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Analysis of Resonator-Based Harmonic Estimatior
In Case of Data Loss

Gyorgy Orosz, laszb Sujbert,Member, IEEEand Gabor Feceli, Fellow, IEEE

Abstract—The paper investigates the behavior of the resonatabserved state variables represent the harmonic component
based spectral observer (RBO) for lossy measurements. The RBQfe Kalman filter is a potential competitor of the RBO in

an efficient real-time method designed for measuring the harmopies field of observer-based, recursive spectrum estimation
components of periodic signals. Recently some experiments h ’

shown that RBO can tolerate some data loss, but no exact critj}?’i howev_er, data_ loss gnaly5|s Of Ka?'ma” filter [9]_ has not
of the convergence have been available. The main contribution Rgen applied to this particular application to reveal peady
this paper is a set of conditions which enable to predict whethgnportant properties. Several other real-time algorittexist,

the observer is able to find the harmonic components or not. Thgy,, [10], [11], [12], [13] and references therein, but éfiect
necessary condition of convergence helps to recognize the situatigRyata loss on these algorithms is not known yet. Analysis of

when the error-free estimation of the harmonic components is not - - -
possible. The sufficient conditions of convergence give safe regio‘ﬁata loss is found in the case of offline, batch methods [14],

of data loss parameters (e.g., data loss ratio) where the unbiabtal; [16], but these papers do not discuss the case of rigeurs
harmonic estimation can always be ensured. Simulations are afggectrum estimation. Data loss can be regarded as a special

presented to demonstrate the effect data loss in different situationsase of uneven sampling, and the observer-based spectrum
Index Terms—resonator-based observer, recursive spectrum estimation has also been extended to unevenly sampled data

analysis, data loss, missing observations, convergence [17]. However, it has not been explicitly investigated, hihe
sampling pattern influences the convergence of the observer
I. INTRODUCTION The aim of this paper is to clarify the influence of data loss

. . _..on the operation of the RBO. To achieve this, first an appropri
Resonator-based observer (RBO.) 'S a recursive a_Igorlt "lossy” periodic signal model and corresponding obeerv
which can be u'se(.:i for_ the calculation of the harmonic cor%- introduced. Then necessary and sufficient conditiondef t
ponents of periodic signals. One of the advantages of t fibiased harmonic estimation are developed. The condition

recursive spectrum estimation algorithms is that they ha}éﬁable to calculate safe operating regions of parametetataf
hetter tracking praperty than block-hased methods (e §1.D loss which ensure that harmonic decomposition can be solved

Discrete Fourier Transf_orm). Th|s IS pqrucularly Importa ¢, any pattern of data loss. Such bounds can be given for data
when the spectrum estimation is used in real-time systerpc%

Applicat | f the RBO . : ngS probability and for the minimal length of consecutwvel
bplication examples ot the are, €.g., aclive noise a% ocessed samples. It is shown that random data loss allows
distortion control [1], [2], [3], analysis of power line sigls

41 151, electronic inst s [6 tem identificaticy unbiased harmonic estimation. Examples are also presented
Lé [5], electronic instruments [6], system identificati¢7], which demonstrate that both the signal parameters and the

If the f f iodic sianal is k the RBO data loss pattern influence the convergence of the algarithm
€ frequency ot a periodic signa IS Known, the can the paper is structured as follows. Section Il shortly sum-

estimate its Fourier components without leakage and piCkrﬁgirizes the operation of the RBO. The method of the handling

fence even in the case of non-coherent sampling. of data loss is discussed in Section Ill. In Section 1V, a set

Tlhe tRBO hlas [:Z)roveSn t% be LObUStthm different real;llf%f conditions are derived for the convergence of the RBO.
applications [ ]’. [2], 15], [6], where the measuremen ¥ _Section V, simulation examples are presented, where the
corrupted by noise, and the analog part of the system sh

Borems are applied to different data loss patterns.
weak nonlinear behavior. Recently some experiments have PP P

shown that RBO can also tolerate some data loss [3]. However,
no limits or rules are available for data loss that allow askd Il. REVIEW OF THE RESONATORBASED STRUCTURE

measfuremﬁnts of hgrmomc components. S The RBO is based on the so-called conceptual signal model
. In act, the RBO is a state observer, a_nd its periodic 'anS], which means that a periodic signal can be represerged a
signal is modeled as the output of a linear system Whoje,'o 1yt of a linear system whose state variables comespo

Manuscript received March 30, 2012; revised June 19, 20dc&pied July to the harmonic components of the signal [18]!_ [19], [20].
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of the system. The vectq is often called observer gain. Due
E_pn to the complex exponentials, the channels of the observer ca
be considered as time-invariant systems with a pole on the un
circle. This is why they are called resonators. Usually éhre
cases are distinguished according to the parameter setups:

X
— Gin M N
@ En % T @D a) f, = &, a = 1: the sampling frequency is the integral
i -~ multiple of the fundamental frequency, which means that
Tpn /

ng;rL

the resonator poles are arranged uniformly on the unit
circle. The observer has deadbeat settling, i.e., it finds
T~ the unknown statex,, within at most N steps. The
RBO performs a set of orthogonal transforms, and it
corresponds to the recursive discrete Fourier transform
[18], [19]. The advantage of this setup is the speed of
convergence, but its noise rejection is poor.

