
c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Reference to this paper:
L. Sujbert, Gy. Orosz, “FFT-based Spectrum Analysis in the Case of Data Loss,”IEEE

Transaction on Instrumentation and Measurement, vol. 65, no. 5, pp. 968–976, May 2016.

DOI: 10.1109/TIM.2015.2508278

IEEE website:ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7381674



FFT-BASED SPECTRUM ANALYSIS IN THE CASE OF DATA LOSS 1

FFT-Based Spectrum Analysis
in the Case of Data Loss

Lászĺo Sujbert,Senior Member, IEEE, and Gÿorgy Orosz

Abstract—The significance of measurement data transfer over
unreliable channel has emerged in the last decade, due to the
spread of sensor networks and the idea of Internet of things.
This paper investigates the behavior of the fast Fourier transform
(FFT) based power spectral density (PSD) estimation in the case
of data loss. There are different methods available to estimate the
PSD, but the hegemony of the FFT is beyond dispute, especially
in real-time applications. This paper investigates the behavior
of the PSD estimator in the case of different data loss models,
and then offers some simple solutions on how the data loss can
be handled in PSD estimation, when only moderate computing
resources are available. The efficiency of the proposed method is
demonstrated by the simulation and measurement results.

Index terms— Data loss, estimation error, FFT, improved
estimation, PSD, sensor network.

I. I NTRODUCTION

Traditional measurement systems provide fast, reliable, and
high precision data streaming. However, the technological
development in the last decade allowed measurement data
transfer in much less reliable systems like sensor networks. In
this case, data can be corrupted or the transmission medium
can be partially damaged [1], [2]. Recently, the idea of Internet
of things has emerged: the connection of physical things to
the Internet makes it possible to access remote sensor data
and to control the physical world from a distance [3]. The
presence of such systems motivates the investigation of data
loss phenomena from signal processing point of view. This
paper deals with one of such measurement problems, the
handling of data loss in the case of spectrum estimation.

Two types of methods can be distinguished according to
how missing data are handled in spectrum estimation [4]. In
the first approach, missing data are estimated using the existing
measurements, and traditional spectrum analysis methods are
applied on the reconstructed data set. Missing data recon-
struction algorithms are ranging from simple sample-and-hold
[5] or slotted resampling [6] techniques to more sophisticated
statistical methods [7]. The algorithms can be used either for
nonparametric or parametric spectrum estimation like autore-
gressive (AR) modeling [7].

In the second approach, raw data are processed without any
reconstruction. Perhaps one of the most famous work in this
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field is the Lomb–Scargle method [8], [9]. It can handle even
irregular sampling, and produces an estimate of the spectrum
by least-squares fitting of sine and cosine components with ap-
propriate orthogonalization technique. The date-compensated
discrete Fourier transform (DCDFT) algorithm also uses a kind
of sine fitting method on unevenly spaced data [10], and a
weight function can be included as well.

Recently, the resonator-based spectral observer (RBO) [11]
has been adapted to handle data loss [12]. Unlike the afore-
mentioned methods that operate on an entire data record, it
estimates the harmonic components recursively. In [12], the
conditions for unbiased harmonic estimation are analyzed.An
important result is that the randomness of data loss can guar-
antee the convergence. The RBO with its basic settings [11]
corresponds to the discrete Fourier transform (DFT), which
inspired the authors to investigate the behavior of the latter in
the case of data loss.

Our literature survey has shown that existing methods deal
with spectrum estimation rather than the characterizationof
distortion caused by missing data. Pinheiroet al. [13] and
Nagayamaet al. [14] introduce the bias phenomena caused by
data loss, but only qualitative explanations are given. Although
[6] deals with bias effects in detail, the effect of data loss
patterns on the bias is not considered.

The above-mentioned procedures that can recover missing
samples or calculate the spectrum based on the available
data require much more computational resources than the
wide-spread fast Fourier transform (FFT). The RBO offers
some advantages in real-time applications, but it is still too
complicated. The hegemony of the FFT is beyond dispute,
especially in real-time applications. This paper first investigates
the FFT-based power spectral density (PSD) estimation in the
case of different data loss models, and then offers some simple
solutions how data loss can be handled in spectrum estimation,
when only moderate computing resources are available. The
results are focused but not restricted to measure harmonic
signal components.

This paper is structured as follows. Section II recalls the
main steps of power spectrum estimation, and Section III pro-
vides a mathematical description of the problem of data loss.
Section IV introduces some data loss models accompanied by
their spectral features. In Section V a method is proposed
that can improve the spectrum estimation in a sense. The
results are illustrated by simulation and measurement results
in Section VI, while Section VII concludes the paper.

