
“Real” Signal Processing with
Wireless Sensor Networks

György Orosz, László Sujbert, Gábor Péceli
Budapest University of Technology and Economics, Department of Measurement and Information Systems

Magyar tudósok krt. 2., Budapest, H-1521, Hungary
Phone: +36 1 463-2057, fax: +36 1 463-4112, E-mail: orosz@mit.bme.hu

Abstract – This paper introduces some practical issues of

the deployment of wireless sensor networks (WSNs) in closed
loop digital signal processing (DSP) and control systems that
require relatively fast, continuous data flow and real-time
operation of the data collecting network, as in the case of
traditional systems where sensors are attached by wire.

The difficulties of the design of the wireless control and
signal processing systems are introduced through a particular
application that is an active noise control system. Main topics
that are presented are the scheduling of tasks, synchronization
and distributed signal processing.

I . INTRODUCTION

This paper deals with the application of wireless sensor
networks (WNSs) in relatively high speed feedback signal
processing systems. The design of these systems requires
different approach than typical applications of wireless
sensor networks (e.g. health or environmental monitoring
[2]), where the observed signals change relatively slowly
(e.g. temperature, humidity), and the interactions that have
to be performed are not time critical. Computations and
evaluation of results can also be performed offline, or at
least with soft time limit. However, in the traditional digital
signal processing (DSP) systems―which can be called
“real” signal processing systems―signal processing
algorithms run real time, and expect the data to be
processed from the data sources continuously with the
sampling frequency of at least some kilohertz. In the case of
feedback systems the situation is even worst, since the
interactions are carried out according to the input signals. If
inputs are provided by the WSN, faults in the network can
cause even the instability of the whole system. In these DSP
systems the widespread methods for the general
applications of the sensor networks can fail, and they are no
more suitable for their original purpose [1].

Despite of the difficulties, the research of the field of
wireless signal processing is promising because of the
obvious advantages of the utilization of the WSN’s [2].
These attractive features of WSNs are e.g. the easy
installation and maintenance of sensors, the flexibility of the
arrangement, and the radio communication that eliminates
the costs of cabling.

The difficulties of the design of the wireless control and
signal processing systems are introduced through a

particular application. In this case study some variants of an
active noise control (ANC) system [3][4] are presented as
typical instances of wireless signal processing systems.

The structure of the paper is the following. In Section II.
the hardware and software configuration of the wireless
signal processing system is described. The common
properties of ANC systems are presented in Section III. The
difficulties in connection with the scheduling of tasks are
discussed in Section IV. The importance of the
synchronization and typical solutions for the
synchronization are showed in Section V. Section VI deals
with the data transmission and signal processing properties
of the realized systems putting emphasis on data reduction.

II. SYSTEM DESCRIPTION

A. Hardware Configuration
The block diagram of the designed active noise control

system that utilizes wireless sensors can be seen in Fig. 1.
The system basically consists of two units. The main parts
of signal processing algorithms are implemented on a DSP
evaluation board of type ADSP-21364 EZ-KIT LITE [5],
which includes an ADSP-21364 (SHARC) processor. The
DSP is a 32 bit floating point one with a maximal clock
frequency of 330 MHz and dual arithmetic units. The DSP
is connected to an AD1835 codec that has two analog input
and eight analog output channels, through which signals can
be fed to the loudspeakers. Such number of output channels
ensures the possibility of realization of extensive systems.
The analog inputs can be used for collecting reference
signals that is required for most ANC systems. Reference
signals can be collected also by motes. The acoustic signal
is sensed by the elements of WSN, which is built up of
Berkeley micaz motes [6]. These motes are intelligent
sensors that consist of an ATmega128 eight bit
microcontroller with a clock frequency of 7.3728 MHz, a
CC2420 2.4 GHz ZigBee compatible radio transceiver and
an MTS310 sensor board. The data transfer rate of the
transceiver IC is 250 kilobit per second (kbps) including a
preamble section, a header and a footer that are handled by
hardware. The sensor board includes also a microphone
with variable gain amplifier, the output signal of which is
converted by a 10 bit analog to digital converter (ADC) of
the microcontroller.

Fig. 1. Block diagram of the system

Most of motes (mote1…moteN in Fig. 1) are responsible
for noise sensing. They transmit data towards the DSP. Data
from the wireless network are forwarded to the DSP by a
gateway mote (mote0 in Fig. 1). The DSP and the gateway
mote are connected via asynchronous serial port. The
transmission rate of communication between the two units is
115.2 kbps. The programming of motes is carried out by an
interface board of type MIB510 [6]. It serves as a power
supply and RS232 line driver for gateway mote, as well.

In order to ensure the reliable and real time operation of
the system—that is one of the main tasks in the control
system—a Time Division Multiplexing (TDM) network
operation was utilized: the network operation is divided into
periods, in which each mote transmits data to the gateway in
succession in predetermined order and time instants.

The PC basically serves as developing and debugging
tool for both platforms. Additionally, it is suitable for
logging and visualization of data sent by gateway or DSP
over serial port.

An independent loudspeaker driven by a signal generator
can be utilized to generate external sound. It can be used as
an artificial noise source while testing the ANC system, or
as general examination or excitation signal for test purpose.

B. Software Components
The software for the DSP was developed with the

VisualDSP++ software developing environment provided
for Analog Devices DSPs. The main programming language
is C but assembly subroutines are also used.

For software development for motes the TinyOS
embedded operating system (OS) was used, but
modifications should have been carried out in order to
increase the code efficiency. Typical difficulties emerge in
time critical sections, where accurate timing of tasks is
inevitable. Such tasks are timing of the sampling the
microphone’s signal, and accurate detection of arrival time
of radio messages, which is important task in
synchronization. The OS provides convenient interface for
handling the hardware elements e.g. radio, AD converter.

The programming language of the TinyOS is nesC [7]
that is a component based language. The programs are built
up of components (or modules) that are connected to each
other via interfaces. These components are provided with
the OS, but components can also be created by the user of
the OS. Each component is responsible for a certain task

e.g. handling of the radio or microphone, and the user code
is also included in an independent component. The
interfaces include events and commands. Via events one
component can notify another one of certain events (e.g. the
arrival of a radio message). Via commands one component
can use the services of another component (e.g. sending a
message).

The scheduling entities of the OS are the following in
descending order of priority (beginning with the highest
priority):

1. HW interrupts
2. Events and commands
3. Tasks

The HW interrupts can interrupt each entity. Events and
commands can interrupt each other and the tasks. Tasks can
not interrupt any scheduling entity.

III. INTRODUCTION OF ACTIVE NOISE CONTROL

The general linearized model of ANC systems can be
seen in Fig. 2.

Fig. 2. General structure of ANC systems

The purpose of ANC systems [3] is to suppress mainly
low frequency acoustic noises by means of destructive
interference. The operation can be summarized as follows:
according to the reference and the error signals (x and e
respectively), the ANC algorithm R(z) produces such
secondary noise y which minimizes the power of the error
signal e. R(z) is implemented mainly on DSP because of its
computational complexity. y is radiated by loudspeakers
and arrives to the microphones through the so called

R(z) A(z)

d

–

+

e

x
y

d: primary noise
y: secondary noise
e: error signal: e = d – y·A(z) = d – y’
A(z): transfer function of secondary path
P(z): transfer function of primary path
R(z): active noise control algorithm
x: reference signal

y'

P(z)

mote1

moteN

mote2

DSP mote0 codec

 DSP board

reference signal

PC

gateway (base station)

Signal
generator

secondary acoustic path that is described by an A(z) matrix
which consists of the transfer functions between each output
and each input of the signal processing algorithm R(z). A(z)
can be treated as a linear system. The error signal e (i.e.
remaining noise) is the result of the interference of the
primary noise d and secondary noise y’ , and it is sensed by
microphones.

In the ANC algorithm a kind of inverse model of the
secondary path A(z) is applied which is denoted by W(z).
For ensuring the stability of the system, W(z) is often
chosen as follows [8][9]:

 W(z) = A(z)# (1)

where # denotes the pseudo- (or Moore-Penrose) inverse.
The secondary path A(z) should be identified in advance.
The stability criterion of the system is:

 –π /2 < arc(λl) < π /2 (2)
 λl = λl(A(z)W(z)); l=1…L (3)

where L is the number of inputs. Eq. (2) and (3) means that
all eigenvalues λl of the term A(z)W(z) must have positive
real part for each frequencies, where noise is present. For
single channel case (only one microphone and one
loudspeaker are used) it means, that the phase delay of A(z)
must be known at least with the accuracy of 90º. A(z)
involves the transfer function of the entire signal path
between the output and input of the noise control algorithm
(i.e. ADC, DAC, analog signal conditioner circuits, transfer
functions of microphones and loudspeakers, and the transfer
function of WSN’s data routing is also included). The main
goal in ANC systems (and in our case also in the WSN) to
ensure the permanency of A(z) on each frequency, because
so can W(z) be determined unambiguously and utilized
during the entire operation time of the system.

