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Abstract – This paper introduces some practical issues of 

the deployment of wireless sensor networks (WSNs) in closed 
loop digital signal processing (DSP) and control systems that 
require relatively fast, continuous data flow and real-time 
operation of the data collecting network, as in the case of 
traditional systems where sensors are attached by wire.  

The difficulties of the design of the wireless control and 
signal processing systems are introduced through a particular 
application that is an active noise control system. Main topics 
that are presented are the scheduling of tasks, synchronization 
and distributed signal processing.  

I . INTRODUCTION 

This paper deals with the application of wireless sensor 
networks (WNSs) in relatively high speed feedback signal 
processing systems. The design of these systems requires 
different approach than typical applications of wireless 
sensor networks (e.g. health or environmental monitoring 
[2]), where the observed signals change relatively slowly 
(e.g. temperature, humidity), and the interactions that have 
to be performed are not time critical. Computations and 
evaluation of results can also be performed offline, or at 
least with soft time limit. However, in the traditional digital 
signal processing (DSP) systems―which can be called 
“real” signal processing systems―signal processing 
algorithms run real time, and expect the data to be 
processed from the data sources continuously with the 
sampling frequency of at least some kilohertz. In the case of 
feedback systems the situation is even worst, since the 
interactions are carried out according to the input signals. If 
inputs are provided by the WSN, faults in the network can 
cause even the instability of the whole system. In these DSP 
systems the widespread methods for the general 
applications of the sensor networks can fail, and they are no 
more suitable for their original purpose [1]. 

Despite of the difficulties, the research of the field of 
wireless signal processing is promising because of the 
obvious advantages of the utilization of the WSN’s [2]. 
These attractive features of WSNs are e.g. the easy 
installation and maintenance of sensors, the flexibility of the 
arrangement, and the radio communication that eliminates 
the costs of cabling. 

The difficulties of the design of the wireless control and 
signal processing systems are introduced through a 

particular application. In this case study some variants of an 
active noise control (ANC) system [3][4] are presented as 
typical instances of wireless signal processing systems. 

The structure of the paper is the following. In Section II. 
the hardware and software configuration of the wireless 
signal processing system is described. The common 
properties of ANC systems are presented in Section III. The 
difficulties in connection with the scheduling of tasks are 
discussed in Section IV. The importance of the 
synchronization and typical solutions for the 
synchronization are showed in Section V. Section VI deals 
with the data transmission and signal processing properties 
of the realized systems putting emphasis on data reduction. 

II. SYSTEM DESCRIPTION 

A. Hardware Configuration 
The block diagram of the designed active noise control 

system that utilizes wireless sensors can be seen in Fig. 1. 
The system basically consists of two units. The main parts 
of signal processing algorithms are implemented on a DSP 
evaluation board of type ADSP-21364 EZ-KIT LITE [5], 
which includes an ADSP-21364 (SHARC) processor. The 
DSP is a 32 bit floating point one with a maximal clock 
frequency of 330 MHz and dual arithmetic units. The DSP 
is connected to an AD1835 codec that has two analog input 
and eight analog output channels, through which signals can 
be fed to the loudspeakers. Such number of output channels 
ensures the possibility of realization of extensive systems. 
The analog inputs can be used for collecting reference 
signals that is required for most ANC systems. Reference 
signals can be collected also by motes. The acoustic signal 
is sensed by the elements of WSN, which is built up of 
Berkeley micaz motes [6]. These motes are intelligent 
sensors that consist of an ATmega128 eight bit 
microcontroller with a clock frequency of 7.3728 MHz, a 
CC2420 2.4 GHz ZigBee compatible radio transceiver and 
an MTS310 sensor board. The data transfer rate of the 
transceiver IC is 250 kilobit per second (kbps) including a 
preamble section, a header and a footer that are handled by 
hardware. The sensor board includes also a microphone 
with variable gain amplifier, the output signal of which is 
converted by a 10 bit analog to digital converter (ADC) of 
the microcontroller. 



 
Fig. 1. Block diagram of the system 

Most of motes (mote1…moteN in Fig. 1) are responsible 
for noise sensing. They transmit data towards the DSP. Data 
from the wireless network are forwarded to the DSP by a 
gateway mote (mote0 in Fig. 1). The DSP and the gateway 
mote are connected via asynchronous serial port. The 
transmission rate of communication between the two units is 
115.2 kbps. The programming of motes is carried out by an 
interface board of type MIB510 [6]. It serves as a power 
supply and RS232 line driver for gateway mote, as well. 

