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FFT-Based Spectrum Analysis
In the Case of Data Loss

Laszb Sujbert,Senior Member, |IEEE, and Gyrgy Orosz

Abstract—The significance of measurement data transfer over field is the Lomb—Scargle method [8], [9]. It can handle even
unreliable channel has emerged in the last decade, due to the irregular sampling, and produces an estimate of the spactru
spread of sensor networks and the idea of Internet of things. py least-squares fitting of sine and cosine components \pith a
This paper investigates the behavior of the fast Fourier transfom propriate orthogonalization technique. The date-comtexs
(FFT) based power spectral density (PSD) estimation in the case  gjgcrete Fourier transform (DCDFT) algorithm also usesnal ki
of data loss. There are different methods available to estimate the of sine fitting method on unevenly spaced data [10], and a
PSD, but the hegemony of the FFT is beyond dispute, especially ; ; .

weight function can be included as well.

in real-time applications. This paper investigates the behavior
of the PSD estimator in the case of different data loss models,  Recently, the resonator-based spectral observer (RBQ) [11
and then offers some simple solutions on how the data loss can has been adapted to handle data loss [12]. Unlike the afore-
be handled in PSD estimation, when only moderate computing Mmentioned methods that operate on an entire data record, it
resources are available. The efficiency of the proposed method is estimates the harmonic components recursively. In [13, th
demonstrated by the simulation and measurement results. conditions for unbiased harmonic estimation are analyAed.
Index terms— Data loss, estimation error, FFT, improvedmportam result is that the randomngss .Of datq loss can guar
oot antee the convergence. The RBO with its basic settings [11]
estimation, PSD, sensor network. : . -
corresponds to the discrete Fourier transform (DFT), which
|, INTRODUCTION inspired the authors to investigate the behavior of thedatt
" . . the case of data loss.

_Traditional measurement systems provide fast, reliaild, a oy Jiterature survey has shown that existing methods deal
high precision data streaming. However, the technologicaith spectrum estimation rather than the characterizatibn
development in the last decade allowed measurement daifsiortion caused by missing data. Pinhegbal. [13] and
transfer in much less reliable systems like sensor netwadmnks Nagayameet al. [14] introduce the bias phenomena caused by
this case, data can be corrupted or the transmission mediufyta |oss, but only qualitative explanations are giverhaugh
can be partially damaged [1], [2]. Recently, the idea ofimé¢ 5] deals with bias effects in detail, the effect of data loss
of things has emerged: the connection of physical things t?)atterns on the bias is not considered.
the Internet makes it possible to access remote sensor dataThe apove-mentioned procedures that can recover missing
and to control the physical world from a distance [3]. Thegamples or calculate the spectrum based on the available
presence of such systems motivates the investigation af dajjata require much more computational resources than the
loss phenomena from signal processing point of view. Thisyide-spread fast Fourier transform (FFT). The RBO offers
paper deals with one of such measurement problems, thgyme advantages in real-time applications, but it is il t
handling of data loss in the case of.spectrlum estimation. complicated. The hegemony of the FFT is beyond dispute,

Two types of methods can be distinguished according tQgpecially in real-time applications. This paper first stigates
how missing data are handled in spectrum estimation [4]. Ifhe FFT-based power spectral density (PSD) estimationén th
the first approach, missing data are estimated using thBrexis case of different data loss models, and then offers somdasimp
measurements, and traditional spectrum analysis metheds &sg|utions how data loss can be handled in spectrum estimatio
applied on the reconstructed data set. Missing data recofghen only moderate computing resources are available. The
struction algorithms are ranging from simple sample-aali-h  regyits are focused but not restricted to measure harmonic
[5] or slotted resampling [6] techniques to more sophistida signal components.
statistical methods [7]. The algorithms can be used eitber f - “This paper is structured as follows. Section Il recalls the
nonparametric or parametric spectrum estimation like r@4to  main steps of power spectrum estimation, and Section IH pro
gressive (AR) modeling [7]. , vides a mathematical description of the problem of data. loss

In the second approach, raw data are processed without aryction |V introduces some data loss models accompanied by
reconstruction. Perhaps one of the most famous work in thig,gjy spectral features. In Section V a method is proposed

The authors are with the Department of Measurement and Inf@mat that can |m_prove the spe_ctrum_ estimation in a sense. The
Systems, Budapest University of Technology and Economica] Biidapest, _results_are |IIustr<'_:1ted by_S|muIat|on and measurementtsesu
Hungary (email:{orosz,sujbeit@mit.bme.hu) in Section VI, while Section VII concludes the paper.

