Digital design laboratory 8

Greatest common divisor (GCD)

- The GCD of two numbers can be determined using the Euclidean algorithm.
- The basis of the algorithm is the % operation (remainder after division).
- The steps are the following in the calculation of GCD(A, B):
 - A = B*Q1 + R1, where R1 = A%B
 - B = R1*Q2 + R2, where R2 = B%R1
 - R1 = R2*Q3 + R3, where R3 = R1%R2
 - This is done until B>R1>R2>...>=0.
- The GCD is the last nonzero element in the above series.

- Example: GCD(15, 6)=? A=15, B=6.
- A=B*2+3 (Q1=2, R1=3)
- B=3*2+0 (Q2=2, R2=0)
- R1 is the last nonzero remainder after division => GCD(15, 6) = 3.
- Problem: the % operation can not be synthetized in Verilog.
- A subtraction based algorithm will be presented.

- Properties of the GCD:
 - GCD(A, B) = GCD(A-B, B) if A>B => A = A-B
 - GCD(A, B) = GCD(A, B-A) if B>A => B = B-A
- Repeating the above steps until A=B leads to the value of the GCD.
- Example: GCD(15, 6) A=15, B=6
 - 1. step: A>B => A = A-B = 15-6 = 9
 - 2. step: A>B => A = A-B = 9-6 = 3
 - 3. step: B>A => B = B-A = 6-3 = 3 => A=B=3 => GCD(15, 6) = 3.

- We are going to implement the previous algorithm.
- The controller state machine is the following:

• The state machine will be implemented in the Topmodule. It controls the circuit on the right:

- Datapath components:
 - Ao_reg and Bo_reg: registers with load and update input. When load=1, the value on the input pins are loaded into the registers. When update=1, the value on the output of the SUB modules are loaded. Otherwise the registers maintains its value.
 - SUB: subtractor circuit that subtract Y from X (X-Y).
 - MUX EXCH: this module provides the inputs of the SUB circuit. If rsub = 0, X=A and Y=B, thus the A-B operation is performed. If rsub=1, X=B and Y=A and B-A is calculated.
 - COMP: magnitude comparator.

 Create new project: DigLab8 on drive D:\

New Project Wizard			×
Create New Project Specify project lo	ation and type.		
Enter a name, locati Name: Location: Working Directory: Description:	DigLab8 D:\DigLab8 D:\DigLab8 D:\DigLab8		<u></u>
Select the type of to Top-level source ty HDL	p-level source for the project		
More Info		Next >	Cancel

>New Project Wizard

• Next

EValue	
None Specified	-
All	-
Spartan3E	•
XC35250E	•
TQ144	-
-4	-
HDL	-
XST (VHDL/Verilog)	-
ISim (VHDL/Verilog)	-
Verilog	-
Store all values	-
VHDL-93	-
	None Specified All Spartan3E XC3S250E TQ144 -4 -4 HDL XST (VHDL/Verilog) ISim (VHDL/Verilog) Verilog Store all values VHDL-93

×

>New Project Wizard

Project Summary

• Finish

Project: Project Name: DigLab8 Project Path: C:\Documents and Settings\Administrator\Desktop\DigLab Working Directory: C:\Documents and Settings\Administrator\Desktop\D Description: Top Level Source Type: HDL
Device: Device Family: Spartan3E Device: xc3s250e Package: tq144 Speed: -4
Top-Level Source Type: HDL Synthesis Tool: XST (VHDL/Verilog) Simulator: ISim (VHDL/Verilog) Preferred Language: Verilog Property Specification in Project File: Store all values Manual Compile Order: false VHDL Source Analysis Standard: VHDL-93
More Info < Back Einish Cancel

Project Navigator will create a new project with the following specifications.

×

• Add the Topmodule to the project

New Source Wizard	×
Select Source Type Select source type, file name and its location.	
 IP (CORE Generator & Architecture Wizard) Schematic User Document Verilog Module Verilog Test Fixture VHDL Module VHDL Library VHDL Package VHDL Test Bench Embedded Processor 	Eile name: Topmodule Logation: Ments and Settings\Administrator\Desktop\DigLab8
More Info	<u>N</u> ext > Cancel

• Add the inputs and outputs

New Source Wizard

Specify ports for module.