II. POWER SPECTRUMESTIMATION

The technique recalled in this section is well known, and can
be found in many textbooks. The only aim of this overview is
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to introduce the nomenclature and formulas used throughout
the paper. As reference, a basic textbook on random data anal-
ysis [15] and an eminent paper on windowing techniques [16]
can be cited.

The Fourier transform of a sampled signalx(tn) can be
estimated by a finite set of samples as follows [10]:

X(f) =

N−1
∑

n=0

x(tn)e
−2πfxtn . (1)

wherefx denotes the real frequency of the signalx(t). From
here on, the discrete or relative frequencyf is used, i.e.,
f = fx/fs ∈ [0 . . . 1]. The signalx(t) is usually equidistantly
sampled, and the spectrum is calculated by the Discrete Fourier
Transform (DFT), thus the formula (1) can be rewritten as:

X(fk) = X(k) =
N−1
∑

n=0

xne
− 2π

N
nk, n, k = 0 . . . N − 1, (2)

where fk = k/N and xn = x(tn). The DFT of a signal is
usually calculated by the computationally efficient FFT. The
transformed vectorX(k) is generally complex valued, and the
spectral content of the signal is expressed by the real-valued
PSD function:

S(fk) = S(k) =
1

N
|X(fk)|

2. (3)

As the PSD is based on a finite set of samples, it can be
calculated even for periodic signals. In the case of non-
coherent sampling, the estimation suffers from the phenomena
of picket fence and leakage. To suppress these effects, window-
ing techniques have been developed. Windowing means that
the signalxn is multiplied by the so-called window function
wn prior to the transform:

Xw(k) =
N−1
∑

n=0

xnwne
− 2π

N
nk, n, k = 0 . . . N − 1. (4)

A huge set of window functions has been developed in the last
decades. All of them can improve the result of the estimation,
and many of them are optimal in a sense.

A significant application of PSD calculation is the analysis
of periodic or quasi-periodic signals corrupted by measurement
noise. Unfortunately, the measurement noise can hinder the
detection of all important harmonic components of the signal.
In this case, one finite set ofN samples is insufficient, a
long series of samples is recorded, many consecutive blocks
of N samples are transformed, and the estimator is obtained
by averaging the individual PSDs. The blocks can overlap,
according to the Welch method. The mean of the individual
estimates can be calculated by linear averaging:

S̄(k) =
1

I

I−1
∑

i=0

Si(k), (5)

whereS̄(k) denotes the averaged PSD, andSi(k) is the PSD of
block i. Exponential averaging is also commonly used, when
the averaged PSD is calculated in the following way:

S̄i+1(k) = S̄i(k) + α
(

Si(k)− S̄i(k)
)

, (6)

whereα is the so-called smoothing constant,S̄i(k) andSi(k)
denote the averaged and the individual PSD of blocki,
respectively. For high-precision measurements, the bias caused
by the noise can be eliminated by subtracting the PSD of the
noise fromS̄(k). All the averaging methods requireI blocks
to provide the spectrum. The length of the record containing
I blocks can be treated as the settling time of the averaging.

III. PROBLEM FORMULATION

A. Formulation of Data Loss

In order to model the data loss, a so-called data availability
indicator function,Kn, is introduced [17]:

Kn =

{

1, if the sample is processed at n
0, if the sample is lost at n

, (7)

Samples that are not lost will be termed as processed or
available samples. Those DFT blocks that do not contain any
lost samples will be termed as complete blocks.

The data loss rate can be defined withKn as:

γ = Prob {Kn = 0} , (8)

whereProb {·} stands for the probability operator. The prob-
ability that a sample is available is:

µ = Prob {Kn = 1} = 1− γ. (9)

Data loss rateγ does not determine the distribution of the lost
samples in the time domain. A system that is subject to failure
can be characterized in the time domain by the reliability
function R(n) [24]. R(n) is the probability that the system
does not fail in the time interval(0, n]. In our framework,
failure means that at least one sample is lost in a record, while
the reliability equals the probability that no sample is lost. Let
the record length beL and the reliabilityR(L) = ε. Their
relationship can be formulated as follows:

Prob

{

L
∏

n=1

Kn = 0

}

= 1− ε. (10)

The probabilityε is chosen as a small positive number, and
the correspondingL defines a record length in which at least
one sample is lost with a high probability. For example,{ε =
0.01, L = 5000} means that at least one sample is lost within
a 5000-sample-long interval with a probability of 99%. The
connection betweenL, ε, andγ depends on the data loss model
and will be investigated in the following sections.

