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Analysis of Resonator-Based Harmonic Estimation
in Case of Data Loss

György Orosz, Ĺaszĺo Sujbert,Member, IEEE,and Ǵabor Ṕeceli, Fellow, IEEE

Abstract—The paper investigates the behavior of the resonator-
based spectral observer (RBO) for lossy measurements. The RBO is
an efficient real-time method designed for measuring the harmonic
components of periodic signals. Recently some experiments have
shown that RBO can tolerate some data loss, but no exact criteria
of the convergence have been available. The main contribution of
this paper is a set of conditions which enable to predict whether
the observer is able to find the harmonic components or not. The
necessary condition of convergence helps to recognize the situations
when the error-free estimation of the harmonic components is not
possible. The sufficient conditions of convergence give safe regions
of data loss parameters (e.g., data loss ratio) where the unbiased
harmonic estimation can always be ensured. Simulations are also
presented to demonstrate the effect data loss in different situations.

Index Terms—resonator-based observer, recursive spectrum
analysis, data loss, missing observations, convergence

I. I NTRODUCTION

Resonator-based observer (RBO) is a recursive algorithm
which can be used for the calculation of the harmonic com-
ponents of periodic signals. One of the advantages of the
recursive spectrum estimation algorithms is that they have
better tracking property than block-based methods (e.g., DFT:
Discrete Fourier Transform). This is particularly important
when the spectrum estimation is used in real-time systems.
Application examples of the RBO are, e.g., active noise and
distortion control [1], [2], [3], analysis of power line signals
[4], [5], electronic instruments [6], system identification [7],
etc.

If the frequency of a periodic signal is known, the RBO can
estimate its Fourier components without leakage and picket
fence even in the case of non-coherent sampling.

The RBO has proven to be robust in different real-life
applications [1], [2], [5], [6], where the measurement is
corrupted by noise, and the analog part of the system shows
weak nonlinear behavior. Recently some experiments have
shown that RBO can also tolerate some data loss [3]. However,
no limits or rules are available for data loss that allow unbiased
measurements of harmonic components.

In fact, the RBO is a state observer, and its periodic input
signal is modeled as the output of a linear system whose
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observed state variables represent the harmonic components.
The Kalman filter is a potential competitor of the RBO in
the field of observer-based, recursive spectrum estimation
[8], however, data loss analysis of Kalman filter [9] has not
been applied to this particular application to reveal practically
important properties. Several other real-time algorithmsexist,
e.g., [10], [11], [12], [13] and references therein, but theeffect
of data loss on these algorithms is not known yet. Analysis of
data loss is found in the case of offline, batch methods [14],
[15], [16], but these papers do not discuss the case of recursive
spectrum estimation. Data loss can be regarded as a special
case of uneven sampling, and the observer-based spectrum
estimation has also been extended to unevenly sampled data
[17]. However, it has not been explicitly investigated, howthe
sampling pattern influences the convergence of the observer.

The aim of this paper is to clarify the influence of data loss
on the operation of the RBO. To achieve this, first an appropri-
ate ”lossy” periodic signal model and corresponding observer
is introduced. Then necessary and sufficient conditions of the
unbiased harmonic estimation are developed. The conditions
enable to calculate safe operating regions of parameters ofdata
loss which ensure that harmonic decomposition can be solved
for any pattern of data loss. Such bounds can be given for data
loss probability and for the minimal length of consecutively
processed samples. It is shown that random data loss allows
unbiased harmonic estimation. Examples are also presented
which demonstrate that both the signal parameters and the
data loss pattern influence the convergence of the algorithm.

The paper is structured as follows. Section II shortly sum-
marizes the operation of the RBO. The method of the handling
of data loss is discussed in Section III. In Section IV, a set
of conditions are derived for the convergence of the RBO.
In Section V, simulation examples are presented, where the
theorems are applied to different data loss patterns.

II. REVIEW OF THE RESONATOR-BASED STRUCTURE

The RBO is based on the so-called conceptual signal model
[18], which means that a periodic signal can be represented as
the output of a linear system whose state variables correspond
to the harmonic components of the signal [18], [19], [20].
Hence, the harmonic components can be estimated by a
properly designed state observer. Different standard methods,
like Luenberger observer and Kalman filter, have already been
proposed for the state estimation. The RBO uses the Luen-
berger concept. The advantage of the RBO over the Kalman-
filter-based algorithm is that its design does not require the
exact knowledge of the covariance matrix of noise [8].
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Fig. 1. Block diagram of the resonator-based observer