Il. POWERSPECTRUMESTIMATION

The technique recalled in this section is well known, and can
be found in many textbooks. The only aim of this overview is
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to introduce the nomenclature and formulas used throughowtherea is the so-called smoothing constast(k) and S;(k)
the paper. As reference, a basic textbook on random data analenote the averaged and the individual PSD of black
ysis [15] and an eminent paper on windowing techniques [16tespectively. For high-precision measurements, the lrasex

can be cited. by the noise can be eliminated by subtracting the PSD of the
The Fourier transform of a sampled signalt,,) can be noise fromS(k). All the averaging methods requideblocks
estimated by a finite set of samples as follows [10]: to provide the spectrum. The length of the record containing
N_1 I blocks can be treated as the settling time of the averaging.
X(f) = wltn)e It (1)
n=0 I1l. PROBLEM FORMULATION

where f,, denotes the real frequency of the signét). From

. . . ; A. lati f D L
here on, the discrete or relative frequengyis used, i.e., Formulation of Data Loss

f=fz/fs €1]0...1]. The signalz(t) is usually equidistantly In order to model the data loss, a so-called data availgbilit
sampled, and the spectrum is calculated by the Discretadfour indicator function,k,,, is introduced [17]:
Transform (DFT), thus the formula (1) can be rewritten as: . )
1, if the sample is processed at n
N Kn=10, if the sample is 1 - 0
21k , 1 e sample 1s lost at n
X(fr)=X(k) =Y ane? ¥ nk=0...N-1, (2)
n=0 Samples that are not lost will be termed as processed or

where £, = k/N and z, = z(t,). The DFT of a signal is @available samples. Those DFT blocks that do not contain any
usually calculated by the computationally efficient FFTeTh lost samples will be termed as complete blocks.

transformed vectoX (k) is generally complex valued, and the ~ The data loss rate can be defined wif as:

spectral content of the signal is expressed by the reakdalu

PSD function: v = Prob {K,, = 0}, (8)
1 -
IS — S(k) = —|X 2 3 whereProb {-} stands for the probability operator. The prob-
() *) N| (fe)l @) ability that a sample is available is:

As the PSD is based on a finite set of samples, it can be

calculated even for periodic signals. In the case of non- p=Prob{K, =1} =1-17. (9)
coherent sampling, the estimation suffers from the phemame
of picket fence and leakage. To suppress these effectspwind
ing techniques have been developed. Windowing means th
the signalz,, is multiplied by the so-called window function
w, prior to the transform:

Data loss ratey does not determine the distribution of the lost
g{;\mples in the time domain. A system that is subject to filur
can be characterized in the time domain by the reliability
function R(n) [24]. R(n) is the probability that the system
does not fail in the time interval0,n]. In our framework,

N-1 2 failure means that at least one sample is lost in a recordewnhi
Xuw(k) = Z rpwpe VN nk=0...N—1.  (4) the reliability equals the probability that no sample istlast
n=0 the record length bd. and the reliability R(L) = e. Their

A huge set of window functions has been developed in the lag€lationship can be formulated as follows:
decades. All of them can improve the result of the estimation I
and many of them are optimal in a sense. al

A significant application of PSD calculation is the analysis Prob { H Kon = O} =l-= (10)
of periodic or quasi-periodic signals corrupted by measer
noise. Unfortunately, the measurement noise can hinder thiehe probabilitye is chosen as a small positive number, and
detection of all important harmonic components of the digna the corresponding. defines a record length in which at least
In this case, one finite set oV samples is insufficient, a one sample is lost with a high probability. For examgdle=
long series of samples is recorded, many consecutive blocks01, I = 5000} means that at least one sample is lost within
of N samples are transformed, and the estimator is obtainegl 5000-sample-long interval with a probability of 99%. The
by averaging the individual PSDs. The blocks can overlapconnection betweeh, ¢, andy depends on the data loss model
according to the Welch method. The mean of the individualand will be investigated in the following sections.
estimates can be calculated by linear averaging:

n=1

I—1
S(k) = 2 ZSi(k% 5) B. Spectrum Estimation with Missing Data
=0

Equation (1) is a very simple way of spectrum estimation

whereS(k) denotes the averaged PSD, k) is the PSD of  WNen the sampling is irregular [10]. Hence, this generainfor
block i. Exponential averaging is also commonly used whert2! be easily applied for equidistant sampling and missing
the averaged PSD is calculated in the following way: ' data, which is a special case of irregular sampling. Eqoatio

