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Abstract – Recently measurement data loss has been of
greater interest, due to the spread of sensor networks
and the idea of Internet of things. A procedure is pro-
posed that is able to identify the most frequently em-
ployed data loss models. It is assumed that the commu-
nication protocol provides information about data loss,
i.e. the so-called data availability indicator function is
known. The power spectral density (PSD) of the indi-
cator function is representative for the model, and can
be used for identification. Spectral estimation is car-
ried out by Fast Fourier Transform (FFT) based tech-
niques. The paper introduces the identification pro-
cedure for random independent, random block-based
and a Markov model-based data loss patterns. The effi-
ciency of the proposed method is demonstrated by sim-
ulation and measurement results.
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I. INTRODUCTION
Nowadays measurement data transfer is frequently car-

ried out in sensor networks or on the Internet. In this case
data can be corrupted or the transmission medium can be
partially damaged, etc. [1],[2]. The presence of such sys-
tems motivated the investigation of data loss phenomena
from signal processing point of view. Our recently pub-
lished paper [3] discussed one of such problems: the han-
dling of data loss in the case of spectrum estimation. In
spite of the existing methods concentrating to the spectrum
estimation, this paper dealt with the characterization of dis-
tortion caused by missing data.

Spectrum estimation based on time records with irregu-
lar sampling has been used for a long time. Records with
missing data can be treated as a special irregular sampling,
substituting the signal samples with zeros where the data
are lost. Theoretically, such records can be synthesized by
the multiplication of the original signal (without data loss)
and the so-called data availability indicator function. The
latter equals unity everywhere, with the exception of the
time instants where data are missing, where it is zero. The
spectral estimator of the damaged record is the discrete
convolution of the original spectrum and the spectrum of
the data availability indicator function.

Thus the introduction of the distorted spectra involved
the calculation of the spectra of the data availability indi-

cator functions. Three data loss models have been inves-
tigated: random independent, random independent block-
based, and Markov model-based data loss. All their spec-
tra have been determined, and quantitative connection be-
tween the data loss model parameters and the spectral pa-
rameters have been calculated.

In this paper we propose the inverse procedure: the data
loss model can be identified by the Fourier transform of
the data availability indicator function. First the PSD of
the indicator function is to be calculated, then a parametric
system identification method is to be used to get the spec-
tral parameters. As the spectral shape is quite simple, this
step is not critical. The last step is the calculation of the
data loss parameters by the already known relations.

In section II the data loss models and their spectra are in-
troduced in detail. Section III deals with the identification
procedure itself, while section IV presents simulation and
measurement results that confirm the procedure in practice,
as well.

II. SPECTRUM ESTIMATION IN THE CASE OF
DATA LOSS

A. Power Spectrum Estimation
The Fourier transform of a sampled signal x(tn) can be

estimated by a finite set of samples [4]. The signal x(t) is
usually equidistantly sampled, and the spectrum is calcu-
lated by the Discrete Fourier Transform (DFT):

X(fk) =

N−1∑
n=0

xne
− 2πN nk, n, k = 0 . . . N − 1, (1)

where fk = k/N and xn = x(tn). The DFT of a signal
is usually calculated by the computationally efficient Fast
Fourier Transform (FFT). The transformed vector X(fk)
is generally complex valued, and the spectral content of
the signal is expressed by the real valued Power Spectral
Density (PSD) function:

S(fk) =
1

N
|X(fk)|2. (2)

In order to reduce the variance of the PSD, a long series
of samples is recorded, and many consecutive blocks of N
samples are transformed, and the estimator is obtained by
averaging the individual PSDs. The mean of the individual
estimates can be calculated either by linear or exponential
averaging.



B. Formulation of Data Loss
In order to model the data loss, a so-called data avail-

ability indicator function, Kn, is introduced [5]:

Kn =

{
1, if the sample is processed at n
0, if the sample is lost at n

, (3)

Samples which are not lost will be termed as processed or
available samples. The data loss rate can be defined with
Kn as:

γ = P rob {Kn = 0} , (4)

where P rob {·} stands for the probability operator. The
probability that a sample is available is µ = 1− γ.

C. Spectrum Estimation with Missing Data
Using the indicator function, Kn, (1) can be rewritten

for the case of data loss:

X̂(fk) = DFT(xnKn) =

N−1∑
n=0

xnKne
− 2πN nk,

n, k = 0 . . . N − 1, (5)

This formula means that by incorporating Kn into the
usual form of DFT, missing samples are practically sub-
stituted with zeros. Equation (5) can also be evaluated via
FFT.