In order to ensure the reliable and real time operation of 
the system—that is one of the main tasks in the control 
system—a Time Division Multiplexing (TDM) network 
operation was utilized: the network operation is divided into 
periods, in which each mote transmits data to the gateway in 
succession in predetermined order and time instants. 

The PC basically serves as developing and debugging 
tool for both platforms. Additionally, it is suitable for 
logging and visualization of data sent by gateway or DSP 
over serial port. 

An independent loudspeaker driven by a signal generator 
can be utilized to generate external sound. It can be used as 
an artificial noise source while testing the ANC system, or 
as general examination or excitation signal for test purpose. 

B. Software Components 
The software for the DSP was developed with the 

VisualDSP++ software developing environment provided 
for Analog Devices DSPs. The main programming language 
is C but assembly subroutines are also used. 

For software development for motes the TinyOS 
embedded operating system (OS) was used, but 
modifications should have been carried out in order to 
increase the code efficiency. Typical difficulties emerge in 
time critical sections, where accurate timing of tasks is 
inevitable. Such tasks are timing of the sampling the 
microphone’s signal, and accurate detection of arrival time 
of radio messages, which is important task in 
synchronization. The OS provides convenient interface for 
handling the hardware elements e.g. radio, AD converter. 

The programming language of the TinyOS is nesC [7] 
that is a component based language. The programs are built 
up of components (or modules) that are connected to each 
other via interfaces. These components are provided with 
the OS, but components can also be created by the user of 
the OS. Each component is responsible for a certain task 

e.g. handling of the radio or microphone, and the user code 
is also included in an independent component. The 
interfaces include events and commands. Via events one 
component can notify another one of certain events (e.g. the 
arrival of a radio message). Via commands one component 
can use the services of another component (e.g. sending a 
message). 

The scheduling entities of the OS are the following in 
descending order of priority (beginning with the highest 
priority): 

1. HW interrupts 
2. Events and commands 
3. Tasks 

The HW interrupts can interrupt each entity. Events and 
commands can interrupt each other and the tasks. Tasks can 
not interrupt any scheduling entity. 

III. INTRODUCTION OF ACTIVE NOISE CONTROL 

The general linearized model of ANC systems can be 
seen in Fig. 2.  

 
Fig. 2. General structure of ANC systems 

The purpose of ANC systems [3] is to suppress mainly 
low frequency acoustic noises by means of destructive 
interference. The operation can be summarized as follows: 
according to the reference and the error signals (x and e 
respectively), the ANC algorithm R(z) produces such 
secondary noise y which minimizes the power of the error 
signal e. R(z) is implemented mainly on DSP because of its 
computational complexity. y is radiated by loudspeakers 
and arrives to the microphones through the so called 

R(z) A(z) 

d 

– 

+ 

e 

x 
y 

d: primary noise 
y: secondary noise 
e: error signal: e = d – y·A(z) = d – y’  
A(z): transfer function of secondary path 
P(z): transfer function of primary path 
R(z): active noise control algorithm 
x: reference signal 

y' 

P(z) 

mote1 

moteN 

mote2 

DSP mote0 codec 

 DSP board 

reference signal 

PC 

gateway (base station) 

Signal 
generator 



secondary acoustic path that is described by an A(z) matrix 
which consists of the transfer functions between each output 
and each input of the signal processing algorithm R(z). A(z) 
can be treated as a linear system. The error signal e (i.e. 
remaining noise) is the result of the interference of the 
primary noise d and secondary noise y’ , and it is sensed by 
microphones.  