In this special case]N could be even, which involves
that a resonator is also found #i/2. This means that

Ny, gpmn

X

Fig. 1. Block diagram of the resonator-based observer

The conceptual signal model [18] is described as follows:

X, = Ax,, x,=[1;,]T€C" i=-P...P, (1) the indices in (1)-(9) are in the range= —P ... P +1,
» and P=4 — 1.
_ 1 : ;
Yn = Z z;, =c'x,, o) b) fr=#%,0<a<l1 the obse_zrve_r still performs orthogo-
Py nal transforms, but the settling is not deadbeat. The RBO

performs exponential averaging at the frequency of each
=117 e RV ) harmonic cor/nponegnt [7]. The poles of the observer are
Yy N NxN . _ pi=(1—a)l/N. et
A = diag(z;) = (z;) € C , i=-P..P (4 c) f. = arbitrary,0 < o < 1: the observer has infinite
2 = e (5) impulse response. The settling is not deadbeat even if
a =1, but the observer is still fairly fast if all harmonic
components are observed upfg:)[S]. Analytical results
regarding noise suppression and settling time are found
in [7]. A design method exists for setting arbitrary poles
or even deadbeat settling [18], but usually it is not used
in real-time systems due to its computational complexity.

where y,, is the output of the signal model (the input of
the observer). The signaf, is the sum ofP real harmonic
components so it is composed &f = 2P + 1 complex
exponential functions including DC as well. The harmonic
exponential components are collected into the state vegior
Let us note thak, consists of the complex Fourier coefficients
of y,.. As (1) shows, a complex harmonic component, , 1, The resonators operate as bandpass filters around their
is obtained by multiplying its previous value by, which center frequencies. The resonators can be tuned«witmall
rotates it at every sampling instant by a phase correspgndin @ results in good noise rejection but in slow settling. Design
its frequency. The state variables form complex conjugatesp considerations are given in [7].
for real signalsx;,, = z* - The relative fundamental fre- Compared to non-iterative spectrum estimation methods,
quency ofy,, is denoted byfr, it is the ratio of the fundamental €-9., notch filters [12] where frequency selectivity is avied
and the sampling frequencieg: = §1 The frequency of the by zero-pole cancellation of serially connected filters, RBO
i-th harmonic component igiif,; i’ = —P ... P}. Similarly is numerically less sensitive due to its recursive strucf@].
to other algorithms [10], the RBO can be extended to measurd-undamental relations between different spectrum estima-
the frequency/,, if it is unknown or time varying [5]. tion algorithms have already been reported [19], [21]. The
The conceptual signal model can be considered as RBO and its variants [18], [5] also show some common
summed output of resonators which can generate any pé@atures with least mean square (LMS)-based algorithmis [10
odic signal with components up to the half of the sampling1]. The main advantage of the RBO is that it offers a
frequency. The corresponding observer can be seen in Figmgthod which enables to set arbitrary poles of the observer;
and the system equations are as follows [18], [5]: even deadbeat settling can be achieved for an arbitrary fre-
R R R , quency set [18]. The form of the RBO investigated in this
Rn1 = AR, +gen = ARy, +8(Yn — Yy, + 1),  (6) paper coincides with the transformed form of an LMS-based

y =Tk, @) algorithm presented in [11] so they are compatible reggrdin
their performances. However, the theory of the RBO offers
g=lg]" {9 i=—-P...P}, (8) an observer-based framework which constitutes the basis fo
i — L g X A ) some of our theorems.
1 N (3 N )

wherey!, ande,, denote the estimated signal and the estimationIII
error, respectivelyp,, denotes a zero-mean noise that is inde-
pendent of all variables(x,, = [j;7;7,L]T;z' = —P...P}is the In order to model the data loss, a so called data availability
estimated state vectog; are free parameters to set the polemdicator function,k,,, is used:

. DATA LOSS IN THERESONATORBASED OBSERVER



A. Necessary Condition of the Convergence

The necessary condition of convergence is established
within the framework of the observer theory. It is investegh
gvhen the signal model extended with the data loss is observ-
ble.

To achieve this, it is useful to define the vector

Ko 1, if the sample is processed at
"1 0, ifthe sample is lost at

wheren is the time index. Samples which are not lost will b
termed as processed samples. This kind of indicator fumctid
is often used to describe data loss [9].