The conceptual signal model [18] is described as follows:

xn+1 = Axn, xn = [xi,n]T ∈ C
N×1, i = −P . . . P, (1)

yn =
P

∑

i=−P

xi,n = cTxn, (2)

c = [1 1 . . . 1]T ∈ R
N×1, (3)

A = diag(zi) = 〈zi〉 ∈ C
N×N , i = −P . . . P, (4)

zi = e2πifr , (5)

where yn is the output of the signal model (the input of
the observer). The signalyn is the sum ofP real harmonic
components so it is composed ofN = 2P + 1 complex
exponential functions including DC as well. The harmonic
exponential components are collected into the state vectorxn.
Let us note thatx0 consists of the complex Fourier coefficients
of yn. As (1) shows, a complex harmonic component,xi,n+1,
is obtained by multiplying its previous value byzi, which
rotates it at every sampling instant by a phase corresponding to
its frequency. The state variables form complex conjugate pairs
for real signals:xi,n = x∗

−i,n. The relative fundamental fre-
quency ofyn is denoted byfr; it is the ratio of the fundamental
and the sampling frequencies:fr = f1

fs

. The frequency of the
i-th harmonic component is:{ifr; i = −P . . . P}. Similarly
to other algorithms [10], the RBO can be extended to measure
the frequency,fr, if it is unknown or time varying [5].

The conceptual signal model can be considered as the
summed output of resonators which can generate any peri-
odic signal with components up to the half of the sampling
frequency. The corresponding observer can be seen in Fig. 1,
and the system equations are as follows [18], [5]:

x̂n+1 = Ax̂n + gen = Ax̂n + g(yn − y′
n + nn), (6)

y′
n = cTx̂n, (7)

g = [gi]
T, {gi; i = −P . . . P}, (8)

gi =
α

N
zi ←→ g =

α

N
Ac, (9)

wherey′
n anden denote the estimated signal and the estimation

error, respectively,nn denotes a zero-mean noise that is inde-
pendent of all variables,{x̂n = [x̂i,n]T; i = −P . . . P} is the
estimated state vector,gi are free parameters to set the poles

of the system. The vectorg is often called observer gain. Due
to the complex exponentials, the channels of the observer can
be considered as time-invariant systems with a pole on the unit
circle. This is why they are called resonators. Usually three
cases are distinguished according to the parameter setups:

a) fr = 1
N , α = 1: the sampling frequency is the integral

multiple of the fundamental frequency, which means that
the resonator poles are arranged uniformly on the unit
circle. The observer has deadbeat settling, i.e., it finds
the unknown statexn within at most N steps. The
RBO performs a set of orthogonal transforms, and it
corresponds to the recursive discrete Fourier transform
[18], [19]. The advantage of this setup is the speed of
convergence, but its noise rejection is poor.
In this special case,N could be even, which involves
that a resonator is also found atfs/2. This means that
the indices in (1)-(9) are in the rangei = −P . . . P + 1,
andP=N

2 − 1.
b) fr = 1

N , 0 < α < 1: the observer still performs orthogo-
nal transforms, but the settling is not deadbeat. The RBO
performs exponential averaging at the frequency of each
harmonic component [7]. The poles of the observer are
pi = (1− α)1/N · e 2π

N
i.

c) fr = arbitrary, 0 < α ≤ 1: the observer has infinite
impulse response. The settling is not deadbeat even if
α = 1, but the observer is still fairly fast if all harmonic
components are observed up tofs

2 [5]. Analytical results
regarding noise suppression and settling time are found
in [7]. A design method exists for setting arbitrary poles
or even deadbeat settling [18], but usually it is not used
in real-time systems due to its computational complexity.

The resonators operate as bandpass filters around their
center frequencies. The resonators can be tuned withα: small
α results in good noise rejection but in slow settling. Design
considerations are given in [7].

Compared to non-iterative spectrum estimation methods,
e.g., notch filters [12] where frequency selectivity is achieved
by zero-pole cancellation of serially connected filters, the RBO
is numerically less sensitive due to its recursive structure [20].

Fundamental relations between different spectrum estima-
tion algorithms have already been reported [19], [21]. The
RBO and its variants [18], [5] also show some common
features with least mean square (LMS)-based algorithms [10],
[11]. The main advantage of the RBO is that it offers a
method which enables to set arbitrary poles of the observer;
even deadbeat settling can be achieved for an arbitrary fre-
quency set [18]. The form of the RBO investigated in this
paper coincides with the transformed form of an LMS-based
algorithm presented in [11] so they are compatible regarding
their performances. However, the theory of the RBO offers
an observer-based framework which constitutes the basis for
some of our theorems.

