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Introduction 

Combinational 

digital circuit 
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• Let’s learn to design digital circuits 
• We’ll start with a simple form of circuit: 

– Combinational circuit 
• A digital circuit whose outputs depend solely on 

the present combination of the circuit inputs’ 
values 

Digital circuit 

2.1 

Sequential 

digital circuit 

Note: Slides with animation are denoted with a small red "a" near the animated items 
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Switches 
• Electronic switches are the basis of 

binary digital circuits 
– Electrical terminology 

• Voltage: Difference in electric potential 
between two points 

– Analogous to water pressure 
•  Current: Flow of charged particles 

– Analogous to water flow 
• Resistance: Tendency of wire to resist 

current flow 
– Analogous to water pipe diameter 

• V = I * R  (Ohm’s Law) 

4.5 A 
4.5 A 

4.5 A 

2 ohms 

9V 

0 V 9 V 

+ – 

2.2 
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Switches 
• A switch has three parts 

– Source input, and output 
• Current wants to flow from source 

input to output 
– Control input 

• Voltage that controls whether that 
current can flow  

• The amazing shrinking switch 
– 1930s: Relays 
– 1940s: Vacuum tubes 
– 1950s: Discrete transistor 
– 1960s: Integrated circuits (ICs) 

• Initially just a few transistors on IC 
• Then tens, hundreds, thousands...  

“off” 

“on” 

output source 
input 

output source 
input 

control 
input 

control 
input 

( b ) 

relay vacuum tube 

discrete  
transistor 

IC 

quarter 
(to see the relative size) 

a 
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Moore’s Law 
• IC capacity doubling about every 18 months 

for several decades 
– Known as “Moore’s Law” after Gordon Moore, 

co-founder of Intel 
• Predicted in 1965 predicted that components 

per IC would double roughly every year or so 
– Book cover depicts related phenomena 

• For a particular number of transistors, the IC 
shrinks by half every 18 months 

– Notice how much shrinking occurs in just about 
10 years 

– Enables incredibly powerful computation in 
incredibly tiny devices 

– Today’s ICs hold billions of transistors 
• The first Pentium processor (early 1990s) 

needed only 3 million 

An Intel Pentium processor IC 
having millions of transistors 
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The CMOS Transistor 
• CMOS transistor 

– Basic switch in modern ICs 
 

gate

source drain
oxide

A positive
voltage here...

...attracts electrons here,
turning the channel

between source and drain
into aconductor.

(a)

IC package

IC

does not 
conduct 

0 

conducts 

1 
gate 

nMOS 

does not 
conduct 

1 
gate 

pMOS 

conducts 

0 

Silicon -- not quite a conductor or insulator: 
 Semiconductor 

2.3 
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Boolean Logic Gates 
Building Blocks for Digital Circuits  

(Because Switches are Hard to Work With) 

• “Logic gates” are better digital circuit building blocks than switches (transistors) 
– Why?... 

2.4 
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Boolean Algebra and its Relation to Digital Circuits 
• To understand the benefits of “logic gates” vs. 

switches, we should first understand Boolean algebra 
• “Traditional” algebra 

– Variable represent real numbers 
– Operators operate on variables, return real numbers 

• Boolean Algebra 
– Variables represent 0 or 1 only 
– Operators return 0 or 1 only 
– Basic operators 

• AND:  a AND b returns 1 only when both a=1 and b=1 
• OR:    a OR b returns 1 if either (or both) a=1 or b=1 
• NOT:  NOT a returns the opposite of a (1 if a=0, 0 if a=1) 

a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

AND 
0 
0 
0 
1 a 

0 
0 
1 
1 

b 
0 
1 
0 
1 

OR 
0 
1 
1 
1 a 

0 
1 

NOT 
1 
0 
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Boolean Algebra and its Relation to Digital Circuits 
• Developed mid-1800’s by George Boole to formalize human thought 