In the ANC algorithm a kind of inverse model of the 
secondary path A(z) is applied which is denoted by W(z). 
For ensuring the stability of the system, W(z) is often 
chosen as follows [8][9]: 

 

                                W(z) = A(z)# (1) 
 

where # denotes the pseudo- (or Moore-Penrose) inverse. 
The secondary path A(z) should be identified in advance. 
The stability criterion of the system is: 

 

                        –π /2 < arc(λl) < π /2 (2) 
                    λl = λl(A(z)W(z));   l=1…L (3) 
 

where L is the number of inputs. Eq. (2) and (3) means that 
all eigenvalues λl of the term A(z)W(z) must have positive 
real part for each frequencies, where noise is present. For 
single channel case (only one microphone and one 
loudspeaker are used) it means, that the phase delay of A(z) 
must be known at least with the accuracy of 90º. A(z) 
involves the transfer function of the entire signal path 
between the output and input of the noise control algorithm 
(i.e. ADC, DAC, analog signal conditioner circuits, transfer 
functions of microphones and loudspeakers, and the transfer 
function of WSN’s data routing is also included). The main 
goal in ANC systems (and in our case also in the WSN) to 
ensure the permanency of A(z) on each frequency, because 
so can W(z) be determined unambiguously and utilized 
during the entire operation time of the system. 

ANC systems can be regarded as model adaptive control 
systems. The reference signal x comes from the noise 
source and is utilized by the ANC algorithm. x passes also 
through the secondary path P(z) and comes to the 
microphones. The aim is to make the output of the acoustic 
system (y’ ) to be equal to the output d of the reference 
system P(z), so the equivalence of R(z)A(z) and P(z) has to 
be ensured by the controller R(z) as far as possible. 

IV. EFFECTS OF TASK’S PIORITY ON SIGNAL SENSING 

In this section the importance of the priority of the tasks 
in the systems is introduced, putting special emphasize on 
the timing of the sampling that plays important role, since 
the observed acoustic signal changes relatively fast. 

The operating system (OS) provides more possible ways 
for the timing of certain processes. These methods use the 
hardware timers of the microcontroller in different ways.  

If a software timer component is utilized that uses the 
same hardware timer for serving more tasks through 
different interfaces, this would result in the degradation of 
the accuracy of the timing. This is because at the interrupt 
of the hardware timer the software timer component has to 
choose on which interface it has to signal an event. The time 
interval Tdelay between the real hardware interrupt and the 
generation of the event on a timer interface is not 
deterministic, since the components connected to the timer 
component may request timing event at arbitrary time 
instants, so the timing requests of different components 
disturb each other. In Fig. 3.a the spectrum of a sinewave of 
the frequency of 200 Hz can be seen, the sampling of which 
is scheduled by a software timer component that is shared 
between more modules. The signal source was the external 
loudspeaker connected to the signal generator (see Fig. 1), 
and the sampling was performed by a mote that sent the 
samples over the base station to the PC, where data are 
processed. It can be seen that the spectrum is distorted; 
instead of a definite line (that is expected as the spectrum of 
a sinewave) the spectrum line is spread, since the sampling 
is not equidistant because of the insufficiency of the timer, 
and sampling is disturbed by random processes. In Fig. 3.b 
the timing of the sampling of the same sinewave is carried 
out in an interrupt routine of a hardware timer, so this 
timing process is disturbed only by other IT routines that 
are mainly short code segments, so their disturbing effect is 
negligible.  

The sampling of the observed signal can also be 
disturbed by tasks that are related not only to the timing of 
processes. Measurements are performed in order to 
investigate the effects of these kind of disturbances on the 
observation of the signal in the following way.  
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Fig. 3. Sampling with different methods. a: Sampling with utilization of shared timer. b: Sampling with utilization of single timer. 

  



A sinewave was sampled by a mote, the sampling was 
controlled by a separate HW timer, and sampling was 
started in an event. Since the event has medium level 
priority it can be interrupted, so the effect of other processes 
can be investigated. It offers, however, satisfying quality of 
timing, since the processes that can interrupt events are 
mainly short ones. As a disturbing process the radio 
component was used, since it is used anyway for the 
transmission of the collected data. Data are sent in 25 byte 
size packets. For the radio component a backoff time 
parameter (tbackoff) can be set. After the initiation of the 
sending of a message, the physical transmission of the 
message is started within a tbackoff interval with uniform 
distribution. With the different setting of the backoff time 
the spectrum of the observed sinewave was investigated. 
The lowest the value of the tbackoff parameter is, the more 
deterministic the effect of the operation of the radio 
component is. The spectrum of the sinewave that was 
sampled at different tbackoff parameter settings can be seen in 
Fig. 4. In the second line of the figure series the main 
spectrum lines can be seen. The backoff time decreases 