III. D ATA LOSS IN THERESONATOR-BASED OBSERVER

In order to model the data loss, a so called data availability
indicator function,Kn, is used:
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Kn =

{

1, if the sample is processed atn
0, if the sample is lost atn

, (10)

wheren is the time index. Samples which are not lost will be
termed as processed samples. This kind of indicator function
is often used to describe data loss [9].

The data loss rate can also be defined withKn as:

γ = Prob {Kn = 0} . (11)

The proposed state estimation rule for lossy measurements
has been derived from (6) by incorporating the indicator
function, Kn:

x̂n+1 = Ax̂n +gKnen = Ax̂n +gKn(yn− y′
n +nn). (12)

The observer defined by (12) assumes the signal model

xn+1 = Axn, (13)

yn = cTKnxn. (14)

It can be verified by comparing (6) and (12):yn has an extra
multiplicative term,Kn, which can be included into (2).

Equations (14) and (12) mean that if a sample is lost, i.e.,
Kn = 0, no information appears aboutxn on the output.
In this case, the observer’s state variables are updated solely
using the state transition matrix of the signal model, but no
innovation term is used.

The following equation defines the error of the parameter
estimation:

x̃n = x̂n − xn. (15)

The update algorithm can be obtained forx̃n by subtracting
(1) from (12):

x̃n+1 = Ax̃n + gKnen. (16)

Incorporating (2), (7), (15), the error signal in Fig. 1 can be
expressed as follows:

en = yn−y′
n+nn = cTxn−cTx̂n+nn = −cTx̃n+nn. (17)

This new formula of the error allows us to rewrite (16) as:

x̃n+1 =
(

A− gKncT
)

x̃n + gKnnn. (18)

Depending on whether a sample is processed or lost, the state
transition matrix of the RBO takes the value(A− gcT) or A,
respectively. In noiseless case (18) reduces to:

x̃n+1 =
(

A− gKncT
)

x̃n. (19)

IV. CONDITIONS OF THECONVERGENCE

This section presents the main theoretical results. The
necessary and the sufficient conditions of the convergence are
formulated, completed by useful and important corollaries.
First, the noiseless case is investigated, whennn = 0; then
the results are generalized for noisy case. Convergence means
that, in the noiseless case, the estimation error, i.e.x̃n, while
in noisy case, its expected value tends to zero asn→∞ even
in the presence of data loss. In other words, the RBO yields
the asymptotically unbiased estimate of harmonic components.

A. Necessary Condition of the Convergence

The necessary condition of convergence is established
within the framework of the observer theory. It is investigated
when the signal model extended with the data loss is observ-
able.

To achieve this, it is useful to define the vector

cn = Anc = [ci,n]T ∈ C
N×1, (20)

ci,n = e2πifrn, i = −P . . . P. (21)

The vectorcn consists of the complex exponential functions
belonging to thei-th harmonic frequency at time instantn.
The elementsci,n are obtained from (20) using equations (3),
(4), and (5). Note that then-th power of the diagonal elements
of A arezn

i =
(

e2πifr

)n
= e2πifrn.

The necessary condition of the unbiased harmonic estima-
tion is a straightforward application of the observabilitycon-
dition of linear systems, which is formulated in the following
theorem.

Theorem 1: The unbiased estimate of harmonic compo-
nents of a periodic signal exists only if the series of vectors
{ciKi} span anN dimensional space.

Proof: In order to be able to estimate the harmonic
components of a signal, the state variables of the signal model
should be observable. The observability matrix [22] of system
described by (13) and (14) is:

OT
n =

[

cK0 (cTK1A)T (cTK2A
2)T . . . (cTKnAn)T

]

=
[

K0c K1Ac K2A
2c . . . KnAnc

]

=

[K0c0 K1c1 K2c2 . . . Kncn] . (22)

A system is observable if the observability matrix,On, has
full rank, i.e. rank(On) = N [22]. To ensure this condition,
the rows ofOn must have at leastN linearly independent
vectors, i.e., they should span theN dimensional space.

It is shown in APPENDIX A that the observability condition
is alsosufficientfor the convergence of a deadbeat observer:

Theorem 2: A deadbeat RBO yields the unbiased estimate
of harmonic components of a periodic signalif and only if the
series of vectors{ciKi} span anN dimensional space.

B. Discussion of Special Cases

A special case is when the resonator frequencies are ar-
ranged uniformly up to the sampling frequency, which implies
that fr = 1

N , and the period ofyn is N . On the other hand,
this is the case of coherent sampling. Furthermore, the vectors
cn are orthogonal [18] and have period of lengthN :

cn = cn+N (23)

which can be verified by substitutingfr = 1
N into (21).