ANC systems can be regarded as model adaptive control
systems. The reference signal x comes from the noise
source and is utilized by the ANC algorithm. x passes also
through the secondary path P(z) and comes to the
microphones. The aim is to make the output of the acoustic
system (y’) to be equal to the output d of the reference
system P(z), so the equivalence of R(z)A(z) and P(z) has to
be ensured by the controller R(z) as far as possible.

IV. EFFECTS OF TASK’S PIORITY ON SIGNAL SENSING

In this section the importance of the priority of the tasks
in the systems is introduced, putting special emphasize on
the timing of the sampling that plays important role, since
the observed acoustic signal changes relatively fast.

The operating system (OS) provides more possible ways
for the timing of certain processes. These methods use the
hardware timers of the microcontroller in different ways.

If a software timer component is utilized that uses the
same hardware timer for serving more tasks through
different interfaces, this would result in the degradation of
the accuracy of the timing. This is because at the interrupt
of the hardware timer the software timer component has to
choose on which interface it has to signal an event. The time
interval Tdelay between the real hardware interrupt and the
generation of the event on a timer interface is not
deterministic, since the components connected to the timer
component may request timing event at arbitrary time
instants, so the timing requests of different components
disturb each other. In Fig. 3.a the spectrum of a sinewave of
the frequency of 200 Hz can be seen, the sampling of which
is scheduled by a software timer component that is shared
between more modules. The signal source was the external
loudspeaker connected to the signal generator (see Fig. 1),
and the sampling was performed by a mote that sent the
samples over the base station to the PC, where data are
processed. It can be seen that the spectrum is distorted;
instead of a definite line (that is expected as the spectrum of
a sinewave) the spectrum line is spread, since the sampling
is not equidistant because of the insufficiency of the timer,
and sampling is disturbed by random processes. In Fig. 3.b
the timing of the sampling of the same sinewave is carried
out in an interrupt routine of a hardware timer, so this
timing process is disturbed only by other IT routines that
are mainly short code segments, so their disturbing effect is
negligible.

The sampling of the observed signal can also be
disturbed by tasks that are related not only to the timing of
processes. Measurements are performed in order to
investigate the effects of these kind of disturbances on the
observation of the signal in the following way.

50 100 150 200 250
-40

-20

0

20

frequency [Hz]

am
pl

itu
de

 [
dB

]

50 100 150 200 250
-40

-20

0

20

frequency [Hz]

am
pl

itu
de

 [
dB

]

 a. b.

Fig. 3. Sampling with different methods. a: Sampling with utilization of shared timer. b: Sampling with utilization of single timer.

A sinewave was sampled by a mote, the sampling was
controlled by a separate HW timer, and sampling was
started in an event. Since the event has medium level
priority it can be interrupted, so the effect of other processes
can be investigated. It offers, however, satisfying quality of
timing, since the processes that can interrupt events are
mainly short ones. As a disturbing process the radio
component was used, since it is used anyway for the
transmission of the collected data. Data are sent in 25 byte
size packets. For the radio component a backoff time
parameter (tbackoff) can be set. After the initiation of the
sending of a message, the physical transmission of the
message is started within a tbackoff interval with uniform
distribution. With the different setting of the backoff time
the spectrum of the observed sinewave was investigated.
The lowest the value of the tbackoff parameter is, the more
deterministic the effect of the operation of the radio
component is. The spectrum of the sinewave that was
sampled at different tbackoff parameter settings can be seen in
Fig. 4. In the second line of the figure series the main
spectrum lines can be seen. The backoff time decreases