– Ex: “I’ll go to lunch if Mary goes OR John goes, AND Sally does not go.” 
• Let F represent my going to lunch (1 means I go, 0 I don’t go) 
• Likewise, m for Mary going, j for John, and s for Sally 
• Then F = (m OR j) AND NOT(s) 

– Nice features 
• Formally evaluate 

– m=1, j=0, s=1 --> F = (1 OR 0) AND NOT(1)  =  1 AND 0  =  0 
• Formally transform 

– F = (m and NOT(s)) OR (j and NOT(s))   
» Looks different, but same function 
» We’ll show transformation techniques soon 

 

a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

AND 
0 
0 
0 
1 

a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

OR 
0 
1 
1 
1 

a 
0 
1 

NOT 
1 
0 



Digital Design 
Copyright © 2006  
Frank Vahid 

10 

Evaluating Boolean Equations 
• Evaluate the Boolean equation F = (a AND b) OR (c 

AND d) for the given values of variables a, b, c, and d: 
– Q1: a=1, b=1, c=1, d=0.  

• Answer: F = (1 AND 1) OR (1 AND 0) = 1 OR 0 = 1. 
– Q2: a=0, b=1, c=0, d=1.  

• Answer: F = (0 AND 1) OR (0 AND 1) = 0 OR 0 = 0. 
– Q3: a=1, b=1, c=1, d=1.  

• Answer: F = (1 AND 1) OR (1 AND 1) = 1 OR 1 = 1. 

a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

AND 
0 
0 
0 
1 

a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

OR 
0 
1 
1 
1 

a 
0 
1 

NOT 
1 
0 
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Converting to Boolean Equations 
• Convert the following English 

statements to a Boolean equation 
– Q1. a is 1 and b is 1.  

• Answer: F = a AND b 
– Q2. either of a or b is 1.  

• Answer: F = a OR b 
– Q3. both a and b are not 0.  

• Answer: 
– (a) Option 1: F = NOT(a) AND NOT(b) 
– (b) Option 2: F = a OR b 

– Q4. a is 1 and b is 0.  
• Answer: F = a AND NOT(b) 
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Converting to Boolean Equations 
• Q1. A fire sprinkler system should spray water if high heat 

is sensed and the system is set to enabled. 
– Answer: Let Boolean variable h represent “high heat is sensed,” e 

represent “enabled,” and F represent “spraying water.” Then an 
equation is: F = h AND e. 

• Q2. A car alarm should sound if the alarm is enabled, and 
either the car is shaken or the door is opened.  
– Answer: Let a represent “alarm is enabled,” s represent “car is 

shaken,” d represent “door is opened,” and F represent “alarm 
sounds.” Then an equation is: F = a AND (s OR d). 

– (a) Alternatively, assuming that our door sensor d represents “door 
is closed” instead of open (meaning d=1 when the door is closed, 0 
when open), we obtain the following equation: F = a AND (s OR 
NOT(d)). 
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Relating Boolean Algebra to Digital Design 

• Implement Boolean operators using transistors 
– Call those implementations logic gates.  
– Let’s us build circuits by doing math -- 

powerful concept 

Boolean 
algebra 

(mid-1800s) 

Boole’s intent: formalize 
human thought 

Switches 
(1930s) 

Shannon (1938) 

Digital design 

Showed application 
of Boolean algebra 
to design of switch- 

based circuits 

x 
0 
0 
1 
1 

y 
0 
1 
0 
1 

F 
0 
0 
0 
1 

x 
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0 
1 
1 
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1 
0 
1 

F 
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1 
1 
1 

x 
0 
1 

F 
1 
0 

F x 
x 
y F 

OR N O T 

F 
x 
y 

AND 

0 

1 

y 

x 

x 

y 

F 

1 

0 

F x 

Symbol 

Truth table 

Transistor 
circuit 

0 

1 

x y 

F 
y 

x 

Note: These OR/AND 
implementations are inefficient; 
we’ll show why, and show better 

ones later.  

