
BME-MIT
FPGA labor

The MiniRISC processor

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS

DEPARTMENT OF MEASUREMENT AND INFORMATION SYSTEMS

Béla Fehér, Tamás Raikovich, Attila Fejér

BUTE DMIS

MiniRISC processor, 2014.12.04. (v1.1)

BME-MIT
FPGA labor

Contents

1. Introduction
2. Internal structure of the MiniRISC CPU

– Datapath
– Control unit

3. Application of the MiniRISC CPU
– Signal interfaces
– I/O extension (with examples)
– MiniRISC system

4. Development environment
– MiniRISC assembler
– MiniRISC IDE
– Software development (with examples)

MiniRISC processor, 2014.12.04. (v1.1) 1

BME-MIT
FPGA labor

MiniRISC processor - Introduction

• 8-bit microprocessor for simple
applications

• Fits in well with the complexity of
the LOGSYS Spartan-3E FPGA board

• Low resource requirement
• Harvard architecture

– 256 x 16 bit program memory
– 256 x 8 bit data memory

• Simple RISC instruction set
– Load/store architecture
– 16 x 8 bit internal register file
– Operations on register file only

MiniRISC processor, 2014.12.04. (v1.1) 2

BME-MIT
FPGA labor

MiniRISC processor - Introduction

• Simple RISC instruction set
– Data moving instructions
– Arithmetic instructions (+, -, compare)
– Logic instructions (AND, OR, XOR, bit test)
– Shift, rotate and swap instructions
– Program control instructions

• Operands: two registers or a register and an 8-bit constant
• Absolute and register indirect addressing modes
• Zero (Z), carry (C), negative (N), overflow (V) status bits

– Conditional jump instructions for testing
• Jumps can be done to the whole program memory address

range

MiniRISC processor, 2014.12.04. (v1.1) 3

BME-MIT
FPGA labor

Contents

1. Introduction
2. Internal structure of the MiniRISC CPU

– Datapath
– Control unit

3. Application of the MiniRISC CPU
– Signal interfaces
– I/O extension (with examples)
– MiniRISC system

4. Development environment
– MiniRISC assembler
– MiniRISC IDE
– Software development (with examples)

MiniRISC processor, 2014.12.04. (v1.1) 4

BME-MIT
FPGA labor

MiniRISC processor - Structure

Its internal structure follows the RTL design method:
• Control unit: fetching and processing the instructions,

and controlling the datapath accordingly
• Datapath: executing the operations on the data

MiniRISC processor, 2014.12.04. (v1.1)

Program memory
ADDR DOUT

MiniRISC processor

Control signals
Control unit Datapath

Data memory
RD WR ADDR DIN DOUT

Status signals

5

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Datapath)

• The operations are executed on the data in the datapath
• Main steps of the data processing:

1. Loading the data
2. Transforming these data
3. Storing the result

• The basic datapath therefore:
– Reads and writes the external data memory where the

main data exists
– Contains a register file to hold the data locally
– Contains an arithmetic-logic unit (ALU) to transform the

local data

MiniRISC processor, 2014.12.04. (v1.1) 6

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Datapath)

MiniRISC processor, 2014.12.04. (v1.1)

Register file

Data memory
DIN DOUT ADDR RD WR

ALU

MUX

Register file

Data memory
DIN DOUT ADDR RD WR

ALU

MUX

Data memory
DIN DOUT ADDR RD WR

ALU

MUX

Register file

Data memory read (load) Data memory write (store)Transforming the local data
(ALU operation)

7

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Datapath of the MiniRISC processor)

• Extended version of the basic datapath
• Write data select multiplexer for the

register file (MUX1)
– ALU result or data memory

• 16 x 8 bit register file
– Two register addresses are used

• Arithmetic-logic unit (ALU)
• Selecting the 2nd ALU operand (MUX2)

– Register
– 8-bit constant from the instruction

• Selecting the addressing mode (MUX2)
– Absolute: address is from the instruction
– Indirect: address is from the register file

MiniRISC processor, 2014.12.04. (v1.1)

WrX

Register file
RdX RdY

Data memory
DIN DOUT RD WR ADDR

ALU

MUX1

MUX2

ju
m

p
ad

dr
es

s
8-

bi
t c

on
st

an
t f

ro
m

th

e
in

st
ru

ct
io

n

OP1 OP2

8

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Datapath of the MiniRISC processor – Register file)

• The register file is implemented using distributed RAM (FPGA resource)
• Distributed RAM can be used to store small amount of data efficiently

– 1 write port and 1 or 2 read ports
• The write and the first read port has shared address input (A=AddrX)
• The address for the second read port can be different (DPRA=AddrY)

– The write operation is synchronous
• Happens after the clock event (rising or falling edge) if enabled (WE=1)

– The read operation is asynchronous
• The addressed data appears ”immediately” on the data output

MiniRISC processor, 2014.12.04. (v1.1)

8x

RdX[i]

RdY[i]WrX[i]

Write en.

AddrX

AddrY

CLK

9

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Datapath of the MiniRISC processor – ALU)

• The ALU executes different operations on the local data
– Data moving: no operation, the result is OP2
– Arithmetic: addition and subtraction with or without carry
– Logic: bitwise AND, OR, XOR
– Shift, rotate and swap

• Status flags give information about the result of the operations
– Zero (Z), carry (C), negative (N) and overflow (V) status flags
– Their value can be tested using the conditional jump instructions

MiniRISC processor, 2014.12.04. (v1.1)

Arithmetic
operations

Logic and swap
operations

Shift and rotate
operations

M
U
X

Z C
N V

Arithmetic-logic unit (ALU)

Flags

Result

Status

1st operand (OP1)

2nd operand (OP2)

Control

10

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Datapath of the MiniRISC processor – ALU)

• Arithmetic operations
– In case of the Xilinx FPGAs, the adder/subtractor circuit

doesn’t have carry input (Cin), therefore the arithmetic
operations are implemented by the following way:

• Addition without carry: 𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐,𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑶𝑶𝑶𝑶𝑶𝑶 + 𝑶𝑶𝑶𝑶𝑶𝑶 + 𝟎𝟎
• Addition with carry: 𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐,𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑶𝑶𝑶𝑶𝑶𝑶 + 𝑶𝑶𝑶𝑶𝑶𝑶 + 𝑪𝑪𝒊𝒊𝒊𝒊
• Subtraction without borrow: 𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐,𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑶𝑶𝑶𝑶𝑶𝑶 + 𝑶𝑶𝑶𝑶𝑶𝑶 + 𝑶𝑶
• Subtraction with borrow: 𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐,𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑶𝑶𝑶𝑶𝑶𝑶 + 𝑶𝑶𝑶𝑶𝑶𝑶 + 𝑪𝑪𝒊𝒊𝒊𝒊