from right to left, and it is approximately 2.5 ms, 0.5 ms and 
0 ms in Fig. 4.c, 4.b, 4.a respectively. According to the 
spectrums it can be concluded, that the effect of the 
disturbing processes depends on its deterministic or 
stochastic nature. If the behavior of the disturbance is 
deterministic, it influences the sampling periodically, so its 
effect in the spectrum appears as parasitic spectrum lines, as 
it can be seen in Fig. 4.a. Since the modification of the 
original sampling time instants is a nonlinear operation, it 
can be interpreted as the “mixing” of the frequency of the 
observed signal (fo) and the frequency of the disturbance 
(fd). Hence, the spurious spectrum lines appear mainly on 
the frequencies that are the linear combination of the fo and 
fd. The random disturbances—that are produced with higher 
backoff interval—cause the disappearing of spurious 
spectrum lines, the spreading of the spectrum lines of the 
original sampled signal and the increasing of the noise [10], 
as it can be seen in Fig. 4.c. In Fig. 4.b the spurious 
spectrum lines has lower amplitude than in Fig. 4.a, since 
the disturbance of radio is no more periodic; the main 
spectrum line is, however, sharper than that in the Fig. 4.c. 
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Fig. 4. Effect of the background tasks on sampling. a: Periodic disturbance: period=Tp=28ms, tbackoff =0 ms. b: average period=Tp, tbackoff =0.5 ms. 
c: average period=Tp, tbackoff =2.5 ms.  

V. SYNCHRONIZATION 

A. General Issues of Synchronization 
A crucial task in the system is the synchronization, 

because there are many autonomous subsystems (each mote 
and the DSP). Synchronization has key importance because 
of the strict stability condition referring to the knowledge of 
the feedback path.  

If the sampling on motes and processing of the sampled 
data on the DSP occurred independently of each other, the 
delay between the sampling and the processing of the signal 
would vary at least in a one sampling period interval, as it 
can be seen in Fig. 5. In the figure the sampling and 
processing times are signed with vertical lines on the time 

axes, and it is assumed that the data transmission time Tt is 
constant and the DSP processes the most currently received 
data. Constant Tt is ensured by the deterministic network 
protocol.  

 
Fig. 5.  Unsynchronized units 
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In Ti the delay between the processing and sampling (Ti 
and Tn respectively) is about Tt, since the data arrives 
directly before Ti. However, in the processing time Ti−1 the 
delay is (Tt + TSmote), since the data sampled in Tn−1 arrives 
slightly after Ti−1 so the DSP processes the previous data 
that has arrived approximately TSmote time before Ti−1. This 
example shows the two extreme values of the delay, but it 
can change anywhere within the [Tt…Tt+TSmote] interval. 
Since A(z) includes this delay, it changes also continuously 
during the operation so it differs from its identified value, 
hence W(z) is no more optimal. Moreover it can occur that 
W(z) doesn’t satisfy even the stability condition. This is the 
simplest case, when the DSP processes the most current 
data, but more delay can be introduced in other processing 
methods. In many applications the main goal is to hold the 
delay on constant level, since constant delay can be taken 
into account at the design phase, but changing delay alters 
the original conditions. 

For the synchronization there are different basic 
approaches [11]. Units can be synchronized by matching the 
time instants of sampling and signal processing physically 
to each other, which requires the tuning of the clock 
(i.e. scheduler) of the units. 

Another approach for the synchronization is the 
interpolation, when the effect of unaligned sampling and 
processing time instants are compensated by computation. 
By means of interpolation the exact value of the signal in 
the processing time instants can be estimated, so eliminating 
the changing delay. Interpolation can be realized on the 
motes or on the DSP. In the first case the DSP acquires 
asynchronously data, and motes calculate the signal value at 
the request time instants. In the second case the motes send 
data asynchronously and the DSP estimates the value of the 
signal in the processing points according to the previous 
samples. In the first case the computation is distributed in 
the network, but the transmission of request messages 
means extra load for the network. In the second case the 
interpolation demands high computation load on the DSP, 
since the data from every mote should be handled 
individually. 