For telephone 
switching and other 

electronic uses 
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NOT/OR/AND Logic Gate Timing Diagrams 
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Building Circuits Using Gates 

• Recall Chapter 1 motion-in-dark example 
– Turn on lamp (F=1) when motion sensed (a=1) and no light (b=0) 
– F = a AND NOT(b) 
– Build using logic gates, AND and NOT, as shown 
– We just built our first digital circuit! 
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Example: Converting a Boolean Equation to a 
Circuit of Logic Gates  

• Q: Convert the following equation to logic gates:   
  F = a AND NOT( b OR NOT(c) ) 

a 
F 

( a ) 

a 
b 

c 
F 

( b ) 
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Example: Seat Belt Warning Light System 
• Design circuit for warning light 
• Sensors 

– s=1: seat belt fastened 
– k=1: key inserted 
– p=1: person in seat 

• Capture Boolean equation 
– person in seat, and seat belt not 

fastened, and key inserted 
• Convert equation to circuit 
• Notice  

– Boolean algebra enables easy 
capture as equation and conversion 
to circuit 

• How design with switches? 
• Of course, logic gates are built from 

switches, but we think at level of logic 
gates, not switches 

w = p AND NOT(s) AND k 

k 

p 

s 

w 

BeltWarn 
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Some Circuit Drawing Conventions 

x
y

F

no yes

no

not ok

ok

yes
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Boolean Algebra 
• By defining logic gates based on Boolean algebra, we can use algebraic 

methods to manipulate circuits 
– So let’s learn some Boolean algebraic methods 

• Start with notation: Writing a AND b, a OR b, and NOT(a)  is cumbersome 
– Use symbols: a * b, a + b, and a’   (in fact, a * b can be just ab).  

• Original: w = (p AND NOT(s) AND k) OR t  
• New: w = ps’k + t 

– Spoken as “w equals p and s prime and k, or t” 
– Or even just “w equals p s prime k, or t” 
– s’ known as “complement of s” 

• While symbols come from regular algebra, don’t say “times” or “plus” 
Boolean algebra precedence, highest precedence first.   

Symbol  Name  Description   

( )  Parentheses  Evaluate expressions nested in parentheses first   

’  NOT  Evaluate from left to right   

*  AND  Evaluate from left to right   

+  OR  Evaluate from left to right   

2.5 
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Boolean Algebra Operator Precendence 
• Evaluate the following Boolean equations, assuming a=1, b=1, c=0, d=1. 

– Q1. F = a * b + c.  
• Answer: * has precedence over +, so we evaluate the equation as F = (1 *1) + 0 = 

(1) + 0 = 1 + 0 = 1. 
– Q2. F = ab + c.  

• Answer: the problem is identical to the previous problem, using the shorthand 
notation for *. 

– Q3. F = ab’.  
• Answer: we first evaluate b’ because NOT has precedence over AND, resulting in 

F = 1 * (1’) = 1 * (0) = 1 * 0 = 0. 
– Q4. F = (ac)’.  

• Answer: we first evaluate what is inside the parentheses, then we NOT the result, 
yielding (1*0)’ = (0)’ = 0’ = 1. 

– Q5. F = (a + b’) * c + d’.  
• Answer:  Inside left parentheses: (1 + (1’)) = (1 + (0)) = (1 + 0) = 1. Next, * has 

precedence over +, yielding (1 * 0) + 1’ = (0) + 1’. The NOT has precedence over 
the OR, giving (0) + (1’) = (0) + (0) = 0 + 0 = 0. 

a 
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Boolean Algebra Terminology 
• Example equation:    F(a,b,c) = a’bc + abc’ + ab + c 
• Variable 

– Represents a value (0 or 1) 
– Three variables: a, b, and c 

• Literal 
– Appearance of a variable, in true or complemented form 
– Nine literals: a’, b, c, a, b, c’, a, b, and c 

• Product term 
– Product of literals 
– Four product terms: a’bc, abc’, ab, c 

• Sum-of-products 
– Equation written as OR of product terms only 
– Above equation is in sum-of-products form. “F = (a+b)c + d” is not.  
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Boolean Algebra Properties 
• Commutative 