- B - (1) implies that if a sample is missing, it is not included in
Sit1(k) = S;(k) + « (Si(k) — Si(k)) , (6) the summation (only existing samples are processed). Using
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the indicator function/K,, (1) can be rewritten for the case The definition means that each sample is lost with probgbilit
of data loss and equidistant sampling: v, and data losses at different time instants are independent
of each other. The time-domain distribution of the data loss

N-1 . . . .
_ —j2nfn _ is characterized by th¢L,c} couple as defined in (10). The
X(f)= z_;) ZnKne =DFT(znKn)- (11)  connection tou can easily be expressed as:
1
This formula means that by incorporatir, into the usual p=et. (14)
form of DFT, missing samples are practically substltutgthm The PSD of the data loss pattern is:
zeros. Available samples are weighted with, = 1, which
means no modification. Equation (11) is a very attractive way Sk (fr) = G+ 125(fr), (15)
of spectrum calculation when missing data may exist, sihce i , ) i
can be evaluated via FFT. whered(f) stands for the Dirac delta function. Since the values

It is known that (1) often results in biased spectrum estima®f the indicator function,k,, are independent at different
tion for irregular sampling, since the basis functions may n time instants, they are uncorrelated. Hence, the PSD isewhit

be orthogonal [10]. Since the missing data case is a kind ofhich is represented by the constant teFmirhe termys( f.) _
irregular sampling, and (11) is a special form of (1), a bias ¢ epresents the power of the DC component (i.e., mean value:
also be expected when (11) is used for spectrum estimatios) Of the data loss pattern as given in (9). The calculation of

We will analyze what kind of bias can be expected when (11§~ Will be considered in Section 'V‘_A- ,
is used for spectrum calculation when data are missing, and 2) Random Block-Based Data Loss: To define the random

we propose a simple method that can reduce the bias. block-based data loss, the time axis should be divided into

The main idea for the analysis of the bias is that in (11),b|OCkS of lengthM . The indicator function is given as:
the signal to be transformed is the product of the lossless {Kpar - K(epiyar—1} = 1, with probability

signal, z,,, and the indicator functior,,. Hence, the PSD {Kpnr - K(gyayar—1) = 0, with probability v (16)

of the signal containing missing samples is obtained as the for VEk.

convolution of the PSD of the lossless sign&l.Y and the

PSD of the data loss indicator functio): The definition means that each block of lengtlh is lost

with probability v, and the data losses in different blocks are

S(f) = Sa(f) = Sk (f), (12)  independent of each other. The connection betweeH the}

wherex denotes the convolution operator. The equation showgOLJple and is the following:

that a key aspect of the calculation of the PSD of the signal p=ct. (17)

containing missing data is to determine the PSD of the data

loss indicator function. Note that for a giver{ L, ¢} set, (17) is less than the previous

one defined by (14).
The power spectral density of the data loss pattern is [22]:

sin(femM) |?
sin( fm) ‘

5 q block-based data | The frequency of the occurrence of missing blocks detersnine

3) 'r\7n kom og Ibase d da? ?SS' the total power ofSk(f), which is included in the ternd.

) Markov model-based data loss. _ The calculation ofG will be considered in Section IV-A.

The random data loss is one of the most essential data 3) Markov Model-Based Data Loss: The Markov model-
loss models, and it is often used because of its simplicityhased data loss is described by the Markov chain shown in
[14]. Block-based data loss models are often used, e.gnwherjg. 1. The states of the Markov chain represent the value
several measurement results are transmitted over paaketib of the indicator functionk’,,. If a sample is available at time

communication systems. When a packet is lost, a wholgnstantn, the next sample will be available with probability
block of data will be missing from the measurement. A real;, and will be lost with probabilityl — p. If a sample is
application will be considered in Section VI-B where datamjssing at time instant, the next sample will be available

loss can be described by the block-based model. Markoyith probability 1 — ¢ and will be lost with probability;. The
data loss models can be used to describe data loss procesgaga availability rate. is the following [20]:

when variable lengths of successive measurement samgles ar

randomly missing. Markov model has been proven to be useful, q—1 (19)

e.g., in the description of data loss pattern in real-time&ada "= ptq—2

transmission over the Internet [19]. . Note that the parameterns ¢, and ;. cannot be prescribed

1) Random Independent Data Loss: Random independent gjmyitaneously. If the data loss is defined by the, s}
data loss can be defined as follows: couple, the connection to the Markov model parameters can be
determined in two steps. First, the probability that no data
lost within an L-sample-long interval is to be expressed. The

IV. DATA LOSSMODELS

In this section, the effect of three basic forms of data loss
[5], [18] on the spectrum are investigated:

1) random independent data loss,

Sk(fe) =G + 128 (f), (18)

K, =1, with probability u =1—~

K, =0, with probability v for ¥n. (13)
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probability that the first randomly chosen sample is avéélab  2) Random Block-Based Data Loss. We use the fact that
equalsy, and the probability that the ladt — 1 samples are  (sin(fxwM)/sin(fx7)) is the Fourier transform of an impulse

not lost equale”~!. Thus, the required probability is: train of lengthM samples, and hence:
L—1
up = €. (20) N—-1, . M 2 M-—1
. . 3 sin(fem M) =N 12=NM. (28)
Suppose thaj is also prescribed, and thenand ¢ are the sin( f.7)
following: k=0 n=0
1 Therefore, according to (18), the PSD is:
p_(a>L_1 q_u(p—2)+1 1) ) e
-\ ’ - 9 _, — W) [ sm( frm
I L= k() = 605 + MU SRR o)
Actually, the parameteré and e are completed by the data k
availability rate u, and then the probabilitiep and ¢ are 3) Markov Model-Based Data Loss: We use that the inverse
determined based on this triplet. Fourier transform of1/(1 — az=1)) is h, = a™, hence
1—p N-1 N-1 oON
P q 1 9 1—a
Q&0 = P "L ST
k=0 n=0
1=4 Therefore, according to (22), the PSD is:
Fig. 1. A two-state Markov model of data loss. State “1": atsample is SK(fk) — M25(fk) + 1—a® H(l — N) (31)
available ,, = 1). State “0”: actual sample is losk{, = 0). N1 —a?N)[1 —az"1]?"

The spectral property of a data loss sequence generated byTabIe | summarizes the PSDs of the data loss indicator

the Markov chain shown in Fig. 1 can be determined accordindinctions for different data loss models using the results
to [20]. Omitting the detailed proof, the PSD &, is a first- btained for the scale factors. The small figures in Table |

order low-pass type spectrum defined as: illustrate the typical shapes of PSD functions.

1 -
Sk(fr) = Giﬂ P +1%5(fr), a=p+q—1, (22) [ model S (fx) [ shape ofSx (i) |
—az
3 . . . random Sk(f)
where z=1 = ¢=72"/x, Again, the calculation ofZ will be independent W26(f) + =)
considered in Section IV-A. data loss N r
Sk(f)
A. Calculation of the Scale Factor block-based 2. p(1 = p) | sin(frmM) |2
6(fe) + -
According to the previous sectios (fi,) has the general | da@loss ne MN- | sin(fer) ,)QQ%f
form
Sk(f)
Sk (fx) =G - H(fx) +.U26(fk)a (23) Markov model- 2. 1—a® p(l—p) (
. based data loss || S(Fi) + N(1—=a?N)|1—az"1]2 \
where H( f;.) determines the spectral shape%f(fx), andG i y
is an unknown scale factor that can be calculated for discret
PSD as fO”OWS [22] TABLE I. SUMMARY OF PSDs BELONGING TO DIFFERENT DATA LOSS
N1 MODELS.
G=u(l—p)/ Y H(fr). (24)
k=0
In the case of block-based and Markov model-based datg. Effects of Data Loss on PSD
loss, the scale factor will be calculated using ParsevhE®+ 1) PSD of a Harmonic Sgnal: This section discusses what
rem: N1 N1 kind of bias is caused by the missing data in the case of a
Z H(f) = N Z B2 (25) single harmonic signat,, = A - exp(y27 fon). The choice is
k)= n motivated by the fact that all periodic signals can be preduc
k=0 n=0 as a superposition of such components. The PSB(of is:
whereh,, is the impulse response belonging to the PB}). )
1) Random Independent Data Loss: In this caseH (f;,) = 1, Sa(fr) = A7 - 0(fi — fo)- (32)
so the scale factor is: By performing the convolution as given in (12), one obtains
o 1 p(l—p) the PSD of a signal corrupted by lost samples:
_ k=0 - S(fx) = A% Sk (fr — fo), (33)
and according to (15) the PSD is: 1w whereg(z) *§(x —z9) = g(x — x0). Equation (33) means that
Sic(fr) = p28(fi) + K 8 27) the PSD of the data loss pattern appears around the fre@senci

N where the periodic signal components are located.
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O : lost samples