B. Spectrum Estimation with Missing Data

Equation (1) is a very simple way of spectrum estimation
when the sampling is irregular [10]. Hence, this general form
can be easily applied for equidistant sampling and missing
data, which is a special case of irregular sampling. Equation
(1) implies that if a sample is missing, it is not included in
the summation (only existing samples are processed). Using
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the indicator function,Kn, (1) can be rewritten for the case
of data loss and equidistant sampling:

X(f) =
N−1
∑

n=0

xnKne
−2πfn = DFT(xnKn). (11)

This formula means that by incorporatingKn into the usual
form of DFT, missing samples are practically substituted with
zeros. Available samples are weighted withKn = 1, which
means no modification. Equation (11) is a very attractive way
of spectrum calculation when missing data may exist, since it
can be evaluated via FFT.

It is known that (1) often results in biased spectrum estima-
tion for irregular sampling, since the basis functions may not
be orthogonal [10]. Since the missing data case is a kind of
irregular sampling, and (11) is a special form of (1), a bias can
also be expected when (11) is used for spectrum estimation.
We will analyze what kind of bias can be expected when (11)
is used for spectrum calculation when data are missing, and
we propose a simple method that can reduce the bias.

The main idea for the analysis of the bias is that in (11),
the signal to be transformed is the product of the lossless
signal, xn, and the indicator functionKn. Hence, the PSD
of the signal containing missing samples is obtained as the
convolution of the PSD of the lossless signal (Sx) and the
PSD of the data loss indicator function (SK):

S(f) = Sx(f) ∗ SK(f), (12)

where∗ denotes the convolution operator. The equation shows
that a key aspect of the calculation of the PSD of the signal
containing missing data is to determine the PSD of the data
loss indicator function.

IV. DATA LOSSMODELS

In this section, the effect of three basic forms of data loss
[5], [18] on the spectrum are investigated:

1) random independent data loss,
2) random block-based data loss,
3) Markov model-based data loss.
The random data loss is one of the most essential data

loss models, and it is often used because of its simplicity
[14]. Block-based data loss models are often used, e.g., when
several measurement results are transmitted over packet-based
communication systems. When a packet is lost, a whole
block of data will be missing from the measurement. A real
application will be considered in Section VI-B where data
loss can be described by the block-based model. Markov
data loss models can be used to describe data loss processes
when variable lengths of successive measurement samples are
randomly missing. Markov model has been proven to be useful,
e.g., in the description of data loss pattern in real-time data
transmission over the Internet [19].

1) Random Independent Data Loss: Random independent
data loss can be defined as follows:

Kn = 1, with probability µ = 1− γ
Kn = 0, with probability γ

for ∀n. (13)

The definition means that each sample is lost with probability
γ, and data losses at different time instants are independent
of each other. The time-domain distribution of the data loss
is characterized by the{L, ε} couple as defined in (10). The
connection toµ can easily be expressed as:

µ = ε
1

L . (14)

The PSD of the data loss pattern is:

SK(fk) = G+ µ2δ(fk), (15)

whereδ(f) stands for the Dirac delta function. Since the values
of the indicator function,Kn, are independent at different
time instants, they are uncorrelated. Hence, the PSD is white,
which is represented by the constant termG. The termµ2δ(fk)
represents the power of the DC component (i.e., mean value:
µ) of the data loss pattern as given in (9). The calculation of
G will be considered in Section IV-A.

2) Random Block-Based Data Loss: To define the random
block-based data loss, the time axis should be divided into
blocks of lengthM . The indicator function is given as:

{KkM . . . K(k+1)M−1} = 1, with probability µ
{KkM . . . K(k+1)M−1} = 0, with probability γ

for ∀k.
(16)

The definition means that each block of lengthM is lost
with probability γ, and the data losses in different blocks are
independent of each other. The connection between the{L, ε}
couple andµ is the following:

µ = ε
M

L . (17)

Note that for a given{L, ε} set, (17) is less than the previous
one defined by (14).

The power spectral density of the data loss pattern is [22]:

SK(fk) = G

∣

∣

∣

∣

sin(fkπM)

sin(fkπ)

∣

∣

∣

∣

2

+ µ2δ(fk), (18)

The frequency of the occurrence of missing blocks determines
the total power ofSK(f), which is included in the termG.
The calculation ofG will be considered in Section IV-A.

