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I. Introduction

Sign-error algorithms are mainly used due to their simple realization and low computational demand
[1, 2]. These algorithms have extensive literature, however, the sign-error adaptive controller algorithm
hasn’t been investigated yet. This paper introduces the analysis of the Sign-Error Filtered-x Least-
Mean Square (SE-FxLMS) adaptive controller algorithm. Theadvantage of the sign-error adaptive
controller, above the reduced computational complexity, is that it makes possibledata compression
in the control loopin a very simple way. The signal compressing feature of sign-error algorithms is
demonstrated in [4] that introduces a wireless active noisecontrol system where a sign-error resonator
based adaptive controller is used for noise control. In spite of the sign-error algorithm introduced in
[4], the SE-FxLMS can also be applied in the case of general stochastic reference and control signals,
and it preserves the capability of signal compression.

The paper is structured as follows. Section II provides a brief description of the SE-FxLMS algo-
rithm. In Section III, it is shown that the mean-absolute error of the algorithm is bounded for any value
of the convergence parameter. The characteristic properties of the sign-error FxLMS algorithm are
demonstrated with simulation in Section IV.

II. Introduction to the SE-FxLMS Algorithm

FxLMS [3] is one of the most well-known
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Figure 1: Block diagram of the SE-FxLMS algorithm

adaptive controller algorithms. It has simple
structure and ensures high degree of freedom
due to the large number of free parameters so
it is capable of the controlling of systems with
complicated transfer function (e.g. acoustic
and complex mechanical systems) [5].

The block diagram of the sign-error variant
of the FxLMS algorithm can be seen in Fig. 1.
In the figure,S(z) denotes the plant to be con-
trolled. The input ofS(z) i.e. the output of
the controller isun and the output ofS(z) is
denoted byy′

n. yn anden denote the desired value ofy′
n and the error signal respectively.nn denotes

the noise.xn is the so-called reference signal that is correlated withyn.
A typical application of the FxLMS algorithm is the active noise control (ANC) [5]. In the ANC

systems,yn is the noise to be suppressed,S(z) is an acoustic system and the control signalun is the
so-called anti-noise that is radiated by a loudspeaker—that is the actuator. The superposition of the
noise and the anti-noise is the residual noise i.e. the errorsignalen that is sensed by a microphone.un

should be inverted in order to achieve subtraction at the microphone as shown in Fig. 1. In a practical
application, it can easily be ensured thatxn is correlated withyn.

The control signalun is produced by filteringxn with the adaptive transversal filterwn:

un =
N−1∑

i=0

wi,nxn−i = x
T

nwn, (1)



wherewn = [w0,n . . . wN−1,n]T andxn = [xn . . . xn−N+1]
T. In the case of the sign-error algorithms,

the weights ofwn are updated by the steepest descent method so that the absolute value of the error
i.e. |en| is minimized [2]. The SE-FxLMS algorithm can be derived fromthe “conventional” FxLMS
by replacing the error with its sign in the updating term ofwn. Since the updating rule of the FxLMS
is wn+1 = wn + µenrn [3] so the SE-FxLMS algorithm is as follows:

wn+1 = wn + µ sign(en)rn, (2)

where sign(·) denotes the sign function,µ is the positive convergence parameter andrn =
[rn . . . rn−N+1]

T is the vector of the filtered reference signal:

rn =
F−1∑

k=0

skxn−k ↔ rn =
F−1∑

k=0

skxn−k, (3)

where{sk, k = 0 . . . F − 1} is the impulse response ofS(z).
Note that (2) uses only the sign of the error signal, which makes the computation simple since the

multiplication by asign function means only the manipulation of the sign of the multiplicand. Another
advantage of the algorithm emerges when in the control system, the central controller—that implements
the SE-FxLMS algorithm—and the sensor are separated and they are connected over a low bandwidth
communication channel. If the sensor transmits only the sign of the error signal, significant reduction
in the amount of data can be achieved [4]. The error signal canbe measured directly by the sensor—
e.g. in the ANC systems the residual noise—or it can be calculated if the desired signalyn is known
by the sensor that measuresy′

n.

III. Upper Bound of the Mean-Absolute Error

As (2) shows, the parameterwn is updated irrespectively of the magnitude of the error signal even in
the tight region of the optimum where the error is small. Thiscauses the fluctuation of the parameters
around the optimum so the error signal can’t be set to zero even in optimal case. This residual error
is one of the most commonly investigated property of sign-error algorithms [2] and it is generally
characterized by the mean-absolute error (MAE) that will bederived for the SE-FxLMS in this section.

According to (2), one can obtain a general updating rule forwn:

wn = wn−k +
k∑

q=1

µ sign(en−q)rn−q, k ≥ 1. (4)

In order to obtain a formula foren, first,y′
n should be calculated:

y′
n =

F−1∑

k=0

skun−k =
F−1∑

k=0

skx
T

n−kwn−k = s0x
T

nwn +
F−1∑

k=1

skx
T

n−k

[
wn −

k∑

q=1

µ sign(en−q)rn−q

]
, (5)

where (1) and (4) are used. Due to (3), (5) can be rewritten as follows:

y′
n = r

T

nwn −

F−1∑

k=1

skx
T

n−k

k∑

q=1

µ sign(en−q)rn−q = r
T

nwn − hn, (6)

hn = µ

F−1∑

k=1

k∑

q=1

sign(en−q)skx
T

n−krn−q. (7)