The interpolation can also mean the interpolation of the 
algorithms’ parameters. Let’s take the example when the 
data x arriving from the network is multiplied by a function 
f(t). In the case when no synchronization is applied, the 
input signal x(Tn) (sampled in Tn in Fig. 5) would be 
multiplied in the processing time Ti by f(Ti). With a 
synchronized algorithm, however, x(Tn) is multiplied by 
f(Ti–dt), where dt is the time difference between the arrival 
time of x(Tn) and Ti, so the changing delay dt is 
compensated. 

In our system the following synchronization method is 
applied. On the motes the sampling instants are 
synchronized (sampling occurs on each mote at the same 
time) and the DSP uses linear interpolation for fitting the 
data arrived from WSN to its processing time. This is a 
convenient solution, since the data arrived from the motes 
can be handled uniformly in the interpolating method―the 
same parameters can be used in the interpolation that can be 
performed for each mote at the same time―since they are 
sampled by motes synchronously. The physical 
synchronization of the whole system is not possible, since 

the sampling frequency of the DSP is fixed, and in some 
cases the sampling frequency on the motes can not reach 
that of the DSP. Interpolation on motes would require extra 
information messages that are sent from the DSP to the 
motes, which would cause extra network traffic. 

B. Synchronization in Sensor Network 
Since the synchronization of motes has key importance, 

it is presented in detail. A PLL like method (see Fig. 6) was 
worked out that requires a reference mote the sampling rate 
of which the other motes are synchronized to. In the timers 
of the motes a counter runs with the clock frequency of the 
motes. When it reaches its programmed maximal value 
(Ndiv) it will be cleared, and an interrupt is generated where 
the sampling of microphone’s signal occurs. The value Ndiv 
determines the sampling frequency: fs = Ts

−1 = fquartz / Ndiv 
(where Ts is the sampling interval). The time function of the 
value of the counter is a sawtooth signal, at the falling edge 
of which the sampling is carried out. The synchronization of 
the sampling frequency on motes is reached by holding the 
phase difference between the sawtooth signals constant with 
the structure that can be seen in Fig. 6. The reference mote 
sends synchronization messages at the sampling time 
instants. At the reception time of these messages the motes 
read the value of the counter of their timer that is Nl. Since 
the value of the sawtooth signal is proportional with its 
phase, this sampling and hold operation is analogous with 
the phase detector function, so with the tuning of the 
sampling frequency (changing Ndiv) the phase difference 
between the sawtooth signal on the reference and on the 
other motes (Nl) can be held constant as shown in Fig. 7 
(solid line). 

 

 
Fig. 6. Block diagram of synchronization algorithm 

 
If the desired value of Nl is Na, then the following 

algorithm has to be followed: if Nl < Na, fs should be 
increased (Ndiv should be decreased), otherwise fs should be 
decreased. If no interaction is taken place this phase 
changes continuously―as shown in Fig. 7 (dashed 
line)―because of the frequency error of the clock 
generators of the motes. Since the maximal value of the 
counter of the timer is Ndiv, the maximal output value of the 
phase detector is also Ndiv that is in our case 4096. Since the 
synchronization messages carry information only on their 
time of arrival, any data messages can be used for this 
purpose, the only constrain is, that it should be sent by the 
reference mote at predefined points. It means, that 
synchronization of the sampling in this system means no 

reference 
timer 

S/H controller 
tuneable 

timer 
– 

Na 

Nl 

fquartz_2 

fquartz_ref 

Ndiv 

reception time of 
the messages 



extra network traffic, since it is realized with data messages 
that should be sent anyway. The synchronization needn’t to 
be performed in every sampling period, because the clock 
of motes are accurate enough to stay near (some 
microsecond) to the synchronized state for longer time 
(cca. 1 sec). 
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Fig. 7. Synchronization measurement results 

C. Synchronization on the DSP 
The DSP uses linear interpolation. It means, that the DSP 

measures the time dtk and in the processing time Tk 
(see Fig. 5) it uses in the signal processing algorithm the 

interpolated value of the input signal that is )(ˆ
kdtf . The 

interpolation is carried out according to Fig. 8. d2 is the last 
and d1 is the next value of the input signal. Since d1 is not 
known in Tk, one sample delay has to be introduced. A 
possible form of the interpolation is (4): 

 
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Fig. 8. Linear interpolation 

 

It can be seen that the interpolation can be interpreted as a 
FIR (finite impulse response) filtering, where the filter 
coefficients are calculated by using dt. The interpolation 
can be carried out by using the Lagrange-polynomials: in an 
n order interpolation a polynomial of order n is fitted on the 

(n+1) samples, and according to this polynomial the value 
of the fitted function can be estimated also between the 
sampling points, where the exact value is known. In the case 
of linear interpolation first order Lagrange-polynomials are 
used. 