3) Markov Model-Based Data Loss: The Markov model-
based data loss is described by the Markov chain shown in
Fig. 1. The states of the Markov chain represent the value
of the indicator functionKn. If a sample is available at time
instantn, the next sample will be available with probability
p and will be lost with probability1 − p. If a sample is
missing at time instantn, the next sample will be available
with probability 1− q and will be lost with probabilityq. The
data availability rateµ is the following [20]:

µ =
q − 1

p+ q − 2
. (19)

Note that the parametersp, q, and µ cannot be prescribed
simultaneously. If the data loss is defined by the{L, ε}
couple, the connection to the Markov model parameters can be
determined in two steps. First, the probability that no dataare
lost within anL-sample-long interval is to be expressed. The
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probability that the first randomly chosen sample is available
equalsµ, and the probability that the lastL − 1 samples are
not lost equalspL−1. Thus, the required probability is:

µpL−1 = ε. (20)

Suppose thatµ is also prescribed, and thenp and q are the
following:

p =

(

ε

µ

)
1

L−1

, q =
µ(p− 2) + 1

1− µ
. (21)

Actually, the parametersL and ε are completed by the data
availability rate µ, and then the probabilitiesp and q are
determined based on this triplet.

1 0

1− p

1− q

p q

Fig. 1. A two-state Markov model of data loss. State “1”: actual sample is
available (Kn = 1). State “0”: actual sample is lost (Kn = 0).

The spectral property of a data loss sequence generated by
the Markov chain shown in Fig. 1 can be determined according
to [20]. Omitting the detailed proof, the PSD ofKn is a first-
order low-pass type spectrum defined as:

SK(fk) = G
1

|1− az−1|2
+ µ2δ(fk), a = p+ q − 1, (22)

where z−1 = e−2πfk . Again, the calculation ofG will be
considered in Section IV-A.

A. Calculation of the Scale Factor

According to the previous section,SK(fk) has the general
form

SK(fk) = G ·H(fk) + µ2δ(fk), (23)

whereH(fk) determines the spectral shape ofSK(fk), andG
is an unknown scale factor that can be calculated for discrete
PSD as follows [22]:

G = µ(1− µ)/

N−1
∑

k=0

H(fk). (24)

In the case of block-based and Markov model-based data
loss, the scale factor will be calculated using Parseval’s theo-
rem:

N−1
∑

k=0

H(fk) = N

N−1
∑

n=0

h2
n, (25)

wherehn is the impulse response belonging to the PSDH(fk).
1) Random Independent Data Loss: In this caseH(fk) = 1,

so the scale factor is:

G = µ(1− µ)
1

∑N−1
k=0 1

=
µ(1− µ)

N
, (26)

and according to (15) the PSD is:

SK(fk) = µ2δ(fk) +
µ(1− µ)

N
. (27)

2) Random Block-Based Data Loss: We use the fact that
(sin(fkπM)/ sin(fkπ)) is the Fourier transform of an impulse
train of lengthM samples, and hence:

N−1
∑

k=0

∣

∣

∣

∣

sin(fkπM)

sin(fkπ)

∣

∣

∣

∣

2

= N

M−1
∑

n=0

12 = NM. (28)

Therefore, according to (18), the PSD is:

SK(fk) = µ2δ(fk) +
µ(1− µ)

MN

∣

∣

∣

∣

sin(fkπM)

sin(fkπ)

∣

∣

∣

∣

2

. (29)

3) Markov Model-Based Data Loss: We use that the inverse
Fourier transform of(1/(1− az−1)) is hn = an, hence

N−1
∑

k=0

1

|1− az−1|2
= N

N−1
∑

n=0

(an)2 = N
1− a2N

1− a2
, (30)

Therefore, according to (22), the PSD is:

SK(fk) = µ2δ(fk) +
1− a2

N(1− a2N )

µ(1− µ)

|1− az−1|2
. (31)

Table I summarizes the PSDs of the data loss indicator
functions for different data loss models using the results
obtained for the scale factors. The small figures in Table I
illustrate the typical shapes of PSD functions.

model SK(fk) shape ofSK(fk)

random
independent
data loss

µ
2
δ(fk) +

µ(1 − µ)

N
f

SK(f )

block-based
data loss

µ
2
δ(fk) +

µ(1 − µ)

MN

∣

∣

∣

∣

sin(fkπM)

sin(fkπ)

∣

∣

∣

∣

2

f

SK(f )

Markov model-
based data loss

µ
2
δ(fk) +

1 − a2

N(1 − a2N )

µ(1 − µ)

|1 − az−1|2
f

SK(f )

TABLE I. SUMMARY OF PSDS BELONGING TO DIFFERENT DATA LOSS

MODELS.

