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Abstract: The probabilistic modeling of a high dimensional domain includes the
modeling of the joint distribution over the domain variables on numeric,
gualitative and possibly causal levels. Additionally, it includiescombination of
statistical data with domain knowledge acquired from experts and the ofaige
result in a decision theoretic framework. We overview the Bayesetwork
representation and the Bayesian statistical framework, which aceessfully
applied tools for these challenges. We consider a special learniddepn related

to Bayesian networks, the Monte Carlo, particularly the Markdnai@ Monte
Carlo (MCMC) estimation of the posteriors of structural propertiesfeatures.

We introduce a special classification oriented feature called kislarBlanket
(sub)Graph or Mechanism Boundary (sub)Graph and propose a specialized
order-MCMC method for its estimation. Finally, we discuss thmposition of

and Bayesian inference about complex statements including salptoperties

of Bayesian networks and textual annotations corresponding to the network
elements, which extension is proposed in a wider context aspatastards
probabilistic first-order logic. The proposed methods are demonstrated in
biomedical field related to the diagnosis of ovarian cancer.
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1 Introduction

In the paper we overview the Bayesian network represamtahd its frequent
corresponding statistical framework, the Bayesian stizgi In Section 4. we
discuss the Bayesian inference over structural propewied introduce a
classification oriented feature called Markov Blanket J&saph or Mechanism
Boundary (sub)Graph. In Section 5. we discuss the cotiposdf complex

statements including structural properties of Bayesiatworks and textual
annotations corresponding to the network elements. 8e&ticontains examples



of the applications of the proposed methods in a biomiefiedd related to the
diagnosis of ovarian cancer.

2 Bayesian Statistics and Models

The basic goal of Bayesian statistics is to provide akiomatic foundations of
inference based on observations and background knowldtgeincertainty of
which may result from e.g. the method of knowledge acquisiiod data
collecting, or the lack or ignorance of knowledge.

For handling uncertainty, the probabilistic framewadsk used, accepting the
subjectivist interpretation, regarding probabilitiesv@sasures of our prior beliefs
in the happening of events. It can be proven [2], thatdecision problem we can
order a positive real number (probability) and a ytilialue to every event, so
representing our preferences exactly, so that ratiersions can be met.

Representational theorems [2] state that any sequeneeddm variables can be
generated by a proper sampling model class and a distribotienit, if the
sequence satisfies the exchangeability property.

Based on the subjectivist interpretation and the existef the above model
classes, the framework of Bayesian statistics caprbposed. Here observation
data is considered to be generated by ensembles of modelseperized by
random variables. In practice, this parameterizatsorganized hierarchically:
the model space consists of discrete elements (stesytuto which numeric
parameters belong.

2.1 Inference

The task of inference is to estimate the probabitifyan event (predictive
inference) or of a model (parametric inference), doorted on observation data
and prior knowledge. From Bayes’ theorem, we can dénedollowing equation
for parametric inference (in the followings ‘D’, ‘Ghd ‘0’ denote data, structure
and parameterization, respectively):

P(D|G,6)P(G,6) 1)

P(G,8|D) = P(D)

The posterior of a given structure can be calculatedhtggiating out) from
equation (1). In predictive inference the probabilityquestion is calculated for
every possible structure and parameterization, then thesgities are averaged
using the posterior probabilities of models as weights:



P(x1D) =3 p(G D) [ p(x16)p(6, |G,. D)dé, (2)

As the exact calculation of the above integrals andnsations are usually
intractable in practice, often some approximation iedugypically one of the
Monte Carlo methods. We discuss these methods in gegeiction 4.

2.2 Advantages of Bayesian Approach

Opposing to its computational complexity, Bayesian methodge haany
advantages over classical statistics. First, by theusixel use of probabilities for
representing uncertainty of parameters, we get an effictool, supporting
automatized methods, like learning or knowledge base buil@egond, prior
distributions can represent our prior knowledge (or dkentotal lack of it), and
subsequently gained priors can be regarded as the phashe &howledge
acquisition process. Third, Bayes' theorem can combioematively the
information of prior knowledge and data, and formalizescty that inversion,
which we need for parameter estimation. Fourth, usingepostdistributions
instead of point estimations considers not only thstntikely configuration but
the less likely ones as well. For a more completevize, see [15].

3 Bayesian Networks

Nowadays, Bayesian networks are used primarily for thegtilistic modeling of
domains without systematic structure (as against ecurpior sound processing).
Bayesian networks store variables and their relatiores directed acyclic graph
(DAG): each node symbolizes a variable, and a locatitonal dependence
model belonging to every node describes the connections.

