bayesian network of the 
‘P(U)’ distribution if (1) every variable ‘ Uu∈ ’ is represented by a node in the 
graph, and (2) the graph is minimal. 

However, while this definition regards the network as the representation of the 
dependence system, there is another, more practical definition. The ‘(G, θ)’ pair is 
the Bayesian network of the ‘P(U)’ distribution if (1) G is a DAG in which nodes 
represent the elements of ‘U’ , (2) ‘θ’ is the whole of the numeric parameters 
describing the ‘P(X|Pa(X))’ conditional distributions belonging to the nodes. 

Although Bayesian networks may contain continuous variables as well, in the 
followings we consider only ones with discrete finite variables, supposing that the 
local dependence models are multinomial distributions (i.e. they can be 
represented by a conditional probability table – CPT).  

The structure of a given Bayesian network determines, what dependences it can 
describe, however the same dependence model may belong to different structures 
as well. If two structures imply the same dependence system, they are called 
observationally equivalent. By the aid of observational equivalence, the structures 
can be ordered into disjunctive classes. Each of these equivalence classes can be 
represented by a partially directed acyclic graph (PDAG), the so-called essential 
graph. The undirected skeleton of the essential graph is the same as the ones’ 
belonging to the given class, and only those edges are directed which has the same 
direction in every member (these are the so-called compelled edges). 

                                                        
1  The sets X and Y are d-separated in the DAG G by Z, if Z blocks every non-directed 

path between them, i.e. (1) the path contains a node with non-converging edges that is 
in Z, or (2) the path contains a node with converging edges so that neither the node 
nor any of its children is in Z.  



3.2 Causal Definition 

It is formally easy define causal Bayesian networks on the basis of the previous 
definitions: the pair ‘(G, θ)’ is the causal Bayesian network of the distribution 
‘P(U)’, if (1) it is the probabilistic model of the domain according to the previous 
interpretations, (2) and every edge represents a direct cause-effect connection. The 
“only” difference is that edges represent here direct causal connections. Although 
causal Bayesian networks have very strong semantics, confounding factors may 
prevent us from regarding all of the probabilistic dependences as causal 
connections. Such can be the presence of common ancestors, the inadequacies of 
data acquisition method, the DAG representation, or the granularity of the domain. 

3.3 Inference and Learning 

In a given Bayesian network the task of inference is to compute the 
‘P(X=x|Y=y,G,θ)’ quantity, i.e. a structure, its parameterization, and the 
instantiation of some so-called evidence variables (Y) are give, question is the 
probability of an instantiation of the query variables. In order to calculate the 
quantity ‘P(X=x|Y=y)’, i.e. to make real Bayesian prediction, the summations and 
integrals of Eq. 2 must be computed. Inference in a given network is NP-complete 
[8]: because of this, either Monte Carlo estimations or so-called junction tree 
algorithms are used, which perform well in practice. 

Learning of Bayesian networks can be regarded as a special case of parametric 
inference: we seek the structure and, or parameterization with the highest posterior 
probability. Learning is useful when we cannot make full Bayesian inference (i.e. 
we cannot consider multiple models), but have a considerable amount of 
observation data. Learning can be used instead of or beside manual construction, 
and the score function (the posterior probability) is often altered, usually by some 
penalties in order to represent our prior expectations. For an overview, see [9]. 

4 Feature Learning 

The problem of learning structural properties (features) of Bayesian networks was 
proposed and investigated in a series of papers, using the bootstrap methodology  
and the Bayesian approach [5] as well. In the Bayesian approach the posterior of a 
given structural feature F with finite, discrete values f0,…,fR is defined by the 
following equation ∑∑ ====
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This expectation involves a “model averaging” in the space of DAG models, 
which computation frequently occurs in Bayesian learning of Bayesian networks 
or in the full-scale Bayesian predictive inference 

However, this summation is usually not tractable due to the super-exponential 
cardinality of the space of DAGs [2], which is still the case even if  the maximum 
size of parental sets is bounded [5]. 