– a + b = b + a 
– a * b = b * a 

• Distributive 
– a * (b + c) = a * b + a * c 
– a + (b * c) = (a + b) * (a + c)  

• (this one is tricky!) 
• Associative 

– (a + b) + c = a + (b + c) 
– (a * b) * c = a * (b * c) 

• Identity 
– 0 + a = a + 0 = a 
– 1 * a = a * 1 = a 

• Complement 
– a + a’ = 1 
– a * a’ = 0 

• To prove, just evaluate all possibilities 

• Show abc’ equivalent to c’ba. 
– Use commutative property: 

• a*b*c’ = a*c’*b = c’*a*b = c’*b*a = 
c’ba. 

• Show abc + abc’ = ab. 
– Use first distributive property 

• abc + abc’ = ab(c+c’).  
– Complement property  

• Replace c+c’ by 1: ab(c+c’) = ab(1).  
– Identity property  

• ab(1) = ab*1 = ab. 
• Show x + x’z equivalent to x + z. 

– Second distributive property  
• Replace x+x’z by (x+x’)*(x+z).  

– Complement property  
• Replace (x+x’) by 1,  

– Identity property  
• replace 1*(x+z) by x+z. 

 

Example uses of the properties 
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Example that Applies Boolean Algebra Properties 
• Want automatic door opener 

circuit (e.g., for grocery store) 
– Output: f=1 opens door 
– Inputs: 

• p=1: person detected 
• h=1: switch forcing hold open 
• c=1: key forcing closed 

– Want open door when 
• h=1 and c=0, or 
• h=0 and p=1 and c=0 

– Equation: f = hc’ + h’pc’ 
 

• Found inexpensive chip that 
computes: 

• f = c’hp + c’hp’ + c’h’p 
– Can we use it?  

• Is it the same as f = c’(p+h)? 

• Use Boolean algebra:  
 

f = c’hp + c’hp’ + c’h’p    

f = c’h(p + p’) + c’h’p (by the distributive property)  

f = c’h(1) + c’h’p  (by the complement property)  

f = c’h + c’h’p  (by the identity property)  

f = hc’ + h’pc’  (by the commutative property) 

Same!  

f 
h 

c 
p 

DoorOpener 
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Boolean Algebra: Additional Properties 
• Null elements 

– a + 1 = 1 
– a * 0 = 0 

• Idempotent Law 
– a + a = a 
– a * a = a 

• Involution Law 
– (a’)’ = a 

• DeMorgan’s Law 
– (a + b)’ = a’b’ 
– (ab)’ = a’ + b’ 
– Very useful! 

• To prove, just 
evaluate all 
possibilities 

Circuit 
a 

b 

c 

S 

• Behavior 
• Three lavatories, each with 

sensor (a, b, c), equals 1 if 
door locked  

• Light “Available” sign (S) if 
any lavatory available 

• Equation and circuit 
• S = a’ + b’ + c’ 

• Transform 
• (abc)’ = a’+b’+c’ (by 

DeMorgan’s Law) 
• S = (abc)’ 

• New equation and circuit 

Circuit 
S a 

b 
c 

• Alternative: Instead of 
lighting “Available,” 
light “Occupied” 

– Opposite of 
“Available” function S 
= a’ + b’ + c’ 

– So S’ = (a’ + b’ + c’)’ 
• S’ = (a’)’ * (b’)’ * (c’)’ 

(by DeMorgan’s 
Law) 

• S’ = a * b * c (by 
Involution Law) 

– Makes intuitive sense 
• Occupied if all doors 

are locked 

Aircraft lavatory sign example 
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Representations of Boolean Functions 

• A function can be represented in different ways 
– Above shows seven representations of the same functions F(a,b), using 

four different methods: English, Equation, Circuit, and Truth Table 

2.6 

a 

a 

b 

F 

F 

Circuit 1 

Circuit 2 

( c ) 

( d ) 