B. Effects of Data Loss on PSD

1) PSD of a Harmonic Signal: This section discusses what
kind of bias is caused by the missing data in the case of a
single harmonic signalxn = A · exp(2πf0n). The choice is
motivated by the fact that all periodic signals can be produced
as a superposition of such components. The PSD ofx(t) is:

Sx(fk) = A2 · δ(fk − f0). (32)

By performing the convolution as given in (12), one obtains
the PSD of a signal corrupted by lost samples:

S(fk) = A2 · SK(fk − f0), (33)

whereg(x)∗δ(x−x0) = g(x−x0). Equation (33) means that
the PSD of the data loss pattern appears around the frequencies
where the periodic signal components are located.
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Using the general form (23), one obtains:

S(fk) = (µA)2 · δ(fk − f0) +A2G ·H(fk − f0) (34)

The comparison of (32) and (34) shows that two kinds of
bias effects can be clearly distinguished:

1) The estimated amplitude of the signal is decreased by
factor µ compared with the original amplitude,A.

2) An extra power, a kind of side lobe, appears around the
frequencyf0. The power of the side lobe is proportional
to A and G, and its spectral shape is determined by
H(fk).

2) PSD of Noise: Let Sn(fk) denote the original noise
spectrum, andSN(fk) is its measured PSD in the case of data
loss. Using (12), the PSD of the noise corrupted by data loss
can be easily computed from the original noise spectrum.

Now, we investigate a practically important case, when
the measurement noise is white, i.e.,Sn(fk) = P . In this
case, using the general form ofSK(fk) given in (23), the
convolution (12) has the form:

SN(fk) = Sn(fk) ∗ SK(fk) = P

N−1
∑

l=0

(G ·H(fl) + µ2δ(fl))

(35)

= P ·G

N−1
∑

l=0

H(fl) + Pµ2
N−1
∑

l=0

δ(fl) = Pµ,

where we used the definition ofG given in (24). According
to the result, the noise level is proportionally changed to the
data loss rate, but no extra noise appears due to the data loss.

V. I MPROVED PSD ESTIMATION

A. Proposed Method

An improved PSD estimation technique should avoid the
above-mentioned bias and side lobe effects, retaining the
resolution of the DFT. In the following, a solution is proposed
that requires only moderate extra computation.

Suppose that the PSD is estimated by the averaging of
different data blocks. A straightforward idea to avoid the
effects caused by data loss is to use only complete blocks,
where no samples are missing. If only complete blocks are
used for the estimation, all records containing even only one
lost sample are thrown away. A question arises how at least a
certain part of such records could be used for the estimation.

The idea is the following: find the first lost data position
in the block (if there is any lost sample), and fill the rest of
the block by zeros. Then this zero-padded block is used for
spectrum estimation. The method can be formulated as follows
by the redefinition of the availability indicator function:

Kn =

{

1 n = 0 . . . n1 − 1
0 n = n1 . . . N − 1

(36)

wheren1 is the index of the first lost sample in the block. The
procedure is demonstrated in Figure 2. Thus, the new spectral
block is computed in the following way:

X(k) =
N

n1
·DFT(Knxn) (37)

n

basic FFT block

: lost samplesK

Fig. 2. Modified indicator function of the proposed method.

whereN is the length of the DFT. The scaling of the spectrum
is necessary to compensate for the lost signal power. Zero
padding of the signal samples is a well-known procedure to
interpolate the spectrum. Indeed, our proposed method is a
kind of interpolation, where the number of the original points
is variable, depending on the position of the first lost sample.
If n1 ≪ N , the side lobe falloff in the spectral blockX(k) is
very low, compared with the original value. To avoid such a
situation, a minimal valueNmin of n1 can be set, and the
record is used only if the actual value ofn1 reaches this
minimum. As the length of the DFT does not change, the
resolution of the spectrum does not change as well.

Figure 2 demonstrates the procedure for nonoverlapping
blocks. The efficiency of the method may be further improved
if any uninterrupted part of the block (consisting of at least
Nmin samples) is also used for DFT calculation. However,
this would result in overlapped blocks with very short non-
overlapping segments, and the noise in the calculated spectral
block would not be independent from the previous one, which
is useless for the averaging. On the other hand, averaging of
overlapped blocks is a common practice in spectrum analysis.
In [23], 50% overlap ratio is proposed. The correlation analysis
of the overlapping blocks in [16] has shown that an overlap
ratio of 75% can further reduce the variance. Based on these
results, we propose a maximal overlap ratio of 75%. By
this setting, most of available data are utilized for spectrum
analysis. According to this value,Nmin = N/4 is a reasonable
setting.