from right to left, and it is approximately 2.5 ms, 0.5 ms and
0 ms in Fig. 4.c, 4.b, 4.a respectively. According to the
spectrums it can be concluded, that the effect of the
disturbing processes depends on its deterministic or
stochastic nature. If the behavior of the disturbance is
deterministic, it influences the sampling periodically, so its
effect in the spectrum appears as parasitic spectrum lines, as
it can be seen in Fig. 4.a. Since the modification of the
original sampling time instants is a nonlinear operation, it
can be interpreted as the “mixing” of the frequency of the
observed signal (fo) and the frequency of the disturbance
(fd). Hence, the spurious spectrum lines appear mainly on
the frequencies that are the linear combination of the fo and
fd. The random disturbances—that are produced with higher
backoff interval—cause the disappearing of spurious
spectrum lines, the spreading of the spectrum lines of the
original sampled signal and the increasing of the noise [10],
as it can be seen in Fig. 4.c. In Fig. 4.b the spurious
spectrum lines has lower amplitude than in Fig. 4.a, since
the disturbance of radio is no more periodic; the main
spectrum line is, however, sharper than that in the Fig. 4.c.

0 200 400
-40

-20

0

20

40

frequency [Hz]

a
m

p
lit

u
d

e
 [d

B
]

0 200 400
-40

-20

0

20

40

frequency [Hz]

a
m

p
lit

u
d

e
 [d

B
]

0 200 400
-40

-20

0

20

40

frequency [Hz]

a
m

p
lit

u
d

e
 [d

B
]

255 260 265
10

20

30

40

frequency [Hz]

a
m

p
lit

u
d

e
 [d

B
]

255 260 265
10

20

30

40

frequency [Hz]

a
m

p
lit

u
d

e
 [d

B
]

255 260 265
10

20

30

40

frequency [Hz]

a
m

p
lit

u
d

e
 [d

B
]

 a. b. c.

Fig. 4. Effect of the background tasks on sampling. a: Periodic disturbance: period=Tp=28ms, tbackoff =0 ms. b: average period=Tp, tbackoff =0.5 ms.
c: average period=Tp, tbackoff =2.5 ms.

V. SYNCHRONIZATION

A. General Issues of Synchronization
A crucial task in the system is the synchronization,

because there are many autonomous subsystems (each mote
and the DSP). Synchronization has key importance because
of the strict stability condition referring to the knowledge of
the feedback path.

If the sampling on motes and processing of the sampled
data on the DSP occurred independently of each other, the
delay between the sampling and the processing of the signal
would vary at least in a one sampling period interval, as it
can be seen in Fig. 5. In the figure the sampling and
processing times are signed with vertical lines on the time

axes, and it is assumed that the data transmission time Tt is
constant and the DSP processes the most currently received
data. Constant Tt is ensured by the deterministic network
protocol.

Fig. 5. Unsynchronized units

Ti

Tt

tmote

tDSP

TSmote = samping rate of motes

Ti-1
TSmote

Tt

TSmote Tn Tn-1 Tn-2

Tt

dti–1

TSDSP

In Ti the delay between the processing and sampling (Ti
and Tn respectively) is about Tt, since the data arrives
directly before Ti. However, in the processing time Ti−1 the
delay is (Tt + TSmote), since the data sampled in Tn−1 arrives
slightly after Ti−1 so the DSP processes the previous data
that has arrived approximately TSmote time before Ti−1. This
example shows the two extreme values of the delay, but it
can change anywhere within the [Tt…Tt+TSmote] interval.
Since A(z) includes this delay, it changes also continuously
during the operation so it differs from its identified value,
hence W(z) is no more optimal. Moreover it can occur that
W(z) doesn’t satisfy even the stability condition. This is the
simplest case, when the DSP processes the most current
data, but more delay can be introduced in other processing
methods. In many applications the main goal is to hold the
delay on constant level, since constant delay can be taken
into account at the design phase, but changing delay alters
the original conditions.

For the synchronization there are different basic
approaches [11]. Units can be synchronized by matching the
time instants of sampling and signal processing physically
to each other, which requires the tuning of the clock
(i.e. scheduler) of the units.