As (23) shows,N different orthogonalcn vectors exist, all
of which should be present in the observability matrix to span
an N dimensional space, which ensures the observability. A
particular vector,cm, is present in the observability matrix if
any of the samples{ym+lN ; l = 0, 1, 2, . . .} is processed, i.e.,
Km+lN=1 at least for one value ofl. Hence, an interpretation
of the necessary condition of observability is that at leastone
sample should be processed at all of theN different positions



4 ANALYSIS OF RESONATOR-BASED HARMONIC ESTIMATION IN CASE OF DATA LOSS
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Fig. 2. Explanation of notations. Number of lost intervals:P = 3. Number
of processed samples:k=k1+k2+k3=11

of the signal period. Note that processed samples do not need
to belong to the same period. A well-known application exam-
ple which satisfies this condition is the equivalent sampling,
when apparently consecutive values of one period of the signal
are sampled from different periods. This technique ensuresthat
each sample of the period of the signal is processed.

However, if a sample is missing from the same position of
each period, there are less thanN different cn vectors in the
observability matrix which can not span anN dimensional
space. Hence, the harmonic decomposition is impossible. An
example for the systematic loss of data from the same position
of each period is when the signal is saturated, and the distorted
samples are discarded.

C. Sufficient Condition of the Convergence

The necessary condition is often difficult to test since it may
require intuition and/or analytical considerations, and does not
guarantee the convergence. The sufficient condition will be
found by investigating whether the Euclidean norm of the
observation error,‖x̃n‖, converges to zero. If‖x̃n‖ → 0 as
n→∞, then the final parameter error is zero, i.e., the observer
yields the unbiased estimate of harmonic components.

Before the theorem is formulated, some quantities are to be
defined. Let us suppose that the eigenvalues of the state tran-
sition matrix of the observer belonging to processed samples
have single multiplicity. In this case, it can be expressed as

A− gcT = UΛU−1, (24)

where the eigenvalues are the diagonal elements ofΛ, and
the matrixU contains the eigenvectors. The case of multiple
eigenvalues will be discussed later.

Let us define some more variables:

• η is a scalar variable so that

η = ‖U‖
∥

∥U−1
∥

∥ (25)

• λ̄ is the magnitude of the maximum eigenvalue of
(

A− gcT
)

. Equivalently, it is the Euclidean norm ofΛ:

λ̄ = ||Λ|| (26)

• k is the total number of samples processed by the RBO
• P is the number of such time intervals where samples

are not processed, as illustrated in Fig. 2.

Parametersλ̄ and η can be calculated from (25) and
(26) off-line. In the case of uniform resonator alignment:
λ̄ = (1 − α)1/N [7]. Note that k counts samples whileP
counts intervals.

Now, the theorem on the sufficient condition of the conver-
gence can be formulated.

Theorem 3: Suppose the eigenvalues of the state transition
matrix have single multiplicity. If the ratio of the intervals
composed of lost samples to the number of processed samples
is less than a critical value defined in (28), then the RBO yields
the asymptotically unbiased estimate of harmonic components
of a periodic signal:

if
P

k
< πcr ⇒ lim

n→∞
k→∞

x̃n = 0, (27)

πcr = −
log λ̄

log η
. (28)

Proof: The state transition matrix from the initial state of
x̃n can be found by the recursive expansion of (19):

x̃n+1 =
∏n

i=0

(

A− gKic
T
)

x̃0. (29)

If the decomposition of the form (24) exists, itsk-th power
can be expressed in the following way:

(

A− gcT
)k

= UΛkU−1, (30)

asf(X) = Uf(ΛX)U−1 for any X whose eigenvalues have
single multiplicity. This formula can be substituted into (29) by
forming groups of consecutive interval pairs from the products
as Fig. 2 shows. The first interval in thei-th interval pair is
composed ofki > 0 processed samples, and it is followed
by the second interval which containsmi > 0 lost samples.
Equation (29) can be rewritten in this context as

x̃n+1 =
∏P

i=1 (A)
mi

(

A− gcT
)ki

· x̃0 (31)

=
∏P

i=1 (A)
mi UΛkiU−1 · x̃0, (32)

whereP stands for the number of interval pairs up to the time
instant n. Note thatP also equals the number of intervals
where data are lost, since all interval pairs contain exactly
one such an interval. This form of (29) can be used without
loss of generality, since if the signal stream begins with lost
sample(s), thenk1 = 0, and if it is terminated with processed
sample(s), thenmP = 0. An upper bound on the norm of
x̃n+1 can be found by taking the norm of (32) and applying
the inequality‖AB‖ ≤ ‖A‖ ‖B‖ [24]:

∥

∥x̃n+1

∥

∥ ≤
∏P

i=1 ‖(A)
mi‖

∥

∥UΛkiU−1
∥

∥ ‖x̃0‖. (33)

The norms can be calculated as
∥

∥UΛkiU−1
∥

∥ ≤ ‖U‖ ‖Λ‖
ki

∥

∥U−1
∥

∥ = η · λ̄ki , (34)

where (25) and (26) were applied.