Using the general form (23), one obtains: K e PFT bl | |
S(fx) = (nA)?-0(fi — fo) + A°G-H(fr — fo)  (34) l_l |
The comparison of (32) and (34) shows that two kinds of SRR R AR AR R AR RS R

bias effects can be clearly distinguished:
1) The estimated amplitude of the signal is decreased byig_ 5
factor © compared with the original amplitude,.
2) An extra power, a kind of side lobe, appears around the

frequencyfo. The power of the side lobe is proportional where N is the length of the DFT. The scaling of the spectrum
to A and G, and its spectral shape is determined byjs necessary to compensate for the lost signal power. Zero
H(f). padding of the signal samples is a well-known procedure to
2) PSD of Noise: Let S,(fx) denote the original noise interpolate the spectrum. Indeed, our proposed method is a
spectrum, andn (fx) is its measured PSD in the case of datakind of interpolation, where the number of the original gsin
loss. Using (12), the PSD of the noise corrupted by data losi variable, depending on the position of the first lost s@mpl
can be easily computed from the original noise spectrum. If n; < N, the side lobe falloff in the spectral block (k) is
Now, we investigate a practically important case, whenvery low, compared with the original value. To avoid such a
the measurement noise is white, i.€,(fx) = P. In this  situation, a minimal valueV,,;, of n; can be set, and the
case, using the general form ofx (f) given in (23), the record is used only if the actual value of, reaches this

Modified indicator function of the proposed method.

convolution (12) has the form: minimum. As the length of the DFT does not change, the
N1 resolution of the spectrum does not change as well.
— % — ) 2 Figure 2 demonstrates the procedure for nonoverlapping
Sn(fe) = Salfie) * Swc(fu) = P = (G- H{f) +173(f1) blocks. The efficiency of the method may be further improved
(35)  if any uninterrupted part of the block (consisting of at teas
N_1 N_1 Nmin Samples) is also used for DFT calculation. However,
—P.C Z H(f) + Pp? Z 5(f)) = Py, this would result in overlapped blocks with very short non-

overlapping segments, and the noise in the calculatedrspect
_ ) ) . block would not be independent from the previous one, which
where we used the definition @¥ given in (24). According s yseless for the averaging. On the other hand, averaging of
to the result, the noise level is proportionally changedh® t gyerlapped blocks is a common practice in spectrum analysis
data loss rate, but no extra noise appears due to the data logs [23], 50% overlap ratio is proposed. The correlation gsial
of the overlapping blocks in [16] has shown that an overlap
V. IMPROVEDPSD ESTIMATION ratio of 75% can further reduce the variance. Based on these
A. Proposed Method results, we propose a maximal overlap ratio of 75%. By

An improved PSD estimation technique should avoid thethis setting, most of available data are utilized for spewutr
above-mentioned bias and side lobe effects, retaining th@nalysis. According to this valué..i, = N/4 is a reasonable
resolution of the DFT. In the following, a solution is propds Setting. . . . _
that requires only moderate extra computation. _The processing of overlapping blocks is demonstrated in

Suppose that the PSD is estimated by the averaging dfigure 3. HereNy,;, = N/4 is set, and it equals the length
different data blocks. A straightforward idea to avoid the

1=0 =0

effects caused by data loss is to use only complete blocks, lost sample
where no samples are missing. If only complete blocks are . N l . .
used for the estimation, all records containing even onlg on HiMe Xl — |-t
lost sample are thrown away. A question arises how at least a I [ i N
certain part of such records could be used for the estimation (11— | i i
The idea is the following: find the first lost data position o | I I
in the block (if there is any lost sample), and fill the rest of | ,_l_l_l | |
the block by zeros. Then this zero-padded block is used for successive| 3 | : ;
spectrum estimation. The method can be formulated as fsllow oFT < | |—|—| |
by the redefinition of the availability indicator function: blocks | 77 ; ; .
1 n=0...n1—1 5— X X X
K"—{o n=ni...N—1 (36) Lot A N
wheren; is the index of the first lost sample in the block. The
procedure is demonstrated in Figure 2. Thus, the new spectra ) i .
block is computed in the following way: Fig. 3. Processing of overlapped blocks. The striped reggiow the zero
padding.
X(k) = N -DFT(K,,z,) (37)

n of nonoverlapping segments. The first and the last block is
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. e =0.01, L = 5000
processed in a usual way. Blocks. . 4 are processed, but zero Tdependent | Block based | Markov model-based
padding is necessary. For the fifth one, the nonzero parteof th p1=0999 | M=16 2 = 0.985
block is too short, and therefore no samples are processed. t2 = 0985 | p=0.999, ¢ =0.938
N = 256 Poomplete = 0.790