As a representational tool, a Bayesian network cantbgpreted in three different
ways, having stronger and stronger semantics in the ofdbe enumeration. It
can be regarded as (1) an effective tool for represejdingdistributions, (2) a

map of probabilistic independences and dependences of thaindoon (3) a

causal domain model in which edges are direct cause-efiecections.

3.1 Probabilistic Definition: Syntax and Semantics
The connection between a structure of a Bayesianonletand the represented
distribution can be based on the following, equivalent d¢amdi [4]:

(1) The distribution ‘P(X,..X,)’ is Markov relative to DAG ‘G’ or factorizes w.r.t
‘G if P(X,,.X,)= |‘| P(X, | Pa(X,)), where ‘Pa(}’ denotes the parents of ’X



(2) The distribution ‘P(X..X,)’' obeys the ordered Markov condition w.r.t. DAG

‘G Oi =101 (X | Pa(X ) H{ X oy | ] <iF\PaA(X))p» Where &' is an
ancestral ordering w.r.t. ‘G’.

(3) The distribution ‘P(X%..X,)’ obeys the local (parental) Markov condition w.r.t.
DAG ‘G, if  Oi=1n:I(X,|Pa(X,)|Nondescendnt{X,)),, Where
‘Nondescendants(X denotes the nondescendants of IX ‘G’

(4) The distribution ‘P’ obeys the global Markov coimtit w.r.t. DAG ‘G, if
Ox,y,zO{X}:1(X]|z|y)s = 1 (X]| 2| y), ,» Where ‘I(X|Y|Z)" denotes that ‘X’
and ‘Y’ are d-separatédy ‘Z’.

A definition based on the properties of the dependensteraygiven by the
Markov conditions could be [14]: The ‘G’ DAG is the Bayesinetwork of the
‘P(U)’ distribution if (1) every variablet L1U * is represented by a node in the
graph, and (2) the graph is minimal.

However, while this definition regards the network as thpresentation of the
dependence system, there is another, more practicaltivef The *(G,0)’ pair is
the Bayesian network of the ‘P(U)’ distribution if (®)is a DAG in which nodes
represent the elements of ‘U’ , (2 ‘is the whole of the numeric parameters
describing the ‘P(X|Pa(X))’ conditional distributionddigging to the nodes.

Although Bayesian networks may contain continuous vkssabs well, in the

followings we consider only ones with discrete finitei@bles, supposing that the
local dependence models are multinomial distributions. (they can be

represented by a conditional probability table — CPT).

The structure of a given Bayesian network determines, déeéndences it can
describe, however the same dependence model may beldiffgtent structures
as well. If two structures imply the same dependenctersysthey are called
observationally equivalent. By the aid of observationalvedence, the structures
can be ordered into disjunctive classes. Each of thipsgadence classes can be
represented by a partially directed acyclic graph (PDAI®,so-called essential
graph. The undirected skeleton of the essential grapheisame as the ones’
belonging to the given class, and only those edges ameatdirehich has the same
direction in every member (these are the so-callecpetied edges).

The sets X and Y are d-separated in the DAG G by Zbibzks every non-directed
path between them, i.e. (1) the path contains a node withamwerging edges that is
in Z, or (2) the path contains a node with converging edgekasmeither the node
nor any of its children is in Z.



3.2 Causal Definition

It is formally easy define causal Bayesian networkghanbasis of the previous
definitions: the pair ‘(G#) is the causal Bayesian network of the distribution
‘P(U), if (1) it is the probabilistic model of the dotinaaccording to the previous
interpretations, (2) and every edge represents a daaseeeffect connection. The
“only” difference is that edges represent here dicacisal connections. Although
causal Bayesian networks have very strong semantics,ucatify factors may
prevent us from regarding all of the probabilistic dependerae causal
connections. Such can be the presence of commontarssebe inadequacies of
data acquisition method, the DAG representation, or theugsrity of the domain.

3.3 Inference and Learning

In a given Bayesian network the task of inference ds compute the
‘P(X=x|Y=y,G,0)’ quantity, i.e. a structure, its parameterization, aiie
instantiation of some so-called evidence variables &) give, question is the
probability of an instantiation of the query variablés.order to calculate the
quantity ‘P(X=x|Y=y)’, i.e. to make real Bayesian preiticf the summations and
integrals of Eq. 2 must be computed. Inference in a gietmwork is NP-complete
[8]: because of this, either Monte Carlo estimationss@-called junction tree
algorithms are used, which perform well in practice.