MiniRISC processor, 2014.12.04. (v1.1)

A B
Cout 8-bit adder Cin

S

0

1

XOR

XO
R

XO
RC

OP1 OP2 add_sub

carry_sel

SUM

11

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Datapath of the MiniRISC processor – ALU)

• Logic operations
– Bitwise AND, OR and XOR operations

• Swap operation
– Swapping the lower and upper 4 bits of the 1st operand

– Implemented in the logic operation block
• The 4th input of the MUX can be used for the swap operation
• Same status flags are modified (Z and N) → same control

MiniRISC processor, 2014.12.04. (v1.1)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
1st operand (OP1)

OP1 & OP2

OP1 | OP2

OP1 ^ OP2

{OP1[3:0], OP1[7:4]}

2nd opeand (OP2)

1st operand (OP1)

M
U
X

Result

logic_sel

12

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Datapath of the MiniRISC processor – ALU)

• Logic shift
– The shift direction can be left or right
– The shifted in bit can be 0 or 1, the shifted out bit is stored in the C flag

• Arithmetic shift right
– When a signed number is shifted right, the value of the sign bit (MSb)

should be preserved in order to get correct result
– The shifted out bit is stored in the carry (C) flag
– There is no separate arithmetic shift left operation because it is the

same as the logical shift left operation

MiniRISC processor, 2014.12.04. (v1.1)

bit 7C 0/1bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
1st operand (OP1)

bit 70/1 Cbit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

1st operand (OP1)

bit 7 Cbit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

13

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Datapath of the MiniRISC processor – ALU)

• Normal rotate
– The rotate direction can be left or right
– The shifted out bit is shifted in at the other side
– The shifted out bit is stored in the carry (C) flag

• Rotate through the carry (C) flag

MiniRISC processor, 2014.12.04. (v1.1)

bit 7C bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
1st operand (OP1)

bit 7 Cbit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 7C bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
1st operand (OP1)

bit 7 Cbit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

14

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Datapath of the MiniRISC processor – ALU)

• The ALU status bits give information about the result of the operations
• Zero bit (Z)

– Indicates if the result of the operation is zero
– The data moving operations don’t change the Z flag

• Carry bit (C)
– Indicates if carry has been generated by the arithmetic operations
– In case of shift/rotate operations, the shifted out bit is stored here

• Negative bit (N)
– Two’s complement sign bit, the MSb (bit 7) of the result
– The data moving operations don’t change the N flag

• Overflow bit (V)
– Indicates the two’s complement overflow

• The result of the arithmetic operation cannot be represented using 8 bits
– Detection: the sign bit of the operands are the same but the sign bit of

the result is different (the Cin7 xor Cout7 method cannot be used
because the carry in bit of the MSb is not available inside the FPGA)

MiniRISC processor, 2014.12.04. (v1.1) 15

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit)

• Example: DMEM[3] = DMEM[0] + DMEM[1], this
requires 4 datapath operations:

1. REG[0] = DMEM[0] (load)
2. REG[1] = DMEM[1] (load)
3. REG[1] = REG[0] + REG[1] (ALU operation)
4. DMEM[3] = REG[1] (store)

• Instruction: operation that the CPU can execute
• Program: series of instructions

– The given task has to be decomposed into
processor-supported instructions

• The program is stored in the program memory
• The control unit reads the instructions and

executes them on the datapath
– Program Counter (PC):

generates the address of the current instruction
– Instruction Register (IR):

stores the instruction read from the prg. mem.

MiniRISC processor, 2014.12.04. (v1.1)

PC

Program memory
ADDR DOUT

Control unit

st
at

us

si
gn

al
s

IR

Controller

co
nt

ro
l

si
gn

al
s

16

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit)

• To carry out each instruction, the control
unit does the following steps:
– Fetch: reading the instruction from the

program memory and incrementing
the program counter

– Decode: determining the operation
and its operands

– Execute: carrying out the instruction’s
operation using the datapath

• The controller can be an FSM
– One state of the controller FSM can be

associated to each step above
– In this case, processing an instruction

requires three clock cycles

MiniRISC processor, 2014.12.04. (v1.1)

PC

Program memory
ADDR DOUT

Control unit

st
at

us

si
gn

al
s

IR

Controller FSM co
nt

ro
l

si
gn

al
s

Init Fetch

Decode

Execute

17

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit)

MiniRISC processor, 2014.12.04. (v1.1)

PC
0 → 1

Program memory

ADDR DOUT

Control unit

IR
REG[0]=DMEM[0]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

PC
1

Program memory

ADDR DOUT

Control unit

IR
REG[0]=DMEM[0]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

„LOAD”

Instruction fetch Decode Execute

PC
1

Program memory

ADDR DOUT

Control unit

IR
REG[0]=DMEM[0]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

„LOAD”
Register file

Data memory

DIN DOUT ADDR RD WR

ALU

MUX

Datapath

DMEM[0]=5
DMEM[1]=2
DMEM[2]=0
DMEM[3]=0

REG[0]=? → 5
REG[1]=?
REG[2]=?

18

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit)

MiniRISC processor, 2014.12.04. (v1.1)

PC
1 → 2

Program memory

ADDR DOUT

Control unit

IR
REG[1]=DMEM[1]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

PC
2

Program memory

ADDR DOUT

Control unit

IR
REG[1]=DMEM[1]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

„LOAD”

Instruction fetch Decode Execute

PC
2

Program memory

ADDR DOUT

Control unit

IR
REG[1]=DMEM[1]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

„LOAD”
Register file

Data memory

DIN DOUT ADDR RD WR

ALU

MUX

Datapath

DMEM[0]=5
DMEM[1]=2
DMEM[2]=0
DMEM[3]=0

REG[0]=5
REG[1]=? → 2
REG[2]=?

19

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit)

MiniRISC processor, 2014.12.04. (v1.1)

PC
2 → 3

Program memory

ADDR DOUT

Control unit

IR
R[1] = R[0] + R[1]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

PC
3

Program memory

ADDR DOUT

Control unit

IR
R[1] = R[0] + R[1]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

„ADD”

Instruction fetch Decode Execute

PC
3

Program memory

ADDR DOUT

Control unit

IR
R[1] = R[0] + R[1]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

„ADD”
Register file

Data memory

DIN DOUT ADDR RD WR

ALU

MUX

Datapath

DMEM[0]=5
DMEM[1]=2
DMEM[2]=0
DMEM[3]=0

REG[0]=5
REG[1]=2 → 7
REG[2]=?