Define Module

• Next

Port Name	Direction	Bus	MSB	LSB
clk	input 💌			
rst	input 💌			
bt	input 💌] 🗹	3	0
SW	input 💌] 🗹	7	0
dig_n	output 💌] 🗹	3	0
seg_n	output 💌] 🗹	7	0
col_n	output 💌		4	0
	input 💌			

×

	>New Source Wizard				×
GCD	Summary Project Navigator will	create a new skel	leton source wit	h the following specifications.	
• Finish	Add to Project: Yes Source Directory: C:\Docum Source Type: Verilog Module Source Name: Topmodule.v Module name: Topmodule Port Definitions: clk rst bt sw dig_n seg_n col_n	nents and Setting Pin Pin Bus: Bus: Bus: Bus: Bus:	s\Administrator 3:0 7:0 3:0 7:0 4:0	\Desktop\DigLab8 input input input output output output output	
	More Info			< <u>B</u> ack <u>F</u>	jinish Cancel

- Register implementation
- Add new Verilog module
- Name: Reg8

New Source Wizard	I
Define Module	

Specify ports for module.

Module name Re	eq8
----------------	-----

Port Name	Direction	Bus	MSB	LSB	
clk	input 🗾				
rst	input 🗾				
load	input 💌				
upd	input 🗾				
load_in	input 💌	✓	7	0	
upd_in	input 🗾	✓	7	0	
q	output 🗾	✓	7	0]
	input 🗾				
	input 🗾				
	input 🗾				
	input 💌				
	input 💌				
More Info	<u> </u>	ack	<u>N</u> ext >	Cancel	

X

21	module Reg8(
22	input clk,
23	input rst,
24	input load,
25	input upd,
26	input [7:0] load in,
27	input [7:0] upd_in,
28	output reg [7:0] q
29);
30	
31	always @ (posedge clk)
32	if (rst) q <= 8'd0;
33	<pre>else if (load) q <= load_in;</pre>
34	<pre>else if (upd) q <= upd_in;</pre>
35	

36 endmodule

- Magnitude comparator
- implementation
- Name: Comp

New Source Wizard					×
Define Module Specify ports for mo	odule.				
Module name Comp					
Port Name	Direction	Bus	MSB	LSB 🔺	
A	input 💌		7	0	
В	input 💌		7	0	
agtb	output 💌				
bgta	output 💌				
aeqb	output 💌			-	
More Info	< <u>B</u>	ack	<u>N</u> ext >	Cancel]

Implementation

21	module Comp(
22	input [7:0] A,
23	input [7:0] B,
24	output agtb,
25	output bgta,
26	output aeqb
27);
28	
29	assign agtb = (A>B);
30	assign bgta = (B>A);
31	assign aeqb = (A==B);
32	
33	

endmodule

- MUX EXCH and SUB modules will be implemented together
- Add new Verilog module
- Name: Msub

New Source Wizard				2
Define Module Specify ports for m	odule.			
Module name Msub				
Port Name	Direction	Bus	MSB	LSB 🔺
X	input 💌		7	0
γ	input 💌		7	0
rsub	input 💌			
diff	output 🗾		7	0 🖵
More Info	<u> </u>	ick	<u>N</u> ext >	Cancel

• Source:

- We want to indicate the value of the GCD
- The 7 segment LED display will be used
- We need to implement a Hexadecimal to 7-segment converter, a multiplexer and a decoder circuit
- We also need a 2 bit counter to generate the select signal for the multiplexer and the decoder

- Decoder
- Name: dec4

New Source Wizard Define Module Specify ports for module.							
Module name de	904						
Port Name	Direction		Bus	MSB		LSB	
s	input			1	0		
d	output	•		3	0		
	input						
	input	-					
<u>M</u> ore Info		< <u>B</u> a	ack	<u>N</u> ext >		Cancel	

• Source

34 endmodule

• cnt2 module:

>New Source Wizard							×
Define Module Specify ports for module.							
Module name cnt2							
Port Name	Direction		Bus	MSB		LSB	
clk	input	-					
rst	input	-					
cnt	output	•		1	C)	
<u>M</u> ore Info < <u>B</u> ack <u>N</u> ext > Cancel							

```
21 module cnt2(
22
       input clk,
       input rst,
23
       output reg [1:0] cnt
24
25
       );
26
      always @ (posedge clk)
27
      if (rst) cnt <= 2'd0;
28
      else cnt <= cnt + 2'd1;</pre>
29
30
```

31 endmodule

- Multiplexer module
- Name: Mux

New Source Wizard Define Module Specify ports for module.							
Module name Mux							
Port Name	Direction	Bus	MSB	LSB 🛓			
num	input 💌		15	0			
sel	input 💌		1	0			
out	output 💌		3	0			
	input 💌				-		
 More Info							

35 endmodule

• Hex7Seg module

>New Source Wizard							
Define Module Specify ports for module.							
Module name Hex7Seg							
Port Name	Direction	Bus	MSB	LSB			
hex	input 🗾		3	0			
seg	output 🗾		7	0			
					<u> </u> .		
More Info < Back Next > Cancel							

always @ (*)

case (hex)

```
4'b0000 : seg <= 8'b00111111; // 0
```

```
4'b0001 : seg <= 8'b00000110; // 1
```

```
4'b0010 : seg <= 8'b01011011; // 2
```

```
4'b0011 : seg <= 8'b01001111; // 3
```

```
4'b0100 : seg <= 8'b01100110; // 4
```

```
4'b0101 : seg <= 8'b01101101; // 5
```

```
4'b0110 : seg <= 8'b01111101; // 6
```

```
4'b0111 : seg <= 8'b00000111; // 7
```

```
4'b1000 : seg <= 8'b01111111; // 8
```

```
4'b1001 : seg <= 8'b01101111; // 9
```

```
4'b1010 : seg <= 8'b01110111; // A
```

```
4'b1011 : seg <= 8'b01111100; // b
```

```
4'b1100 : seg <= 8'b00111001; // C
```

```
4'b1101 : seg <= 8'b01011110; // d
```

```
4'b1110 : seg <= 8'b01111001; // E
```

```
4'b1111 : seg <= 8'b01110001; // F
```

```
default : seg <= 8'b0000000; // 0
```

endcase

- The state machine on slide 5 shows that we leave the IDLE state is the start signal is set to 1
- The start signal is connected to the bt inputs (OR relation)
- We need a rising edge sensor circuit, that is able to provide a 1 clk long high output after the button is pressed.

- Rising edge sensor module
- Name: R_edge_sens
- Inputs: clk, rst, bt [3:0]
- Output: start

```
21 module R edge sens(
       input clk,
22
23
       input rst,
       input [3:0] bt,
24
       output start
25
26
       );
27
28
      reg [1:0] bt0 reg, bt1 reg, bt2 reg, bt3 reg;
      always 0 (posedge clk)
29
30
      if (rst)
         begin
31
32
            bt0 req <= 2'b11;
            bt1 reg <= 2'b11;
33
            bt2 reg <= 2'b11;
34
            bt3 reg <= 2'b11;
35
36
         end
37
      else
38
         begin
39
            bt0 reg <= {bt0 reg[0], bt[0]}; // Concatenation, use braces
            bt1 reg <= {bt1 reg[0], bt[1]}; // Concatenation, use braces</pre>
40
            bt2 reg <= {bt2 reg[0], bt[2]}; // Concatenation, use braces</pre>
41
            bt3 reg <= {bt3 reg[0], bt[3]}; // Concatenation, use braces
42
43
         end
44
      assign start = (bt0_reg == 2'b01) | (bt1_reg == 2'b01) | (bt2_reg == 2'b01) | (bt3_reg == 2'b01);
45
46
```

47 endmodule

- Now switch back to the Topmodule
- We are going to implement the state machine first
- After setting an 8 bit number on the switches (A), and a button is pressed, we switch to the INIT1 state and the loada signal will be set to 1.
- Now the second 8 bit input can be set, and after pressing a button again, the FSM goes into the INIT2 state. Loada is set to 0 and loadb is set to 1.

• First we implement the state and next_state registers. To improve readability, we use parameters to encode the states. This way we can write the names of the states instead of their binary codes.

```
parameter IDLE1 = 3'b000;
parameter IDLE2 = 3'b111;
parameter INIT1 = 3'b001;
parameter INIT2 = 3'b010;
parameter TEST = 3'b011;
parameter SUB = 3'b100;
parameter RSUB = 3'b101;
parameter DONE = 3'b110;
reg [2:0] state, next_state;
always @ (posedge clk)
if (rst) state <= IDLE1;
else state <= next_state;</pre>
```

- Study the graph on slide 5. The state machine has 4 inputs that affect the state changes: **start**, **aeqb**, **agtb**, **bgta**
- There are four outputs to control the determination of the GCD: loada, loadb, upda, updb, rsub
- We are goind to add a wire for every input and output.