The data loss rate can also be defined with as: cp=A"c = [c; )" € CVXL, (20)

v = Prob {K,, = 0}. (11) Cip ="M = PP (21)

, (10)

The proposed state estimation rule for lossy measuremeTitg vectorc,, consists of the complex exponential functions
has been derived from (6) by incorporating the indicatdyelonging to thei-th harmonic frequency at time instant
function, K,,: The elements; ,, are obtained from (20) using equations (3),
(4), and (5). Note that the-th power of the diagonal elements
of A arez!' = (e27if)" = en2mifin,

The observer defined by (12) assumes the signal model The necessary condition of the unbiased harmonic estima-
tion is a straightforward application of the observabilityn-
Xpy1 = AXp, (13) " dition of linear systems, which is formulated in the folloi
Yn = cTK,x,,. (14) theorem.
Theorem 1: The unbiased estimate of harmonic compo-
It can be verified by comparing (6) and (12); has an extra nents of a periodic signal exists only if the series of vestor
multiplicative term,kK,,, which can be included into (2). {c,K;} span anN dimensional space.

Equations (14) and (12) mean that if a sample is lost, i.e., Proof: In order to be able to estimate the harmonic
K, = 0, no information appears about, on the output. components of a signal, the state variables of the sighakinod
In this case, the observer’s state variables are updatety sokhould be observable. The observability matrix [22] of eyst
using the state transition matrix of the signal model, but nfescribed by (13) and (14) is:
innovation term is used. T T . T . T

The following equation defines the error of the parametepn =[cKo (" K1A)" (cTKRA%)T .. (T K,A")T] =

estimation: [Koc K1Ac KyA®c ... K,A"c] =
in = )“(n — X, (15) [Koco chl KQCQ e Kn,cn] . (22)
The update algorithm can be obtained for by subtracting A system is observable if the observability matr@®,, has
(1) from (12): full rank, i.e.rank(0,) = N [22]. To ensure this condition,
%, = A%, + gKen. (16) the rows of ©,, must have at leasV linearly independent

vectors, i.e., they should span tié dimensional space. ®
Incorporating (2), (7), (15), the error signal in Fig. 1 ca@m b It is shown in A°PPENDIX A that the observability condition
expressed as follows: is alsosufficientfor the convergence of a deadbeat observer:

Theorem 2: A deadbeat RBO yields the unbiased estimate
of harmonic components of a periodic sigifadnd only if the
This new formula of the error allows us to rewrite (16) as: series of vectorgc,K;} span anN dimensional space.

en = Yn—Yo+n, =c'x, —c Ky+n, = —c %, +n,. (17)

~ _ - T\ ~
%1 = (A —gKuc) %, +gKuna. (18) B. Discussion of Special Cases

Depending on whether a sample is processed orTIost, the statg special case is when the resonator frequencies are ar-
transition matrix of the RBO takes the vali& —gc™) or A, ranged uniformly up to the sampling frequency, which implie
respectively. In noiseless case (18) reduces to: that f, = +, and the period ofj, is N. On the other hand,
%, = (A - gKnCT) %, . (19) this is the case of coherent sampling: Furthermore, thexgct
c,, are orthogonal [18] and have period of length

IV. CONDITIONS OF THECONVERGENCE C, =Cpin (23)

This section presents the main theoretical results. Théich can be verified by substituting = < into (21).
necessary and the sufficient conditions of the convergerece a As (23) shows /N different orthogonat,, vectors exist, all
formulated, completed by useful and important corollariesf which should be present in the observability matrix torspa
First, the noiseless case is investigated, whgn= 0; then an N dimensional space, which ensures the observability. A
the results are generalized for noisy case. Convergencaesnegaarticular vectorc,,, is present in the observability matrix if
that, in the noiseless case, the estimation errorxi,e while any of the sample$y,,+in; | =0,1,2,...} is processed, i.e.,
in noisy case, its expected value tends to zera-asc even K,,.;n=1 at least for one value @f Hence, an interpretation
in the presence of data loss. In other words, the RBO yieldéthe necessary condition of observability is that at |eamet
the asymptotically unbiased estimate of harmonic compisnersample should be processed at all of ffidifferent positions
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* : processed samples _ © : lost samples Now, the theorem on the sufficient condition of the conver-
__” :lostintervals
gence can be formulated.

k=5 =3 k=4 mp=2 k=2 my =T Theorem 3: Suppose the eigenvalues of the state transition

" L T " matrix have single multiplicity. If the ratio of the interiga
1 interval pair - 2% interval pair. 3 interval pair composed of lost samples to the number of processed samples
is less than a critical value defined in (28), then the RBCdgiel