5 2

5 + 2 = 7
7

20

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit)

MiniRISC processor, 2014.12.04. (v1.1)

PC
3 → 4

Program memory

ADDR DOUT

Control unit

IR
DMEM[3]=REG[1]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

PC
4

Program memory

ADDR DOUT

Control unit

IR
DMEM[3]=REG[1]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

„STORE”

Instruction fetch Decode Execute

PC
4

Program memory

ADDR DOUT

Control unit

IR
DMEM[3]=REG[1]

Controller

Init Fetch

Decode

Execute

0: REG[0]=DMEM[0]
1: REG[1]=DMEM[1]
2: REG[1]=REG[0]+REG[1]
3: DMEM[3]=REG[1]

„STORE”
Register file

Data memory

DIN DOUT ADDR RD WR

ALU

MUX

Datapath

DMEM[0]=5
DMEM[1]=2
DMEM[2]=0
DMEM[3]=0 → 7

REG[0]=5
REG[1]=7
REG[2]=?

21

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit)

• The program memory contains the instructions in form of
binary code (machine code)
– The processor cannot interpret higher-level descriptions

• Every instruction contains the description of the operation
(opcode) and the other required data (operands)

MiniRISC processor, 2014.12.04. (v1.1) 22

Program memory
Addr. Operation Machine code (16 bits) Assembly code

0: REG[0] = DMEM[0] 1101000000000000 MOV r0, 0x00

1: REG[1] = DMEM[1] 1101000100000001 MOV r1, 0x01

2: REG[1] = REG[0] + REG[1] 1111000100000000 ADD r1, r0

3: DMEM[3] = REG[1] 1001000100000011 MOV 0x03, r1

operation (4 bits) reg. address (4 bits) mem. address (8 bits)

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

• Instruction set: list of the allowed instructions and
their representation in memory

• Basically, an instruction is a binary number
– Machine code

• Structure of the instructions
– Opcode: determines the operation to be executed
– Operands: data used by the given operation

• Register
• Constant value

MiniRISC processor, 2014.12.04. (v1.1) 23

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

• The size of the MiniRISC instructions is 16 bits in order to use
the FPGA resources more efficiently (less prg. mem. size)

• The register file contains 16 registers
– Register operand: 4-bit address
– 16 register is enough for most of the tasks
– 16-bit instructions → more registers are not possible

• 8-bit datapath
– Constant operand: 8-bit value
– Operations with constants are very common, therefore the

usage of constant operands in case of ALU operations
greatly reduces the program size

• 256 word program and data memory → 8-bit mem. address
– The whole address range can be covered using absolute or

register indirect addressing

MiniRISC processor, 2014.12.04. (v1.1) 24

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

• How many operands should be in the 16-bit instructions?
• Separate addresses for each port of the register file

– The program contains less number of instructions
– The instructions are wider
– Operands: 12 bits

• Two source register (rX, rY) and a destination register (rD)
• One register (rD) and an 8-bit constant

– Opcode: 4 bits → 16 possibile opcodes
• 16 opcodes are not enough for the MiniRISC processor!

MiniRISC processor, 2014.12.04. (v1.1)

Opcode rD
15

8-bit constant

rX rY

Opcode rD

12 7 4 3 0811

15 12 7 0811

25

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

• How many operands should be in the 16-bit instructions?
• Two register addresses

– Good tradeoff between the number of instructions and the
length of instructions

– Two main instruction type according to the operands
• A register (rX) and an 8-bit constant → 12 bits A type
• Two registers (rX and rY, rX is the dest. reg.) → 8 bits B type

– Opcode: 4 bits + 4 bits
• A type: 15 opcodes (B type is indicated by the 1111 prefix)
• B type: 16 opcodes
• 31 opcodes together, this is enough for the MiniRISC processor

MiniRISC processor, 2014.12.04. (v1.1)

1111 rX / control
15

8-bit constant

opcode rY / control

opcode rX / control

12 7 4 3 0811

15 12 7 0811
A type instruction:

B type instruction:

26

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

• An instruction is a binary number (machine code)
• Machine code is hard to work with → assembly code
• The assembly code uses mnemonics

– Mnemonic: short word, refer to the operation
• For example: ADD – addition, MOV – data movement, etc.

– Operands of the MiniRISC instructions can be:
• Register: r0 – r15
• Constant: #0 – #255 (for ALU operations)
• Memory address: 0 – 255 (constant for memory addressing)
• Register for indirect addressing: (r0) – (r15)

• The assembler generates the machine code from the
assembly code

MiniRISC processor, 2014.12.04. (v1.1) 27

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

Data moving instructions
• Data memory read using absolute or indirect addressing
• Data memory write using absolute or indirect addressing
• Load constant into register
• Move data from register to register
• The value of the ALU status bits is preserved

MiniRISC processor, 2014.12.04. (v1.1)

Machine code Assembly code Operation Z C N V
1101xxxxaaaaaaaa MOV rX, addr rX ← DMEM[addr] - - - -

1111xxxx1101yyyy MOV rX, (rY) rX ← DMEM[rY] - - - -

1001xxxxaaaaaaaa MOV addr, rX DMEM[addr] ← rX - - - -

1111xxxx1001yyyy MOV (rY), rX DMEM[rY] ← rX - - - -

1100xxxxiiiiiiii MOV rX, #imm rX ← imm - - - -

1111xxxx1100yyyy MOV rX, rY rX ← rY - - - -

28

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

Arithmetic instructions
• Addition and subtraction with or without carry
• Compare (subtraction without storing the result)
• Operands: two registers or a register and an 8-bit constant
• Some opcode bits are used as datapath control signals

– This way, the controller state machine becomes simpler

MiniRISC processor, 2014.12.04. (v1.1)

Machine code Assembly code Operation Z C N V
0000xxxxiiiiiiii ADD rX, #imm rX ← rX + imm + + + +

0001xxxxiiiiiiii ADC rX, #imm rX ← rX + imm + C + + + +

0010xxxxiiiiiiii SUB rX, #imm rX ← rX – imm + + + +

0011xxxxiiiiiiii SBC rX, #imm rX ← rX – imm – C + + + +

1010xxxxiiiiiiii CMP rX, #imm rX – imm + + + +

Carry select (0: without carry, 1: with carry)
Operation select (0: addition, 1: subtraction)
1 if the result of the arithmetic operation is not stored

