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Péter Antal, András Millinghoffer
Department of Measurement and Information Systems

Budapest University of Technology and Economics
e-mail: {antal,milli}@mit.bme.hu

April 26, 2006

Abstract

In biomedical domains free text electronic literature is an important
resource for knowledge discovery and acquisition. It is particularly true
in the context of data analysis, where it provides a priori components
to enhance learning, or references for evaluation. The biomedical litera-
ture contains the rapidly accumulating, voluminous collection of scientific
observations boosted by the new high-throughput measurement technolo-
gies.

The broader context of our work is to support statistical inference
about the structural properties of the domain model. This is a two-step
process, which consists of (1) the reconstruction of the beliefs over mecha-
nisms from the literature by learning generative models and (2) their usage
in a subsequent learning phase. To automate the extraction of this prior
knowledge we discuss the types of uncertainties in a domain with respect
to causal mechanisms and introduce a hypothesis about certain structural
faithfulness between the causal Bayesian network model of the domain and
a binary Bayesian network representing occurrences (i.e. causal relevance)
of domain entities in publications describing causal relations. Based on
this hypothesis, we propose various generative probabilistic models for
the occurrences of biomedical concepts in scientific papers. Finally, we in-
vestigate how Bayesian network learning with minimal linguistic analysis
support can be applied to discover and extract causal dependency domain
models from the domain literature.

Keywords Bayesian network learning, text mining.

1 Introduction

The rapid accumulation of biological data and the corresponding knowledge
posed new challenges for knowledge engineering to make accessible the volumi-
nous, uncertain and frequently inconsistent knowledge. In machine learning we
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have to cope with high-dimensional, noisy and relatively “small sample” data
and to incorporate a priori knowledge in various learning and discovery algo-
rithms. In natural language processing it is essential to retrieve relevant raw
information (i.e. publications) and to extract relevant information from it. De-
spite recent trends aiming to broaden the scope of formal knowledge bases in
biomedical domains, free text electronic literature is still the central repository
of the domain knowledge. This central role will probably be retained in the near
future, because of the rapidly expanding frontiers ([3, 14, 32, 26, 13, 34]).

The extraction of explicitly stated or the discovery of implicitly present latent
knowledge requires various techniques ranging from purely linguistic approaches
to machine learning methods. In the paper we investigate a shallow-statistical,
domain-model based approach to statistical inferences about dependency and
causal relations. We use Bayesian networks as the causal domain models to
introduce generative models of causal papers, then we examine the relation
between the probabilistic models of the domain and of the corresponding domain
literature, and evaluate this approach in the ovarian cancer domain.

The broader context of our work is to support statistical inference about
the structural properties of the domain model. This is a two-step process,
which consists of (1) the reconstruction of the beliefs over mechanisms from the
literature by learning generative models and (2) their usage in a subsequent
learning phase. Earlier applications of text mining focused on providing results
for the domain experts or data analysts, whereas our aim is to go one step further
and use the results of these methods automatically in the statistical learning of
the domain models. For this, the Bayesian framework is an obvious choice.
The first step consists of reconstructing collective beliefs from the literature as
parameters of generative models. Actually it can be conceived as an a posteriori
belief given the literature data. In the second phase the Bayesian inference about
the a posteriori probabilities of structural properties of the domain model given
the clinical or biological data is the practical choice. Finally the link between
these two steps can be formalized using the principled probabilistic semantics,
i.e. our goal is to provide the a priori probabilities on the structural properties
of the domain model derived from the literature (see Fig. 1).

The paper is organized as follows. In Section 2 we review the types of un-
certainties in biomedical domain from the causal, mechanism oriented point
of view. Also here we present the Bayesian framework of our approach. The
framework is based on Bayesian belief networks. It fits the proposed genera-
tive model of the publications to the domain literature and uses these results
as a priori elements to support Bayesian analysis of domain data. In Section 3
we summarize recent approaches to the information extraction and the litera-
ture mining based on natural language processing (NLP) and “local” analysis
of occurrence patterns. In Section 4 we formulate a new hypothesis about the
relation of causal mechanisms in the domain and the causal mechanisms govern-
ing the occurrences of concepts in the domain literature. We conjecture certain
structural faithfulness between the causal Bayesian network model of the do-
main and the binary Bayesian network representing occurrences (i.e. causal
relevance) of domain entities in causal publications. Based on this hypothe-
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sis, we propose various generative probabilistic models for the occurrences of
biomedical concepts in scientific papers. Finally, we investigate how the uncer-
tainties over causal mechanism enter (as parameters) the generative models of
the publications.

Section 5 presents the application domain, the diagnosis of ovarian cancer.
We investigate how Bayesian network learning with minimal linguistic analysis
support can be applied to discover and to extract causal dependency domain
models from the domain literature. Section 6 reports a causal evaluation of
a maximum a posteriori Bayesian network based on the literature data with
respect to the expert’s references. Section 7 presents the conclusion.