Fig. 2. Explanation of notations. Number of lost intervas:= 3. Number the asymptotica"y unbiased estimate of harmonic compisnen
of processed samples=k +ko+ks=11 of a periodic signal:

e P L

. . it — <7 = lim X, =0, 27)
of the signal period. Note that processed samples do not need k noo
to belong to the same period. A well-known application exam- log X
ple which satisfies this condition is the equivalent sangplin o= — gA (28)
when apparently consecutive values of one period of theakign log 7
are sampled from different periods. This technique endhegs
each sample of the period of the signal is processed. Proof: The state transition matrix from the initial state of

Howevgr, if a sample is missing from the same pqsition gg‘n can be found by the recursive expansion of (19):
each period, there are less thandifferent c,, vectors in the

observability matrix which can not span a¥ dimensional Ko = [[io (A —gKicT) X, (29)
space. Hence, the harmonic decomposition is impossible. An
example for the systematic loss of data from the same paositio If the decomposition of the form (24) exists, itsth power
of each period is when the signal is saturated, and the thgtorcan be expressed in the following way:
samples are discarded. Tk B
(A —gc") =UA"U, (30)
as f(X) = Uf(Ax)U~! for any X whose eigenvalues have
o - ) _single multiplicity. This formula can be substituted in&9] by
The necessary condition is often difficult to test since iym&qming groups of consecutive interval pairs from the praidu
require intuition and/or analytical considerations, anésinot ¢ Fig. 2 shows. The first interval in theh interval pair is
guarantee the convergence. The sufficient condition will Q%mposed ofk; > 0 processed samples, and it is followed
found by investigating whether the Euclidean norm of thS’y the second interval which contaims; > 0 lost samples.

observation error|x,,[|, converges to zero. Ifx, | — 0 @ Equation (29) can be rewritten in this context as
n — oo, then the final parameter error is zero, i.e., the observer

yields the unbiased estimate of harmonic components. Ryl = Hle (A)™ (A - gcT)ki X (31)
Before the theorem is formulated, some quantities are to be _ HP_l (A)™ UAMU-! - %, (32)

defined. Let us suppose that the eigenvalues of the state tran =

sition matrix of the observer belonging to processed sasnpWhereP stands for the number of interval pairs up to the time

have single multiplicity. In this case, it can be expressed ainstantn. Note thatP also equals the number of intervals
where data are lost, since all interval pairs contain eyactl

T —1
A —ge =UAU, (24)  one such an interval. This form of (29) can be used without

where the eigenvalues are the diagonal elementd oénd loss of generality, since if the sighal stream begins witt lo

the matrixU contains the eigenvectors. The case of multipRAMPIe(s), therk; = 0, and if it is terminated with processed
eigenvalues will be discussed later. sample(s), thermp = 0. An upper bound on the norm of

Let us define some more variables: X, can be found by taking the norm of (32) and applying
: . the inequality| AB|| < ||A] |B]| [24]:
o 7 is a scalar variable so that

C. Sufficient Condition of the Convergence

= P m; kipT—1 ~
n=|U]| HU—1H (25) HanrlH < [Liz1 I(A) HUA U H 1%ol- (33)
« )\ is the magnitude of the maximum eigenvalue 0-1[he norms can be calculated as
(A — gc™). Equivalently, it is the Euclidean norm o: |luARU~| < U | A* Ul =n N, (34)
A=Al (26) where (25) and (26) were applied.

o k is the total number of samples processed by the RBO Furthermore the following inequality is valid:
o P is the number of such time intervals where samples -
are not processed, as illustrated in Fig. 2. I(A)

ParametersA and n can be calculated from (25) andwhere (B-1) in APENDIX B is used for the case of lost sam-
(26) off-line. In the case of uniform resonator alignmenples. Note that the norm is independentrof for an interval.
A = (1 — )N [7]. Note thatk counts samples whil¢® This is the reason why the sufficient condition contains the
counts intervals. number of lost intervals, not the number of lost samples.

< [|AllAl. - AllAl =17 =1, (35)



Substituting (34) and (35) into (33), one obtains at leastL., consecutive samples are processed. These groups
Hi H - HF %y | = P AR %, | of samples are .sepa_rated by such int'ervals Which also mptai
ntt]] = Lt 7 oll =17 0 lost samples. Sinc® is the number of intervals which contain
- < P3N Izl = (nEX LI 36 lost samples, and these intervals are followed by at léast
[ %ol = (77 ) %ol (38)  processed samples, so the number of processed samples is

. >
wherek = S°7_ &, is the total number of processed sampleéﬂ. Z PLer, hence

Let us search for a constant, for which (")) < 1: P P 1 1
— < == < T, (41)
A <1 k= PLea Lo |14 1/7e)
vlogn +1log A < 0 so the condition offTheorem 3is fulfilled, and the parameter
Jow \ error tends to zero. [ |
- R Ter- (37) There are some applications that demonstrate the signif-
ogn

icance of this theorem, e.g., packet-based data transmissi

over a lossy link, real-time processing of a signal in bursts

when the continuous signal processing is not possible due to

limy, o0 [|%,|| = 0 due to (36). Sincef < v < 7, the computational limitations. In these cases, one can actifeve

theorem is proven. ®  unbiased harmonic estimation by choosing the packet ot burs
The eigenvalues of A — gcT) have generally single mul- length not shorter tha.,.