The spectrum of the signal containing missing samples
is obtained as the convolution of the spectrum of the loss-
less signal and the spectrum of the data loss indicator func-
tion. Now only the latter is interesting. LetXK(fk) denote
the Fourier transform of the data loss indicator function:

XK(fk) = DFT(Kn), (6)

Thus the PSD of the data loss indicator function is:

SK(fk) =
1

N
|XK(fk)|2. (7)

The variance of SK(fk) can also be reduced by averaging.

D. Data Loss Models and their Spectra
In paper [3], three data loss models have been investi-

gated:

1. random independent data loss,

2. random block-based data loss,

3. Markov model-based data loss.

The random data loss is one of the most essential data
loss models, it is often used because of its simplicity [6].
Block-based data loss models are often used, e.g., when
several measurement results are transmitted over packet-
based communication systems. Markov model has been
proven to be useful, e.g., in the description of data loss
pattern in real-time data transmission over Internet [7].

D..1 Random Independent Data Loss

Random independent data loss can be defined as follows:

Kn = 1, with probability µ = 1− γ
Kn = 0, with probability γ

for ∀n.
(8)

The definition means that each sample is lost with prob-
ability γ, and data losses at different time instants are in-
dependent of each other. The PSD of the data loss pattern
is [3]:

SK(fk) =
µ(1− µ)

N
+ µ2δ(fk), (9)

where δ(f) stands for the Dirac-delta function. The PSD
is white, which is represented by the first term, while the
second term represents the power of the mean value µ of
the data loss pattern.

D..2 Random Block-based Data Loss

To define the random block-based data loss, the indicator
function is given as:

{KkM . . .K(k+1)M−1} = 1, with probability µ
{KkM . . .K(k+1)M−1} = 0, with probability γ

for ∀k.
(10)

The definition means that each block of length M is lost
with probability γ, and the data loss in different blocks are
independent of each other. The power spectral density of
the data loss pattern is [3]:

SK(fk) =
µ(1− µ)
MN

∣∣∣∣ sin(fkπM)

sin(fkπ)

∣∣∣∣2 + µ2δ(fk), (11)

D..3 Markov model-based Data Loss

The Markov model-based data loss is described by the
Markov chain shown in Fig. 1. The states of the Markov
chain represent the value of the indicator function Kn. If a
sample is available at time instant n, the next sample will
be available with probability p, and will be lost with prob-
ability 1 − p. If a sample is missing at time instant n, the
next sample will be available with probability 1 − q, and
will be lost with probability q. The data availability rate µ
is the following [8]:

µ =
q − 1

p+ q − 2
. (12)

The spectral property of a data loss sequence generated
by the Markov chain shown in Fig. 1 can be determined
according to [8]. The PSD of Kn is a first-order, low-pass
type spectrum defined as [3]:

SK(fk) =
1− a2

N(1− a2N )
· 1

|1− az−1|2 + µ2δ(fk), (13)



1− p
p

1− q

q
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Fig. 1. A two-state Markov model of data loss. State “1”:
actual sample is available (Kn = 1). State “0”: actual
sample is lost (Kn = 0).

where z−1 = e−2πfk and

a = p+ q − 1. (14)

Table 1 summarizes the PSDs of the data loss indicator
functions for different data loss models. The small figures
in the table illustrate the typical shapes of PSD functions.

model SK(fk)
shape of
SK(fk)

random
independent
data loss

µ2δ(fk) +
µ(1− µ)

N
f

SK(f )

block-based
data loss

µ2δ(fk) +
µ(1− µ)
MN

∣∣∣∣ sin(fkπM)

sin(fkπ)

∣∣∣∣2
f

SK(f )

Markov model-
based data loss

µ2δ(fk) +
1− a2

N(1− a2N )

µ(1− µ)
|1− az−1|2

f

SK(f )

Table 1. Summary of PSDs belonging to different data loss
models

III. IDENTIFICATION OF DATA LOSS MODELS
Data loss model identification consists of the model se-

lection and the determination of the model parameters. Our
previous literature survey has shown that the above three
models are appropriate in most cases. The procedure uti-
lizes some direct parameters of Kn and is completed by
the evaluation SK(fk). The identification process is sum-
marized in Fig. 2.

An essential requirement is that the communication pro-
tocol provides information about each sample whether its
transfer was successful or not. Without such information
only qualitative assessment of the data loss can be done.

If Kn is available, it is also known, whether the proto-
col is block-based. In the latter case, one sample of Kn

is enough for each block representing the data loss. It is
a kind of decimation. The block length M is obviously
available.

The data availability rate µ can easily be estimated as
the mean value or DC level of Kn. This DC level should
be subtracted from Kn, in order to remove δ(f) from the
PSD, as its presence can impair the transfer function fitting.