] N = 1024 Poomplete = 0389

B. Settling Times N = 4096 Peomplete— 0.023
PSD estimation is ready if enough number of individual TABLE Il.  PROBABILITY OF OCCURRENCE OF COMPLETE BLOCKS OF

PSDs are averaged. As stated before, the simplest solition i DIFFERENT LENGTHS DATA LOSS PROBABILITY FORL = 5000 LONG
to use only complete blocks df samples, while the proposed RECORDS IS] — & = 99%.

method uses all those blocks, for whigh > Ny;,. It can be
supposed that the proposed method needs much less time to
collect enough blocks than the straightforward one. As th
data loss is random, the faster settling of the proposedadeth
can be shown by the investigation of the probabilities of th
occurrence of complete blocks of different lengths. _ N-1,. N _ %

These probabilities depend in fact on the reliability fuoet Peomplete™ #1241 B =e% (43)
R(n). Nevertheless, they can also be expressed by the daveherey is the data availability rate expressed by (14).
loss model parameters, (L) = ¢ is known. To this end, the The above analysis has shown that for a giveflL) = ¢
relationships in Section IV are used. Firgtande is set, then the first two data loss models result in exactly equal proba-
the model parameters are calculated, and finally, the piiitlyab  bilities of complete blocks ofV samples. Having reasonable
of complete blocks is expressed. assumptions, nearly equal probability can be expressed for

1) Random Independent Data Loss: The probability of Markov-based loss model as well. Thus it has been shown
complete blocks ofV samples can be expressed by the datdhat shorter blocks are much more likely to be complete, as it

eI'he probabilityq can also be expressed by (21). Substituting
d41) into (40) we get:

1

availability rate: was supposed. Table Il illustrates this feature for diffedata
N N loss parameters. The first row of Table Il contains the ihitia
Pcomplete= H1 = €%, (38) parameters: data loss probabilitylise = 99%, and the record
where 1, is the data availability rate for this model and !ength is L = 5000 samples. This setting is in accordance
expressed by (14). with the experimental results introduced in Section VI-B. |

2) Random Block-Based Data Loss: The probability of the next row, the parameters of the random independent, the
complete blocks of N samples (i.e.,N/M blocks) can be random block-based, and the Markov model-based data loss

expressed again by the data availability rate: are given. The next three rows show the calculated proltiakili
N for different block lengths. The probability of completebks
o M N N .
Deomplete= fbg" = €L M =gl (39) decreases as the block lengiti increases. In the case of

. A . N =4 I lock f 4 I
where o is the data availability rate for this model, and for Speggﬁrﬁlgtiambﬁitgnone block out of 40 could be used
expressed by (17). For lon : .
| ) . g records, the expected number of available complete
3) I\_/Igrkov M_odel-b Data Loss: It is clear that the blocks is proportional to the reciprocal of their probaiilof
reliability function 12(n) has an exponential decay for the occurrence. As PSD estimation requires the averaging of a

above two data loss models, and there is a straight relatio
e rge number of ral blocks, the pr method n
between the data availability rate (or data loss rate) aed thlesgsetimue t?)esect)tlesﬁ)he;rtw ?hg gtcra?éhttfgrvr\)/ac;gojﬁg ethod needs

probability of complete blocks. As Markov model-based data
loss has two independent parameters, this relation is more o )
complicated. Having the parametersand p, the probability ~C. Behavior in the Presence of Measurement Noise

can be expressed similarly to (38) and (39): Zero padding in the block can be treated as multiplication by
O N-1 (40) a window function of the length af,. The type of the window

Peomplete™ HP™ function is chosen according to the aims of the analysis.

We have chosen the following setup: Reference [16] discusses the influence of window functions

to the measured PSD level in detail. When DFT is applied in

K= Hz, P = H1, (41) " the form of (4), the measured power of a harmonic component

wherey; andpu, are the data availability rates defined for the is multiplied by the square of the sum of the window samples,
random independent and the random block-based data logghile in the case of noise, the frequency bins are multiplied
respectively. Thus, the data availability rate equals dighe by the sum of the squares of the window samples. As a conse-
random block-based data loss model. This is reasonablesas tHuence, the level of the resulting PSD depends on the scaling
Markov-based loss model results in lost blocks as well. Orfactor N/n; defined in (37). It is designed to get the same level
the other hand, assuming that usually~ 1 andL > 1, the  for harmonic components, independently fram. However,
expression op in (21) andy, in (14) are close to each other: this scaling results in different levels dependingronin the
. case of noise. [Scaling b§yN/n;)/? would result in proper
(e L measurement of noise, but would deteriorate the measutemen
p= @ ~e of harmonic components.] Sinc¥,,in < n1 < N, andn,

=

= H1- (42)



FFT-BASED SPECTRUM ANALYSIS IN THE CASE OF DATA LOSS 7

is random for each block, the measured noise level in the | 7' oMo | overiap | windowtype | smoothing factor| data loss fate

averaged PSD is amplified by a random factor in the range 1024 no Hanning 0.01 o.gol
1/2
of [1... (N/Nuin)'/?]. TABLE Ill. M AIN DATA OF THE SIMULATION .