English 1:   F outputs 1 when a is 0 and b is 0, or when a is 0 and b is 1. 
English 2:   F outputs 1 when a is 0, regardless of b’s value 

( a ) 

( b ) 

a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

F 
1 
1 
0 
0 

T he function F 

Truth table 

Equation 2: F(a,b) = a’ 
Equation 1: F(a,b) = a’b’ + a’b 
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Truth Table Representation of Boolean Functions 
• Define value of F for 

each possible 
combination of input 
values 
– 2-input function: 4 rows 
– 3-input function: 8 rows 
– 4-input function: 16 rows 

• Q: Use truth table to 
define function F(a,b,c) 
that is 1 when abc is 5 or 
greater in binary 

c 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

d 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

a 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

b 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 

F c 
0 
1 
0 
1 
0 
1 
0 
1 

a 
0 
0 
0 
0 
1 
1 
1 
1 

b 
0 
0 
1 
1 
0 
0 
1 
1 

F a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

F 

( a ) 

( b ) 

( c ) 

c 
0 
1 
0 
1 
0 
1 
0 
1 

a 
0 
0 
0 
0 
1 
1 
1 
1 

b 
0 
0 
1 
1 
0 
0 
1 
1 

F 
0 
0 
0 
0 
0 

1 
1 

1 
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a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

F 

Inputs Output 
a ' b ' a ' b 

Converting among Representations 
• Can convert from any representation 

to any other 
• Common conversions 

– Equation to circuit (we did this earlier) 
– Truth table to equation (which we can 

convert to circuit) 
• Easy -- just OR each input term that 

should output 1 
– Equation to truth table 

• Easy -- just evaluate equation for each 
input combination (row) 

• Creating intermediate columns helps 

a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

F 
1 
1 
0 
0 

Inputs Outputs 

F = sum of 
a’b’ 
a’b 

Term 

F = a’b’ + a’b 

c 
0 
1 
0 
1 
0 
1 
0 
1 

a 
0 
0 
0 
0 
1 
1 
1 
1 

b 
0 
0 
1 
1 
0 
0 
1 
1 

F 
0 
0 
0 
0 
0 

1 
1 

1 

Q: Convert to equation 

F = ab’c + abc’ + abc 

ab’c 
abc’ 
abc 1 

1 
0 
0 

1 
0 
0 
0 

0 
1 
0 
0 

a 

Q: Convert to truth table: F = a’b’ + a’b 
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Standard Representation: Truth Table 
• How can we determine if two 

functions are the same? 
– Recall automatic door example 

• Same as f = hc’ + h’pc’? 
• Used algebraic methods 
• But if we failed, does that prove 

not equal? No. 

• Solution: Convert to truth tables  
– Only ONE truth table 

representation of a given 
function 

• Standard representation -- for 
given function, only one version 
in standard form exists 

f = c’hp + c’hp’ + c’h’ 

f = c’h(p + p’) + c’h’p  

f = c’h(1) + c’h’p   

f = c’h + c’h’p  

(what if we stopped here?) 

f = hc’ + h’pc’     

a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

F 
1 
1 
0 
1 

F = ab + a ' 

a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

F 
1 
1 
0 
1 

F = a’b’ +  
a’b + ab 

Q: Determine if F=ab+a’ is same 
function as F=a’b’+a’b+ab, by converting 
each to truth table first 
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Canonical Form -- Sum of Minterms 
• Truth tables too big for numerous inputs 
• Use standard form of equation instead 

– Known as canonical form 
– Regular algebra: group terms of polynomial by power 

• ax2 + bx + c    (3x2 + 4x + 2x2 + 3 + 1 --> 5x2 + 4x + 4) 
– Boolean algebra: create sum of minterms 

• Minterm: product term with every function literal appearing exactly 
once, in true or complemented form 

• Just multiply-out equation until sum of product terms 
• Then expand each term until all terms are minterms 

Q: Determine if F(a,b)=ab+a’ is same function as F(a,b)=a’b’+a’b+ab, by 
converting first equation to canonical form (second already in canonical 
form) 