29

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

Arithmetic instructions
• Addition and subtraction with or without carry
• Compare (subtraction without storing the result)
• Operands: two registers or a register and an 8-bit constant
• Some opcode bits are used as datapath control signals

– This way, the controller state machine becomes simpler

MiniRISC processor, 2014.12.04. (v1.1)

Machine code Assembly code Operation Z C N V
1111xxxx0000yyyy ADD rX, rY rX ← rX + rY + + + +

1111xxxx0001yyyy ADC rX, rY rX ← rX + rY + C + + + +

1111xxxx0010yyyy SUB rX, rY rX ← rX – rY + + + +

1111xxxx0011yyyy SBC rX, rY rX ← rX – rY – C + + + +

1111xxxx1010yyyy CMP rX, rY rX – rY + + + +

Carry select (0: without carry, 1: with carry)
Operation select (0: addition, 1: subtraction)
1 if the result of the arithmetic operation is not stored

30

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

Logic and swap instructions
• Bitwise AND, OR and XOR
• Bit test (bitwise AND without storing the result)
• The A type 0111 is the swap (the B type 0111 is the shift)
• Operands: two registers or a register and an 8-bit constant
• Some opcode bits are used as datapath control signals

MiniRISC processor, 2014.12.04. (v1.1)

Machine code Assembly code Operation Z C N V
0100xxxxiiiiiiii AND rX, #imm rX ← rX & imm + - + -

0101xxxxiiiiiiii OR rX, #imm rX ← rX | imm + - + -

0110xxxxiiiiiiii XOR rX, #imm rX ← rX ^ imm + - + -

0111xxxx00000000 SWP rX rX ← {rX[3:0], rX[7:4]} + - + -

1000xxxxiiiiiiii TST rX, #imm rX & imm + - + -

Operation select (00: AND, 01: OR, 10: XOR, 11: swap)
1 if the result of the logic operation is not stored

31

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

Logic and swap instructions
• Bitwise AND, OR and XOR
• Bit test (bitwise AND without storing the result)
• The A type 0111 is the swap (the B type 0111 is the shift)
• Operands: two registers or a register and an 8-bit constant
• Some opcode bits are used as datapath control signals

MiniRISC processor, 2014.12.04. (v1.1)

Machine code Assembly code Operation Z C N V
1111xxxx0100yyyy AND rX, rY rX ← rX & rY + - + -

1111xxxx0101yyyy OR rX, rY rX ← rX | rY + - + -

1111xxxx0110yyyy XOR rX, rY rX ← rX ^ rY + - + -

1111xxxx1000yyyy TST rX, rY rX & rY + - + -

Operation select (00: AND, 01: OR, 10: XOR)
1 if the result of the logic operation is not stored

32

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

Shift and rotate instructions
• Logic and arithmetic shift, normal rotate
• Rotate through the carry (C) flag
• Operands: one register (rX) → the rY register address can be used as

a control signal, therefore only one opcode is required

MiniRISC processor, 2014.12.04. (v1.1)

Machine code Assembly code Operation Z C N V
1111xxxx01110000 SL0 rX rX ← {rX[6:0], 0} + + + -

1111xxxx01110100 SL1 rX rX ← {rX[6:0], 1} + + + -

1111xxxx01110001 SR0 rX rX ← {0, rX[7:1]} + + + -

1111xxxx01110101 SR1 rX rX ← {1, rX[7:1]} + + + -

1111xxxx01111001 ASR rX rX ← {rX[7], rX[7:1]} + + + -

Direction select (0: left, 1: right)
Operation select (0: shift, 1: rotate)
Value of the shifted in bit in case of shift operations
Shift type (0: logic, 1: arithmetic)

33

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

Shift and rotate instructions
• Logic and arithmetic shift, normal rotate
• Rotate through the carry (C) flag
• Operands: one register (rX) → the rY register address can be used as

a control signal, therefore only one opcode is required

MiniRISC processor, 2014.12.04. (v1.1)

Machine code Assembly code Operation Z C N V
1111xxxx01110010 ROL rX rX ← {rX[6:0], rX[7]} + + + -

1111xxxx01110011 ROR rX rX ← {rX[0], rX[7:1]} + + + -

1111xxxx01110110 RLC rX rX ← {rX[6:0], C} + + + -

1111xxxx01110111 RRC rX rX ← {C, rX[7:1]} + + + -

Direction select (0: left, 1: right)
Operation select (0: shift, 1: rotate)
Shifted in bit select in case of rotate operations (0: shifted out bit, 1: C flag)
Shift type (0: logic, 1: arithmetic)

34

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

Program control instructions
• Unconditional jump using absolute or indirect addressing (JMP)
• Conditional jump using absolute or indirect addressing (Jxx)

– Can be used for testing the value of the ALU status flags
• Operands: a register (rY) or an 8-bit constant

– The rX register address is not used → selects the operation
– One opcode is enough for the program control instructions

MiniRISC processor, 2014.12.04. (v1.1)

Machine code Assembly code Operation Z C N V
10110000aaaaaaaa JMP addr PC ← addr - - - -

111100001011yyyy JMP (rY) PC ← rY - - - -

10110001aaaaaaaa JZ addr PC ← addr, if Z=1 - - - -

111100011011yyyy JZ (rY) PC ← rY, if Z=1 - - - -

10110010aaaaaaaa JNZ addr PC ← addr, if Z=0 - - - -

111100101011yyyy JNZ (rY) PC ← rY, if Z=0 - - - -

35

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

Program control instructions
• Unconditional jump using absolute or indirect addressing (JMP)
• Conditional jump using absolute or indirect addressing (Jxx)

– Can be used for testing the value of the ALU status flags
• Operands: a register (rY) or an 8-bit constant

– The rX register address is not used → selects the operation
– One opcode is enough for the program control instructions

MiniRISC processor, 2014.12.04. (v1.1)

Machine code Assembly code Operation Z C N V
10110011aaaaaaaa JC addr PC ← addr, if C=1 - - - -

111100111011yyyy JC (rY) PC ← rY, if C=1 - - - -

10110100aaaaaaaa JNC addr PC ← addr, if C=0 - - - -

111101001011yyyy JNC (rY) PC ← rY, if C=0 - - - -

10110101aaaaaaaa JN addr PC ← addr, if N=1 - - - -

111101011011yyyy JN (rY) PC ← rY, if N=1 - - - -

36

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

Program control instructions
• Unconditional jump using absolute or indirect addressing (JMP)
• Conditional jump using absolute or indirect addressing (Jxx)