A standard approach is to use MCMC methods over the space of DAGs, 
particularly to use the Metropolis algorithm to specify an irreducible and aperiodic 
Markov chain [13]. In finite spaces stochastic accessibility and acyclicity ensure 
the existence of an equilibrium (limiting) distribution, and the applicability of the 
Markov chain analogues of the laws of large numbers and the central limit 
theorem. To ensure faster convergence to the limiting distribution and better 
properties for the estimations of the target expectations this paper suggested the 
use of orderings over the variables in the proposal distribution over DAGs. This 
idea was further developed by noting that a polynomial-time complexity analytic 
formula can be derived for the posterior probability p(<|D) of an ordering <, and 
for the order conditional probability of certain features, if the number of parents 
are bounded [5].  

The availability of the posterior for the orderings and for the conditional posteriors 
for features allows hybrid approaches to estimate the unconditional posteriors for 
features by averaging over the space of ordering using various Monte Carlo 
methods. In case of the so called order-MCMC methods this results in better 
MCMC properties, such as faster convergence and Monte Carlo variance [5]. 

We extend this method by introducing a new structural Bayesian network feature 
called Markov Blanket Graph or Mechanism Boundary Graph, which represents 
the relevant variables and the dependences corresponding to a given variable Y 
(MBG(Y)). A subgraph of G is called the Markov Blanket (sub)Graph or 
Mechanism Boundary (sub)Graph MBG(Y,G) of variable Y if it includes the 
nodes in the Markov blanket of Y (i.e. its parents, children and the other parents of 
its children) and the corresponding edges.  

It is easy to show that the classification performance of a Bayesian network in 
case of complete data is fully determined by the Markov blanket graph and its 
parameterization. Consequently, the Markov blanket graph is a necessary and 
sufficient representation to identify not only the relevant subset of the variables, 
but their interactions as well (in case of complete data). Another interpretation of 
the MBG feature is that it encompasses all the causal mechanisms directly related 
to a given variable. These properties ensure the central importance of this complex 
feature particularly in classification context, because it is located on a practically 
relevant middle-layer between simple features and complete domain models.  

The cardinality of the MBG(Y) space in case of n variables is still super-
exponential (even if the number of parents are bounded above with k). Consider 



an ordering of the variables such that Y is the first and all the other variables are 
children of it, then the parental sets can be selected independently. However, at the 
other extreme, if Y is the last in the ordering, then the number of alternatives (i.e. 
parental sets) is in the order of 2n-1 or (n-1)k). In case of a given MBG(Y,G), the 
types of the other variables Xi can be 1, non-occurring in the MBG, 2, parent of 
Y,3, children of Y and 4, (pure) other parent  with a common child. So the number 
of types of the variables is in the order of 4n. These types corresponds to the three 
categories used in the so called Feature Selection Problem, such as irrelevant (1,), 
strongly relevant (2, and 3,), and weakly relevant (4,), as can be seen directly from 
the definitions of relevance [10]. 

The corresponding order-conditional posterior for the MBG feature given the 
compatible ordering is as follows: 
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The order conditional posteriors for the parental sets ),|),X(( j DGPap MB f  are 

well known quantities in Bayesian network learning with analytic formulas, 
whereas the order conditional posterior that a variable X j after Xi does not include 
X i as a parent can be computed by summing over all the order compatible parental 
sets not containing  Xi as follows ∑

∉
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This summation similarly has polynomial time complexity if the number of 
parents is bounded by k., because the fixed ordering in the condition ensures the 
conditional independence of the parental sets of the variables.  Note, that the 
order-conditional posterior for the value GMB of the MBG(Xj) feature a given an 

ordering �  is a summation over all the DAG models compatible with the subgraph 

GMB and with the specified ordering �  as well. The cardinality of such models can 
be readily read off from Eq. 4. as follows: the contribution of the variables Xj 

before Xi (i.e. ij
XX p ) without any constraint and the contribution of the 

variables Xj after Xi (i.e. 
ji

XX p ) that are not children of Xi. Let denote the 

number of such variables with NB,�  and NA,�  respectively, then assuming that the 
maximal number of parents is k, the number of the compatible DAGs is 

O(nk(N
B,�

+N
A,�

 )). 