2 Uncertainty of causal domain model

A biomedical domain frequently can be characterized by a dominant type of
uncertainty with respect to the causal mechanisms. Such types of uncertainty
show certain sequential dependency, related to the process of biomedical knowl-
edge extraction and formulation, though a strictly sequential view is clearly an
oversimplification.

1. Conceptual phase: Uncertainty over the domain ontology, i.e. the relevant
entities and concepts. This is of fundamental importance, considering that
an effective (probabilistic) decomposition and causal modeling is partly
the consequence of properly constructed domain concepts, so the feedback
from later phases to guide this phase is crucial [25].

2. Associative phase: Uncertainty over the association of entities. These
are reported in the literature as undirected and indirect, correlational
hypotheses, frequently as clusters of associated entities. Though we accept
the general assumption of causal relations behind the associations, we
assume that the exact causal functions and direct relations are not known
in this phase.

3. Causal (relevance) phase: Uncertainty over causal relations between the
entities (i.e. over mechanisms). Typically direct causal relations are the-
oretized as processes and mechanisms.

4. Parametric causal phase: Uncertainty over the analytic forms of the au-
tonomous mechanisms embodying the causal relations.

5. Intervention phase: Uncertainty over the effects of the interventions.

In this paper we assume that the target domain is already in its Associative
and Causal phase, i.e. we assume that the entities are more or less agreed, but
their causal relations are in the discovery phase. The direct dependencies and
the functions of the entities are not known in the reported associations. This
assumption holds in many biomedical domains, particularly in domains linking
biological and clinical levels. In such domains, the Associative phase is a crucial
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and lengthy knowledge accumulation phase, in which wide range of research
methods is used to report associated pairs or clusters of the domain entities.
These methods admittedly produce causally oriented associative relations which
are partial, biased and noisy (c.f. various ”-omics” levels [42]).

We consider two types of uncertainty of causal mechanisms. The first, called
‘inherent’, is the consequence of the subjective, partial understanding of the full
mechanism and the objective, parallel presence of mechanisms. Uncertainty
over the possible mechanisms can be modeled with another layer of uncertainty
above the uncertain domain model by introducing new hidden variables that
serve as selectors of the causal mechanisms. It is similar to the modeling of
uncertainties over parameters with hyperparameters (see [24, 35], but this kind
of uncertainty is conceptually different from the recent dualistic deterministic-
probabilistic models of mechanisms in causal networks [25]. The second type
of mechanism uncertainty, called ‘contextual’, corresponds to the contextual
(in)dependencies [5, 16]. In this case the relevance of certain variables depends
on the values of other variables (i.e. the relevance of a mechanism depends
on the values of triggering variables). It can be modeled similarly with the
introduction of a new hyperlayer with hidden variables, which serve as selectors
of the causal mechanisms, though in this case hypervariables depend on the
domain variables. Nonetheless, we treat the contextual uncertainties as inherent
uncertainties, i.e. we assume that there is an independent belief for each variable
over its corresponding potential mechanisms.

The central assumption to our work is that the beliefs over the mechanisms
are important factors influencing the publications. They exert their effects as
building blocks in generative models of the occurrences of domain entities in
publications. Fig. 1 illustrates our assumptions about (1) the mechanism un-
certainty in the domain in the Associative and Causal-relevance phases, (2)
the corresponding literature data, (3) the reconstructed generative probabilistic
model and (4) the application of reconstructed mechanism uncertainty as prior
in statistical inferences about domain models.

3 Information extraction and literature mining

Causal relations (mechanisms) or related uncertainties are reconstructed from
free text publications, mainly from abstracts. Abstracts report either causally
associated domain entities (Associative phase) or report the explicit, direct
causal relations with the causal functions of the entities (Causal-relevance phase).
Our goal in this section is to highlight the differences between the knowledge
discovery and information extraction methods and between the top-down and
bottom-up methods. We will also illustrate the qualitative and quantitative
relation between the domain model and its corresponding generative literature
model.

The following list demonstrates the focus and characteristics of the ap-
proaches that have mainly influenced our work.

1. Entity relationship extraction by linguistic approach In the linguistic ap-
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Figure 1: The reconstruction of fragmented prior knowledge in a biomedical
domain from literature data and its incorporation in learning causal domain
models.
Columns represent the phases of transformations of information concerning the
domain. Headlines in the first row indicate the context, the second row contains
the manifestations, and the third their possible representations.

proach explicitly stated relations are extracted from free text [11, 28,
29, 18], possibly with qualitative rating and negation, applying simpli-
fied grammars together with heuristic domain specific techniques such as
POS taggers and frames (see e.g. the SUISEKI system [4]).

2. Entity relationship extraction by co-occurrence frequency analysis These
methods are based on name co-occurrence quantifying the pairwise rela-
tion of two domain variables by the relative frequency of the co-occurrence
of their names (and possibly synonyms) in documents from a domain spe-
cific corpus. In genomics, Stapley and Benoit [37] summarized the bio-
logical rationale for the relation between the biological relevance and the
co-occurrence and performed a quantitative manual analysis for the model
organism Saccharomyces cerevisiae, which indicated the usefulness of this
approach for knowledge discovery in genomics. For human genes, Jensen
et al. [21] performed an extensive quantitative manual check of such pair
wise scorings based on the co-occurrence and concluded that the name
co-occurrence in MEDLINE abstracts reflects biologically meaningful re-
lationships with a practically acceptable reliability.