Let wopt denote the optimal value ofwn—that makes the absolute error minimal—so the error of the
parameter vector is̃wn = wn − wopt. It is assumed thatyn is of the form:

yn = r
T

nwopt + νn, (8)

whereνn is the component ofyn that cannot be tracked even in optimal case. In the following, νn will
be included into the noise and a resultant noiseεn = nn + νn will be used. According to the definition
of yn, the error signal can be written as follows:

en = yn − y′
n + nn = r

T

nwopt − r
T

nwn + hn + εn = −r
T

n w̃n + hn + εn. (9)

Since (2) and (9) are formally similar to the equations that describe simple sign-error LMS (SE-LMS)
algorithm which was investigated in [1] hence, those results can be applied for the SE-FxLMS algo-
rithm as well—SE-LMS is a special case of SE-FxLMS withS(z) = 1. The following equations
describe the SE-LMS algorithm and they were used for the derivation of the MAE of the SE-LMS [1]:

wn+1 = wn + µ sign(en)xn and en = −x
T

n w̃n + εn, (10)

and the MAE—that is denoted byEa—of the SE-LMS is:

Ea =
n∑

k=1

E {|ek|} ≤
‖w̃1‖

2
2

2µn
+

1

2
µNRxx(0) + E{|εn|}, (11)

whereE{|εn|} denotes the expected value of the absolute value of the noiseandRxx(0) = E {x2
n} is

the autocorrelation function ofxn in the origin, i.e. the variance ofxn if E {xn} = 0.
Comparing (10) with (2) and (9), it can be noted that in the SE-FxLMS, rn is used instead ofxn so

in the calculation of the MAE of the SE-FxLMS,Rrr(0) should be used instead ofRxx(0).
On the other hand, the effect of the dynamic system appears inthe error as an additive term—seehn

in (9)—hence, it can be handled as the part of the noise. Sincethe noise increases the MAE (11) by its
mean-absolute value i.e. byE {|εn|} thus the dynamic system increases the MAE byE {|hn|} i.e. by
the expected value of|hn|.

An upper bound ofE {|hn|} can be calculated according to (7) using that|a + b| ≤ |a| + |b| and

E
{
|xT

n−krn−q|
}
≤ E

{∑N−1

i=0
|xn−k−i||rn−q−i|

}
= NR|x||r|(k − q) whereR|x||r|(k − q) is the cross-

correlation of|xn| and|rn| if it is assumed that they are stationer. Finally, one obtains:

E {|hn|} ≤ µ

F−1∑

k=1

k∑

q=1

|sk|NR|x||r|(k − q) = µη. (12)

Using (11), (12) and the above discussion, the MAE of the SE-FxLMS can be calculated:

Ea ≤
‖w̃1‖

2
2

2µn
+

1

2
µNRrr(0) + E {|hn|}+ E {|εn|} ≤

‖w̃1‖
2
2

2µn
+

1

2
µNRrr(0) + µη + E {|εn|} . (13)

(13) can be partitioned into three groups:
• 1

2µn
w̃1 is the effect of the transient and it vanishes ifn → ∞. Since it is inversely proportional

to µ, the smaller theµ is, the longer the transient phase is.
• µ

[
1

2
NRrr(0) + η

]
is the effect of the constant step size, i.e. the parameters are modified ir-

respectively of the magnitude of the error. This term is proportional toµ so the MAE can be
decreased by decreasingµ.

• E {|εn|} is the effect of the noise, it isn’t influenced by the convergence parameter.
As (13) shows, the SE-FxLMS preserves the characteristic property of the sign-error algorithms that

in ideal case, the steady state error can be set to an arbitrary small value, however, at the expense of
the settling time [1, 2].



IV. Simulation results

The properties of the sign-error FxLMS algorithm were also investigated with simulation and it was
compared with the original FxLMS algorithm as well. The plant in the simulation was a second order
system that has relatively high dynamics:

S(z) = 2
z2 + 0.6627z + 0.6214

z2 − 0.3373z + 0.81
(14)

In Fig. 2, the transients of the SE-FxLMS (gray line) and
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Figure 2: Transients of the SE-
FxLMS and the FxLMS algorithms

FxLMS (black line) algorithms can be seen. The parame-
ters of the algorithms were:µ = 10−3 for SE-FxLMS and
µ = 10−4 for FxLMS, N = 10 and the reference sig-
nal xn was Gaussian random process with the variance of
Rxx(0) = 1 → Rrr(0) = 15.6. Comparing the transients of
the algorithms, one can observe the most characteristic prop-
erty of the SE-FxLMS algorithm: in spite of the FxLMS that
ensures exponentially decreasing error, in the case of the SE-
FxLMS, the average absolute error doesn’t decrease below a
certain level that is determined by the convergence parameter.

The degradation of the residual error in the case of the SE-
FxLMS is the result of the fact that the magnitude of the error
is neglected during the adaptation. However, this simplifica-

tion of the algorithm makes also possible the implementation of the algorithm in systems with limited
resources [4].

The steady state MAE (MAEss) of the sign-error algorithms is generally an important design param-
eter that can be estimated according to (13) whenn → ∞. In the figure, the SE-FxLMS is in steady
state forn > 28000. In the simulation, theMAEss was0.303 and the estimatedMAEss was3.44, which
shows the validity of (13). If theMAEss were calculated according to (11), i.e. neither the filtering
of the reference signal nor the effect of the plantS(z) were taken into account, theMAEss would be
0.005 so the dynamic system in the feedback loop of the sign-error algorithm has significant effect.

V. Conclusions

In this paper, the SE-FxLMS algorithm was introduced and itsanalysis was presented. It was shown
that the bound of the MAE of the SE-FxLMS algorithm can be given for any value of the convergence
parameter. Both the analytical and simulation results show that the dynamic plant in the feedback loop
of the sign-error algorithm can significantly influence the MAE.

In the future, the extension of the results on multiple-input multiple-output case can be expected.
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