Another approach for the synchronization is the
interpolation, when the effect of unaligned sampling and
processing time instants are compensated by computation.
By means of interpolation the exact value of the signal in
the processing time instants can be estimated, so eliminating
the changing delay. Interpolation can be realized on the
motes or on the DSP. In the first case the DSP acquires
asynchronously data, and motes calculate the signal value at
the request time instants. In the second case the motes send
data asynchronously and the DSP estimates the value of the
signal in the processing points according to the previous
samples. In the first case the computation is distributed in
the network, but the transmission of request messages
means extra load for the network. In the second case the
interpolation demands high computation load on the DSP,
since the data from every mote should be handled
individually.

The interpolation can also mean the interpolation of the
algorithms’ parameters. Let’s take the example when the
data x arriving from the network is multiplied by a function
f(t). In the case when no synchronization is applied, the
input signal x(Tn) (sampled in Tn in Fig. 5) would be
multiplied in the processing time Ti by f(Ti). With a
synchronized algorithm, however, x(Tn) is multiplied by
f(Ti–dt), where dt is the time difference between the arrival
time of x(Tn) and Ti, so the changing delay dt is
compensated.

In our system the following synchronization method is
applied. On the motes the sampling instants are
synchronized (sampling occurs on each mote at the same
time) and the DSP uses linear interpolation for fitting the
data arrived from WSN to its processing time. This is a
convenient solution, since the data arrived from the motes
can be handled uniformly in the interpolating method―the
same parameters can be used in the interpolation that can be
performed for each mote at the same time―since they are
sampled by motes synchronously. The physical
synchronization of the whole system is not possible, since

the sampling frequency of the DSP is fixed, and in some
cases the sampling frequency on the motes can not reach
that of the DSP. Interpolation on motes would require extra
information messages that are sent from the DSP to the
motes, which would cause extra network traffic.

B. Synchronization in Sensor Network
Since the synchronization of motes has key importance,

it is presented in detail. A PLL like method (see Fig. 6) was
worked out that requires a reference mote the sampling rate
of which the other motes are synchronized to. In the timers
of the motes a counter runs with the clock frequency of the
motes. When it reaches its programmed maximal value
(Ndiv) it will be cleared, and an interrupt is generated where
the sampling of microphone’s signal occurs. The value Ndiv
determines the sampling frequency: fs = Ts

−1 = fquartz / Ndiv
(where Ts is the sampling interval). The time function of the
value of the counter is a sawtooth signal, at the falling edge
of which the sampling is carried out. The synchronization of
the sampling frequency on motes is reached by holding the
phase difference between the sawtooth signals constant with
the structure that can be seen in Fig. 6. The reference mote
sends synchronization messages at the sampling time
instants. At the reception time of these messages the motes
read the value of the counter of their timer that is Nl. Since
the value of the sawtooth signal is proportional with its
phase, this sampling and hold operation is analogous with
the phase detector function, so with the tuning of the
sampling frequency (changing Ndiv) the phase difference
between the sawtooth signal on the reference and on the
other motes (Nl) can be held constant as shown in Fig. 7
(solid line).

Fig. 6. Block diagram of synchronization algorithm

If the desired value of Nl is Na, then the following

algorithm has to be followed: if Nl < Na, fs should be
increased (Ndiv should be decreased), otherwise fs should be
decreased. If no interaction is taken place this phase
changes continuously―as shown in Fig. 7 (dashed
line)―because of the frequency error of the clock
generators of the motes. Since the maximal value of the
counter of the timer is Ndiv, the maximal output value of the
phase detector is also Ndiv that is in our case 4096. Since the
synchronization messages carry information only on their
time of arrival, any data messages can be used for this
purpose, the only constrain is, that it should be sent by the
reference mote at predefined points. It means, that
synchronization of the sampling in this system means no

reference
timer

S/H controller
tuneable

timer
–

Na

Nl

fquartz_2

fquartz_ref

Ndiv

reception time of
the messages

extra network traffic, since it is realized with data messages
that should be sent anyway. The synchronization needn’t to
be performed in every sampling period, because the clock
of motes are accurate enough to stay near (some
microsecond) to the synchronized state for longer time
(cca. 1 sec).