The processing of overlapping blocks is demonstrated in
Figure 3. HereNmin = N/4 is set, and it equals the length

6

successive

DFT

blocks

lost sample

n
time axis

N

1

2

4

5

3

Fig. 3. Processing of overlapped blocks. The striped regions show the zero
padding.

of nonoverlapping segments. The first and the last block is
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processed in a usual way. Blocks2 . . . 4 are processed, but zero
padding is necessary. For the fifth one, the nonzero part of the
block is too short, and therefore no samples are processed.

B. Settling Times

PSD estimation is ready if enough number of individual
PSDs are averaged. As stated before, the simplest solution is
to use only complete blocks ofN samples, while the proposed
method uses all those blocks, for whichn1 ≥ Nmin. It can be
supposed that the proposed method needs much less time to
collect enough blocks than the straightforward one. As the
data loss is random, the faster settling of the proposed method
can be shown by the investigation of the probabilities of the
occurrence of complete blocks of different lengths.

These probabilities depend in fact on the reliability function
R(n). Nevertheless, they can also be expressed by the data
loss model parameters, ifR(L) = ε is known. To this end, the
relationships in Section IV are used. First,L andε is set, then
the model parameters are calculated, and finally, the probability
of complete blocks is expressed.

1) Random Independent Data Loss: The probability of
complete blocks ofN samples can be expressed by the data
availability rate:

pcomplete= µN
1 = ε

N

L , (38)

where µ1 is the data availability rate for this model and
expressed by (14).

2) Random Block-Based Data Loss: The probability of
complete blocks ofN samples (i.e.,N/M blocks) can be
expressed again by the data availability rate:

pcomplete= µ
N

M

2 = ε
M

L
· N

M = ε
N

L , (39)

where µ2 is the data availability rate for this model, and
expressed by (17).

3) Markov Model-based Data Loss: It is clear that the
reliability function R(n) has an exponential decay for the
above two data loss models, and there is a straight relation
between the data availability rate (or data loss rate) and the
probability of complete blocks. As Markov model-based data
loss has two independent parameters, this relation is more
complicated. Having the parametersµ and p, the probability
can be expressed similarly to (38) and (39):

pcomplete= µpN−1. (40)

We have chosen the following setup:

µ = µ2, p = µ1, (41)

whereµ1 andµ2 are the data availability rates defined for the
random independent and the random block-based data loss,
respectively. Thus, the data availability rate equals thatof the
random block-based data loss model. This is reasonable as the
Markov-based loss model results in lost blocks as well. On
the other hand, assuming that usuallyµ2 ≈ 1 andL ≫ 1, the
expression ofp in (21) andµ1 in (14) are close to each other:

p =

(

ε

µ2

)
1

L−1

≈ ε
1

L = µ1. (42)

ε = 0.01, L = 5000
Independent Block based Markov model-based
µ1 = 0.999 M = 16 µ2 = 0.985

µ2 = 0.985 p = 0.999, q = 0.938

N = 256 pcomplete= 0.790
N = 1024 pcomplete= 0.389
N = 4096 pcomplete= 0.023

TABLE II. PROBABILITY OF OCCURRENCE OF COMPLETE BLOCKS OF

DIFFERENT LENGTHS. DATA LOSS PROBABILITY FORL = 5000 LONG

RECORDS IS1− ε = 99%.

The probabilityq can also be expressed by (21). Substituting
(41) into (40) we get:

pcomplete= µ2µ
N−1
1 ≈ µN

1 = ε
N

L , (43)

whereµ1 is the data availability rate expressed by (14).
The above analysis has shown that for a givenR(L) = ε

the first two data loss models result in exactly equal proba-
bilities of complete blocks ofN samples. Having reasonable
assumptions, nearly equal probability can be expressed for
Markov-based loss model as well. Thus it has been shown
that shorter blocks are much more likely to be complete, as it
was supposed. Table II illustrates this feature for different data
loss parameters. The first row of Table II contains the initial
parameters: data loss probability is1−ε = 99%, and the record
length is L = 5000 samples. This setting is in accordance
with the experimental results introduced in Section VI-B. In
the next row, the parameters of the random independent, the
random block-based, and the Markov model-based data loss
are given. The next three rows show the calculated probabilities
for different block lengths. The probability of complete blocks
decreases as the block lengthN increases. In the case of
N = 4096 only about one block out of 40 could be used
for spectrum estimation.

For long records, the expected number of available complete
blocks is proportional to the reciprocal of their probability of
occurrence. As PSD estimation requires the averaging of a
large number of spectral blocks, the proposed method needs
less time to settle than the straightforward one.