The order of interpolation is chosen according to trade-
offs between computational demands, delay and accuracy. 
Higher order interpolation requires higher computational 
capacity since the coefficients of the FIR filter has to be 
calculated real-time according to dt. Higher order 
interpolation uses more samples from the past, so increases 
the delay, which suggests the utilization of lower order 
interpolation, since in a control loop delay reduces the 
dynamics of the system. In Fig. 9 and 10 the properties of 
first and second order interpolation is compared since these 
two methods has the lowest delay. The calculation of 
second order interpolation is carried out as follows: 

 

 )(ˆ dtf  = 0.5(1+a)ad1 + (1–a2) d1 + 0.5(1–a)ad3 (5) 
 

where a=dt/TSmote. The transfer functions are calculated 
using different dt values. In the figures dt is interpreted 
relatively to the unit sampling interval Ts. According to the 
magnitude response, the second order interpolation has 
better properties since it has nearly unit gain also on higher 
frequencies. In Fig. 9 the curves that belong to dtj=1−dti 
parameter pairs are overlapped, since the absolute value of 
(4) is symmetrical for these pairs. 

The delay is calculated by equation (–φ(ϑ )/ϑ ), where 
φ(ϑ ) is the phase characteristics of the interpolation and ϑ  
is the frequency relative to the sampling frequency. The 
delay vs. frequency plot shows that on low frequency each 
interpolation provides the appropriate –dt delay, so they 
compensates the dt delay in Fig. 8 and Fig. 5. In the case of 
second order interpolation the delay characteristics is not 
symmetric, since it uses two samples from past (d2 and d3) 
and one (d1) from the future (naturally introducing the one 
sample extra delay for ensuring the causality), thus in some 
cases it provides worst delay compensation (dt=0.6). Due to 
this asymmetry it is recommended to use odd order 
interpolation. Because of these facts first order interpolation 
was chosen in our system, since according to practical tests 
it provides enough accuracy in estimation, but requires 
minimal computational capacity. The inaccuracy of the 
interpolation in terms both the delay compensation and 
amplitude estimation decreases on higher frequencies, so it 
is recommended not to use the full bandwidth that would be 
allowed by the sampling frequency. 
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Fig. 9. Transfer function and delay of linear interpolation 
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Fig. 10. Transfer function and delay of linear second order interpolation 

 
 

VI. DATA TRANSMISSION AND SIGNAL PROCESSING 

METHODS 

A. Simple Signal Collecting Network 
In the basic configuration the wireless sensor network 

performs the sampling of the noise to be suppressed, and the 
sensors send the sampled value to the DSP over a gateway 
mote. Data are transmitted in 25 sample size radio packets, 
since beyond the overheads this is the maximal size of a 
data block, so the ratio of the overhead that belong to each 
packet can be minimized. This makes the utilization of the 
radio channel more efficient. 

 

 
Fig. 11. Block diagram of recursive Fourier-analyzer 

 
The noise control algorithm is a resonator based one [12]. 

This algorithm is optimized for the suppression of periodic 
acoustic disturbances. The basic building block of the 
system is a resonator based recursive Fourier-analyzer (FA) 
the block diagram of which can be seen in Fig. 11. The 
system is described by the state equations (6) and (7) 

 

 xi,n+1 = xi,n + 1/N·c* i,n·en (6) 
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where n is the time index, f1 is the fundamental harmonic 
frequency and N denotes the number of the Fourier-
coefficients. The complex basis functions that belong to the 
i-th harmonic frequency are denoted by ci,n. The structure is 

appropriate for recursive calculation of Fourier-coefficients 
of periodic signals. The state variables xi are the Fourier-
coefficients: (7). The operation can be explained as follows. 
The i-th resonator channel has infinite gain on the i-th 
harmonic frequency fi, since the input signal of the 
frequency of fi is mixed down to DC by multiplying by c* i,n 
where the integrator has infinite gain. Since this signal is 
mixed up again by ci,n this means that infinite gain is pushed 
up to fi. Since the resonator is in a negative feedback loop, 
the infinite gain means that the error signal on the frequency 
fi is zero.  