40 60 80 100 120 140 160 180
0

1000

2000

3000

4000

time [sec]

N
l

unsynchronized

synchronized

Fig. 7. Synchronization measurement results

C. Synchronization on the DSP
The DSP uses linear interpolation. It means, that the DSP

measures the time dtk and in the processing time Tk
(see Fig. 5) it uses in the signal processing algorithm the

interpolated value of the input signal that is)(ˆ
kdtf . The

interpolation is carried out according to Fig. 8. d2 is the last
and d1 is the next value of the input signal. Since d1 is not
known in Tk, one sample delay has to be introduced. A
possible form of the interpolation is (4):

 







−+=

SmoteSmote T

dt
d

T

dt
ddtf 1)(ˆ

21 (4)

Fig. 8. Linear interpolation

It can be seen that the interpolation can be interpreted as a
FIR (finite impulse response) filtering, where the filter
coefficients are calculated by using dt. The interpolation
can be carried out by using the Lagrange-polynomials: in an
n order interpolation a polynomial of order n is fitted on the

(n+1) samples, and according to this polynomial the value
of the fitted function can be estimated also between the
sampling points, where the exact value is known. In the case
of linear interpolation first order Lagrange-polynomials are
used.

The order of interpolation is chosen according to trade-
offs between computational demands, delay and accuracy.
Higher order interpolation requires higher computational
capacity since the coefficients of the FIR filter has to be
calculated real-time according to dt. Higher order
interpolation uses more samples from the past, so increases
the delay, which suggests the utilization of lower order
interpolation, since in a control loop delay reduces the
dynamics of the system. In Fig. 9 and 10 the properties of
first and second order interpolation is compared since these
two methods has the lowest delay. The calculation of
second order interpolation is carried out as follows:

)(ˆ dtf = 0.5(1+a)ad1 + (1–a2) d1 + 0.5(1–a)ad3 (5)

where a=dt/TSmote. The transfer functions are calculated
using different dt values. In the figures dt is interpreted
relatively to the unit sampling interval Ts. According to the
magnitude response, the second order interpolation has
better properties since it has nearly unit gain also on higher
frequencies. In Fig. 9 the curves that belong to dtj=1−dti
parameter pairs are overlapped, since the absolute value of
(4) is symmetrical for these pairs.

The delay is calculated by equation (–φ(ϑ)/ϑ), where
φ(ϑ) is the phase characteristics of the interpolation and ϑ
is the frequency relative to the sampling frequency. The
delay vs. frequency plot shows that on low frequency each
interpolation provides the appropriate –dt delay, so they
compensates the dt delay in Fig. 8 and Fig. 5. In the case of
second order interpolation the delay characteristics is not
symmetric, since it uses two samples from past (d2 and d3)
and one (d1) from the future (naturally introducing the one
sample extra delay for ensuring the causality), thus in some
cases it provides worst delay compensation (dt=0.6). Due to
this asymmetry it is recommended to use odd order
interpolation. Because of these facts first order interpolation
was chosen in our system, since according to practical tests
it provides enough accuracy in estimation, but requires
minimal computational capacity. The inaccuracy of the
interpolation in terms both the delay compensation and
amplitude estimation decreases on higher frequencies, so it
is recommended not to use the full bandwidth that would be
allowed by the sampling frequency.

0 0.1 0.2 0.3 0.4 0.5
-20

-15

-10

-5

0

frequency (ϑ)

magnitude response

a
m

p
lit

u
d

e

0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

frequency (ϑ)

d
e

la
y

[T
s]

delay

dt=0

dt=0.2

dt=0.4

dt=0.6

dt=0.8

dt=1

Fig. 9. Transfer function and delay of linear interpolation

dt
T

dd
ddtf

Smote

21
2)(ˆ −

+=

t

d1

d2

TSmote

dt

Ti

d3

f(t)

0 0.1 0.2 0.3 0.4 0.5
-20

-15

-10

-5

0

frequency (ϑ)

magnitude response

a
m

p
lit

u
d

e

0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

frequency (ϑ)

d
e

la
y

[T
s]

delay

dt=0

dt=0.2

dt=0.4

dt=0.6

dt=0.8

dt=1

Fig. 10. Transfer function and delay of linear second order interpolation

VI. DATA TRANSMISSION AND SIGNAL PROCESSING

METHODS

A. Simple Signal Collecting Network
In the basic configuration the wireless sensor network

performs the sampling of the noise to be suppressed, and the
sensors send the sampled value to the DSP over a gateway
mote. Data are transmitted in 25 sample size radio packets,
since beyond the overheads this is the maximal size of a
data block, so the ratio of the overhead that belong to each
packet can be minimized. This makes the utilization of the
radio channel more efficient.