3. Entity relationship (cluster) extraction by kernel similarity analysis Meth-
ods based on kernel similarity quantify the relation of two domain variables
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based on the vector representations of their textual descriptions (called
kernels). The relation of two variables can be based on either direct sim-
ilarity (if their descriptions are similar) or on indirect similarity (if the
patterns of their descriptive documents are similar) [33].

4. Entity relationship extraction by citation and temporal analysis Friedman
[22] suggested and tested a probabilistic generative model for individual
relations that basically relies on a ”true” (collective) belief of the rela-
tionship and then models the pattern of citations (corroborations and
refutations).

5. Relationship discovery by heuristic analysis of patterns of citation and
co-occurrence An early biomedical application from Swanson and Smal-
heiser [39] targeted relationship discovery by heuristic analysis of patterns
of citation and co-occurrence, mainly relying on transitivity considera-
tions.

6. Relationship discovery by joint statistical analysis of patterns of co-occurrence
de Campos et al. [12] used the occurrence patterns of words to learn a re-
stricted Bayesian network thesaurus from the literature.

These approaches can be further classified into information extraction or
discovery methods. Roughly speaking, linguistic approaches assume that the
individual relationships are sufficiently known, formulated and reported for au-
tomated detection methods, i.e. the linguistic approaches are applicable in
the Causal-relevance phase or later. Whereas discovery methods assume that
mainly causally associated entities are reported without or with tentative rela-
tions and direct structural knowledge. Consequently their linguistic formulation
is highly variable, not conforming to simple grammatical characterization, i.e.
these methods are applicable in the Associative phase. Therefore, linguistic
approaches concentrate on the identification of individual relationships. The
domain literature is analyzed piece-by-piece (by scientific papers or frequently
by separated sentences) applying significant grammatical support. The inte-
gration is left to the domain expert who is supported by the raw summary of
the individual relationships (such as e.g. pair wise literature networks). Sta-
tistical approaches on the contrary, after a simple grammatical and semantic
preprocessing, concentrate on the identification of consistent domain models by
analyzing jointly the numeric representation of the domain literature. These
two groups rely on fundamentally different assumptions and consequently can
be embedded differently in the knowledge engineering and the literature mining
process. They require different preprocessing, their computational complexity,
scalability with respect to the corpus, number of entities and relationships and
sensitivity to the noise and bias in the scientific literature are different. Note
that in the discovery methods the statistical inference proceeds from occurrence
patterns of the entities to the probabilities of the entity relationships, whereas
in Natural Language Processing (NLP) based information extraction it proceeds
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from the reported entity relationships to the probabilities of the entity relation-
ships. The NLP-based information extraction methods, useful to extract causal
statements, can be applied prior to the Causal phase, whereas in the Associative
phase only the causal discovery methods could deliver results.

If a domain theory does not exist yet or there is no consensus about an over-
all consistent causal domain theory, the NLP methods can identify the reported
relations in the domain, whereas the discovery methods can discover new re-
lations and autonomously prune the redundant, inconsistent, indirect relations
by providing a unified consistent domain model. Interestingly, the discovery
methods can also be applied to the Conceptual phase, because the identifica-
tion of a consistent domain model may invoke new concepts (“hidden variables”)
as byproduct. This is consistent with the view that causation and the causal
concepts that make it possible are the result of an active, constructive process
[24, 25].

In practice, the Associative and Causal phases are never separated. It shows
the necessity of a dual approach to the extraction and reconstruction of the un-
certainties over mechanism. In the Associative phase uncertainties are present
in the literature implicitly through patterns of occurrences of (causally) related
entities, depending on the contemporary measurement technique, experimental
methods, analysis of the experiment, publication policy and style, economic and
social, ethical consequences. In the Causal phase uncertainties are present in
the literature in explicitly stated forms, possibly explicitly naming the mecha-
nism, and depend additionally on intentional, subjective, conscious beliefs over
the mechanisms. We later consider in Sections 4.4 and 4.5 generative models
that cover both aspects. For these models, the first, ‘latent mechanisms’ phase
suggests a more experiment guided ‘exploratory’ interpretation of the model,
whilst the second more intentional ‘known mechanisms’ phases suggest an ‘ex-
planatory’ interpretations for the model, as closer to the intentional scientific
investigation and explanation.

The construction of informative and faithful a priori probabilities over do-
main mechanisms or models from free text research papers is further complicated
by:

1. Uncertainty. Usually there are multiple aspects such as uncertainty about
the existence, scope (conditions of validity), strength, causality (direc-
tion), robustness for perturbation and relevance of mechanism. A related
phenomenon is the overall inconsistency of the reported knowledge frag-
ments.