C. Behavior in the Presence of Measurement Noise

Zero padding in the block can be treated as multiplication by
a window function of the length ofn1. The type of the window
function is chosen according to the aims of the analysis.
Reference [16] discusses the influence of window functions
to the measured PSD level in detail. When DFT is applied in
the form of (4), the measured power of a harmonic component
is multiplied by the square of the sum of the window samples,
while in the case of noise, the frequency bins are multiplied
by the sum of the squares of the window samples. As a conse-
quence, the level of the resulting PSD depends on the scaling
factorN/n1 defined in (37). It is designed to get the same level
for harmonic components, independently fromn1. However,
this scaling results in different levels depending onn1 in the
case of noise. [Scaling by(N/n1)

1/2 would result in proper
measurement of noise, but would deteriorate the measurement
of harmonic components.] SinceNmin < n1 < N , and n1
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is random for each block, the measured noise level in the
averaged PSD is amplified by a random factor in the range
of [1 . . . (N/Nmin)

1/2].

D. Computational Complexity

The proposed method calculates the Fourier transform of
the blocks ofN samples via FFT. It is well known that its
computational complexity has the order ofN · logN [15]. The
zero padding and the scaling defined in (37) require no extra
operations related toN .

The existing methods reviewed in Section I cannot utilize
the symmetry of the DFT, as they suppose uneven sampling.
The sample-and-hold technique introduced in [5] calculates the
correlation function in the discrete time domain, and then the
PSD is determined. Because of the time-domain calculation,
the computational complexity of the method is in the order
of N2, whatever algorithm is used for PSD computation. The
complexity of the AR model fitting [7] depends on the order
of the model. To get comparable results, the model order
must equalN , as the DFT is able to determineN complex
amplitudes, and thus the model requires operations in the order
of N2. The Lomb–Scargle method [8], [9] determines the
amplitude and the phase for a single frequency by operationsof
orderN . Assuming again that the PSD is to be determined at
N separate frequencies, the method requires order ofN2 com-
putations. Similarly, [10] fits sine wave of a single frequency
by the order ofN computations, which results in the order of
N2 operations for all frequencies. The RBO [11], [12] works
recursively and requires operations proportional toN for one
sample in the time domain. It results again a computational
complexity of orderN2 for N consecutive samples.

As the above review has shown, the proposed method
outperforms the existing solutions, regarding the computational
demand. The cited methods are developed to manage different
particular problems of uneven sampling and offer solutionsthat
are optimal in a sense. Although the detailed analysis is beyond
the scope of this paper, by the above complexity analysis, the
FFT-based solution is a real alternative of the referred ones.

VI. RESULTS

The theoretical results derived in the previous sections were
verified with intensive simulations. Reference [22] introduced
these simulations in detail. First, it has been demonstrated what
kind of bias and side lobes occur due to different types of data
loss. Then a complex example has shown the viability of the
proposed method. In this paper, the measurement results are
also presented, while concerning the bias and side lobe effects,
we refer to the conference paper [22].

A. Simulation Example

The effects of data loss and the efficiency of the proposed
method are demonstrated by a simulation example. The PSD
of a signal consisting of two sinusoids is estimated. The signal
xn is the following:

xn = sin(2πf1n+ 0.2π) + 0.001 · sin(2πf2n+ 0.3π), (44)

FFT length overlap window type smoothing factor data loss rate
N α γ

1024 no Hanning 0.01 0.001

TABLE III. M AIN DATA OF THE SIMULATION .
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Fig. 4. PSD of the signal given in (44) estimated by different methods.

wheref1 = 33/1024 andf2 = 49/1024. The main data of the
simulation can be seen in Table III.

The estimated spectra can be seen in Figure 4. The undis-
torted spectrum is the blue solid curve, while the blue dashed
curve belongs to the case when the missing data are replaced
by zeros. The spectrum calculated by the proposed method
is depicted by the green solid line. The spectrum is also
calculated using shorter complete blocks, where the lengthof
the FFT was fixed toNshort = 256. The result is the green
dashed line. Figure 5 shows the zoomed-in view of the spectral
components of the signal. Figure 5 clearly shows that the
second sinusoidal of smaller amplitude is difficult to detect if
zeros stand for lost samples (blue dashed line) or shorter FFT
is calculated from complete blocks (green dashed line). The
proposed method allows the detection of the second component
as well (green solid line). In addition, there is a frequency
mismatch of the low-resolution spectrum (green dashed line),
as the peak of the curve appears at a slightly different position.