Learning of Bayesian networks can be regarded as a spasilof parametric
inference: we seek the structure and, or parametemzaith the highest posterior
probability. Learning is useful when we cannot make fulleB#n inference (i.e.
we cannot consider multiple models), but have a considerabiount of
observation data. Learning can be used instead of or hesideal construction,
and the score function (the posterior probabilityfien altered, usually by some
penalties in order to represent our prior expectationsafroverview, see [9].

4 Feature Learning

The problem of learning structural properties (featuoé8ayesian networks was
proposed and investigated in a series of papers, using ttetrBpanethodology
and the Bayesian approach [5] as well. In the Bagesgroach the posterior of a
given structural featur€& with finite, discrete value,...,fr is defined by the
following equation

P(F@G)=f,|D)= > P(G|D)=Y I{F(G)=f}P(G|D) (3)

G:F(G)=f; G



This expectation involves a “model averaging” in the spaic®AG models,
which computation frequently occurs in Bayesian learninBayfesian networks
or in the full-scale Bayesian predictive inference

However, this summation is usually not tractable duehéo super-exponential
cardinality of the space of DAGs [2], which is sfiletcase even if the maximum
size of parental sets is bounded [5].

A standard approach is to use MCMC methods over the sphd2AGs,
particularly to use the Metropolis algorithm to specifyiraeducible and aperiodic
Markov chain [13]. In finite spaces stochastic accddgiland acyclicity ensure
the existence of an equilibrium (limiting) distributiand the applicability of the
Markov chain analogues of the laws of large numbers andcéh&al limit
theorem. To ensure faster convergence to the limidistribution and better
properties for the estimations of the target expectattbis paper suggested the
use of orderings over the variables in the proposalildision over DAGs. This
idea was further developed by noting that a polynomial-tomplexity analytic
formula can be derived for the posterior probability|pj<of an orderings, and
for the order conditional probability of certain feasirif the number of parents
are bounded [5].

The availability of the posterior for the orderings dmrdthe conditional posteriors
for features allows hybrid approaches to estimateauttoenditional posteriors for
features by averaging over the space of ordering using vakiomée Carlo
methods. In case of the so called order-MCMC methods reisults in better
MCMC properties, such as faster convergence and Monte Gaiance [5].

We extend this method by introducing a new structural Bayesetwork feature
called Markov Blanket Graph or Mechanism Boundary Gragtich represents
the relevant variables and the dependences correspondagitven variable Y
(MBG(Y)). A subgraph of G is called the Markov Blankgtub)Graph or
Mechanism Boundary (sub)Graph MBG(Y,G) of variableif¥it includes the
nodes in the Markov blanket of Y (i.e. its parents, ¢bitdand the other parents of
its children) and the corresponding edges.

It is easy to show that the classification performaofca Bayesian network in
case of complete data is fully determined by the Markank#t graph and its
parameterization. Consequently, the Markov blanket graph hecessary and
sufficient representation to identify not only théex@ant subset of the variables,
but their interactions as well (in case of complet@)daAnother interpretation of
the MBG feature is that it encompasses all the cansahanisms directly related
to a given variable. These properties ensure theatémportance of this complex
feature particularly in classification context, becaitise located on a practically
relevant middle-layer between simple features and caenglamain models.

The cardinality of the MBG(Y) space in case of n Jalga is still super-
exponential (even if the number of parents are bounded atitivéc). Consider



an ordering of the variables such that Y is the fired all the other variables are
children of it, then the parental sets can be saleotdependently. However, at the
other extreme, if Y is the last in the ordering, thlea number of alternatives (i.e.
parental sets) is in the order df*2r (n-1§). In case of a given MBG(Y,G), the
types of the other variables ¥an be 1, non-occurring in the MBG, 2, parent of
Y,3, children of Y and 4, (pure) other parent with emomn child. So the number
of types of the variables is in the order &f Bhese types corresponds to the three
categories used in the so called Feature Selectionenpblich as irrelevant (1,),
strongly relevant (2, and 3,), and weakly relevant & )¢an be seen directly from
the definitions of relevance [10].