– Can be used for testing the value of the ALU status flags
• Operands: a register (rY) or an 8-bit constant

– The rX register address is not used → selects the operation
– One opcode is enough for the program control instructions

MiniRISC processor, 2014.12.04. (v1.1)

Machine code Assembly code Operation Z C N V
10110110aaaaaaaa JNN addr PC ← addr, if N=0 - - - -

111101101011yyyy JNN (rY) PC ← rY, if N=0 - - - -

10110111aaaaaaaa JV addr PC ← addr, if V=1 - - - -

111101111011yyyy JV (rY) PC ← rY, if V=1 - - - -

10111000aaaaaaaa JNV addr PC ← addr, if V=0 - - - -

111110001011yyyy JNV (rY) PC ← rY, if V=0 - - - -

37

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Instruction set)

Program control instructions
• Subroutine call using absolute or indirect addressing (JSR)
• Return from subroutine (RTS) and from interrupt (RTI)
• Enabling (STI) and disabling (CLI) interrupts
• Operands: a register (rY) or an 8-bit constant

– The rX register address is not used → selects the operation
– One opcode is enough for the program control instructions

MiniRISC processor, 2014.12.04. (v1.1)

Machine code Assembly code Operation Z C N V
10111001aaaaaaaa JSR addr stack ← PC ← addr - - - -

111110011011yyyy JSR (rY) stack ← PC ← rY - - - -

1011101000000000 RTS PC ← stack - - - -

1011101100000000 RTI {PC, Z, C, N, V, IE, IF} ← stack + + + +

1011110000000000 CLI IE ← 0 - - - -

1011110100000000 STI IE ← 1 - - - -

38

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Subroutine call)

• Subroutine
– Part of the code for executing a given task
– Relatively independent from the other parts

of the code
– Can be used multiple times → only one

instance is necessary
– Special subroutine call and return instructions

• Subroutine call: JSR instruction
– Saves the address of the next instruction

(return address) to the stack
– Loads the address of the first instruction of

the subroutine to the program counter
• Return from subroutine: RTS instruction

– Loads the return address from the stack to
the program counter

MiniRISC processor, 2014.12.04. (v1.1)

20: tmr_wait:
20: mov r0, TS
21: tst r0, #0x04
22: jz tmr_wait
23: rts

00: start:
00: mov r0, #0xc0
01: mov LD, r0
02: mov r1, #0
03: mov r2, #121
04: mov TM, r2
05: mov r2, #0x73
06: mov TC, r2
07: mov r2, TS
08: loop:
08: jsr tmr_wait
09: cmp r1, #0

stack←PC (0x09)
PC←tmr_wait

PC←stack (0x09)

39

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Interrupt)

• The instruction execution happens in the order determined by the
programmer
– Event handling by polling → slow
– Many times, faster event handling is required → interrupt

• Interrupt
– External request for service
– The CPU can accept it after executing the current instruction

• Interrupt related bits in the control unit of the MiniRISC CPU
– IE (Interrupt Enable) bit: enables the interrupts

• IE=0: the interrupts are disabled (CLI instruction)
• IE=1: the interrupts are enabled (STI instruction)

– IF (Interrupt Flag) bit: indicates the processor state
• IF=0: normal program execution
• IF=1: interrupt service is in progress
• The value of rhe IF bit is available only through the debug interface

MiniRISC processor, 2014.12.04. (v1.1) 40

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Interrupt)

• Interrupt system of the MiniRISC CPU
– Active-high interrupt request input (IRQ)
– Simple interrupt system

• Only the signaling comes from the peripheral,
identification of the requester is done in software

• The address of the interrupt handler (ISR) is fixed 0x01
• Interrupt servicing in case of the MiniRISC CPU

– Similar to the subroutine call
– If IE=1 and IRQ=1, after executing the current

instruction
• The return address and the flags (ALU status bits, IE,

IF) are saved to the stack
• The interrupt vector (0x01) is loaded into the program

counter and the IE bit is cleared
• Returning from interrupt: RTI instruction

– The PC is loaded with the return address and the
flags are restored from the stack

41MiniRISC processor, 2014.12.04. (v1.1)

{PC,flags}←stack

30: usrt_rx:
30: mov r15, UD
31: mov LD, r15
32: rti

00: jmp start
01: jmp usrt_rx

02: start:
02: mov r0, #0
03: mov LD, r0
04: mov r0, #0x3b
05: mov UC, r0
06: sti
07: loop:
07: jsr delay
08: mov r8, #str
09: jsr print_str
0A: jmp loop

stack←{PC (0x09),flags}
PC←0x01, IE←0

IRQ

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Stack)

• The stack is a LIFO (Last-In-First-Out) data storage element
– The last written data can be read first
– Two operations are supported

• Push: writing data to the top of the stack (full stack→overflow)
• Pop: reading data from the top of the stack (empty stack→underflow)

• The type of the stack can be
– Hardware stack inside the processor
– External stack implemented in the data memory

• SP (Stack Pointer) register stores the address of the top of the stack
• The MiniRISC processor contains a 16-word hardware stack

– 16-level subroutine call and interrupt service is possible
• Saved to the stack: program counter (PC), flags (Z, C, N, V, IE and IF)

– RTS instruction: restores the saved PC value
– RTI instruction: restores the saved PC value and the flags

MiniRISC processor, 2014.12.04. (v1.1) 42

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Stack)

• A possibile FPGA implementation of the hardware stack
– PC: 8-bit, flags: 6-bit → 16 x 14 bit distributed RAM

• The push operation enables the write
– 4-bit bi-directional address counter

• The push op. increments, the pop op. decrements its value
– Read address = write address – 1

• The overflow and underflow conditions are not handled in
hardware, this is the task of the programmer!

MiniRISC processor, 2014.12.04. (v1.1)

D 16 x 14 bit SPO
WE distributed RAM DPO
CLK A DPRA

INC Q
DEC 4-bit counter
CLK

–1

Stack

DIN
PUSH

CLK

POP

DOUT

?
?
?
?

?

0:
1:
2:
3:

F:

WR

RD

5 ?

?
?
?
5

?

0:
1:
2:
3:

F:

WR
RD

26 5

?
?

26
5

?

0:
1:
2:
3:

F:

WR
RD

8 26

?
?

26
5

?