Fig. 11. Block diagram of recursive Fourier-analyzer

The noise control algorithm is a resonator based one [12].

This algorithm is optimized for the suppression of periodic
acoustic disturbances. The basic building block of the
system is a resonator based recursive Fourier-analyzer (FA)
the block diagram of which can be seen in Fig. 11. The
system is described by the state equations (6) and (7)

 xi,n+1 = xi,n + 1/N·c* i,n·en (6)

 nfij
i,n

N

i
i,ni,nn eccxz ⋅⋅⋅⋅⋅

=

==∑ 12

1

;' π (7)

where n is the time index, f1 is the fundamental harmonic
frequency and N denotes the number of the Fourier-
coefficients. The complex basis functions that belong to the
i-th harmonic frequency are denoted by ci,n. The structure is

appropriate for recursive calculation of Fourier-coefficients
of periodic signals. The state variables xi are the Fourier-
coefficients: (7). The operation can be explained as follows.
The i-th resonator channel has infinite gain on the i-th
harmonic frequency fi, since the input signal of the
frequency of fi is mixed down to DC by multiplying by c* i,n
where the integrator has infinite gain. Since this signal is
mixed up again by ci,n this means that infinite gain is pushed
up to fi. Since the resonator is in a negative feedback loop,
the infinite gain means that the error signal on the frequency
fi is zero.

In the noise control system the signal of each sensor is
fed to a FA block (these data are denoted by zn in Fig. 11),
so the noise signals are decomposed into Fourier-

coefficients. Let’s denote by jix the i-th harmonic Fourier-

coefficient that belongs to the j-th input (sensor). The output
signal is calculated according to (8) and (9):

 ∑
=

+++ +=
L

l

l
niilk

k
ni

k
ni xzwqq

1
1,,1,1,)(µ ; k=1…K (8)

 Kkcqy
N

i
ni

k
ni

k
n ...1;

1
,, ==∑

=

 (9)

where wk,l(zi) denotes the k-th row and l-th column of W(zi),
L and K denote the number of the inputs and outputs of the

system respectively. k
iq is the i-th harmonic Fourier-

coefficient that belongs to the k-th output. k
ny is the signal

on the k-th output (the input signal of the k-th loudspeaker
in Fig. 1). This algorithm can be interpreted as an integrator
type controller built on the input Fourier-coefficients with
zero reference: the input (i.e. remaining) noise has to be
zero. The parameter µ is the time constant of the integration,
and determines the dynamic behaviour of the system. Since

the control signals k
ny got to the sensors through a transfer

function matrix A(zi), the input signals j
ix are coupled

through the matrix W(zi) to the output. W(zi) ensures the
negative feedback that is required for the stability.

The synchronization of the DSP to the motes is basically
performed by linear interpolation, but the interpolation of
the whole FA structure to the motes was also tested. In this
case the value of ci,n in (6) and (7) is calculated for the time
when zn signals arrive from the motes.

1
N

1
z-1

1
z-1

c*1,n

c*2,n

c1,n

c2,n

z’n

cN,n

1
z-1

c*N,n

– zn

+

en

x1,n

x2,n

xN,n

The basic problem of this system emerges, when the
utilization of lots of sensors is required, since the bandwidth
of the radio network allows the transmission of the data of
about 3-4 sensors at the sampling frequency of cca. 2 kHz.
The number of the microphones in some systems might be
about of the order of ten, so it is advantageous to work out
methods for the increasing of the number of the sensors.
The large number of sensors is required because the noise
suppression is restricted to a limited surrounding of the
microphones, so for appropriate noise cancellation in large
space more sensors are required.

B. Data Reduction with Distributed Signal Processing
One possible way for the decreasing of the amount of

data to be sent over the network is the pre-processing of the
signals and the transmission of only the signal parameters
required for the control. In our system it is solved by the
Fourier-decomposition of the signals right on the motes.
The structure of this kind of ANC system can be seen in
Fig. 12.