D. Computational Complexity

The proposed method calculates the Fourier transform of 0
the blocks of N samples via FFT. It is well known that its
computational complexity has the order§f log N [15]. The
zero padding and the scaling defined in (37) require no extra
operations related tdv.

The existing methods reviewed in Section | cannot utilize
the symmetry of the DFT, as they suppose uneven sampling.
The sample-and-hold technique introduced in [5] calcsléte
correlation function in the discrete time domain, and then t
PSD is determined. Because of the time-domain calculation,
the computational complexity of the method is in the order 150 ‘ ; ‘ RRLNS
of N2, whatever algorithm is used for PSD computation. The 0 %1 Relaive frequoncy, £ 1 %°
complexity of the AR model fitting [7] depends on the order
of the model. To get comparable results, the model orderig. 4. PSD of the signal given in (44) estimated by differenthuds.
must equalN, as the DFT is able to determin® complex
amplitudes, and thus the model requires operations in tier or
of N2, The Lomb-Scargle method [8], [9] determines thewheref, = 33/1024 and f, = 49/1024. The main data of the
amplitude and the phase for a single frequency by operatibns simulation can be seen in Table IlI.
order N. Assuming again that the PSD is to be determined at The estimated spectra can be seen in Figure 4. The undis-
N separate frequencies, the method requires ord&f’ofom-  torted spectrum is the blue solid curve, while the blue ddshe
putations. Similarly, [10] fits sine wave of a single freqogn curve belongs to the case when the missing data are replaced
by the order ofN computations, which results in the order of by zeros. The spectrum calculated by the proposed method
N? operations for all frequencies. The RBO [11], [12] works is depicted by the green solid line. The spectrum is also
recursively and requires operations proportionalMdor one  calculated using shorter complete blocks, where the leafyth
sample in the time domain. It results again a computationathe FFT was fixed tQVy,..« = 256. The result is the green
complexity of orderN? for N consecutive samples. dashed line. Figure 5 shows the zoomed-in view of the sgectra

As the above review has shown, the proposed methodomponents of the signal. Figure 5 clearly shows that the
outperforms the existing solutions, regarding the comrial ~ second sinusoidal of smaller amplitude is difficult to deiéc
demand. The cited methods are developed to manage differepéros stand for lost samples (blue dashed line) or short&r FF
particular problems of uneven sampling and offer solutilas  is calculated from complete blocks (green dashed line). The
are optimal in a sense. Although the detailed analysis isity proposed method allows the detection of the second componen
the scope of this paper, by the above complexity analysts, thas well (green solid line). In addition, there is a frequency
FFT-based solution is a real alternative of the referredsone mismatch of the low-resolution spectrum (green dashed,line

as the peak of the curve appears at a slightly different iposit

S(f)

— Without data loss

== =Zeros at lost data positions
——Zero padding

- - -Lower resolution

PSD, dB

VI. RESULTS It can also be seen that the proposed method (green solid
The theoretical results derived in the previous sectiongwe
verified with intensive simulations. Reference [22] intodd sU)
these simulations in detail. First, it has been demonstrateat 0 ‘ v ———
kind of bias and side lobes occur due to different types od dat .. |---Zeros atlost data positions

*.|—Zero padding
- - -Lower resolution

loss. Then a complex example has shown the viability of the 200 .
proposed method. In this paper, the measurement results are :
also presented, while concerning the bias and side lobetgffe

we refer to the conference paper [22].

PSD, dB

-60

..........................

A. Smulation Example

The effects of data loss and the efficiency of the proposed
methqd are demo.nstrated by_a smula_mon gxample. The. PSD 10055 “ o8 oos 004 00d5  0m5 0055
of a signal consisting of two sinusoids is estimated. Thaalig Relative frequency, f
x,, is the following:

Fig. 5. Zoomed-in view of the harmonic components of the sigmetrg

Ty, = sin(2w fin + 0.27) + 0.001 - sin(27 fon + 0.37), (44)  in (44).
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|E(n)| FFT length | overlap | window type | smoothing factor| data loss rate
10 T T T T N o

5
2048 75% Hanning 0.02 0.0218
TABLE IV. M AIN DATA OF THE ANALYSIS.
107t [ e Complete blocks only ]

o Zero padding

Absolute error of estimatic

0 100 200 300 400 500
FFT blocks

Fig. 6. Settling of two different estimators for the signalegi in (44).

line) has greater bandwidth than the simple one replaciag th
missing data by zeros (blue dashed line). It can hinder the
detection of components close to each other. Neverthelass,
feature is similar to windowing, where some advantageous
window functions have wider bandwidth than that of the
rectangular window.