The next step is the calculation of SK(fk). It can be

Is it a block−based
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no

Qualitative assessment
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no

START
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Markov model−based
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– Calculate µ,

remove DC from Kn

– Calculate SK(fk)

– Take the IFFT of SK(fk)

(autocorrelation)

– Fit a one-pole system

Calculate p, q

Fig. 2. Data loss model identification

done by the averaging of the FFTs of consecutive (possi-
bly overlapping) blocks of N samples of Kn. As the DC
component is removed from the PSD, windowing is not
necessary.

The inverse Fourier transform (IFFT) of SK(fk) pro-
vides the autocorrelation function of Kn. The FFT block
size should be greater than the length of the autocorrela-
tion function. It is not a hard requirement, as the usual
FFT block size is much greater than required by Kn.

The main part of the identification is the approximation
of SK(fk). As the previous investigations have shown, the
transfer function can be well approached by an all pole or
autoregressive (AR) system. Theoretically it has no pole
if Kn is random independent, and only one pole if Kn is
Markov model-based. SK(fk) of a block based data loss
has zeros, but after decimation Kn is either random inde-
pendent or simple Markov model-based. As the system is



quite simple, there are no special requirements. We have
used a linear prediction filter (LPC) which determines the
coefficients of a forward linear predictor by minimizing the
prediction error in the least squares sense [11]. To this end,
the lpc function of Matlab [10] has been applied.

If already the second LPC coefficient a2 ≈ 0, the data
loss can be handled as random independent. Its only pa-
rameter µ has already been calculated. However, if a2 6= 0,
Markov model-based data loss has been happened. Now
the parameters p and q are to be estimated using the rela-
tions (12) and (14):

p̂ = µ̂(1− â) + â, q̂ = µ̂(â− 1) + 1, (15)

where
â = −a2. (16)

In Eq. (15) and (16) the hat operator indicates the estima-
tion.

At the end, the information whether the data loss is block
based has to be incorporated. If so, the estimators µ̂, p̂ and
q̂ does not change, but the parameter set has to be com-
pleted by the block size M .

IV. RESULTS
The procedure presented above has been intensively

tested by simulations and measurements. In this section
results of both tests are presented. The data processing has
followed the procedure given in Fig.2.

A. Simulation Results
First a random independent data loss pattern has been

generated, then it has been identified by the proposed
method. The parameters of the simulation are summarized
in Table 2, where L is the total length of the record, N

Record length FFT length smoothing factor µ
L N α
106 1024 0.01 0.9900

Table 2. Main data of the first simulation.

is the FFT size. The spectra have been exponentially av-
eraged, with a smoothing factor α. The constant µ is the
parameter of the data loss model. At the end a 10th order
LPC model has been fitted, in order to check the dynamic
behavior of the data loss. The identified model parameters
are the following:

µ̂ = 0.9900, â = 0.0013, p̂ = 0.9900, q̂ = 0.0113.
(17)

As a2 ≈ 0, the random independent data loss has been
verified. The estimators p̂ and q̂ are also calculated, and
the behavior of the model can also be interpreted by Fig.1.
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Fig. 3. Identification of a random independent data loss:
PSD of the data loss pattern, and the PSD of the model (up-
per plot). Coefficients of the identified AR system (lower
plot).

The system is usually in the ’1’ state, and if it moves to
’0’, it has a small probability that stays also in ’0’ for the
next time instant. The PSD of the model has also been
calculated. The upper plot of Fig. 3 shows the PSD of the
data loss pattern (green line), and the PSD of the model
(blue line). The coefficients of the 10th order AR system
are depicted in the lower plot. It can be seen that the fitted
PSD is in good accordance with the generated one. All the
AR coefficients equal approximately zero except the first
one.

The second simulation example deals with Markov-
based data loss. The parameters of the simulation are
summarized in Table 3, where L is the total length of the

Record length FFT length smoothing factor p q
L N α
106 1024 0.01 0.9900 0.9000

Table 3. Main data of the second simulation.

record, N is the FFT size, and α is the smoothing fac-
tor, again. The constants p and q are the parameters of the
Markov-model. A 10th order LPC model has been fitted as
before. The identified model parameters are the following:

µ̂ = 0.9118, â = 0.8872, p̂ = 0.9900, q̂ = 0.8971,
(18)

The original parameters of the model are p and q, there-
fore the data availability rate µ is a resulted constant. The
second LPC coefficient a2 is nonzero, but the rest of the
coefficients are close to zero. The main result of the iden-
tification p̂ and q̂ are really close to the initial parameters
given in Table 3. The PSD of the model has also been cal-
culated. The upper plot of Fig. 4 shows the PSD of the data
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Fig. 4. Identification of a Markov-model based data loss:
PSD of the data loss pattern, and the PSD of the model (up-
per plot). Coefficients of the identified AR system (lower
plot).

loss pattern (green line), and the PSD of the model (blue
line). The coefficients of the 10th order AR system are
depicted in the lower plot. Both the spectra and the LPC
coefficients verify that the calculated first order model is
appropriate for the Markov-based data loss.