• Add the following code to the topmodule:

wire sta	rt, aeqb,	agtb, I	bgta;	
wire loa	da, loadb	, upda,	updb,	rsub;

- The logic for the status and next_state registers still has to be added.
- We start with next_state.

```
always 0 (*)
case (state)
IDLE1:
   if (start) next state <= INIT1;</pre>
   else next_state <= IDLE1;</pre>
INIT1:
   next state <= IDLE2;</pre>
IDLE2:
   if (start) next state <= INIT2;</pre>
   else next state <= IDLE2;</pre>
INIT2:
   next_state <= TEST;</pre>
TEST:
   if (aeqb) next state <= DONE;</pre>
   else if (agtb) next_state <= SUB;</pre>
   else next state <= RSUB;
SUB:
   next state <= TEST;</pre>
RSUB:
   next state <= TEST;</pre>
DONE:
   if (start) next state <= IDLE1;</pre>
   else next_state <= DONE;</pre>
endcase
```

• As a last step of the FSM implementation, we have to set the outputs:

```
assign loada = (state == INIT1);
assign loadb = (state == INIT2);
assign upda = (state == SUB);
assign updb = (state == RSUB);
assign rsub = (state == RSUB);
```

- Finally, we have to instantiate the previously implemented modules.
- First start with the comparator.
- Left click on the Comp.v module
- On the left bottom of the screen, click on the + sign on the left of Design Utilitis.
- Double click on View HDL Instantiation Template

• Now you can copy the instantiation template into the Topmodule.

- Next implement the Reg8 module in two instances: RegA, RegB
- Some wires have to be updated in the instantiation

• Now implement the Msub module:

Msub M (
.X(A),
.Y(B),
.rsub(rsub),
.diff(diff)
);

• Now add the cnt2 and R_edge_sens modules:

```
R_edge_sens R (
.clk(clk),
.rst(rst),
.bt(bt),
.start(start)
);
wire [1:0] sel;
cnt2 C (
.clk(clk),
.rst(rst),
.cnt(sel)
);
```

• Finally, we have to implement dec4, Mux and Hex7Seg:

```
wire [3:0] dig, hex;
wire [7:0] seg;
```

```
assign dig_n = ~dig;
assign seg_n = ~seg;
assign col_n = 5'b11111;
```

• Instantiation of dec4 and Hex7Seg:

• And finally, the MUX:

```
reg [15:0] num_to_show;
always @ (*)
case (state)
  IDLE1: num to show \leq \{8'd1, sw\};
  IDLE2: num to show <= \{8'd2, sw\};
  default:
     if (A<B) num_to_show <= {8'h9d, A};
     else num to show <= {8'h9d, B};</pre>
endcase
Mux mux (
.num(num to show),
.sel(sel),
.out(hex)
);
```

• Test the Topmodule with a Test Fixture file: Topmodule_TF

initial begin

always #25 clk = \sim clk;

• Add the following excitations:

```
// Initialize Inputs
   clk = 0;
   rst = 0;
   bt = 0;
   sw = 0;
   // Wait 100 ns for global reset to finish
   #100;
   // Add stimulus here
   #100 rst = 1;
   #100 rst = 0; sw = 8'd15;
   #100 \text{ bt} = 4'd1;
   #100 \text{ bt} = 4'd0;
   #100 \text{ sw} = 8'd3;
   #100 \text{ bt} = 4'd1;
   #100 \text{ bt} = 4'd0;
end
```

- Optional task: In the ISim simulator, add the following wires to the simulation: A, B, start, loada, loadb
- Relaunch the simulation and verify the Topmodule. Is the behavior correct?

- Now you have to add the .ucf file
- Download it: <u>link</u>
- Unzip the file to the project directory
- Add it to the project with add source or add copy of source
- Uncomment the following lines: clk, rst, bt (all), sw (all), seg_n (all), dig_n (all), col_n (all)
- Now generate the programming file