2. Incompleteness. Certain relations are not reported because they are as-
sumed to be well-known parts of common sense knowledge or of the
paradigmatic knowledge of the community. Certain (implicit) relations
are not reported purposely to decrease redundancy because they can be
inferred from the usually reported knowledge items. Certain (latent) rela-
tions are not reported because they are unknown, though that they could
be inferred from the already reported knowledge and finally there are ob-
jectively unknown dependencies, that are not reported.
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3. Consistency. The extracted beliefs have to correspond to consistent do-
main models, possibly not decomposable to beliefs in individual mecha-
nisms, e.g. to all possible (direct and indirect) pairwise relations.

4. Scientific publication bias. The information extraction method has to
cope with the cognitive and publication constraints [30, 44], e.g. that new
findings are not accompanied by a corresponding updated full survey of
the domain, or the historical (temporal) and funding aspects of scientific
publication.

Our approach is closest to the approach in [22], which investigates a gener-
ative model for the temporal sequence of occurrences of an individual relation
incorporating the “true” (collective) belief in the relation and to the work re-
ported in [39], which focused on the discovery of latent knowledge by consistency
considerations, though in our case we focus and exploit the advantages of learn-
ing an overall, consistent domain model instead of the citational and temporal
aspects.

4 Bayesian network models for literature min-
ing

We will construct now a series of generative probabilistic models of publications
mainly from the Associative phase, but also from the Conceptual and Causal-
relevance phases. Of course, serious simplifications have to be made, because
a probabilistic or causal model over these roles of the domain variables means
a generative model of scientific explanation in publications, with certain impli-
cations to scientific research itself. Furthermore, beside the ‘description’, we
should model the transitive associative nature of causal explanation over mech-
anisms, e.g. that causal mechanisms with a common cause or with a common
effects are surveyed in an article, or that chains of causal mechanisms are tracked
to demonstrate a causal path. On the other hand, we have to model the lack
of transitivity, i.e. the incompleteness of causal explanations, e.g. that certain
variables are assumed as explanatory, others as potentially explained, except
for survey articles that describe an overall domain model. We use the belief
network representation for the generative probabilistic models of publications.

4.1 Bayesian belief networks

A belief network represents a joint probability distribution over a set of variables
[24]. We assume that these are discrete variables. The model consists of a
qualitative part (a directed graph) and quantitative parts (dependency models).
The vertices Vi of the graph represent the random variables Xi and the edges
define the direct dependencies (each variable is probabilistically independent of
its non-descendants given its parents [24]). There is a probabilistic dependency
model for each variable that describes its dependency on its parents.
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Beside providing an efficient representation of high dimensional joint dis-
tributions, the Bayesian network representation has further advantages with
respect to the structure of the domain variables. It provides an efficient and
graphical representation of the conditional independencies with standard prob-
abilistic semantics and enables inferences on conditional independencies [24].
It also provides a representation of causal domain models and enables causal
inferences [25].

In the Bayesian framework the uncertainty over the structure of the domain
model is represented by a distribution over the allowed Directed Acyclic Graph
(DAG) structures. Assuming structure independence [6, 9], the probability of a
domain model for a fixed ordering of the domain variables can be decomposed
into the product of probabilities of the dependencies in the domain, which fits
in the causal interpretation of the structure. Another frequent assumption,
the so called edge independence, is that the belief in the substructures (i.e.
in the parental sets) can be further decomposed into a product of probabilities
corresponding to the belief that an individual parent is a member of the parental
set, i.e. it is a direct cause of the investigated variable.

In the general case without a fixed ordering, either the features have to be
selected carefully to ensure their independence (e.g. undirected edges) or their
interaction can seriously distort the purported prior probabilities (for certain
automated corrections see [7] ).

The Bayesian update with complete data set D can be performed using an
analytic formula [9]. For a complete data set and fixed ordering, the posterior
probability of a Bayesian network structure can be also decomposed into a
product of independent parts, each expressing the a posteriori probability of
the local dependency model conditioned on the data.

To summarize, in the Bayesian framework there are three layers of uncer-
tainty related to Bayesian networks: uncertainty over the domain values in case
of fixed structure and parameters (P (X|θ, S)), uncertainty over the parameters
(P (θ|S)) and uncertainty over the structure (P (S)). Each of these can be used
to represent uncertainty over mechanisms in a domain.

4.2 Occurrences of entities in causal publications

We start the construction of belief networks for the occurrences of the domain
entities by considering possible interpretations, then the types of variables, the
structure of the model and the local dependency models. We adopt the central
role of causal understanding and explanation in scientific research [40, 41, 44].
We also assume the central role of causal explanations in scientific publications
(for an overview of the relevance of non-causal relations, constraints, see [43]
). Furthermore, we assume that the contemporary (collective) uncertainty over
mechanisms is an important factor influencing the publications. In our formal-
ization this mechanism uncertainty shows up in the publications as reports of
the domain entities without specified direct relations (in the Associative phase)
and as reports of the domain entities with specified direct mechanism (in pub-
lications from the Causal-relevance phase). We consider the interpretations of
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the binary occurrences of the domain entities with respect to the Conceptual
phase as independent descriptions (i.e. we neglect taxonomic publications) and
with respect to the Associative and Causal-relevance phase as causally related
and governed by mechanism uncertainty.