However, the order-free posterior )|MBG(Y)( DGp MB=  summing all the DAG 

models compatible with the subgraph GMB cannot be computed using the same 



trick of dealing with parental constraints independently, because of the general 
dependence of parental sets. Possible alternatives for its Monte Carlo estimation 
can be gained by rewriting it as an expectation in the space of DAGs or in the 
space of orderings 
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These suggest the following methods for the Monte Carlo estimation of this 
expectation: 

1. Sample the space of DAGs using the efficiently computable closed-form for 
the unnormalized posterior p(G|D) and compute the average based on the 

indicator function 1(.) as ∑
=

≈
N

iN 1
i )GMBG(Y,(1

1 . 

2. Sample the space of orderings using the efficiently computable closed-form 
for the unnormalized posterior p(<|D), for each ordering; sample the order 
compatible MBGs using the efficiently computable closed-form for the order 
conditional posterior p(MBG(Y)|D,<) and compute the average based on the 

indicator function  as ∑ ∑
= =
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3. Sample the space of orderings using the efficiently computable closed-form 
for the unnormalized posterior p(<|D) and compute the average based on the 

order conditional posterior  ∑
=
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N
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These methods form a hierarchy with their requirements and advantages. The first 
method does not necessitate the posterior p(<|D) (i.e. the assumption of a 
relatively low bound on the number of parents to ensure tractability). The second 
method does not require an order conditional posterior for the complex feature, it 
relies only on the existence of the order conditional posterior for parental sets [5]. 
On the contrary, the third method utilizes both quantity and offers an analytic 
computation partially within a simplified Monte Carlo cycle.  

Another reason for the second method is the lack of a target MBG GMB or if we 
would like to estimate the distribution p(MBG(Y)|D) or if we would like to 
construct a special probabilistic knowledge base containing MBGs. Because of 
our interest in the classification problem related to variable Y, we investigated this 
research problem in depth and discuss here an important special case. Under 
reasonable assumptions it can be shown that an ideal probabilistic knowledge base 
containing a limited number of MBGs consists of a high probability density 
region, i.e. the set of MBGs with high posteriors. For each MBG in this 



knowledge base, the posterior probability and the smoothed (averaged) 
parameterization of the MBG model can be stored, ensuring that any classification 
oriented structural, parametric or predictive Bayesian inference can be answered 
by averaging over the knowledge base. The discussion of this topic exceeds the 
scope of this paper, so we summarize only the main idea of the algorithm applied 
in the paper: we apply the order-MCMC method to sample the orderings and for 
each ordering we sort the compatible MBGs by sorting the posteriors for the 
parental sets and store and update the estimates of the most probable MBGs using 
their order conditional posterior.  

5 A BN-feature based probabilistic knowledge base 

The Bayesian network representation is an essentially propositional 
representation, though it extends the propositional (Boolean) logic by providing 
scalar values (beliefs) to the propositions instead of binary values. Following the 
model-theoretic semantics, a propositional knowledge base can be conceived of a 
representation of a set of worlds (described by the value configurations of all the 
variables) that are realistic, i.e. it assigns true values to the realistic worlds called 
models.  The probabilistic extension of this model model-theoretic semantics 
dictates that a probabilistic propositional knowledge base assigns a scalar value 
(belief) to each world. In fact, a Bayesian network is a representation of a 
distribution over the atomic events, which are the conjunction of the values for all 
the variables. Following this idea, a Bayesian network (BN) can be conceived of a 
representation of probabilistic truth-values (beliefs) over any Boolean proposition 
φ (W), because the probability of the proposition is given by the standard 
summation over the compatible worlds (models) is as follows: ∑

−Φ
=

benMigazM

BNMPP
:

)|()(φ   (8) 

However, the propositional nature of the Bayesian network representation is a 
serious obstacle towards its application representing statements over objects and 
their relations and generalized statements over possibly infinite objects. So the 
extension of this so-called monolithic Bayesian network representation is an active 
research topic, including for example the investigation of the object-oriented 
Bayesian networks [12] or the probabilistic relational models [11].  