tiplicity, so the decomposition (24) exists. A practicallp-  Theorem 4can also be used to consider the convergence in

portant exception is the deadbeat observer which has rfeultighe case of random data loss as follows.

eigenyalues ir_1 thg origin. Nevertheless, the sufficientiam Corollary 2: The RBO vyields the asymptotically unbiased

for this case is given bifheorem 2(see APPENDIX A). estimate of the harmonic components of a periodic signhkif t
Now some important corollaries are formulated. data loss can be modeled with a random, Bernoulli process.
Perhaps the most commonly used parameter of data l0Ss is proof: If the data loss is modeled as a Bernoulli process,

the data loss rate/f that is the ratio of lost samples to the totagach sample is processed or lost with a probabifitand

number of samples. Noting that the number of lost samplgs ; respectively. Hence, the probability that, consecutive

is not lower than the number of lost intervals (see Fig. 2), Yxmples are processed;is which is greater than zero under

Nk
In this case,limy_, o (n%)\) = 0 for any % < v, SO

upper bound can be put off with v as realistic assumptions. The law of large numbers ensurds tha
P 1 after a sufficiently long observation, there are enough rermb
; < W (38)  of intervals which satisfy the hypothesis Bheorem 4so the
harmonic estimation error converges to zero. |

Combining (38) and (27) yields the following corollary.
Corollary 1: If the data loss ratey is less than a critical
value given by (39), the RBO yields the asymptotically unbP- Convergence in Case of Noisy Observations
ased estimate of the harmonic components of a periodiclsignaIn this subsection it is shown that the above presented
. o theorems are also valid when observations are noisy.
it v < 14 1/me = 7,1LII;C x, =0. (39) The extension of the necessary condition of unbiased esti-
mation is straightforward since the observability cormitiof
Based oriTheorem 3an alternative sufficient condition of inéar systems also holds in the presence of noise [23]. élenc
convergence can also be formulated. Theorem Iis valid in noisy case.
Theorem 4: If a signal stream contains infinite number N the case of sufficient conditions, the convergence of the
of intervals composed of at leadt,, consecutive processedexpected valuef x,, can be proven. The proof is based on
samples, then the RBO yields the asymptotically unbiaséf concept that (18) is linear i, and inn,, so the final

estimate of the harmonic components of a periodic signal. Parameter error is obtained as the superposition of thersyst
response to the noise and signal inputs. It will be shown that

Lo = {1 + 1J (40) the noise does not influence the convergence of the mean, so
Ter it causes no bias in the estimation.
Proof: Theorem 3holds even in the case if only those To enable the investigation of convergence in the mean, the

processed samples are taken into account at the calcutstiogxpected value of (18) should be calculated [13]:
k which belong to the intervals where at ledst consecutive - . T\ ~
samples are processed. The other processed samples shoung{X"“} N EK{ <A —8lne )X" +gK"n”}’ (42)
be assigned to those intervals which contained originally o whereE x denotes the conditional expected value with respect
lost samples. Any samples can be assigned to these intertalthe sequence of indicatofd(y, K1, ...}. In the case ifK,,
since the only condition is that the norm of the state trémsit is a random variable, the application of the usual expected
matrix of the observer should be one, which ensures that tedue instead o x would require the evaluation of probabil-
final result of (35) remains valid. However, this conditian iities of all terms containing<,,. However,Ex preserves the
true for processed and lost samples as provedriRENDIX B.  sequence of,, which enables the investigation of data loss

Suppose that there are infinite number of intervals whesamilarly to the noiseless case. The ters g, c¢*, K,, are
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constant with respect tx, so (42) can be rewritten as:

Ex{X,41} = (A — gK,c") Eg{%k,} (43)
=1, (A — gKic") Ex{xX,}. (44)

The noise term of (42) vanishes in (43) since (42) is linear in
ny, furthermoren,, is independent of<,,, andEx{n,, }=0.

The proof of Theorem 3(eq. (29)-(37)) has shown that
the norm of the matrix producf];_,(A-gK;c") in (44)
tends to zero if any of the sufficient conditions hold, i.e., 0.5¢
lim,, o Ex{X,,}=0. The proofs of other sufficient conditions
refer to the proof ofTheorem 3so they are valid, as well. In |
the special case ofheorem 2the RBO is deadbeat, which Ot ‘ ‘
involves that the matrix produdi[!" ,(A-gK;c™) is zero if 0 1000 2000 3000
at leastN samples are present. Hentiey,, .o Ex{%, }=0 in n
this case, as well.