In the noise control system the signal of each sensor is 
fed to a FA block (these data are denoted by zn in Fig. 11), 
so the noise signals are decomposed into Fourier-

coefficients. Let’s denote by jix  the i-th harmonic Fourier-

coefficient that belongs to the j-th input (sensor). The output 
signal is calculated according to (8) and (9): 
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where wk,l(zi) denotes the k-th row and l-th column of W(zi), 
L and K denote the number of the inputs and outputs of the 

system respectively. k
iq is the i-th harmonic Fourier-

coefficient that belongs to the k-th output. k
ny  is the signal 

on the k-th output (the input signal of the k-th loudspeaker 
in Fig. 1). This algorithm can be interpreted as an integrator 
type controller built on the input Fourier-coefficients with 
zero reference: the input (i.e. remaining) noise has to be 
zero. The parameter µ is the time constant of the integration, 
and determines the dynamic behaviour of the system. Since 

the control signals k
ny  got to the sensors through a transfer 

function matrix A(zi), the input signals j
ix  are coupled 

through the matrix W(zi) to the output. W(zi) ensures the 
negative feedback that is required for the stability.    

The synchronization of the DSP to the motes is basically 
performed by linear interpolation, but the interpolation of 
the whole FA structure to the motes was also tested. In this 
case the value of ci,n in (6) and (7) is calculated for the time 
when zn signals arrive from the motes. 
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The basic problem of this system emerges, when the 
utilization of lots of sensors is required, since the bandwidth 
of the radio network allows the transmission of the data of 
about 3-4 sensors at the sampling frequency of cca. 2 kHz. 
The number of the microphones in some systems might be 
about of the order of ten, so it is advantageous to work out 
methods for the increasing of the number of the sensors. 
The large number of sensors is required because the noise 
suppression is restricted to a limited surrounding of the 
microphones, so for appropriate noise cancellation in large 
space more sensors are required. 

B. Data Reduction with Distributed Signal Processing 
One possible way for the decreasing of the amount of 

data to be sent over the network is the pre-processing of the 
signals and the transmission of only the signal parameters 
required for the control. In our system it is solved by the 
Fourier-decomposition of the signals right on the motes. 
The structure of this kind of ANC system can be seen in 
Fig. 12.  

Since in the control algorithm (8) only the Fourier-
coefficients are required, this solution causes no change in 
the functionality. Since these coefficients change slower 
than the signal itself, lower transmission rate is allowed, so 
the limitation of bandwidth is less relevant in terms of 
number of noise sensing motes. This makes possible the 
expansion the number of motes without decreasing the 
sampling frequency. A trade-off is, however, necessary in 
the number of sensors, since the higher the number of the 
sensors is the longer the time is that is required for the 
transmission of their data. This reduces the dynamic of the 
system, so makes the control slower. 

 

 
Fig. 12. ANC system with distributed Fourier-analyzer 

The bottleneck of the system in this case is the 
computational capacity of the motes, since the calculation 
of the FA structure poses high computational demand on the 
motes. 

In this case beyond the synchronous sampling in WSN 
also another synchronization problem emerges: the 
consistency of the base functions has to be ensured in the 

whole system (on each mote and on the DSP), since the 
phase value of the Fourier-coefficients can be interpreted 
only by maintaining a global reference (the base functions) 
in the system. It is solved with the continuous transmission 
of the phase and frequency of the base functions (complex 
exponential functions), but synchronization of sampling on 
motes is a necessary condition. 

VII. CONLUSIONS 

In this paper the introduction of some aspects of the 
design of a wireless active noise control system was 
addressed. The two most important issues in connection 
with the signal observation required for the control 
algorithm are the sampling of the controlled signal and the 
synchronization of the sampling. In the case of the sampling 
of signals the effects of different kind of disturbances were 
investigated. The constrained resource of sensor network in 
terms of the bandwidth of the radio channel requires special 
solutions in the data transmission method in order to make 
the system suitable for the integration of more sensors. 
These methods reduce the amount of data to be transmitted 
by the sensors, so make the bandwidth limit less relevant. 

The main goal in the future is the research of the 
possibilities of the extension of the number of sensors 
without the degradation of the performance. 
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