
Assembly programming

The MiniRISC IDE

• The MiniRISC IDE is used to develop simple Assembly applications.

• After compiling, it is able to upload the code and the Verilog source of
the processor together to the FPGA card.

• The integrated simulator helps debugging the software, and
development without FPGA.

• The main components of the IDE are summarized on the next slide.

Task 1

• In the first task we are going to indicate the state of the switches on
the LED panel.

• Launch the MiniRISC IDE

• Select File -> New…

• Create a new source file with name Lab11 and save it on the D drive
under the d:\Lab11 directory (create it if not exists)

Task 1

• The following popup window appears,
asking for the peripherals in the project.

• Select the Led and the DIP switch

• Click OK

Task 1

• As a result, you should see this:

Task 1

• Two lines have been added to your code:

• Now you can call the leds LD and the switches SW in your program,
the compiler will substitute the correct addresses (0x80 and 0x81)
when you compile the code.

• We want to move the state of the switches to the leds.

• Since we are working with a load/store architecture, first we have to
move the content into a register of the datapath, then move it to the
LEDs.

• In addition, we want to do it constantly, in an infinite loop.

Task 1

• Add the following code:

• First we copy the state of the switches into the r0 register, then we
move it to the register of the LEDs.

• After the data moving operations, we jump back to the Start label,
the label that contains the address of the first MOV operation.

• This way we can execute the code in an infinite loop, and monitor the
state of the switches constantly.

Task 1

• After adding the code, save it.

• Select the simulator in the bar above the editor.

• Select compile

• Select download

• After download, the execution stops on the first line of the code:

Task 1

• Modify the state of the switches on the right panel:

• Press Step (or F10):

• After executing both MOV instuctions, check the value of the LEDs:

Task 1

• Stop debugging by pressing the Stop button

• Select the FPGA device instead of the simulator (LDC XXX).

• Compile and run the code, check the functionality.

• On the next slides we summarize the instructions and their effect on
the flags.

Data movement

• Data movement operations do not set the flags.

Arithmetic operations

• Arithmetic operations set all flags (N, V, Z, C)

Logic operations

• Logic operations set Z and N flags

Swap and shift instructions

• Swap and shift instruction sets flags Z and N. In addition, in shift
instructions the LSB/MSB is moved into the carry flag.

Rotate instructions

• Set flags Z and N, the MSB/LSB is moved into the carry.

Jump instructions

• Jump and conditional jump:

Task 2

• Create a new source file. Use the LEDs and the switches. Move the
two’s complement of the switches to the LEDs.

• Step 1: read switches to a register

• Step 2: determine the two’s complement

• Step 3: move the result to the LEDs.

Task 2

• The algorithm to determine the two’s complement is the following:
• Invert the bits

• Add 1

• To invert the bits, you can XOR the content of the register with 0xFF,
or subtract it from 0xFF.

• In the implementation, we will use the second solution.

Task 2

• Add the following code:

• Check the code using the simulator (compile, download and execute
step-by-step):

Task 2

• This task can be implemented using the XOR instruction. Modify the
code to determine the two’s complement using XOR.

Task 3

• Create a new source. Add the switches and the LEDs.

• Create an adder that adds the lower and upper 4 bits of the value set
on the switches. Indicate the result on the switches.

• The main steps are the following:
• Reading the switches

• Determining the first operand using the AND operation

• Determining the second operand using AND

• Shifting the second operand to the right four times

• Addition

• Indicating the result

Task 3

• Test it on the switches, e.g. 6+3=9

Task 4

• Modify the previous code to multiply the two numbers. There is no
multiplication instruction, use addition and subtraction.

• Algorithm: use a loop. Increment a register with the first operand and
decrease the value of the second operand by one. Do this until the
second operand becomes 0.

Task 4

• Test it, e.g. 6x9=27=0x1B because 0x1B = 1x16+11x1

Task 5

• Create a new source. Add the LEDs.

• Initialize the data memory with 10 numbers, from address 50

• Read the numbers, determine their sum and send the result to the
LEDs

• We will use the r0 register to store the address of the current element

• Register r1 will contain the actual element

• The sum will be stored in r2

• We need another register (r3) for the loop variable

Task 5

• Test the code, 1+2+3+4+5+6+7+8+9+22=67=0x43:

