
Digital design laboratory 2

Introduction

• This week you will learn about implementing basic combinational
circuits

• First the 3 gates will be implemented: AND, OR and NOT

• In the second part you will design and implement simple
combinational circuits

• You will also learn how to use the simulator

Task 1

• To get started, launch the Xilinx ISE

• Select File -> New project…

Task 1

• Name:
Digital_design_lab_2

• Work on the D: directory!

• Press Next

Task 1

• Set the properties of the board:
Family: Spartan3E
Device: XC3S250E
Package: TQ144
Speed: -4

• If everything is set properly,
 press Next

Task 1

• Press Finish

Task 1

• Right click on the xc3s250e-4tq144 label, and select New Source…

Task 1

• Select Verilog Module

• Name: module_1

• Do not modify the Location!

• Make sure the “Add to project”
checkbox is checked

• Press Next

Task 1

• We will use the switches as inputs, and the LEDs of the board as outputs in
the current module

• Set the sw and ld (lowercase “L”, not uppercase “i”!) signals as:

• Press Next, then press Finish

Task 1

• The new module has been added to the project:

• A template module has been generated:

Task 1

• According to AsicGuru.com:

Module Declaration
A module is the principal design entity in Verilog. The first line of a module declaration specifies the name and
port list (arguments). The next few lines specifies the i/o type (input, output or inout, see Sect. 4.4.) and width of
each port. The default port width is 1 bit.
Then the port variables must be declared, the default is wire. Typically inputs are wire since their data is latched
outside the module.

Syntax

module module_name (port_list);
 input [msb:lsb] input_port_list;
 output [msb:lsb] output_port_list;
 inout [msb:lsb] inout_port_list;
 ... statements ...
endmodule

Task 1

• In our case a module has been defined that has two ports:
• The 8 bits wide ld is an output

• The 8 bits wide sw is an input

• Both sw and ld are wires

• Now you have to add statements to the module to define its behavior

• In the first task, we will implement two four-input gates: an AND gate
and an OR gate

• The inputs of the AND gate will be the first four switches (from the
right). The second 4 switches will be the inputs of the OR gate.

Task 1

• The output of the AND gate will be connected to the rightmost LED,
ld[0]. The output of the AND gate will be connected through a NOT
gate to ld[1] too.

• The OR gate’s output will be connected to ld[2], and its inverse to
ld[3].

• The Boolean equations are the following:

• ld[0] = sw[0]·sw[1]·sw[2]·sw[3], ld[1]=(sw[0]·sw[1] ·sw[2] ·sw[3])’

• ld[2] = sw[4]+sw[5]+sw[6]+sw[7], ld[3]=(sw[4]+sw[5]+sw[6]+sw[7])’

Task 1

• The following operators can be used in Verilog to implement the AND,
OR and NOT operations:

Name Verilog operator Example

AND & a&b (2 input AND)

OR | a|b|c (3 input OR)

NOT ~ ~x

Task 1

• Add the following lines to the module

• The above code shows that signals of type wire can be driven
continuously using the assign statement.

• You can see that the value assigned to a wire can be a constant or an
expression (last line vs lines above).

• We set the upper 4 LEDs to constant 0 otherwise we would receive
warning during the implementation

Task 1

• The 4’b0000 expression is a constant. The 4 shows the bit width of
the constant, b shows that its given in a binary form, and 0000 is the
4 bit value we want to assign.

• You can also define decimal or hexadecimal constants:
• 4’d10: 4-bit decimal constant (1010)

• 5’hB: 5-bit hexadecimal constant (01011)

• The resulting constant is always in binary form, the b, d, h specifiers
define the base of the source, not the final result!

Task 1

• Before implementing the design, we are going to test it using the
simulator

• Before you do anything, make sure you have saved the modifications

• As a next step, switch to Simulation mode in the top left corner of the
ISE:

Task 1

• Right click on the xc3s250e-tq144 label, and select New Source

Task 1

• Select Verilog Test Fixture

• Name: module_1_tf

• Do not modify the Location

• Make sure the “Add to project” checkbox is set

• Press Next

Task 1

• The following windows appears, module_1 should be selected (since
we want to test it):

• Press Next,
then press Finish

Task 1

• The ISE generates the skeleton for the test fixture file. Go to the initial
begin – end part:

Task 1

• Here you can define arbitrary input for the module. The syntax is the
following: #T sw = CONSTANT

• T defines the time interval (in nanoseconds) the simulator waits
before setting the value defined with CONSTANT on the given variable
(sw in this example).

• First, let’s wait 100 nanoseconds, then set the input of the AND gate
to 1101 and the input of the OR gate to 1000:

• To do so, add the following line after the Add stimulus here part:
#100; sw = 8'b10001101

Task 1

• The input can be interpreted as the following:

• #100; sw = 8'b10001101

• We want to wait 100 ns before setting the value

• The constant is given in binary form, and we want to define an 8-bit
value

• The input of the OR gate is 1000, since sw[7], sw[6], sw[5] and sw[4]
is the 4 input bits of the OR operation

• The input of the AND gate is 1101, since sw[3], sw[2], sw[1] and sw[0]
are connected to the inputs of the AND operation

Task 1

• Add two more lines to the stimulus part:

Before continue, make sure all changes are saved!