Wide range of interpretations can be obtained by considering the occurrences
of domain entities in various types of the publications from all the phases, e.g.
univariate, multivariate descriptive studies, taxonomic, bivariate cause-effect
statistical studies, multivariate causal studies, surveys of the domain, diagnos-
tic, therapeutic publications, etc. Corresponding interpretations, reflecting the
pragmatic function of an occurring domain entity, can be the following (the in-
terpretations for presence (positive-occurrence), absence (negative-occurrence)
and missing status are given in parenthesis):

1. Relevant: unspecified relevance in discussing the domain (relevant / irrel-
evant / relevance unknown).

2. Categorized: investigated in domain taxonomy, logically relevant (catego-
rized / not-in-domain-taxonomy / taxonomic status unknown).

3. Observed / measured / known: observed or known in the published study,
or more specifically statistical data is collected about the variable (known
/ unknown / status unknown).

4. (Independently) Described: described without relation to other variables
(described / nondescribed / description-unknown).

5. Explanandum: The variable is to be explained (explained / unexplained
because of insufficient or incorrect explanation / epistemic status un-
known).

6. Explanans: The variable is explanatory. (explanatory / nonexplanatory
as unnecessary / epistemic status unknown).

7. Explained / to be explained / understood / assumed (causally relevant):
the merge of the explanandum (explained) and explanans (explanatory)
interpretations.

According to our causal stance, we accept the ‘causal relevance’ interpre-
tation, more specifically the ‘explained’ (explanandum) and ‘explanatory’ (ex-
planans), additionally, we allow the ‘described’ status. This is appealing be-
cause in the assumed causal publications both the name occurrence and the
preprocessing kernel similarity method (see Section 5) expresses the presence
or relevance of the concept corresponding to the respective variable. This im-
plicitly means that we assume that publications contain either descriptions of
domain concepts without considering their relations or occurrences of entities
participating in known or unknown (latent) causal relations (c.f. Causal Markov
Condition [36, 25, 15]). An in-depth analysis exceeds the scope of the paper,
consequently we left it to the reader to consider the general ”relevance” and
”known” interpretation (for an overview of ‘relevance’ see [38]).
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To model the occurrence pattern of the accepted three roles of the domain
variables we continue with the types of variables, local dependency models and
structures. According to our assumption about the dominance of the Associative
phase, we assume that there is only one causal mechanism for each parental set
(i.e. there is a one-to-one correspondence between the set of directly influencing
variables and potential mechanism), so we will equate a given parental set and
the mechanism based on this set (Assumption of Single mechanism by relevance).
Theoretically this is not restrictive, but in later causal phases, such as in the
Parametric-causal phase, there can be multiple alternative mechanisms for the
same parental set.

4.3 The atomistic publication model

The simplest, atomistic approach is to assume that the reports of the causal
mechanisms and the univariate descriptions are completely independent. In-
deed, this is the currently prevailing assumption, because all the information
extraction methods that extract, analyze and provide result separately for the
individual relations rely on this assumption. These methods also assume that
the individual reports of the causal mechanisms and the univariate descriptions
can be sufficiently identified as shown in Fig. 2. Note that these methods are not
intended to discover new latent mechanisms that are conjectured and loosely
articulated or indicated only by associative patterns.

We assume that the belief in the hidden submechanism (HSM) is an im-
portant factor influencing the publication (other factors can be also mechanism
specific such as e.g. social or financial factors). This factor establishes the link
between the belief in the real world mechanism and the frequency of occurrence
in the literature. It follows the approach in [22], constructing a generative model
based on the belief in a pair-wise mechanism. Indeed, similar quantitative or
qualitative hypotheses about the relations of real world properties of entities
and relationships and publication properties are always analytically or qualita-
tively, tacitly assumed in the text mining applications (for an investigation of
the relation of function and publication frequency of genes see [19]).

4.4 The intransitive publication model

Not known explanatory, explained and descriptive functions and mainly un-
structured causal relevance associations or tentative relations cannot be identi-
fied sufficiently with linguistic methods. In such case the domain wide discovery
methods can support the consistent identification of relations. In the construc-
tion of our first model, we assume that the reports of the causal mechanisms and
descriptions are independent. In the explanatory interpretation it means that
the subjective probabilities of the reports of causal mechanisms and descriptions
are independent. In the exploratory interpretation it means that a fragmentary
domain theory corresponding to a given experimental, analytical and publication
method results in such independent causal relevance associations. We propose
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Figure 2: The separated extraction and analysis of the individual relations with
the underlying assumption of complete independence of the report of the causal
mechanisms and descriptions.

