
Digital design laboratory 8

Greatest common divisor (GCD)

• The GCD of two numbers can be determined using the Euclidean
algorithm.

• The basis of the algorithm is the % operation (remainder after
division).

• The steps are the following in the calculation of GCD(A, B):
• A = B*Q1 + R1, where R1 = A%B

• B = R1*Q2 + R2, where R2 = B%R1

• R1 = R2*Q3 + R3, where R3 = R1%R2

• This is done until B>R1>R2>…>=0.

• The GCD is the last nonzero element in the above series.

GCD

• Example: GCD(15, 6)=? A=15, B=6.

• A=B*2+3 (Q1=2, R1=3)

• B=3*2+0 (Q2=2, R2=0)

• R1 is the last nonzero remainder after division => GCD(15, 6) = 3.

• Problem: the % operation can not be synthetized in Verilog.

• A subtraction based algorithm will be presented.

GCD

• Properties of the GCD:
• GCD(A, B) = GCD(A-B, B) if A>B => A = A-B

• GCD(A, B) = GCD(A, B-A) if B>A => B = B-A

• Repeating the above steps until A=B leads to the value of the GCD.

• Example: GCD(15, 6) A=15, B=6
• 1. step: A>B => A = A-B = 15-6 = 9

• 2. step: A>B => A = A-B = 9-6 = 3

• 3. step: B>A => B = B-A = 6-3 = 3 => A=B=3 => GCD(15, 6) = 3.

GCD

• We are going to implement
the previous algorithm.

• The controller state machine
is the following:

GCD

• The state machine will be
implemented in the
Topmodule. It controls
the circuit on the right:

GCD

• Datapath components:
• Ao_reg and Bo_reg: registers with load and update input. When load=1, the

value on the input pins are loaded into the registers. When update=1, the
value on the output of the SUB modules are loaded. Otherwise the registers
maintains its value.

• SUB: subtractor circuit that subtract Y from X (X-Y).

• MUX EXCH: this module provides the inputs of the SUB circuit. If rsub = 0, X=A
and Y=B, thus the A-B operation is performed. If rsub=1, X=B and Y=A and B-A
is calculated.

• COMP: magnitude comparator.

GCD

• Create new project:
DigLab8 on drive D:\

GCD

• Next

GCD

• Finish

GCD

• Add the Topmodule
to the project

GCD

• Add the inputs
and outputs

• Next

GCD

• Finish

GCD

• Register implementation

• Add new Verilog module

• Name: Reg8

GCD

GCD

• Magnitude comparator
implementation

• Name: Comp

GCD

• Implementation

GCD

• MUX EXCH and SUB modules will be implemented together

• Add new Verilog module

• Name: Msub

GCD

• Source:

GCD

• We want to indicate the value of the GCD

• The 7 segment LED display will be used

• We need to implement a Hexadecimal to 7-segment converter, a
multiplexer and a decoder circuit

• We also need a 2 bit counter to generate the select signal for the
multiplexer and the decoder

GCD

• Decoder

• Name: dec4

GCD

• Source

GCD

• cnt2 module:

GCD

• Multiplexer module

• Name: Mux

GCD

GCD

• Hex7Seg module

always @ (*)
case (hex)

4'b0000 : seg <= 8'b00111111; // 0
4'b0001 : seg <= 8'b00000110; // 1
4'b0010 : seg <= 8'b01011011; // 2
4'b0011 : seg <= 8'b01001111; // 3
4'b0100 : seg <= 8'b01100110; // 4
4'b0101 : seg <= 8'b01101101; // 5
4'b0110 : seg <= 8'b01111101; // 6
4'b0111 : seg <= 8'b00000111; // 7
4'b1000 : seg <= 8'b01111111; // 8
4'b1001 : seg <= 8'b01101111; // 9
4'b1010 : seg <= 8'b01110111; // A
4'b1011 : seg <= 8'b01111100; // b
4'b1100 : seg <= 8'b00111001; // C
4'b1101 : seg <= 8'b01011110; // d
4'b1110 : seg <= 8'b01111001; // E
4'b1111 : seg <= 8'b01110001; // F
default : seg <= 8'b00000000; // 0

endcase

GCD

• The state machine on slide 5 shows that we leave the IDLE state is the
start signal is set to 1

• The start signal is connected to the bt inputs (OR relation)

• We need a rising edge sensor circuit, that is able to provide a 1 clk
long high output after the button is pressed.

GCD

• Rising edge sensor module

• Name: R_edge_sens

• Inputs: clk, rst, bt [3:0]

• Output: start

GCD

• Now switch back to the Topmodule

• We are going to implement the state machine first

• After setting an 8 bit number on the switches (A), and a button is
pressed, we switch to the INIT1 state and the loada signal will be set
to 1.

• Now the second 8 bit input can be set, and after pressing a button
again, the FSM goes into the INIT2 state. Loada is set to 0 and loadb is
set to 1.

GCD

• First we implement the state and next_state registers. To improve
readability, we use parameters to encode the states. This way we can
write the names of the states instead of their binary codes.

GCD

• Study the graph on slide 5. The state machine has 4 inputs that affect
the state changes: start, aeqb, agtb, bgta

• There are four outputs to control the determination of the GCD:
loada, loadb, upda, updb, rsub

• We are goind to add a wire for every input and output.

GCD

• Add the following code to the topmodule:

GCD

• The logic for the status and next_state registers still has to be added.

• We start with next_state.

GCD

• As a last step of the FSM implementation, we have to set the outputs:

GCD

• Finally, we have to instantiate the previously implemented modules.

• First start with the comparator.

• Left click on the Comp.v module

• On the left bottom of the screen, click on the + sign on the left of
Design Utilitis.

• Double click on View HDL Instantiation Template

GCD

GCD

• Now you can copy the instantiation template into the Topmodule.

GCD

• Next implement the Reg8 module in two instances: RegA, RegB

• Some wires have to be updated in the instantiation

GCD

• Now implement the Msub module:

GCD

• Now add the cnt2 and R_edge_sens modules:

GCD

• Finally, we have to implement dec4, Mux and Hex7Seg:

GCD

• Instantiation of dec4 and Hex7Seg:

GCD

• And finally, the MUX:

GCD

• Test the Topmodule with a Test Fixture file: Topmodule_TF

• Add the following excitations:

GCD

• Optional task: In the ISim simulator, add the following wires to the
simulation: A, B, start, loada, loadb

• Relaunch the simulation and verify the Topmodule. Is the behavior
correct?

GCD

• Now you have to add the .ucf file

• Download it: link

• Unzip the file to the project directory

• Add it to the project with add source or add copy of source

• Uncomment the following lines:
clk, rst, bt (all), sw (all), seg_n (all), dig_n (all), col_n (all)

• Now generate the programming file

http://logsys.mit.bme.hu/sites/default/files/page/2009/09/SP3E_UCF.zip