F = ab+a’ (already sum of products) 
F = ab + a’(b+b’) (expanding term) 
F = ab + a’b + a’b’ (SAME -- same three terms as other equation) 
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Multiple-Output Circuits 
• Many circuits have more than one output 
• Can give each a separate circuit, or can share gates 
• Ex:   F = ab + c’,   G = ab + bc 

a 
b 

c 

F 

G 

( a ) 

a 
b 

c 

F 

G 

( b ) 

Option 1: Separate circuits Option 2: Shared gates 
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Multiple-Output Example:  
BCD to 7-Segment Converter 

 

a = w’x’y’z’ + w’x’yz’ + w’x’yz + w’xy’z + 
w’xyz’ + w’xyz + wx’y’z’ + wx’y’z 

abcdefg = 1111110 0110000 1101101

a
f
b

d

g
e
c

(b)(a)

b = w’x’y’z’ + w’x’y’z + w’x’yz’ + w’x’yz + 
w’xy’z’ + w’xyz + wx’y’z’ + wx’y’z 
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Combinational Logic Design Process 
Step Description 

Step 1 Capture the 
function   

Create a truth table or equations, whichever is 
most natural for the given problem, to describe 
the desired behavior of the combinational logic. 

Step 2 Convert to 
equations 

This step is only necessary if you captured the 
function using a truth table instead of equations. 
Create an equation for each output by ORing all the 
minterms for that output. Simplify the equations if 
desired. 

Step 3 Implement 
as a gate-
based 
circuit 

For each output, create a circuit corresponding 
to the output’s equation. (Sharing gates among 
multiple outputs is OK optionally.)   

2.7 
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Example: Three 1s Detector 
• Problem: Detect three consecutive 1s 

in 8-bit input: abcdefgh 
• 00011101     1        10101011    0       

11110000     1 
– Step 1: Capture the function 

• Truth table or equation?  
– Truth table too big: 2^8=256 rows 
– Equation: create terms for each 

possible case of three consecutive 1s 
• y = abc + bcd + cde + def + efg + fgh 

– Step 2: Convert to equation -- already 
done 

– Step 3: Implement as a gate-based 
circuit 

bcd 

def 

fgh 

abc 

cde 

efg 

y 

a 
b 
c 

d 

e 

f 

g 

h 
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Example: Number of 1s Count 
• Problem: Output in binary on 

two outputs yz the number of 1s 
on three inputs 

• 010  01   101  10   000  00 
– Step 1: Capture the function 

• Truth table or equation?  
– Truth table is straightforward 

– Step 2: Convert to equation 
• y = a’bc + ab’c + abc’ + abc 
• z = a’b’c + a’bc’ + ab’c’ + abc 

– Step 3: Implement as a gate-
based circuit 

a 
b 
c 
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b 
c 

a 
b 
c 

a 
b 
c 

z 
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b 
c 

a 
b 
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a 
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More Gates 

• NAND: Opposite of AND (“NOT AND”) 
• NOR: Opposite of OR (“NOT OR”) 
• XOR: Exactly 1 input is 1, for 2-input 

XOR. (For more inputs -- odd number 
of 1s) 

• XNOR: Opposite of XOR (“NOT XOR”) 

2.8 
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NOR NAND XOR XNOR 
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0 

x y 

F 
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y 

1 

0 

x 

x 

y 

y 

F 

NAND NOR 

• NAND same as AND with power & 
ground switched 

• Why? nMOS conducts 0s well, but not 
1s (reasons beyond our scope) -- so 
NAND more efficient  

• Likewise, NOR same as OR with 
power/ground switched 

• AND in CMOS: NAND with NOT 
• OR in CMOS: NOR with NOT 
• So NAND/NOR more common 
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More Gates: Example Uses 

• Aircraft lavatory sign 
example 
– S = (abc)’ 

• Detecting all 0s 
– Use NOR 

• Detecting equality  
– Use XNOR 

• Detecting odd # of 1s 
– Use XOR 
– Useful for generating “parity” 

bit common for detecting 
errors 

 