0:
1:
2:
3:

F:

WR

RD

8 5

PUSH PUSH POP

DIN DIN DIN DINDOUT DOUT DOUT DOUT

43

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – IR and PC)

• Instruction Register (IR)
– 16-bit loadable register
– In the fetch phase, the instruction register is loaded with the

instruction read from the program memory
• Program Counter (PC)

– 8-bit loadable counter with enable
– Generates the address of the instruction to be fetched
– Load

• Processor initialization: loaded with the reset vector (0x00)
• Interrupt service: loaded with the interrupt vector (0x01)
• Jump and subroutine call: loaded with the jump address
• Return (RTS, RTI): loaded with the return address from the stack

– Enable
• In the fetch phase, its value is incremented in order to address the

next instruction

MiniRISC processor, 2014.12.04. (v1.1) 44

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Controller FSM)

MiniRISC processor, 2014.12.04. (v1.1)

STATE_INIT

STATE_FETCH

STATE_DECODE

STATE_EX_XXX

STATE_INT_REQ

STATE_BREAK

PC←0, IE←0, IF←0

break

~break
IR←PMEM[PC]
PC←PC+1

continue
IR←PMEM[PC]
PC←PC+1

~continue

~IE | ~IRQ

IE & IRQ

stack←PC,Z,C,N,V,IE,IF
PC←0x01, IE←0, IF←1

Initializing
the processor

Instruction fetch

Instruction decode

Instruction execute

Interrupt
service

Breakpoint, here
the debug module
controls the CPU

45

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Control unit of the MiniRISC CPU – Controller FSM)

• Breakpoint state (STATE_BREAK)
– Serves software development supporting purposes
– The debug module takes over the control (details later)
– Break signal in the fetch phase → execution stops, BREAK state
– Continue signal in the BREAK state → execution resumes

• Instruction execute
– One state is enough for a group of instructions, because some bits of

the instructions are used directly as control signals
– STATE_EX_LD: executing data memory read (load)
– STATE_EX_ST: executing data memory write (store)
– STATE_EX_MOV: load constant, move data from register to register
– STATE_EX_ARITH: executing arithmetic operations
– STATE_EX_LOGIC: executing logic and swap operations
– STATE_EX_SHIFT: executing shift and rotate operations
– STATE_EX_CTRL: executing program control instructions
– STATE_EX_NOP: no operation (for the unused opcodes)

MiniRISC processor, 2014.12.04. (v1.1) 46

BME-MIT
FPGA labor

MiniRISC processor - Structure
(Block diagram of the MiniRISC processor)

The detailed structure can be found in the Verilog source code

MiniRISC processor, 2014.12.04. (v1.1)

WrX

Register file
RdX RdY

Data memory
DIN DOUT RD WR ADDR

ALU

MUX1

MUX2

jump addr.

8-bit
constant

OP1 OP2

Status
signals

Control
signals

Program memory
ADDR DOUT

Control unit
Controller FSM

Init

Decode

Execute

Stack

IE
bit

IF
bit

PC
Counter

0x00 0x01

IR

jump
address

Break

Int_req

Fetch

Debug
module

MiniRISC processor
Datapath

IRQ

Z,C,N,V

Z,C,N,V

47

BME-MIT
FPGA labor

Contents

1. Introduction
2. Internal structure of the MiniRISC CPU

– Datapath
– Control unit

3. Application of the MiniRISC CPU
– Signal interfaces
– I/O extension (with examples)
– MiniRISC system

4. Development environment
– MiniRISC assembler
– MiniRISC IDE
– Software development (with examples)

MiniRISC processor, 2014.12.04. (v1.1) 48

BME-MIT
FPGA labor

MiniRISC processor – Interfaces

MiniRISC processor, 2014.12.04. (v1.1)

module minirisc_cpu(
//Clock and reset.
input wire clk,
input wire rst,

//Program memory interface.
output wire [7:0] cpu2pmem_addr,
input wire [15:0] pmem2cpu_data,

//Data memory interface.
output wire [7:0] cpu2dmem_addr,
output wire cpu2dmem_wr,
output wire cpu2dmem_rd,
output wire [7:0] cpu2dmem_data,
input wire [7:0] dmem2cpu_data,

//Interrupt request input.
input wire irq,

//Debug interface.
input wire [22:0] dbg2cpu_data,
output wire [44:0] cpu2dbg_data

);

MiniRISC processor
clk cpu2dmem_addr
rst cpu2dmem_wr

cpu2dmem_rd
cpu2pmem_addr cpu2dmem_data
pmem2cpu_data dmem2cpu_data

dbg2cpu_data
cpu2dbg_data irq

Clock and
reset inputs

Data memory
inteface

Program memory
interface

Debug
interface

Verilog module header:

49

Interrupt request input

BME-MIT
FPGA labor

MiniRISC processor – Interfaces
(Clock, reset, program memory interface)

• Clock and reset
– clk: system clock (16 MHz), every storage element (flip-flop, memory)

operates at the rising clock edge
– rst: active-high reset signal, sets the CPU to the initial state

• Program memory interface
– cpu2pmem_addr: 8-bit address bus for the program memory
– pmem2cpu_data: 16-bit data output of the program memory
– The instructions are read in the fetch phase
– In case of jump, the value of the PC can change in the execute phase

• The new valid address appears just in the right time on the address bus

MiniRISC processor, 2014.12.04. (v1.1) 50

clk

CPU state

cpu2pmem_addr

pmem2cpu_data

EXECUTE EXECUTEDECODE DECODEFETCHFETCHINIT

0x01 0x1D0x00?