Furthermore the following inequality is valid:

‖(A)
mi‖ ≤ ‖A‖ ‖A‖ . . . ‖A‖ ‖A‖ = 1mi = 1, (35)

where (B-1) in APPENDIX B is used for the case of lost sam-
ples. Note that the norm is independent ofmi for an interval.
This is the reason why the sufficient condition contains the
number of lost intervals, not the number of lost samples.
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Substituting (34) and (35) into (33), one obtains
∥

∥x̃n+1

∥

∥ ≤
∏P

i=1 ηλ̄ki ‖x̃0‖ = ηP λ̄Σki ‖x̃0‖

∥

∥x̃n+1

∥

∥ ≤ ηP λ̄k ‖x̃0‖ =
(

η
P

k λ̄
)k

‖x̃0‖ , (36)

wherek =
∑P

i=1 ki is the total number of processed samples.
Let us search for a constant,ν, for which

(

ην λ̄
)

< 1:

ην λ̄ < 1

ν log η + log λ̄ < 0

ν < −
log λ̄

log η
= πcr. (37)

In this case,limk→∞

(

η
P

k λ̄
)k

= 0 for any P
k ≤ ν, so

limk→∞ ‖x̃n‖ = 0 due to (36). SincePk ≤ ν < πcr, the
theorem is proven.

The eigenvalues of(A − gcT) have generally single mul-
tiplicity, so the decomposition (24) exists. A practicallyim-
portant exception is the deadbeat observer which has multiple
eigenvalues in the origin. Nevertheless, the sufficient condition
for this case is given byTheorem 2(see APPENDIX A).

Now some important corollaries are formulated.
Perhaps the most commonly used parameter of data loss is

the data loss rate (γ) that is the ratio of lost samples to the total
number of samples. Noting that the number of lost samples
is not lower than the number of lost intervals (see Fig. 2), an
upper bound can be put onPk with γ as

P

k
≤

1

1/γ − 1
. (38)

Combining (38) and (27) yields the following corollary.
Corollary 1: If the data loss rateγ is less than a critical

value given by (39), the RBO yields the asymptotically unbi-
ased estimate of the harmonic components of a periodic signal:

if γ <
1

1 + 1/πcr
⇒ lim

n→∞
x̃n = 0. (39)

Based onTheorem 3, an alternative sufficient condition of
convergence can also be formulated.

Theorem 4: If a signal stream contains infinite number
of intervals composed of at leastLcr consecutive processed
samples, then the RBO yields the asymptotically unbiased
estimate of the harmonic components of a periodic signal.

Lcr =

⌊

1

πcr
+ 1

⌋

(40)

Proof: Theorem 3holds even in the case if only those
processed samples are taken into account at the calculationof
k which belong to the intervals where at leastLcr consecutive
samples are processed. The other processed samples should
be assigned to those intervals which contained originally only
lost samples. Any samples can be assigned to these intervals
since the only condition is that the norm of the state transition
matrix of the observer should be one, which ensures that the
final result of (35) remains valid. However, this condition is
true for processed and lost samples as proved in APPENDIX B.

Suppose that there are infinite number of intervals where

at leastLcr consecutive samples are processed. These groups
of samples are separated by such intervals which also contain
lost samples. SinceP is the number of intervals which contain
lost samples, and these intervals are followed by at leastLcr

processed samples, so the number of processed samples is
k ≥ PLcr, hence

P

k
≤
P

PLcr
=

1

Lcr
=

1

⌊1 + 1/πcr⌋
< πcr, (41)

so the condition ofTheorem 3is fulfilled, and the parameter
error tends to zero.

There are some applications that demonstrate the signif-
icance of this theorem, e.g., packet-based data transmission
over a lossy link, real-time processing of a signal in bursts
when the continuous signal processing is not possible due to
computational limitations. In these cases, one can achievethe
unbiased harmonic estimation by choosing the packet or burst
length not shorter thanLcr.

