
Digital design laboratory 3



BCD code checker

• The first task is the implementation of the codechecker circuit we 
have designed on practice

• Valid BCD codes are 4-bit binary numbers that represent values 
between 0 and 9

• Thus, the circuit has 4 inputs and one error output

• The error output is set to 1 if the input is higher than 9



BCD code checker

• Launch the Xilinx ISE:

• Select File -> New Project…



BCD code checker

• Name:
Digital_design_lab_3

• Location: work on drive D:

• Press Next



BCD code checker

• Verify the settings
Family: Spartan3E
Device: XC3S250E
Package: TQ144
Speed: -4

• Press Next and Finish



BCD code checker

• Once the project is created, right
click on the label „xc3s250e-4tq144”, 
and select New Source…



BCD code checker

• Select Verilog Module

• Name: BCD

• Do not modify the 
working directory

• Make sure the „Add to project”
checkbox is checked

• Press Next



BCD code checker

• Add „sw” as input, Bus is checked,
MSB is 7 and LSB is 0

• Add „ld” as output, Bus is checked,
MSB is 7 and LSB is 0

• Press Next, then press Finish 



BCD code checker

• The code checker has 6 invalid inputs: 10, 11, 12, 13, 14, 15

• So the error function consists of 6 minterms

• This could be transformed directly into a gate level circuit, but it 
require many gates (6 4-input AND gates, 1 6-input OR gate)

• Next slide summarizes the minimization process we did on practice

• The simplified circuit consists of 2 2-input AND gates and 1 2-input OR 
gate



BCD code checker

• F = AB’CD’+AB’CD+ABC’D’+ABC’D+ABCD’+ABCD = 
AB’C+ABC’+ABC = AB’C+ABC+ABC’+ABC = AB+AC

Input (ABCD) Error Input (ABCD) Error

0000 0 1000 0

0001 0 1001 0

0010 0 1010 1

0011 0 1011 1

0100 0 1100 1

0101 0 1101 1

0110 0 1110 1

0111 0 1111 1



BCD code checker
• Add the following lines to the BCD module

• sw[3], sw[2], sw[1] and sw[0] will represent A, B, C, D

• ld[7]…ld[0] is also driven to avoid warning messages

• {N{EXPRESSION}} syntax: use curly braces! Description on the next 
slide



BCD code checker

• {N{EXPRESSION}} syntax:
• EXPRESSION is a logical expression, it can be true or false

• The above syntax means that „take the value of expression, and repeat it N 
times

• For example, if EXPRESSION=1 (true) and N=6, the result is the following 6 bit 
binary number: 111111

• If you have added the code, save all changes before the next step



BCD code checker

• In the top left corner, swith to simulation mode



BCD code checker

• Right click on the „xc3s250e-4tq144” label, and select 
New Source…



BCD code checker

• Select Verilog Text Fixture

• Name: BCD_tf

• Do not modify the location

• Check „Add to project”

• Press Next



BCD code checker

• The „Associate source” window
appers

• Select BCD

• Press Next



BCD code checker

• The circuit will be tested 
using a for loop

• Add the following lines to your
code
• integer i; BEFORE the „initial 

begin” part

• Copy the code after the „Add
stimulus here” comment

• Note: i++ is not accepted here

• Save all changes



BCD code checker
• In the top left corner, left click on the BCF_tf module:

• Press the + sign next to the Isim simulator, right click on „Simulate 
Behavioral Model” and select Rerun All



BCO code checker

• The simulator starts and the waveforms appear, press the Zoom to 
Full View button:

• Right click on the sw[7:0] signal, select 
Radix->Hexadecimal



BCD code checker
• Do the same for the ld signal

• Now you can read the inputs and outputs as hexadecimal values:

• Try to switch to decimal representation



BCD code checker

• Exit the simulator, and switch back to implementation mode:



BCD code checker

• Now we will check the design verilog generates from the module 
code you have entered.

• Left click on the BCD module in the top left corner

• Press the + sign next to Synthesiye-XST, right click on „View RTL 
schematic”, and select „Rerun All”



BCD code checker

• Select „Start with a schematic of the
top level block” in the popup window

• Press OK



BCD code checker

• Double click
inside the BCD
module
(red circle)



BCD code checker
• The gate level design of the module appears:

• Study the design, focusing on the two and2 gates and the or2 gate 
(the and5 gate belongs to our dummy line to avoid warnings)



BCD code checker

• Now we will implement and download the module to the FPGA 
board. A file has been prepared for this purpose, you can download it 
using the following link: download

• If the browser opens the file instead of displaying the download 
dialog window: right click, and select “Save as…”

• Download the file, and save it to the current working directory of 
your project (D:\Digital_design_lab_2). 

• If you are not sure, you can check it in the title bar of the ISE (top of 
the ISE window)

http://home.mit.bme.hu/~rtamas/Logsys/LOGSYS_SP3E.ucf


BCD code checker

• Go back to the ISE, right click on the 
„xc3s250e-4tq144” label and select 
„Add copy of source”



BCD code checker

• Browse the file you have downloaded, select it and press Open:



BCD code checker

• The following window appears:

• Press OK

• If you have difficulties, 
ask for assistance



BCD code checker

• Open the downloaded file inside the ISE, and uncomment the lines 
belongig to „sw”and „ld”

• Press save 



BCD code checker

• Select the BCD module in the top left corner (left click)

• Then right click on „Generate Programming
File”, and select „Rerun All”



BCD code checker

• Wait until the programming file is generated

• If everything is OK, you should see this:

• Ask for assistance if you see errors (red X) or warnings (yellow !). 



BCD code checker

• If the program file was generated 
succesfully, you can connect the FPGA
board to the PC

• Mind the orientation of the JTAG 
connector!



BCD code checker

• Launch the Logsys GUI application

• Press the +5V button to turn the board on



BCD code checker

• On the right side of the screen, select JTAG download:

• Press the „Query JTAG chain” button

• Then press „Configure the Selected Device”



BCD code checker

• Browse the bcd.bit
file

• Press Open



BCD code checker

• Try the inputs from 0 to 15 using the switches (4 on the right side). Is 
the output set correctly for inputs higher than 9?



BCD code checker

• Try to modify the circuit on your own: the output on ld[0] should be 
1, if the 8 bit input is an invalid BCD code. 

• Help: sw[7:0] can be converted to a 2 digit hexadecimal number:
• sw[3] sw[2] sw[1] sw[0]: ABCD

• sw[7] sw[6] sw[5] sw[4]: EFGH

• So the error output is 1 if ABCD is greater than 9 OR EFGH is greater 
than 9



Fibonacci number detector

• Try to modify the circuit on your own to implement a Fibonacci 
number detector.

• You can find additional information on Fibonacci numbers here:
https://www.mathsisfun.com/numbers/fibonacci-sequence.html

• Since the board has an 8-bit input, the following Fibonacci numbers 
can be detected: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233

• Design a circuit that outputs 1 on ld[0] if the input on the switches is 
a Fibonacci number

• Help: implement a minterm for each Fibonacci number

• sw[0] represents 20, sw[1] is 21, …, and sw[7] represents 27

https://www.mathsisfun.com/numbers/fibonacci-sequence.html