The corresponding order-conditional posterior for theGviRature given the
compatible ordering is as follows:

AMBG(¥=G"®}, D)=

=pPEX.G™)-D) [] PP#X.G™)kD) [nX OP4X.G™)D)
X <X

<X, X=X,
XPdX; G"Y XPX; G"Y

(4)

The order conditional posteriors for the parental gsta(X;,G"*)}-,D) are

well known quantities in Bayesian network learninghwanalytic formulas,
whereas the order conditional posterior that a varigpbdter X does not include
X; as a parent can be computed by summing over all the coagratible parental
sets not containing &s follows

p(X; DPa(X,,G")}-,D)= ¥ p(Pa(X,)},D) ()

X;0Pa(X;)

This summation similarly has polynomial time complegxit the number of
parents is bounded by k., because the fixed ordering in thiticonensures the
conditional independence of the parental sets of the vesiabNote, that the
order-conditional posterior for the valué'Gof the MBG(X) feature a given an

ordering is a summation over all the DAG models compatible withsubgraph
G“® and with the specified orderingas well. The cardinality of such models can
be readily read off from Eq. 4. as follows: the contfiin of the variables X
before X (i.e. X; < X;) without any constraint and the contribution of the
variables X after X (i.e. x, < xj) that are not children of ;XLet denote the

number of such variables withgN and N, respectively, then assuming that the
maximal number of parents is k, the number of the comlpatDAGs is

O(nk(NB, +NA, )) )

However, the order-free posterig{MBG(Y) =G"® | D) summing all the DAG
models compatible with the subgrapffGcannot be computed using the same



trick of dealing with parental constraints independericause of the general
dependence of parental sets. Possible alternativessfbtoimte Carlo estimation

can be gained by rewriting it as an expectation in the spBAGs or in the
space of orderings

p(MBG(Y) =G"“® |D) = E o0 [ PIMBG(Y) = G"® b, D)]
=E10)[ Epmscerp ) IAMBG(Y) = G"®)]

PMBG(Y)=G"*°| D) = E,(q [UMBG(Y ) = G")] ()

(6)

These suggest the following methods for the Monte Castonation of this
expectation:

1. Sample the space of DAGs using the efficiently compatakised-form for
the unnormalized posterior p(G|D) and compute the avdraged on the

indicator function 1(.) as izNzl(MBG(Y, G,)-
N I

i=1

2. Sample the space of orderings using the efficiently corbfgutdosed-form
for the unnormalized posterior p(<|D), for each ordersample the order
compatible MBGs using the efficiently computable closamirffor the order
conditional posterior p(MBG(Y)|D,<) and compute the agerbased on the

indicator function as liiiuMBG(Y)ij =G"®).

i=1 j=1

3. Sample the space of orderings using the efficiently corbfgutdosed-form
for the unnormalized posterior p(<|D) and compute the gednased on the

order conditional posterioe izN: p(MBG(Y) =G"® |-, D)-
N

i=1

These methods form a hierarchy with their requiremantsadvantages. The first
method does not necessitate the posterior p(<|D) tfie.assumption of a
relatively low bound on the number of parents to ensactability). The second

method does not require an order conditional posteriahf®complex feature, it

relies only on the existence of the order conditionatgyior for parental sets [5].
On the contrary, the third method utilizes both quantitg affers an analytic

computation partially within a simplified Monte Carlocts.

Another reason for the second method is the lacktafget MBG G"® or if we
would like to estimate the distribution p(MBG(Y)|D) or ufe would like to
construct a special probabilistic knowledge base comiMBGs. Because of
our interest in the classification problem relatedanable Y, we investigated this
research problem in depth and discuss here an imporpantak case. Under
reasonable assumptions it can be shown that an iddzhplistic knowledge base
containing a limited number of MBGs consists of a hpobability density
region, i.e. the set of MBGs with high posteriors.r Each MBG in this



knowledge base, the posterior probability and the snedotlfaveraged)
parameterization of the MBG model can be stored, ergsthrat any classification
oriented structural, parametric or predictive Bayesidarénce can be answered
by averaging over the knowledge base. The discussion of thisewpeeds the
scope of this paper, so we summarize only the main idsee @lgorithm applied
in the paper: we apply the order-MCMC method to sanieotderings and for
each ordering we sort the compatible MBGs by sorting pth&teriors for the
parental sets and store and update the estimates of st@mbable MBGs using
their order conditional posterior.