Theorem 4can also be used to consider the convergence in
the case of random data loss as follows.

Corollary 2: The RBO yields the asymptotically unbiased
estimate of the harmonic components of a periodic signal if the
data loss can be modeled with a random, Bernoulli process.

Proof: If the data loss is modeled as a Bernoulli process,
each sample is processed or lost with a probabilityq and
1−q, respectively. Hence, the probability thatLcr consecutive
samples are processed isqLcr which is greater than zero under
realistic assumptions. The law of large numbers ensures that
after a sufficiently long observation, there are enough number
of intervals which satisfy the hypothesis ofTheorem 4, so the
harmonic estimation error converges to zero.

D. Convergence in Case of Noisy Observations

In this subsection it is shown that the above presented
theorems are also valid when observations are noisy.

The extension of the necessary condition of unbiased esti-
mation is straightforward since the observability condition of
linear systems also holds in the presence of noise [23]. Hence,
Theorem 1is valid in noisy case.

In the case of sufficient conditions, the convergence of the
expected valueof x̃n can be proven. The proof is based on
the concept that (18) is linear iñxn and in nn, so the final
parameter error is obtained as the superposition of the system’s
response to the noise and signal inputs. It will be shown that
the noise does not influence the convergence of the mean, so
it causes no bias in the estimation.

To enable the investigation of convergence in the mean, the
expected value of (18) should be calculated [13]:

EK

{

x̃n+1

}

= EK

{(

A− gKncT
)

x̃n + gKnnn

}

, (42)

whereEK denotes the conditional expected value with respect
to the sequence of indicators{K0,K1, . . .}. In the case ifKn

is a random variable, the application of the usual expected
value instead ofEK would require the evaluation of probabil-
ities of all terms containingKn. However,EK preserves the
sequence ofKn which enables the investigation of data loss
similarly to the noiseless case. The termsA, g, cT, Kn are
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constant with respect toEK , so (42) can be rewritten as:

EK

{

x̃n+1

}

=
(

A− gKncT
)

EK{x̃n} (43)

=
∏n

i=0

(

A− gKic
T
)

EK{x̃0}. (44)

The noise term of (42) vanishes in (43) since (42) is linear in
nn, furthermorenn is independent ofKn, andEK{nn}=0.

The proof of Theorem 3(eq. (29)-(37)) has shown that
the norm of the matrix product

∏n
i=0

(

A−gKic
T
)

in (44)
tends to zero if any of the sufficient conditions hold, i.e.,
limn→∞ EK{x̃n}=0. The proofs of other sufficient conditions
refer to the proof ofTheorem 3, so they are valid, as well. In
the special case ofTheorem 2, the RBO is deadbeat, which
involves that the matrix product

∏n
i=0

(

A−gKic
T
)

is zero if
at leastN samples are present. Hence,limn→∞ EK{x̃n}=0 in
this case, as well.

It can be concluded that the RBO yields the unbiased
estimate of harmonic components in noisy case,as well, if any
of the hypotheses ofTheorem2,3,4 or Corollary1,2 is true.

V. SIMULATION RESULTS

This section contains some examples which illustrate the
application of the theorems. Three examples will be presented
which model a common application where the Fourier coef-
ficients of the mains are measured. The sampling frequency
is fs=10 kHz, the amplitudes of the harmonics are inversely
proportional to their order, i.e.,

{

|xi,n| =
1
i : i = 1 . . . P, n =

. . .
}

, and initial phases are set randomly. The SNR is 20 dB.
In the simulations,‖EK{x̃n}‖ is displayed, whereEK{x̃n}

is obtained from the ensemble average of 500 simulations. If
‖EK{x̃n}‖ converges toward zero, it means that the observer
can perform the harmonic decomposition without bias.

In the first two examples, the fundamental frequency is set
to f1=50 Hz. Two different observer setups and two data loss
patterns are tested. The patterns (pattern 1andpattern 2) are
periodic with period 200 and 199 samples, respectively, and
they contain one lost sample at the last position of each period.
Pattern 1 is described as

K1 = 1, . . . ,K199 = 1,K200 = 0 Kn = Kn+200, (45)

while in the case ofpattern 2:

K1 = 1, . . . ,K198 = 1,K199 = 0 Kn = Kn+199. (46)

Example 1: f1=50 Hz andα=1. This parameter setup re-
sults in a deadbeat observer with uniform resonator alignment.
Necessary and sufficient conditions for the convergence are
given in Theorem 2, and practical considerations are found in
subsection IV-B. The simulation results are plotted in Fig.3.