S 

Circuit 
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1 a0 
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b1 
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Completeness of NAND 
• Any Boolean function can be implemented using just NAND 

gates. Why? 
– Need AND, OR, and NOT 
– NOT: 1-input NAND (or 2-input NAND with inputs tied together) 
– AND: NAND followed by NOT 
– OR:    NAND preceded by NOTs 

• Likewise for NOR  
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Number of Possible Boolean Functions 
• How many possible functions of 2 

variables? 
– 22 rows in truth table, 2 choices for each 
– 2(22) = 24 = 16 possible functions 

• N variables 
– 2N rows 
– 2(2N) possible functions 

a 
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0 
1 
1 

b 
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1 

0 or 1   2 choices 
0 or 1   2 choices 
0 or 1   2 choices 
0 or 1   2 choices 
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Decoders and Muxes 
• Decoder: Popular combinational 

logic building block, in addition to 
logic gates 
– Converts input binary number to 

one high output 
• 2-input decoder: four possible 

input binary numbers 
– So has four outputs, one for each 

possible input binary number 
• Internal design 

– AND gate for each output to 
detect input combination 

• Decoder with enable e 
– Outputs all 0 if e=0 
– Regular behavior if e=1 

• n-input decoder: 2n outputs 
 
 
 

2.9 
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Decoder Example 
• New Year’s Eve 

Countdown Display 
– Microprocessor counts 

from 59 down to 0 in 
binary on 6-bit output 

– Want illuminate one of 60 
lights for each binary 
number 

– Use 6x64 decoder 
• 4 outputs unused 

d0 
d1 
d2 
d3 

i0 
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Multiplexor (Mux) 
• Mux: Another popular combinational building block 

– Routes one of its N data inputs to its one output, based on binary 
value of select inputs 

• 4 input mux  needs 2 select inputs to indicate which input to route 
through 

• 8 input mux  3 select inputs  
• N inputs  log2(N) selects 

– Like a railyard switch 
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Mux Internal Design 
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Mux Example 
• City mayor can set four switches up or down, representing 

his/her vote on each of four proposals, numbered 0, 1, 2, 3 
• City manager can display any such vote on large green/red 

LED (light) by setting two switches to represent binary 0, 1, 
2, or 3 

• Use 4x1 mux 
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Muxes Commonly Together -- N-bit Mux 

• Ex: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0) 
– 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select 

between A or B 
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N-bit Mux Example 

• Four possible display items 
– Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and 

Miles remaining (M) -- each is 8-bits wide 
– Choose which to display using two inputs x and y 
– Use 8-bit 4x1 mux 
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Additional Considerations 
Schematic Capture and Simulation 

• Schematic capture 
– Computer tool for user to capture logic circuit graphically 

• Simulator 
– Computer tool to show what circuit outputs would be for given inputs 

• Outputs commonly displayed as waveform  

2.10 

Simulate Simulate 

d3 

d2 

d1 

d0 

i0 

i1 
Outputs 

Inputs 

d3 

d2 

d1 

d0 

i0 

i1 
Outputs 

Inputs 



Digital Design 
Copyright © 2006  
Frank Vahid 

47 

Additional Considerations 
Non-Ideal Gate Behavior -- Delay 

• Real gates have some delay 
– Outputs don’t change immediately after inputs change 
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Chapter Summary 
• Combinational circuits 

– Circuit whose outputs are function of present inputs 
• No “state”  

• Switches: Basic component in digital circuits 
• Boolean logic gates: AND, OR, NOT -- Better building block than 

switches 
– Enables use of Boolean algebra to design circuits 

• Boolean algebra: uses true/false variables/operators 
• Representations of Boolean functions: Can translate among 
• Combinational design process: Translate from equation (or table) to 

circuit through well-defined steps 
• More gates: NAND, NOR, XOR, XNOR also useful 
• Muxes and decoders: Additional useful combinational building blocks 
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