It can be concluded that the RBO yields the unbiaseggl. 3. Convergence of the RBO fgh =50 Hz, deadbeat settling, and data
estimate of harmonic components in noisy case, as wellyif alass with (black)pattern 1and (gray)pattern 2
of the hypotheses ofheorem3,4 or Corollary1,2 is true.

Time function of |Ex {X,} ||

pattern 1
pattern 2

1.5

[Ex {Xn} |
=

Time function of |Ex {X,} ||

V. SIMULATION RESULTS 2

This section contains some examples which illustrate the
application of the theorems. Three examples will be present 1.5
which model a common application where the Fourier coef- '
ficients of the mains are measured. The sampling frequency
is fs=10 kHz, the amplitudes of the harmonics are inversely
proportional to their order, i.e{|z; | =1: i=1...P, n=
... }, and initial phases are set randomly. The SNR is 20 dB. 0.5}

In the simulations||Ex{%,, }| is displayed, wheré&x{x,, }
is obtained from the ensemble average of 500 simulations. If )
|Ex{x,,}|| converges toward zero, it means that the observer Ot ‘ ‘
can perform the harmonic decomposition without bias. 0 1000 2000 3000

In the first two examples, the fundamental frequency is set n
to f1=50 Hz. Two different observer setups and two data loss
patterns are tested. The patterpat(ern 1andpattern J are Fig. 4. Convergence of the RBO f¢fj =50 Hz,a = 0.6, and data loss with
periodic with period 200 and 199 samples, respectively, aqlack) pattern 1and (gray)pattern 2
they contain one lost sample at the last position of eaclogeri

Pattern lis described as
_ _ _ _ to the left in each consecutive period @f, hence all of the
Ki=1,...,Kig9 =1,K50 =0 Ky = Kpi200, (45) N different samples within the period gf, are processed. As
while in the case opattern 2 presented in subsection IV-B, this fact means that the RBO
finds the harmonic decomposition, i.&x{x,, } —0.
Ky=1,... . Kigs = 1, K190 =0 Ky = Kpi199.  (46) Example 2: f,=50 Hz andn=0.6. The resonator alignment

Example 1: ;=50 Hz anda=1. This parameter setup re-is still uniform, but the settling is exponential. The nesmy
sults in a deadbeat observer with uniform resonator alignnimecondition of the convergence for this case is foundrireo-
Necessary and sufficient conditions for the convergence &8 1 and sufficient conditions are given Theorem 3and4.
given in Theorem 2and practical considerations are found iince the data stream contains continuous bursts of prettess
subsection IV-B. The simulation results are plotted in Bg. Samples that are of equal lenglheorem 4s more convenient

Note thatf, = 22 flz = W%O, so the period of the signal isto use. Simulation results are plotted in Fig. 4.

N =200, and according to (23),, = ¢,,,200- The graphs show that the observation error does not tend to

In the case opattern 1 the period of the data loss equals t@ero in the case ghattern 1 The reason is the same as in the
that of the signal due to (45), so the last sample is missimm fr first example: the last sample is systematically missingnfro
each period. As explained in subsection IV-B, the systemattach period, which violates the necessary condition.
loss of samples from the same position of the periods causedlthough the observation error tends to zero pattern 2
that the RBO can not perform the harmonic decompositionthe convergence can not be proven by the sufficient condi-

In the case opattern 2 the period ofK,, is 199, but that of tions. The critical length of continuously processed saspl
c,, is 200, so they differ from each other by one sample. This L.,=200 according toTheorem 4 which is achieved by
means that the position of the lost sample "drifts“ one pasit neither patterns. This example illustrates an importaiot pr

pattern 1
pattern 2

[Ex {Xn} |
=




components is not possible. Simulations and theoretical co

Time function of [|Ex {X,} ||

2 ‘ ; siderations showed that the most critical case is the cahere
pattern 1 sampling of the signals together with synchronously regmbat
15 pattern 3| data loss pattern.

The sufficient conditions of unbiased harmonic estimation
help to check the convergence of the RBO even without the
knowledge of the exact pattern of data loss. Furthermorg the
show that unbiased estimation of harmonic components can
0.5! | always be ensured if one of the following conditions is met:

o the data loss rate is lower than a critical threshold
« the signal contains long enough intervals without lost data

||]EK {in} H
H

Ot ‘ ‘ « samples are lost randomly.
0 1000 2000 3000 Possible subjects of future research are how the data loss
n influences the speed of convergence and the noise senpsitivit
Fig. 5. Convergence of the RBO fgfi =50.025 Hz,o« = 0.6, and data loss APPENDIXA

with (black) pattern 1and (gray)pattern 3
Proof of Theorem 2
To prove the statement we use an alternative form of the
perty of sufficient conditions. The critical values of dated observer (19) with a transformed state vector [18]:
parameters given by sufficient conditions should ensureia ” . T ~t
data loss pattern exist which violate the necessary comditi Ko = (- gciKac,)X, (A-1)
of observability. Indeed, in the case jpéttern 1the length of = [Tiso (T - yeKicl ) x4 (A-2)
continuously processed samples is 199, which is less only

\?MereI is the identity matrix, and
one sample than the critical length,,, but causes that the y '

signal is not observable. Hence, if a sufficient conditionas X =AT"-%,, (A-3)
met, then the convergence can not be guaranteed. B T _ % 0 N-1 A4
Example 3: f;=50.025 Hz anda=0.6. The settling is Cn =lein]”, Cin =€V, i=0...N - 1. (A-4)

exponential, and the resonator alignmenha uniform. The |f f, = +, the vectorsc,, are periodic with\, and {c;; I =
small deviation of the frequency from 50 Hz simulates thg... N — 1} form an orthogonal basis [18]:
fluctuation of power line frequency. The necessary and the

sufficient conditions are given iiheorem land inTheorem 4 Cn = CninNs (A-5)

respectively, as explained in example 2. The time diagram of N—1 N ifa—1

the convergence is plotted in Fig. 5. cilc, = Z I F(a=Di — { o if a4 _l . (A-6)
Although the estimation error tends toward zero in the case i=0 » a7

of pattern 1 the convergence is noticeably slow. In pra.ctigal The advantage of the transformed from (A-1) is that the
situations, when the harmonic components change fast & tingiate transition matrix is an identity matrix in the caseewh
such a system cannot be used. This example demonstrates that_ ( Hence, the state variabfe , is transformed only if

if the observer and signal parameters are close to a critigal ample is not lost, so only these state transitions must be
parameter setup where convergence is not possible, than ¢@nsidered during the analysis.
loss can seriously degrade the performance of the RBO.  The orthogonality ofc,, ensures that the multiplication of

In this example, a new patterpdttern 3 is constructed the state transition matrices is commutative:
instead ofpattern 2 which ensures that sufficient conditions

are met. The critical burst length Is.,.=207 according to (40), (I- wcnen) (T— geiey) =

so the new pattern is chosen as (I- %cicr) (I— %chen), (A7)
Ki=1,..., Ko7 =1,Kys =0 K, =Kpni2s. (47) and these matrices are projectors, i.e.

Fig. 5 shows that the convergence of RBO has became faster (I — Lcjcy) (I— &cich) = (I— &cicp). (A-8)

for pattern 3 and the convergence can also be proven. . » i ]
The equalities can be verified by performing the matrix and

vector multiplications on both sides and by using (A-6).

Due to the periodicity ofc,,, there are at mosiv differ-
This paper discussed the effect of data loss on the resenatait state transition matrice¢] — +-c’cT), which must be
based harmonic estimation. The main contribution of theepappresent in the product (A-2), otherwise there would nottexis
is a set of conditions which enable to predict whether the RBW different K,,c,, vectors, thus the necessary condition of
is able to find the unbiased estimate of harmonic componentheorem Iwould not be satisfied. Equations (A-7) and (A-8)
The necessary condition of convergence pointed out thektow that the state transition matrices in the product (&&)

in certain situations the error-free estimation of the tarim be arbitrarily rearranged without changing the final stHtee

VI. CONCLUSIONS
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rearrange these products in such a way that their indices ang] F. Nagy, “Measurement of signal parameters using nonfirea
in ascending order. i.en = [0 . N — 1] we obtain the form servers,"IEEE Trans. on Instrumentation and Measurement, IM-41

. . no. 1, pp. 152-155, Feb. 1992.
of the observer without data loss, the convergence of WthflG] A. Gorgényi et al., “DSP-based electromagnetic flowmeter with sinu-

has already been proven [18]. This means that the necessary soidal excitation,IEEE Instrumentation and Measurement Technology
condition for the convergence is sufficient, as well. Conference Ottawa, Canada, May 16-19., 2005., pp. 1023-1026.
[7] L. Sujbert, G. Rceli, Gy. Simon, “Resonator based non-parametric

identification of linear systems|EEE Trans. on Instrumentation and

Measurement,vol. 54, no. 1, pp. 386-390, Feb. 2005.
APPENDIXB [8] R. R. Bitmead, A. C. Tsoi, P. J. Parker, “A Kalman filteringpapach
Lemma B-l:If a € [0...2] then to short-time Fourier analysis/EEE Trans. on Acoustics, Speech and
Signal Processing,vol. 34, no. 6, pp. 1493-1501, Dec. 1986.
HA o gKicTH =1 K;,= {O, 1}. (B—l) [9] B. Sinopoli, L. Schenato, M. Franceschetti , K. Poolla, MJordan,

S. S. Sastry, “Kalman filtering with intermittent observasgnlEEE
Trans. on Autom. Controlyol. 49, no. 9, pp. 1453-1464, Sept. 2004.