a two-layered Bayesian network structure as a corresponding probabilistic gen-
erative model. The upper layer contains variables corresponding to the possible
causal functions of the entities, such as described, explained or explanatory (we
treat explained as cause and explanatory as effect). In the explanatory inter-
pretation these represent the authors’ intentions, which induce the occurrences
of the entities in the publication. In the exploratory interpretation these repre-
sent the bias and incompleteness of a given experimental technique. The lower
layer contains variables representing the observable, external occurrences of the
entities in the publications. An external variable depends only on the variables
denoting the causal roles related to the corresponding causal mechanism (i.e.
it is independent of other external variables, such as the number of reported
domain entities in the paper and it is independent of other non-external vari-
ables of the neighboring causal mechanisms). The steps of the derivation from
the first atomistic model to this more entity oriented model is shown in Fig. 3.
This model extends the individual mechanism oriented information extraction
by supporting the domain wide, consistent interpretation of causal roles, but
still cannot model the dependencies (e.g. transitivity) between the reports of
the mechanisms.

A further assumption, mainly motivated by the explanatory interpretation,
is that the parental sets are composed of independent factors, i.e. that the be-
lief in a mechanism is the product of the individual beliefs in the causes (see
edge independence in Section 4.1). Consequently we use noisy-OR canonic dis-
tributions for the children in the lower layer and interpret the occurrence of
a variable in a paper as described, explanatory or explained. In a noisy-OR
local dependency [24], the edges can be labeled with an inhibitor parameter,
inhibiting the OR function, which can be interpreted also structurally as the
probability of an implicative edge (note the relation between the parametric
and structural uncertainty). We set this parameter to zero for the ‘explained
to occurrence’ edges, i.e. we assume that if a mechanism is explained, then the
dependent variable is mentioned. In this generative model, these noise param-
eters represent the mechanism (structural) uncertainty over the domain model,
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Figure 3: The derivation of the intransitive model with noisy-OR local depen-
dencies from the first atomistic model.

i.e. we represented the mechanism uncertainty (structural uncertainty) over
the domain model parametrically in the generative publication model. Though
as noted above, because of the structural interpretability of the noisy-OR pa-
rameters, we can interpret in this special case that the mechanism (structural)
uncertainty over the domain model is directly represented by the structural un-
certainty over the generative publication model. In other words, the probability
of an edge in a domain Bayesian network is equivalent to the probability of an
edge in a corresponding Noisy-OR publication Bayesian network.

4.5 The transitive publication model

To devise a more advanced model with respect to the explanatory and ex-
ploratory interpretation, we relax the assumption of the independence between
the variables in the upper layer representing causal functions, but maintain
that an external variable depends only on the variables in the upper layer that
participate within the same causal mechanism (Assumption of ‘Sufficiency of
causal explanation’). First we consider if the reports of causal mechanisms are
dependent in a causally transitive way, i.e. if we allow dependencies between
the explained and the explanatory roles of the variables. In the explanatory
interpretation this means that if a variable is explained, then it influences its
explanatory role for other variables. If this transitivity dependency (explained
to explanatory) is uniform in each pair-wise context, then a single explanatory
variable can represent this role (Assumption of ‘Uniform transitivity’). The as-
sumption of ‘Full transitivity’) means that this is an equivalence relation. In
the explanatory interpretation it means, that if a variable is explained, then it
can be explanatory for any other variable. In a full transitive case variables rep-
resenting various causal roles such as the status of being explained and being
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explanatory for another variable can be merged into one variable. Note that
the transitivity of dependencies is satisfied in binary networks [24] conforming
to an expectation about the transitivity of causal explanation. Furthermore we
assume full transparency, i.e. the full observability of causal relevance (Assump-
tion of ‘Full transparency’). Fig. 4 shows these steps.
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Figure 4: The derivation of the transitive model from the first atomistic model.

A consequence of the assumption of full transparency is that under this
interpretation the lack of occurrence of an entity in a paper means causal irrel-
evance and not a neutral omission, i.e. there are no missing values. With full
transitivity this would also imply that we model only full survey papers, but
the general, unconstrained multinomial dependency model used in the transitive
Bayesian network provides enough freedom to avoid this as discussed below. A
possible semantics of the parameters of a binary, transitive literature Bayesian
network P (Xi|Parents(Xi)) can be derived from causal stance that the presence
of an entity Xi is influenced only by the presence of its potential explanatory
entities, i.e. its parents. Consequently, P (Xi = 1|Parents(Xi) = xi) can be
interpreted as the belief that the present parental variables can explain the
entities Xi as causes. A more strict interpretation requires necessity beside suf-
ficiency, where P (Xi = 1|Parents(Xi) = xi) denotes the belief that the present
parental variables are the sufficient and necessary causes. These interpretations
are also related to constructing explanations for Bayesian networks ([8, 23]).
The multinomial model allows that at each node there are entity specific con-
stants combined into the parameters of the conditional probability table that
are not dependent on other variables (i.e. unstructured noise). This permits the
modeling of the description of the entities (P (XDescribed

i )), the initiation of the
transitive scheme of the causal explanation (P (XAssumed

i )) and the reverse effect
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of not continuing the transitive scheme (P (XEnabledExplanation
i )), as follows:

P (Y |X) = (1)
P (Y Described ∨ Y Assumed)

+ P (Y |X ∧ ¬Y Described ∧ ¬Y Assumed ∧ Y EnabledExplanation)
P (¬Y Described ∧ ¬Y Assumed ∧ Y EnabledExplanation)

= (1− P (¬Y Described)P (¬Y Assumed))
+ P (Y |X ∧ ¬Y Described ∧ ¬Y Assumed ∧ Y EnabledExplanation)

P (¬Y Described)P (¬Y Assumed)P (Y EnabledExplanation)

X

Y
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YExpl-Enabled
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Figure 5: (Left) The auxiliary variables, which enrich the strictly causal tran-
sitive explanation with independent descriptions, unexplained assumptions and
abruption of the explanation. (Right) The expert model: edges occurring in the
highly relevant model are indicated by dashed lines, edges in the moderately
relevant model are indicated by dotted lines

The effect of these auxiliary variables are illustrated in the left side of Fig. 4.5,
demonstrating that this model allows partial explanations also. As the detailed
discussion of related models is outside the scope of this paper, we stop here and
note that a “backward” model using an effect-to-cause orientation is similarly
an interesting model of the publications (c.f. means-ends analysis), in which the
noisy-OR dependency model can be also used as in the intransitive model.

To summarize, the assumption of ‘Sufficiency of causal explanation’, ‘Uni-
form transitivity’, ‘Full transitivity’ and ‘Full transparency’ implies the struc-
tural faithfulness of a single layer generative probabilistic model of the pub-
lications to the real causal domain model. Furthermore, it is also capable to
model the independent descriptions and the partial causal explanations with
unrestricted (multinomial) local conditional probability models. The parame-
ters of the Bayesian network encode the structure uncertainty over the domain,
i.e. the mechanism uncertainty, because of our assumption of Single mechanism
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by relevance. Of course, the merge of hidden variables, i.e. the incorporation
of their effect distort it, but only as unstructured and partly analytically de-
composable noise (see Eq. 1). Note, that the structural uncertainty over the
domain model (i.e. a hyper level uncertainty ) is represented parametrically in
a generative Bayesian network, which can be conceived as a probabilistic model
over relations. In the extreme case, a fully connected network can encode the
beliefs of parental sets i.e. valid under the corresponding topological ordering
(in this case the settings of the parameters are very similar to the frequency
counting in the atomistic approach).

However, in the Bayesian framework there is a structural uncertainty also,
i.e. uncertainty over the structure of the generative models (literature Bayesian
networks) themselves. So to compute the probability of a parental set Parents(Y ) =
X given a literature data set D, which can be encoded in a literature Bayesian
network with structure S as P (Y = 1|Parents(Y ) = X,S), we have to average
over the structures using the posterior given the literature data D as follows:

P (Y = 1|Parents(Y ) = X,D) (2)

=
∑

S

P (Y = 1|Parents(Y ) = X, S)P (S|D)

=
∑

S containing ‘X→Y ′
P (Y = 1|Parents(Y ) = X,S)P (S|D)

≈
∑

S containing ‘X→Y ′
P (S|D)

≈ I{SMAP contains ‘X→Y ′}

Consequently, the result of learning of Bayesian networks from literature
data can be multiple, either using a maximum a posteriori network structure and
the corresponding parameters or the a posteriori distribution over the structures.
In the first parametric case, the special structural interpretation of the binary
network guarantees that the parameters and the result of standard parametric
inference in such a network can be interpreted structurally and can be converted
into an a priori distribution for a subsequent learning. In the later case, we
neglect the parametric information and focus on their structural constraints,
we transform the a posteriori distribution over the structures of the literature
networks into an a priori distribution over the structures of the real Bayesian
networks with possibly multivalued or continuous variables. Finally, we can use
only the structural features of a maximum a posteriori model for approximation.

Even if the presented “publication models” are simplistic, because of neglect-
ing e.g. (1) general linguistic and pragmatist (publication-specific) constraints,
(2) social, economic, historic and ethical factors and because (3) it is memory-
less (consider that research and publication can be modeled as governed by the
discrepancy between the published and believed “truth”), it is useful to test the
resulting simple model to refine or relax the assumptions experimentally. To our
knowledge such formal approach to investigate the assumptions behind struc-
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ture oriented text mining applications has not been formalized earlier, though
properties of these assumptions and the model was probably always tacitly as-
sumed in the usage of the associative analysis of domain literature, such as in
the co-occurrence analysis or in clustering [37, 20, 21, 2, 27].

5 The application domain: ovarian cancer

The experiments were performed in the ovarian cancer domain using sixteen
clinical variables selected from a larger study and eighty genes [1]. We assume
the existence of annotations for the Bayesian network variables (which include
a textual name for the random variable, synonyms, a free text description (the
kernel) and references to documents), collection of domain documents, and do-
main vocabularies (for an overview see [1]).