Another important feature of the proposed estimation algo- e
rithm is that its settling is faster. In order to check thise t C T Thredliency)t (HZ) T "
absolute value of the power estimation is calculated at each
step when the estimator is updated. The result for the tw§i9- 7. PSD of the measured signal.
important cases can be seen in Figure 6. The settling of the
estimator updated based on compléte= 1024 long blocks
is plotted by blue circles, while the settling of the prombse
estimator is represented by green circles. The proposdubihet
outperforms the simple estimator in a convincing mannee T
reason is that complet® = 1024 long blocks occur with a
much less probability than at leadt,,,,; = 256 long ones as
Table 1l shows.

PSD, dB

no data are lost. Due to the distortion of the real measurgmen

second harmonic component and some measurement noise can

halso be seen in the PSD. The blue dashed curve belongs to
the case when the missing data are replaced by zeros. The
block-based data loss can easily be recognized by the shape
of the spectrum. The PSD calculated by the proposed method
is depicted by green solid line. It can be seen that this curve
and the original one (plotted by black line) reasonably cove

B. Measurement Results each other, so both the harmonic component and the noise are

Measurements were carried out by a test system introducd@!"y measured by the proposed method.
in [21]. In this testbed, wireless sensors perform reaktim  Figure 8 shows the zoomed-in view of the spectral compo-
data collection, and they transmit the data to a PC through B€Nts of the signal. The PSD without data loss is not depicted
gateway node. In this measurement, we used only one sensd, Figure 8, but the PSD is also calculated using shorter
The data sent by the sensor are recorded and processed on ggEnPlete blocks, where the length of the FFT was fixed to
PC. Since data transmission and collection are performed ifyshort = 512. It is plotted in Figure 8 by the green dashed
a hard real-time manner, there is no possibility to apply anyine- Figure 8 clearly shows the frequency mismatch of the
acknowledge mechanism for the indication and retransarissi |OWer resolution PSD and allows to observe the shape of the
of lost packets, and hence data loss is inevitable. The dasa | SPECtra in detail. Besides the lower side lobes of the prebos
is recognized by a time-out mechanism. The sensor transmifgocedure, its greater bandwidth is also to be observed. The
data in packets of 25 samples, and hence the data loss procé&debands are better to be recognized if missing data are
can be described by the block-based model.

In the measurement setup, the sensor and the gateway were S(f)
placed 4 m away from each other in a room, and the sensor was A ‘ ‘
placed near to extensive metal surfaces in order to deghede t
radio transmission properties. In this arrangement, waaan
neglect the presence of data loss.

The measured signal was an amplitude-modulated (AM)
signal with a carrier offy = 100.2 Hz. The modulation signal
was also a sine wave ¢f,, = 5.247 Hz, and the modulation
depth was set to 40%. The sampling frequency was set to
fs = 1800 Hz, and the transmission was carried ouflih= 25
long blocks. Depending on the physical circumstances, data
loss rates in the range ¢6.1...30.0]% could be detected. ‘ S
Now, the analysis results for the 2.18% case are introduced. o p eyt (H)

Table IV summarizes the settings of the analysis. The medsur
PSDs can be seen in Fig. 7. The black curve shows the PSD ffg. 8. Zoomed-in view of the harmonic components of the meassigehl.

PSD, dB
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replaced by zeros, but can also be detected by the proposed]
method. The PSD of shorter blocks does not allow the correct

measurement of the AM spectrum.

VIl. CONCLUSION

This paper dealt with the analysis of the FFT-based PSD
estimation in the case of data loss. Based on prior work, th&4]
behavior of the PSD estimator in the case of different dega lo
models has been investigated. The bias error of the estimati

of harmonic components and the spectral leakage due

different data loss models have been calculated. A simple
solution has been proposed when only moderate computin@e,]
resources are available. The simulations and the measoteme
results show that our method offers faster settling than the

obvious ones, mostly retaining the resolution of PSD cated

only by complete records. Extensive comparison with other
methods is left for future research, as well as the refinement

of the proposed method.
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