Proof: The norm of an arbltrary matrixz;, is ComPUtEd [10] Y. Xiao, L. Ma, and R. K. Ward, “Fast RLS Fourier analyzeapable

as follows [24]: of accommodating frequency mismatctSignal Processingyol. 87,
2 HrrH no. 9, pp. 2197-2212, Sept. 2007.
1Z;||” = \|m\?xl 1Z:x|| = \Im\laxl x Z; Z;x. (B-2) [11] C. A. Vaz, X. Kong, N. V. Thakor, “An adaptive estimatiofi periodic
X||= X|l=

signals using a Fourier linear combinelZEE Trans. Signal Process.,
vol. 42, no. 1, pp. 1-10, Jan. 1994.

. o T .
Let us use the notatiod; = (A —ghKic ) We will use the [12] M. T. Kilani, J. F. Chicharo, “A constrained notch Foeritransform,”

property ofc thatcfc = ¢Tc = N which follows from (3), IEEE Trans. Signal Processvol. 43, no. 9, pp. 2058-2067, 1995.
furthermore (9) can be substituted fgr thus: [13] H. C. So, “Adaptive algorithm for sinusoidal interfeie cancellation,”
Electron. Lett.,vol. 33, no. 22, pp. 1910-1912, Oct. 1997.
Hry _ o m\H o« T [14] N. R. Lomb, “Least squares frequency analysis of undgusaced
Z;Z;= (A NACKZC ) (A NACKZc ) data,” Astrophys. & Space Scivol. 39, no. 2, pp. 447-462, 1976.
(T« T\H A H _a T [15] J.D. Scargle, “Studies in astronomical time series asiglyll - Fourier
B (I NCKZc ) ATA (I NCch ) transforms, autocorrelation functions, and cross-cadicgidunctions of
—I1- Q%CKZ'CT + (%)2 CKiCTCKZ'CT unevenly spaced dataAstrophysical Journal, vol. 343, part 1., pp.

874-887, Aug. 15, 1989.
=1— %(204 —a?)cKict =1— f(a)cK;cT, (B-3) [16] P. M. T. Broersen, S. de Waele, R. Bos, “Estimation of eegeessive
spectra with randomly missing data,”IEEE Instrumentation and

where f(«) = %(2(1 — a2). APA =1, sinceA is a diagonal glloeoagsuremelrltsleﬂgglogy Conferenc¥ail, CO, USA, May 20-22.
: S : : . pp- — .
nlat”i( ({)'27?2(1 ';"'Tr”i'}'p'y'”g the d|agon.al elements y|eId$9n [17] G. H. Hostetter, “Recursive discrete Fourier transfation with
2}z, = e I°Tred?mIr = 1. The analysis off («) shows that: unevenly spaced dataJEEE Trans. on Acoustic, Speech, and Signal
Processing,vol. ASSP-31, no. 1, pp. 206-209, Feb. 1983.
fl@)>0if0<a<2 (B-4)  [18] G. Receli,"A common structure for recursive discrete transfotiBsEE
Trans. Circuits Syst.yol. CAS-33, no. 10, pp.1035-1036, 1986.
The norm is obtained form (B-2) and (B-3): [19] R. R. Bitmead, “On recursive discrete Fourier transfdiorg’ |EEE
5 Trans. on Acoustic, Speech, and Signal Processid@, ASSP-30, no.
|Z;]|” = max [x" (I f(a)cK;c")x] 2, pp. 319-322, Apr. 1982.
[Ix)|=1 [20] G. H. Hostetter, “Recursive discrete Fourier transfation,” |IEEE
_ H H (T Trans. on Acoustic, Speech, and Signal Processid, ASSP-28, no.
izt [x"x = fla)(x"e) Ki(e )] 2, pp. 184-190, Apr. 1980. o
T. 12 [21] B. Widrow, P. Baudrenghien, M. Vetterli, P. TitchenékEundamental
= max [1 — fa)|c x| Ki] . (B-5) relations between the LMS algorithm and the DFTEEE Trans. on
fIll=1 Circuits and Syst.vol. 34, pp. 814-820, Jul. 1987.
[22] K. J. Astrom, B. Wittenmark, Computer Controlled Systems, Theory

HZi||2 = 1 sinceK; = {1,0}, [c"x[* > 0 and f(«) > 0 if and Design,2nd ed., Prentice Hall, Englewood Cliffs, 1990.
a € [0...2] due to (B-4). Hence, the lemma is proven. m  [23] H. F. Chen, “Stochastic observabilityScientia Sinica, vol. 20, no.
3, pp. 305-324, 1977.
[24] G. H. Golub, C. F. Van LoanVatrix ComputationsThe Johns Hopkins
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