We have asked medical experts to select the most relevant journals for the
domain and performed the query ‘ovarian cancer’ in the PubMed database1

between 1998 and 2002 which resulted in 5000 papers. These publications were
converted to a vector representation resulting in the literature data used in the
paper (for the description of the domain, model construction and conversion
steps of literature, see [1]).

Note that this preprocessing fits our assumption about the Associative phase,
because the literature data contains only the binary occurrences (presence or
absence) of the domain concepts corresponding to the domain variables.

6 Results

The structure learning of the transitive model is achieved by an exhaustive
evaluation of parental sets using BDeu score [17] up to maximum three parents
using the ordering of the variables from the medical expert, which was a technical
choice to be compatible with the learning of the intransitive model with hidden
variables. The final network is shown in the left side of Fig. 6.

The structure learning of the two-layered model has a higher computational
cost, because the evaluation of a structure requires the optimization of pa-
rameters, which can be performed e.g. by a gradient-descent algorithm. The
possible (examined) structures have to satisfy that variables have less than a
fixed number of parents, limited to four parents in this experiment, because of
the computational complexity, only those variables in the upper layer can be
the parents of an external variable that precede it in the causal order. Note that
beside the optional three parental edges for the external variables, we always
force a deterministic edge from the corresponding non-external variable. Dur-
ing the parameter learning of a fixed network structure the non-zero inhibitory
parameters of the lower layer variables are adjusted according to a gradient de-
scent method to maximize the likelihood of the data (see [31]). After the best
structure is found, it has to be converted into the ordinary real world model by

1http://www.ncbi.nlm.nih.gov/PubMed/
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merging the corresponding pairs of nodes in lower and upper layer. The final
network is shown in the right side of Fig. 6.
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Figure 6: The transitive Bayesian network model with multinomial conditional
tables and the intransitive Bayesian network with noisy-OR local conditional
dependency models, to the left and to the right respectively (Note that the
latter model is the conversion of the two-layered Bayesian network with hidden
variables).

We compared the trained models to the expert model using a quantitative
score that is based on the comparison of the types of the pairwise relations in
the models. Exploiting the causal interpretation of the structure we use the
following types of pairwise relations:

1. Causal path (P): There is a directed path from one of the nodes to the
other.

2. Causal edge (E): There is an edge between the nodes.

3. (Pure) Confounded (Conf): The two nodes have a common ancestor. The
relation is said to be pure, if there is no edge or path between the nodes.

4. Independent (I): None of the previous (i.e. there is no causal connection
between the nodes).

The difference between two model structures can be represented in a ma-
trix containing the number of relations with a fixed type in the expert model
and in the trained model (the type of the relation in the expert model is the
row index and the type in the trained model is the column index). E.g. the
element (I, Conf) shows the number of those pairs, which are independent in
the reference model and are confounded in the examined. These matrices (i.e.
the comparison of the transitive and the intransitive models to the expert’s) are
shown in Table 6.

Scalar scores to evaluate the goodness of the trained model can be derived
from this matrix, e.g. a standard choice is to sum the elements with different
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Table 1: Causal comparison of the transitive and the intransitive domain models
(columns, to the left and to the right respectively) with the expert model (rows).

I Conf P E
I 14 14 12 12

Conf 6 14 0 2
P 44 48 24 14
E 14 6 4 12

I Conf P E
I 44 0 0 8

Conf 14 8 0 0
P 82 18 20 10
E 8 4 2 22

weights [10, 45]. One possibility e.g. if we take the sum of the diagonal ele-
ments as a measure of similarity. By this comparison, the intransitive model
achieves 94 points, while the transitive only 64, so the intransitive preserves
more faithfully the pair-wise relations. Particularly important is the (E, E) el-
ement according to which 22 of the 36 edges of the expert model remains in
the two-layered model, on the contrary the transitive model preserves only 12
edges.

Another penalizing score, which penalizes only the incorrect identification of
independence (i.e. those and only those weights have a value of 1 which belong
to the elements (I, .) or (., I), the others are zero), gives a score 102 and 112
for the transitive model and the intransitive respectively, suggesting that the
intransitive model is too conservative and results overly sparse models.

7 Conclusion

We investigated the applicability of Bayesian network learning methods to dis-
cover a causal domain model. We proposed two machine learning methods based
on Bayesian networks, the first method assumes that the reporting activity of
causal mechanisms follows a transitive scheme, the second method assumes that
the causal mechanisms in the domain are reported autonomously (i.e. more or
less independently). We performed an evaluation of these methods in the ovar-
ian cancer domain. The evaluation shows that the fully observable transitive
model and the intransitive model with hidden variables performs comparable to
the performance of a human expert and the second, computationally more com-
plex method proved to be slightly better than the first one. In future, we plan to
test more complex transitive models and extend these methods to incorporate
more information extracted by linguistic techniques.
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