Note thatfr = 50 Hz
fs

= 1
200 , so the period of the signal is

N = 200, and according to (23):cn = cn+200.
In the case ofpattern 1, the period of the data loss equals to

that of the signal due to (45), so the last sample is missing from
each period. As explained in subsection IV-B, the systematic
loss of samples from the same position of the periods causes
that the RBO can not perform the harmonic decomposition.

In the case ofpattern 2, the period ofKn is 199, but that of
cn is 200, so they differ from each other by one sample. This
means that the position of the lost sample ”drifts“ one position
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Fig. 3. Convergence of the RBO forf1=50 Hz, deadbeat settling, and data
loss with (black)pattern 1and (gray)pattern 2.
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Fig. 4. Convergence of the RBO forf1=50 Hz,α = 0.6, and data loss with
(black) pattern 1and (gray)pattern 2.

to the left in each consecutive period ofyn, hence all of the
N different samples within the period ofyn are processed. As
presented in subsection IV-B, this fact means that the RBO
finds the harmonic decomposition, i.e.,EK{x̃n} →0.

Example 2: f1=50 Hz andα=0.6. The resonator alignment
is still uniform, but the settling is exponential. The necessary
condition of the convergence for this case is found inTheo-
rem 1, and sufficient conditions are given inTheorem 3and4.
Since the data stream contains continuous bursts of processed
samples that are of equal length,Theorem 4is more convenient
to use. Simulation results are plotted in Fig. 4.

The graphs show that the observation error does not tend to
zero in the case ofpattern 1. The reason is the same as in the
first example: the last sample is systematically missing from
each period, which violates the necessary condition.

Although the observation error tends to zero forpattern 2,
the convergence can not be proven by the sufficient condi-
tions. The critical length of continuously processed samples
is Lcr=200 according toTheorem 4, which is achieved by
neither patterns. This example illustrates an important pro-
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Fig. 5. Convergence of the RBO forf1=50.025 Hz,α = 0.6, and data loss
with (black) pattern 1and (gray)pattern 3.

perty of sufficient conditions. The critical values of data loss
parameters given by sufficient conditions should ensure that no
data loss pattern exist which violate the necessary condition
of observability. Indeed, in the case ofpattern 1the length of
continuously processed samples is 199, which is less only by
one sample than the critical length,Lcr, but causes that the
signal is not observable. Hence, if a sufficient condition isnot
met, then the convergence can not be guaranteed.

Example 3: f1=50.025 Hz andα=0.6. The settling is
exponential, and the resonator alignment isnot uniform. The
small deviation of the frequency from 50 Hz simulates the
fluctuation of power line frequency. The necessary and the
sufficient conditions are given inTheorem 1and inTheorem 4,
respectively, as explained in example 2. The time diagram of
the convergence is plotted in Fig. 5.

Although the estimation error tends toward zero in the case
of pattern 1, the convergence is noticeably slow. In practical
situations, when the harmonic components change fast in time,
such a system cannot be used. This example demonstrates that
if the observer and signal parameters are close to a critical
parameter setup where convergence is not possible, then data
loss can seriously degrade the performance of the RBO.

In this example, a new pattern (pattern 3) is constructed
instead ofpattern 2, which ensures that sufficient conditions
are met. The critical burst length isLcr=207 according to (40),
so the new pattern is chosen as

K1 = 1, . . . ,K207 = 1,K208 = 0 Kn = Kn+208. (47)

Fig. 5 shows that the convergence of RBO has became faster
for pattern 3, and the convergence can also be proven.

VI. CONCLUSIONS

This paper discussed the effect of data loss on the resonator-
based harmonic estimation. The main contribution of the paper
is a set of conditions which enable to predict whether the RBO
is able to find the unbiased estimate of harmonic components.

The necessary condition of convergence pointed out that
in certain situations the error-free estimation of the harmonic

components is not possible. Simulations and theoretical con-
siderations showed that the most critical case is the coherent
sampling of the signals together with synchronously repeated
data loss pattern.

The sufficient conditions of unbiased harmonic estimation
help to check the convergence of the RBO even without the
knowledge of the exact pattern of data loss. Furthermore they
show that unbiased estimation of harmonic components can
always be ensured if one of the following conditions is met:

• the data loss rate is lower than a critical threshold
• the signal contains long enough intervals without lost data
• samples are lost randomly.

Possible subjects of future research are how the data loss
influences the speed of convergence and the noise sensitivity.