It can also be seen that the proposed method (green solid

0.025 0.03 0.035 0.04 0.045 0.05 0.055
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Fig. 5. Zoomed-in view of the harmonic components of the signal given
in (44).
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Fig. 6. Settling of two different estimators for the signal given in (44).

line) has greater bandwidth than the simple one replacing the
missing data by zeros (blue dashed line). It can hinder the
detection of components close to each other. Nevertheless,this
feature is similar to windowing, where some advantageous
window functions have wider bandwidth than that of the
rectangular window.

Another important feature of the proposed estimation algo-
rithm is that its settling is faster. In order to check this, the
absolute value of the power estimation is calculated at each
step when the estimator is updated. The result for the two
important cases can be seen in Figure 6. The settling of the
estimator updated based on completeN = 1024 long blocks
is plotted by blue circles, while the settling of the proposed
estimator is represented by green circles. The proposed method
outperforms the simple estimator in a convincing manner. The
reason is that completeN = 1024 long blocks occur with a
much less probability than at leastNshort = 256 long ones as
Table II shows.

B. Measurement Results

Measurements were carried out by a test system introduced
in [21]. In this testbed, wireless sensors perform real-time
data collection, and they transmit the data to a PC through a
gateway node. In this measurement, we used only one sensor.
The data sent by the sensor are recorded and processed on the
PC. Since data transmission and collection are performed in
a hard real-time manner, there is no possibility to apply any
acknowledge mechanism for the indication and retransmission
of lost packets, and hence data loss is inevitable. The data loss
is recognized by a time-out mechanism. The sensor transmits
data in packets of 25 samples, and hence the data loss process
can be described by the block-based model.

In the measurement setup, the sensor and the gateway were
placed 4 m away from each other in a room, and the sensor was
placed near to extensive metal surfaces in order to degrade the
radio transmission properties. In this arrangement, we cannot
neglect the presence of data loss.

The measured signal was an amplitude-modulated (AM)
signal with a carrier off0 = 100.2 Hz. The modulation signal
was also a sine wave offm = 5.247 Hz, and the modulation
depth was set to 40%. The sampling frequency was set to
fs = 1800 Hz, and the transmission was carried out inM = 25
long blocks. Depending on the physical circumstances, data
loss rates in the range of[0.1 . . . 30.0]% could be detected.
Now, the analysis results for the 2.18% case are introduced.
Table IV summarizes the settings of the analysis. The measured
PSDs can be seen in Fig. 7. The black curve shows the PSD if

FFT length overlap window type smoothing factor data loss rate
N α γ

2048 75% Hanning 0.02 0.0218

TABLE IV. M AIN DATA OF THE ANALYSIS .
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Fig. 7. PSD of the measured signal.

no data are lost. Due to the distortion of the real measurement,
second harmonic component and some measurement noise can
also be seen in the PSD. The blue dashed curve belongs to
the case when the missing data are replaced by zeros. The
block-based data loss can easily be recognized by the shape
of the spectrum. The PSD calculated by the proposed method
is depicted by green solid line. It can be seen that this curve
and the original one (plotted by black line) reasonably cover
each other, so both the harmonic component and the noise are
fairly measured by the proposed method.

Figure 8 shows the zoomed-in view of the spectral compo-
nents of the signal. The PSD without data loss is not depicted
in Figure 8, but the PSD is also calculated using shorter
complete blocks, where the length of the FFT was fixed to
Nshort = 512. It is plotted in Figure 8 by the green dashed
line. Figure 8 clearly shows the frequency mismatch of the
lower resolution PSD and allows to observe the shape of the
spectra in detail. Besides the lower side lobes of the proposed
procedure, its greater bandwidth is also to be observed. The
sidebands are better to be recognized if missing data are
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Fig. 8. Zoomed-in view of the harmonic components of the measuredsignal.
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replaced by zeros, but can also be detected by the proposed
method. The PSD of shorter blocks does not allow the correct
measurement of the AM spectrum.

VII. C ONCLUSION

This paper dealt with the analysis of the FFT-based PSD
estimation in the case of data loss. Based on prior work, the
behavior of the PSD estimator in the case of different data loss
models has been investigated. The bias error of the estimation
of harmonic components and the spectral leakage due to
different data loss models have been calculated. A simple
solution has been proposed when only moderate computing
resources are available. The simulations and the measurement
results show that our method offers faster settling than the
obvious ones, mostly retaining the resolution of PSD calculated
only by complete records. Extensive comparison with other
methods is left for future research, as well as the refinement
of the proposed method.
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