Task 1

• Select the module_1_tf file in the top left corner by left clicking on it

• After selecting it, press the + button next to the Isim simulator:

Task 1

• To new options appear: “Behavioral Check Syntax” and “Simulate
Behavioral Model”

• Right click on Simulate Behavioral Model, and select “Rerun All”

Task 1

• The simulation output window pops up, you should see something
like this:

Task 1

• To see the full result of the simulation, press the “Zoom to full view”
button on the bar above the main window.

• To see the output bits one-by-one, click on the triangle next to ld:

Task 1
• Now you can see each outbut bit’s waveform for the different inputs:

• For example, when the input on the sw is 10001101, ld[0] is 0, ld[1] is
1, ld[2] is 1 and ld[3] is 0.

• Remember: ld[0] is the output of the AND gate, ld[1] is the inverse of
ld[0], ld[2] is the output of the OR gate, and ld[3] is the opposite of
ld[2]. Thus, ld[0] is 1 if ALL of the lower 4 bits of sw is 1.

Task 1

• Similarly, ld[2] is 1 if ANY of the upper 4 bits of the sw input is 1.

• Check the output for the other input combinations you have set in
the test fixture file. Is the result in accordance with your
expectations?

Task 1

• Before you continue, close the ISim simulator (File -> Exit)

• Switch back to Implementation mode in the top left corner of the ISE:

• Now we will implement and download the module to the FPGA
board. Thus, we have to define the ports for the LEDs and switches,
just like on the first lab.

• A file has been prepared for this purpose, you can download it using
the following link: download

http://home.mit.bme.hu/~rtamas/Logsys/LOGSYS_SP3E.ucf

Task 1

• Download the file, and save it to the current working directory of
your project (D:\Digital_design_lab_2).

• If you are not sure, you can check it in the title bar of the ISE:

• If the browser opens the file instead of displaying the download
dialog window: right click, and select “Save as…”

Title bar:

Task 1

• After saving the file (with .ucf extension), go back to the ISE, right
click on the xc3s250e-4tq144 label, and select “Add Copy of Source…”

Task 1

• Select the downloaded ucf file, and press Open:

Task 1

• The following window appears, press Ok:

Task 1

• Left click on the plus sign next to module_1:

• Open the LOGSYS_SP3.ucf file (by double clicking on it).

• Uncomment the lines that belong to the switches and LEDs. Select
the lines first, then right click, and select uncomment (see next
slides).

Task 1
• Uncommenting the switches:

Task 1
• Uncommenting the leds:

• Press Save

Task 1

• Select the module_1 file again on the left side:

• On the bottom left side of the screen, double click on “Generate
Programming File”

• If everything went fine, you should see this:

Task 1

• Connect your board to the USB. Remember the correct orientation of
the JTAG connector:

Task 1

• Start the LOGSYS GUI application:

• First, press the Power button:

Task 1

• Press the JTAG Download checkbox:

• Press the Query JTAG chain button:

• Then press the Configure the selected device… button

Task 1

• Browse your working directory and select the generated bitfile, and
press Open:

Task 1

• Verify the correct behavior of the network using multiple input
combinations. Are the LEDs turning on and off as you expect?

Task 2

• In the next task, we will create a simple combinational circuit that has
four inputs: a, b, c, d

• Input a will be driven by sw[3], b by sw[2], c and d by sw[1] and sw[0].

• The four input bits abcd will represent four bit binary numbers from 0
to 15.

• The output of the circuit will indicate whether the input can be
divided by 5 or not (the remainder is 0).

• The following numbers fulfills this condition in the 0-15 domain:

• 0, 5, 10, 15

Task 2

• Remember binary number representation: input abcd represents
23222120

• The corresponding product terms are the following:
0: a’b’c’d’, 5: a’bc’d, 10: ab’cd’, 15: abcd

• Thus, the sum of products form of the Boolean function is:

• F = a’b’c’d’ + a’bc’d + ab’cd’ + abcd

Task 2

• Add a new Verilog module to the project. If you need help, use slides
7-10

• Name: div_5

• Inputs: sw and ld, the same as in Task 1

Task 2

• Now implement the Boolean function by adding the following lines:

• The example shows that long expressions can be divided into multiple
lines to improve the readability of the code

• The function’s output is connected to ld[0], the other leds are turned
off.

Task 2

• Right click on the div_3 file, and select “Set as Topmodule”

Task 2

• Generate the programming file and upload it to the board. Using the
switches, verify the circuit for every input from 0 to 15.

• If you need help, check slides 39-43

• Note: you will get some warnings since sw[7]..sw[4] is not used in this
design. You can ignore this right now

• If you still have time: try to implement a function on your own thats
output is one if the input can be divided by 3