B. Measurement Results
Measurements were carried out by a test system intro-

duced in [9]. In this testbed, wireless sensors perform real-
time data collection, and they transmit the data to a PC
through a gateway node. In this measurement we used only
one sensor. The data sent by the sensor are recorded and
processed on the PC. Since data transmission and collec-
tion is performed in a hard real-time manner, there is no
possibility to apply any acknowledge mechanism for the
indication and retransmission of lost packets, hence data
loss is inevitable. The data loss is recognized by a time-out
mechanism. The sampling frequency is fs = 1800 Hz, and
the sensor transmits data in packets of M = 25 samples.
If data loss occurs, it can be described by the block-based
model.

In the first measurement setup, the sensor and the gate-
way were placed 4 m away from each other in a room,
and the sensor was placed near to extensive metal surfaces
in order to degrade the radio transmission properties. De-
pending on the physical circumstances, data loss rates in
the range of [0.1 . . . 30.0]% could be detected. Now the
analysis results for the 3.75% case are introduced. The pa-
rameters of the measurement are summarized in Table 4,
where LB is the length of the record in blocks, while tm is
its duration. The parameter N denotes the FFT size, and α
is the smoothing factor.

The result of the identification can be seen in Fig. 5. The

Record length Duration of FFT length smoothing factor
in blocks, LB the record, tm N α

4638 64.4 sec 1024 0.01

Table 4. Main data of the first experiment.
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Fig. 5. Identification results of the first experiment: PSD
of the measured indicator function, and the PSD of the
model (upper plot). Coefficients of the identified AR sys-
tem (lower plot).

estimated data loss parameters are the following:

µ̂ = 0.9625, â = 0.0201, p̂ = 0.9632, q̂ = 0.0569,
(19)

The PSD of the model has also been calculated. The upper
plot of Fig. 5 shows the PSD of the measured data loss
pattern (green line), and the PSD of the model (blue line).
The coefficients of the 10th order AR system are depicted
in the lower plot.

Both the graphical result and the estimated parameters
imply that this radio communication suffers from random
independent block-based data loss.

The second measurement aimed the investigation of a
different data loss mode. A mobile phone has been placed
next to the wireless sensor, and the WiFi function of the
phone has been activated by playing an on-line media
stream. As both devices use the same 2.4 GHz radio band,
the communication of the phone causes a disturbance for
the wireless sensor. The parameters of the measurement
are summarized in Table 5, where LB is the length of the

Record length Duration of FFT length smoothing factor
in blocks, LB the record, tm N α

25988 361 sec 1024 0.01

Table 5. Main data of the second experiment.
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Fig. 6. Identification results of the second experiment:
PSD of the measured indicator function, and the PSD of
the model (upper plot). Coefficients of the identified AR
system (lower plot).

record in blocks, while tm is its duration. The parameter
N denotes the FFT size, and α is the smoothing factor.

The result of the identification can be seen in Fig. 6. The
estimated data loss parameters are the following:

µ̂ = 0.9533, â = 0.2529, p̂ = 0.9651, q̂ = 0.2878,
(20)

The PSD of the model has also been calculated. The upper
plot of Fig. 6 shows the PSD of the measured data loss
pattern (green line), and the PSD of the model (blue line).
The coefficients of the 10th order AR system are depicted
in the lower plot.

The results clearly show that the data loss introduced by
the WiFi function of the mobile phone cannot be random
independent. Nevertheless, a Markov-based model can be
well fitted to this data loss pattern, as the second AR co-
efficient is nonzero, while the rest of the coefficients are
sufficiently small.

V. CONCLUSION
Recently the analysis of measurement data loss by the

spread of sensor networks and Internet-based technology
has gained importance. The investigation of the FFT based
PSD estimation in the case of data loss has discovered the
exact relation between spectral leakage and some data loss
models. This paper introduced the inverse procedure: the
data loss model can be identified by the Fourier transform
of the so-called data availability indicator function. The
identification procedure has been elaborated for random in-
dependent, random block-based, and Markov model-based
data loss. The method has been intensively tested by sim-
ulations and measurements. Based on the experiences, the
proposed procedure is a promising solution for data loss

model identification. Further research is required if the
data availability function is not stationary or it is not di-
rectly available.
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