PMEM[0x01] PMEM[0x1D]JMP 0x1C?
The instruction is read here The instruction is read here

0x1C

PMEM[0x1C]

BME-MIT
FPGA labor

MiniRISC processor – Interfaces
(Program memory interface)

• Program memory interface
– In case of jump or subroutine call, the value of the program

counter can be changed in the execution phase
– When an interrupt is serviced, the interrupt vector address

(0x01) is loaded into the program counter in the INT_REQ state
– The new programm memory address is available in time for the

next instruction fetch phase

MiniRISC processor, 2014.12.04. (v1.1)

clk

a CPU állapota

cpu2pmem_addr

pmem2cpu_data

DECODEDECODE

0xAD0x16

PMEM[0xAD]PMEM[0x16]

The instruction is read here The instruction is read here

irq

FETCH INT_REQ FETCH DECODE

0x15

jmp 0xAC

0xAC 0x020x01

PMEM[0x01] PMEM[0x02]

FETCH

PMEM[0xAC]

EXECUTEEXECUTE

irq line is checked here irq line is checked here

51

BME-MIT
FPGA labor

MiniRISC processor – Interfaces
(Data memory interface)

• Data memory interface
– Simple synchronous bus, commands are valid at the rising clock edge
– cpu2dmem_addr: 8-bit address bus
– cpu2dmem_wr: active-high write enable signal
– cpu2dmem_rd: active-high read enable signal
– cpu2dmem_data: 8-bit write data bus (CPU → peripheral)
– dmem2cpu_data: 8-bit read data bus (peripheral → CPU)

• There are no tri-state drivers inside the FPGA, therefore two separate
data bus is required (wrong control of the tri-state drivers would cause
short circuit which would damadge the FPGA)

• The MiniRISC processor doesn’t have separate I/O interface for the
peripherals, therefore the peripherals can be connected to the data
memory interface (the peripherals are embedded in the data memory)

• In case of multiple connected peripherals, if the inactive peripherals drive
the read data bus with 0, the read data buses can be ORed together and
no multiplexer is required
– Distributed bus multiplexer function

MiniRISC processor, 2014.12.04. (v1.1) 52

BME-MIT
FPGA labor

MiniRISC processor – Interfaces
(Data memory interface – Write cycle)

• Write cycle of the data memory interface
– In the execute phase, the write cycle is indicated by the

cpu2dmem_wr signal which is active for 1 clock cycle
– During the write cycle, the cpu2dmem_addr address is stable
– During the write cycle, the cpu2dmem_data data is stable,

which is sampled by the selected peripheral at the rising edge of
the clock

MiniRISC processor, 2014.12.04. (v1.1)

clk

CPU state

cpu2dmem_addr

cpu2dmem_data

DECODEFETCH

The peripheral executes the write command here

cpu2dmem_rd

cpu2dmem_wr

EXECUTE FETCH

Valid addressx x

Valid datax x

53

BME-MIT
FPGA labor

MiniRISC processor – Interfaces
(Data memory interface – Read cycle)

• Read cycle of the data memory interface
– In the execute phase, the read cycle is indicated by the

cpu2dmem_rd signal which is active for 1 clock cycle
– During the read cycle, the cpu2dmem_addr address is stable
– During the read cycle, the selected peripheral drives the

dmem2cpu_data read data bus with the valid data, the other
peripherals drive their data outputs with inactive 0 value

MiniRISC processor, 2014.12.04. (v1.1)

clk

CPU state

cpu2dmem_addr

dmem2cpu_data

DECODEFETCH

The processor samples the input data here

cpu2dmem_rd

cpu2dmem_wr

EXECUTE FETCH

Valid addressx x

Valid datax x

54

BME-MIT
FPGA labor

MiniRISC processor – Interfaces
(Debug module, debug interface)

• Debug module: supports the software development
– Gives reset signal to the processor system
– Program download (program memory write)
– Register file, PC and ALU status flags read and write
– Data memory read and write
– Place breakpoint to any program memory address

• Stepping into a breakpoint suspends the execution of the program
– Suspend and resume the execution of the program

• The communication between the debug module and the MiniRISC
development environment uses the JTAG interface

MiniRISC processor, 2014.12.04. (v1.1)

Debug module

MiniRISC CPU

Program memory

Data memory
and peripherals

FPGA

JTAG

BSCAN

55

BME-MIT
FPGA labor

MiniRISC processor – Interfaces
(Debug module, debug interface)

MiniRISC processor, 2014.12.04. (v1.1)

module debug_module(
//Clock and reser.
input wire clk,
input wire rst_in,
output wire rst_out,

//Program memory write interface.
output wire [7:0] dbg2pmem_addr,
output wire [15:0] dbg2pmem_data,
output wire dbg2pmem_wr,

//Debug interface.
output wire [22:0] dbg2cpu_data,
input wire [44:0] cpu2dbg_data

);

Debug module
clk dbg2pmem_addr
rst_in dbg2pmem_data
rst_out dbg2pmem_wr

dbg2cpu_data
cpu2dbg_data

Clock and
reset signals

Program memory
write interface

Debug
interface

Verilog module header:

56

BME-MIT
FPGA labor

MiniRISC processor – Interfaces
(Debug module, debug interface)

• Interface between the MiniRISC CPU and the debug module
– dbg2cpu_data: signals from the debug module to the CPU
– cpu2dbg_data: signals from the CPU to the debug module
– The dbg2cpu_data input should be driven with 0 if no

debug module is in the system
• Other signals of the debug module

– Clock and reset
• clk: system clock (16MHz)
• rst_in: external reset signal (for example: reset button)
• rst_out: reset signal for the processor system

– Program memory write interface
• dbg2pmem_addr: 8-bit address bus
• dbg2pmem_data: 16-bit write data bus
• dbg2pmem_wr: active-high write enable signal

MiniRISC processor, 2014.12.04. (v1.1) 57

BME-MIT
FPGA labor

MiniRISC processor – I/O extension

Steps of the I/O extension task
• Collecting the requirements according to the type of the peripheral

– Number of registers, their usage mode (writable, readable)
• Command, status, mode select, etc. registers

– Maybe FIFO or small memory block
• Base address assignment, designing the usage of the address range
• Address decoding

– psel = ((cpu2dmem_addr >> N) == (BASEADDR >> N))
– Size of the address range is 2N bytes

• Write enable signals
– xxx_wr = psel & cpu2dmem_wr & (cpu2dmem_addr[N-1:0] == ADDR)

• Read enable signals
– xxx_rd = psel & cpu2dmem_rd & (cpu2dmem_addr[N-1:0] == ADDR)
– Controls the output MUX: only one multiplexer output is valid at a

time, the other peripherals drive their data output with inactive 0
– Also requires when the read causes state change (for example: FIFO)

MiniRISC processor, 2014.12.04. (v1.1)

Checking the lower address bits is required, if N > 0

58

BME-MIT
FPGA labor

MiniRISC processor – I/O extension
(Examples)

Example 1: 8-bit output peripheral with readback
• Can be used to drive the LEDs on the FPGA board
• Very simple

– A register to store the output data
• BASEADDR + 0x00, 8-bit, writable and readable

– Address decoding logic
• 1 register → 1-byte address range is required

MiniRISC processor, 2014.12.04. (v1.1) 59

A[7:0] B[7:0]