We discuss here another approach to its extension based on the concept of 
Annotated Bayesian Networks, proposing a language, which can incorporate 
information about the free-text descriptions of the domain variables. 

Consider the following example: “A(Xi) contains STR1 and A(Xj) contains STR2 
and Xi=X j”  (where Xi and Xj denote variables, STR1 and STR2 given strings, and 
A(X i) the annotation of Xi), representing the event that the values of the variables, 



the annotations of which contain the specified strings STR1 and STR2, are equal. 
Hence, the proposed language must consist of the following elements: (1) the 
finite set of domain variables with finite range and their possible instantiation 
values (domain objects) and the string objects (2) the so-called annotation 
function, mapping domain objects to free-text descriptions (strings), and (3) a 
standard set of string functions (e.g. containing). Obviously, this language extends 
the language of standard probabilistic propositions by certain properties of first-
order logic (i.e. domain variables and their values do not have to be instantiated in 
the statements) and the use of annotations. 

In this language, accepting the restriction that only domain objects can be subject 
of quantification, the probability of any statement is well-defined through Eq. 3, 
because of the existence of the distribution over the finite number of domain 
objects. 

Another application of this textual enrichment of an essentially probabilistic 
propositional knowledge base is the following: consider a first-order language, 
which includes (1) the DAG models as domain objects and the string objects, (2) 
the annotation function, and (3) a standard set of string functions as before. Hence, 
using the probabilistic model-based semantics in Eq. 3, statements containing 
structural features has well-defined probability, like in the above case. E.g.: “there 
is a directed path between any two variables X1 and X2, the annotations of which 
contain the strings STR1 and STR2, respectively”. 

Note, that the posterior of such statements can be computed analogous to the 
feature learning problem, i.e. by summing the probabilities of the compatible 
structures, and that an annotated Bayesian network can be regarded similarly as a 
first-ordered logical knowledge base. 

5 Results 

The experiments were performed in the ovarian cancer domain using thirty-five 
clinical variables selected from a larger study [1]. 

In the followings, we show examples for the feature learning algorithms discussed 
in Section 4. The figure below shows the learning curves of basic structural 
features: directed edge and Markov blanket membership relations between the 
central variable of the domain (Pathology) and the others. In both cases posterior 
probabilities were computed using noninformative priors, using a causal ordering 
of the variables given by an expert of the field. 
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Fig. 1: Learning curves of posterior probabilities of structural features for the 
variable ‘Pathology’, directed edge on the left, Markov blanket membership on the 
right. 

The next figure shows the learning curves of posterior probabilities of the most 
probable Markov blanket sets of the variable ‘Pathology’ and the most probable 
Markov blanket spanning subgraph. 
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Fig. 2: Learning curves of posterior probabilities of the most probable Markov 
blanket sets, and the most probable Markov blanket spanning subgraph of the 
variable ‘Pathology’. 

Fig. 3 shows the learning curves of the averaged posterior probabilities of edges 
classified by the expert as of high, medium, low and negligible relevance. This 
figure can be regarded as a comparison of the expert’s prior knowledge and results 
of the feature learning algorithm: we expect the edges with higher relevance to 
have higher posterior probabilities. 

 

Fig. 3. Learning curves of averaged 
posterior probabilities of edges, 
corresponding to different relevance 
classes, given by the expert. 



Conclusions The Bayesian statistical application related to Bayesian networks 
follows the general trend that the growth of computational capacity allows the 
application of Bayesian methods for more and more complex models, primarily by 
the usage of general Monte Carlo methods. This is particularly relevant for 
complex Bayesian network features such as the Markov blanket subGraph feature. 
The other contribution of the paper, the introduction of the composition of 
complex statements including structural properties of Bayesian networks and 
textual annotations also fits in the extension of Bayesian network representation 
towards a probabilistic first-order logic. Our goal is the integrated development of 
these two lines of research. 
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