Since in the control algorithm (8) only the Fourier-
coefficients are required, this solution causes no change in
the functionality. Since these coefficients change slower
than the signal itself, lower transmission rate is allowed, so
the limitation of bandwidth is less relevant in terms of
number of noise sensing motes. This makes possible the
expansion the number of motes without decreasing the
sampling frequency. A trade-off is, however, necessary in
the number of sensors, since the higher the number of the
sensors is the longer the time is that is required for the
transmission of their data. This reduces the dynamic of the
system, so makes the control slower.

Fig. 12. ANC system with distributed Fourier-analyzer

The bottleneck of the system in this case is the
computational capacity of the motes, since the calculation
of the FA structure poses high computational demand on the
motes.

In this case beyond the synchronous sampling in WSN
also another synchronization problem emerges: the
consistency of the base functions has to be ensured in the

whole system (on each mote and on the DSP), since the
phase value of the Fourier-coefficients can be interpreted
only by maintaining a global reference (the base functions)
in the system. It is solved with the continuous transmission
of the phase and frequency of the base functions (complex
exponential functions), but synchronization of sampling on
motes is a necessary condition.

VII. CONLUSIONS

In this paper the introduction of some aspects of the
design of a wireless active noise control system was
addressed. The two most important issues in connection
with the signal observation required for the control
algorithm are the sampling of the controlled signal and the
synchronization of the sampling. In the case of the sampling
of signals the effects of different kind of disturbances were
investigated. The constrained resource of sensor network in
terms of the bandwidth of the radio channel requires special
solutions in the data transmission method in order to make
the system suitable for the integration of more sensors.
These methods reduce the amount of data to be transmitted
by the sensors, so make the bandwidth limit less relevant.

The main goal in the future is the research of the
possibilities of the extension of the number of sensors
without the degradation of the performance.

REFERENCES
[1.] Mathiesen, M., G. Thonet, N. Aakwaag, „Wireless ad-hoc networks

for industrial automation: current trends and future prospects,”
Proceedings of the IFAC World Congress, Prague, Czech Republic,
July 4-8, 2005

[2.] Akyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E. Cayirci,
„Wireless sensor networks: A survey,” Comput. Netw., vol. 38, no. 4,
pp. 393-422, 2002

[3.] Kuo, S. M., D. R. Morgan, „Active Noise Control: A Tutorial
Review,” Proceedings of the IEEE, vol. 87. No. 6., pp. 943-973,
June. 1999.

[4.] Orosz, Gy., L. Sujbert, G. Péceli, „Testbed for Wireless Adaptive
Signal Processing Systems,” Proceedings of the IEEE
Instrumentation and Measurement Technology Conference,
Warsaw, Poland, May 1-3, 2007

[5.] URL: www.analog.com/UploadedFiles/Associated_Docs/
50400613ADSP_21364_EZ_KIT_Lite_Manual_Rev_2.0.pdf

[6.] URL: www.xbow.com/Support/Support_pdf_files/
MPR-MIB_Series_Users_Manual.pdf

[7.] Gay, D., P. Levis, D. Culler, E. Brewer, nesC 1.1 Language
Reference Manual, May 2003

[8.] L. Sujbert, „A new filtered LMS algorithm for active noise control,”
Proceedings of the Active '99 - The International EAA Symposium
on Active Control of Sound and Vibration, Dec. 1999, Fort
Lauderdale, Florida, USA, pp. 1101-1110.

[9.] Elliott., S. J., P. A. Nelson, „The Behavior of a multiple Channel
Active Control System”, IEEE Trans. on Signal Processing, Vol. 40,
No. 5, May 1992.

[10.] Brannon, B., „Aperture Uncertainty and ADC System Performance,”
Application Note AN-501, Analog Devices

[11.] Molnár, K., L. Sujbert, G. Péceli: „Synchronisation of sampling in
distributed signal processing systems,” Int Symp. On Intelligent
Signal Processing, WISP 2003., Budapest, Hungary, sept. 2003.

[12.] Sujbert, L., G. Péceli, „Periodic noise cancellation using resonator
based controller,” 1997 Int. Symp. on Active Control of Sound and
Vibration, ACTIVE ’97, pp. 905-916, Budapest, Hungary, Aug.
1997.

 R(z)

reference signal

error
signals

control
signals

 DSP

 FA

moteN

 FA

mote2

 FA

mote1

: synchronization
: data (Fourier-coefficients) transmission