APPENDIX A

Proof of Theorem 2.
To prove the statement we use an alternative form of the

observer (19) with a transformed state vector [18]:

x̃t
n+1 =

(

I− 1
N c∗nKncT

n

)

x̃t
n (A-1)

=
∏n

i=0

(

I− 1
N c∗i Kic

T
i

)

x̃t
0 (A-2)

whereI is the identity matrix, and

x̃t
n = A−n · x̃n, (A-3)

cn = [ci,n]T, ci,n = e 2π

N
in, i = 0 . . . N − 1. (A-4)

If fr = 1
N , the vectorscn are periodic withN , and{cl; l =

0 . . . N − 1} form an orthogonal basis [18]:

cn = cn+N , (A-5)

cH
l cq =

N−1
∑

i=0

e 2π

N
(q−l)i =

{

N, if q = l
0, if q 6= l

. (A-6)

The advantage of the transformed from (A-1) is that the
state transition matrix is an identity matrix in the case, when
Kn = 0. Hence, the state variablẽxt

n, is transformed only if
a sample is not lost, so only these state transitions must be
considered during the analysis.

The orthogonality ofcn ensures that the multiplication of
the state transition matrices is commutative:

(

I− 1
N c∗ncT

n

) (

I− 1
N c∗kc

T
k

)

=
(

I− 1
N c∗kc

T
k

) (

I− 1
N c∗ncT

n

)

, (A-7)

and these matrices are projectors, i.e.
(

I− 1
N c∗kc

T
k

) (

I− 1
N c∗kc

T
k

)

=
(

I− 1
N c∗kc

T
k

)

. (A-8)

The equalities can be verified by performing the matrix and
vector multiplications on both sides and by using (A-6).

Due to the periodicity ofcn, there are at mostN differ-
ent state transition matrices,

(

I− 1
N c∗ncT

n

)

, which must be
present in the product (A-2), otherwise there would not exist
N different Kncn vectors, thus the necessary condition of
Theorem 1would not be satisfied. Equations (A-7) and (A-8)
show that the state transition matrices in the product (A-2)can
be arbitrarily rearranged without changing the final state.If we
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rearrange these products in such a way that their indices are
in ascending order, i.e.n = [0 . . . N − 1], we obtain the form
of the observer without data loss, the convergence of which
has already been proven [18]. This means that the necessary
condition for the convergence is sufficient, as well.

APPENDIX B

Lemma B-I: If α ∈ [0 . . . 2] then
∥

∥A− gKic
T
∥

∥ = 1; Ki = {0, 1}. (B-1)

Proof: The norm of an arbitrary matrix,Zi, is computed
as follows [24]:

‖Zi‖
2

= max
‖x‖=1

‖Zix‖ = max
‖x‖=1

xHZH
i Zix. (B-2)

Let us use the notationZi =
(

A− gKic
T
)

. We will use the
property ofc that cHc = cTc = N which follows from (3),
furthermore (9) can be substituted forg, thus:

ZH
i Zi =

(

A− α
N AcKic

T
)H (

A− α
N AcKic

T
)

=
(

I− α
N cKic

T
)H

AHA
(

I− α
N cKic

T
)

= I− 2 α
N cKic

T +
(

α
N

)2
cKic

TcKic
T

= I− 1
N (2α− α2)cKic

T = I− f(α)cKic
T, (B-3)

wheref(α) = 1
N (2α−α2). AHA = I, sinceA is a diagonal

matrix (4), and multiplying the diagonal elements yields one:
z∗i zi = e−2πifre2πifr = 1. The analysis off(α) shows that:

f(α) ≥ 0 if 0 ≤ α ≤ 2 (B-4)

The norm is obtained form (B-2) and (B-3):

‖Zi‖
2

= max
‖x‖=1

[

xH
(

I− f(α)cKic
T
)

x
]

= max
‖x‖=1

[

xHx− f(α)(xHc)Ki(c
Tx)

]

= max
‖x‖=1

[

1− f(α)|cTx|2Ki

]

. (B-5)

‖Zi‖
2

= 1 sinceKi = {1, 0}, |cTx|2 ≥ 0 and f(α) ≥ 0 if
α ∈ [0 . . . 2] due to (B-4). Hence, the lemma is proven.
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Lászĺo Sujbert (S’92-M’95) received the M.Sc. and Ph.D. degrees in
electrical engineering from the Technical University of Budapest, Budapest,
Hungary, in 1992 and 1998, respectively.

Since 1992, he has been with the Department of Measurement and
Information Systems, Budapest University of Technology and Economics. His
research interest includes measurement techniques, digitalsignal processing,
system identification, active noise control, and embedded systems.
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