5 A BN-feature based probabilistic knowledge base

The Bayesian network representation is an essentigdhppositional
representation, though it extends the propositional (Rogléogic by providing
scalar values (beliefs) to the propositions insteadimdiry values. Following the
model-theoretic semantics, a propositional knowledge lban be conceived of a
representation of a set of worlds (described by theevebnfigurations of all the
variables) that are realistic, i.e. it assigns trakies to the realistic worlds called
models. The probabilistic extension of this model rivideoretic semantics
dictates that a probabilistic propositional knowledgsebassigns a scalar value
(belief) to each world. In fact, a Bayesian netwoska representation of a
distribution over the atomic events, which are thguweetion of the values for all
the variables. Following this idea, a Bayesian netWBi) can be conceived of a
representation of probabilistic truth-values (be)iefger any Boolean proposition
@ (W), because the probability of the proposition is givey the standard
summation over the compatible worlds (models) is dgviat

P@= > P(M|BN) (8)

M:® igaz M -ben

However, the propositional nature of the Bayesian métwepresentation is a
serious obstacle towards its application representirtgnséats over objects and
their relations and generalized statements over possifihité objects. So the

extension of this so-called monolithic Bayesian mekwepresentation is an active
research topic, including for example the investigatibnthe object-oriented

Bayesian networks [12] or the probabilistic relatiomaidels [11].

We discuss here another approach to its extension hasetie concept of
Annotated Bayesian Networks, proposing a language, whichircarporate
information about the free-text descriptions of the dorwariables.

Consider the following exampleA(X) contains STRand A(X) contains STR
and X=X;" (where Xand X denote variables, STRnd STR given strings, and
A(X;) the annotation of X representing the event that the values of the blasa



the annotations of which contain the specified stringR;%nd STR, are equal.

Hence, the proposed language must consist of the folpwiements: (1) the
finite set of domain variables with finite range andirttpossible instantiation

values (domain objects) and the string objects (2) theaBed annotation

function, mapping domain objects to free-text descriptionsn¢sty, and (3) a

standard set of string functions (e.g. containing). Oblyotisis language extends
the language of standard probabilistic propositions byaiceproperties of first-

order logic (i.e. domain variables and their values ddawe to be instantiated in
the statements) and the use of annotations.

In this language, accepting the restriction that only dorobjects can be subject
of quantification, the probability of any statementmall-defined through Eq. 3,

because of the existence of the distribution over thigefinumber of domain

objects.

Another application of this textual enrichment of an metially probabilistic
propositional knowledge base is the following: consideirsi-érder language,
which includes (1) the DAG models as domain objects hadtring objects, (2)
the annotation function, and (3) a standard set ofgstuinctions as before. Hence,
using the probabilistic model-based semantics in Eqte®eraents containing
structural features has well-defined probability, likehia above case. E.gthtre
is a directed path between any two variablgsaXd X, the annotations of which
contain the strings STRnd STR respectively”.

Note, that the posterior of such statements can beumat analogous to the
feature learning problem, i.e. by summing the probabilitethe compatible

structures, and that an annotated Bayesian network ceegaeded similarly as a
first-ordered logical knowledge base.

5 Results

The experiments were performed in the ovarian cancer idoasing thirty-five
clinical variables selected from a larger study [1].

In the followings, we show examples for the feature liegralgorithms discussed
in Section 4. The figure below shows the learning cumkedasic structural
features: directed edge and Markov blanket membership redabietween the
central variable of the domain (Pathology) and thersthin both cases posterior
probabilities were computed using noninformative priosingia causal ordering
of the variables given by an expert of the field.
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Fig. 1: Learning curves of posterior probabilities alustural features for the
variable ‘Pathology’, directed edge on the left, Marktanket membership on the
right.

The next figure shows the learning curves of posteyobabilities of the most
probable Markov blanket sets of the variable ‘Pathglagd the most probable
Markov blanket spanning subgraph.

Fig. 2: Learning curves of posterior probabilities of timost probable Markov
blanket sets, and the most probable Markov blanket spgrsubgraph of the
variable ‘Pathology’'.

Fig. 3 shows the learning curves of the averaged posteabalpitities of edges
classified by the expert as of high, medium, low andigibig relevance. This
figure can be regarded as a comparison of the expeidiskpowledge and results
of the feature learning algorithm: we expect the edges ligher relevance to
have higher posterior probabilities.
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Conclusions The Bayesian statistical application related to Beye networks
follows the general trend that the growth of computeticcapacity allows the
application of Bayesian methods for more and more comptaels, primarily by
the usage of general Monte Carlo methods. This is paatigufelevant for
complex Bayesian network features such as the Markov lilank&raph feature.
The other contribution of the paper, the introductiontleé composition of
complex statements including structural properties ofeBi@an networks and
textual annotations also fits in the extension of Bayesetwork representation
towards a probabilistic first-order logic. Our goathe integrated development of
these two lines of research.
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