8-bit comparator A=Bout 0 1

cpu2dmem_wr

cpu2dmem_rd

cpu2dmem_addr

dmem2cpu_data

0

BASEADDR

8-bit register
D[7:0] Q[7:0]
LD

cpu2dmem_data gpio_out

BME-MIT
FPGA labor

MiniRISC processor – I/O extension
(Examples)

Example 1: 8-bit output peripheral with readback

MiniRISC processor, 2014.12.04. (v1.1) 60

module basic_owr #(
//Base address of the peripheral.
parameter BASEADDR = 8'hff

) (
//Clock and reset.
input wire clk,
input wire rst,

//Data memory interface.
input wire [7:0] cpu2dmem_addr,
input wire cpu2dmem_wr,
input wire cpu2dmem_rd,
input wire [7:0] cpu2dmem_data,
output reg [7:0] dmem2cpu_data,

//Output data.
output reg [7:0] gpio_out

);

//Select signal of the peripheral.
wire psel = (cpu2dmem_addr == BASEADDR);

//Data reg. write enable signal.
wire dreg_wr = psel & cpu2dmem_wr;

//Data reg. read enable signal.
wire dreg_rd = psel & cpu2dmem_rd;

//Output data register.
always @(posedge clk)

if (rst)
gpio_out <= 8’d0;

else
if (dreg_wr)

gpio_dout <= cpu2dmem_data;

//Driving the read data bus.
always @(*)

if (dreg_rd)
dmem2cpu_data <= gpio_dout;

else
dmem2cpu_data <= 8’d0;

endmodule

BME-MIT
FPGA labor

MiniRISC processor – I/O extension
(Examples)

Example 2: 8-bit input peripheral
• Can be used to connect switches or buttons to the system
• Very simple

– A register to sample the input data
• BASEADDR + 0x00, 8-bit, read-only

– Address decoding logic
• 1 register → 1-byte address range is required

MiniRISC processor, 2014.12.04. (v1.1) 61

EN 8-bit comparator A=Bout

A[7:0] B[7:0]

1

0

cpu2dmem_rd

cpu2dmem_addr

dmem2cpu_data

0

BASEADDR

Register
D[7:0] Q[7:0]

gpio_in

BME-MIT
FPGA labor

MiniRISC processor – I/O extension
(Examples)

Example 2: 8-bit input peripheral

MiniRISC processor, 2014.12.04. (v1.1) 62

module basic_in #(
//Base address of the peripheral.
parameter BASEADDR = 8'hff

) (
//Clock and reset.
input wire clk,
input wire rst,

//Data memory interface.
input wire [7:0] cpu2dmem_addr,
input wire cpu2dmem_rd,
output reg [7:0] dmem2cpu_data,

//Input data.
input wire [7:0] gpio_in

);

//Select signal of the peripheral.
wire psel = (cpu2dmem_addr == BASEADDR);

//Data reg. read enable signal.
wire in_reg_rd = psel & cpu2dmem_rd;

//Input data register.
reg [7:0] in_reg;

always @(posedge clk)
if (rst)

in_reg <= 8’d0;
else

in_reg <= gpio_in;

//Driving the read data bus.
always @(*)

if (in_reg_rd)
dmem2cpu_data <= in_reg;

else
dmem2cpu_data <= 8’d0;

endmodule

BME-MIT
FPGA labor

MiniRISC processor – I/O extension
(Examples)

Example 3: 128 x 8 bit data memory
• Requires 7 address bits

– Address range: 00000000 (0x00) – 01111111 (0x7F)
• Address decoding logic

– The lower 7 address bits connected to the memory
– The upper address bit (MSb) is used for address decoding

• If it is 0, the memory is selected

MiniRISC processor, 2014.12.04. (v1.1) 63

1

0

cpu2dmem_rd

cpu2dmem_addr[6:0]
dmem2cpu_data

0

128 x 8 bit distributed
RAM

DIN[7:0] DOUT[7:0]

ADDR[6:0]

WE

cpu2dmem_data

cpu2dmem_addr[7]
cpu2dmem_wr

BME-MIT
FPGA labor

MiniRISC system
(Simplified MiniRISC system – Block diagram)

MiniRISC processor, 2014.12.04. (v1.1) 64

Address range Size Peripheral Function
0x00 – 0x7F 128 bytes data memory 128 x 8 bit memory

0x80 1 byte basic_owr interfacing the LEDs

0x81 1 byte basic_in interfacing the DIP switch

0x82 – 0x83 2 bytes basic_timer timing

0x84 – 0x87 4 bytes basic_in_irq Interfacing the push-buttons

0x88 – 0x8B 4 bytes slave_usrt serial communication

MiniRISC CPU
Data mem.

Debug Prg. mem.

Debug
module

256 x 16 bit
program mem.

Data memory interface

128 x 8 bit data
memory

(0x00 – 0x7F)

basic_owr
(0x80)

basic_in
(0x81)

basic_in_irq
(0x84 – 0x87)

slave_usrt
(0x88 – 0x8B)

LEDs
DIP switch

Push buttons

Development and communication port

JTAG

USRT

basic_timer
(0x82 – 0x83)

BME-MIT
FPGA labor

MiniRISC system
(Peripherals – basic_owr and basic_in)

• basic_owr: 8-bit output peripheral with readback
– Simple output, initial value is 0x00
– Data register: BASEADDR + 0x00, writable and readable

• The OUTi bit of the data reg. sets the value of the i-th output bit

– Used for interfacing the LEDs
• basic_in: 8-bit input peripheral

– Simple input with continuous sampling
– Data register: BASEADDR + 0x00, read-only

• The INi bit of the data reg. gives the state of the i-th input bit

– Used for interfacing the DIP switch and the push buttons

MiniRISC processor, 2014.12.04. (v1.1)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

IN7 IN6 IN5 IN4 IN3 IN2 IN1 IN0

R R R R R R R R

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 OUT0

R/W R/W R/W R/W R/W R/W R/W R/W

65

BME-MIT
FPGA labor

MiniRISC system
(Peripherals – basic_in_irq)

basic_in_irq: 8-bit input peripheral with debouncing and interrupts
• Data register

– BASEADDR + 0x00, 8-bit, read-only
– The INi data register bit gives the state of the i-th input bit

• Interrupt enable register (IE)
– BASEADDR + 0x01, 8-bit, writable and readable
– The IEi bit enables the interrupt request for the change of the i-th input bit

• Interrupt flag register (IF)
– BASEADDR + 0x02, 8-bit, writable and readable
– The IFi bit indicates the change of the i-th input, write 1 to clear the flag

• Used for interfacing the 4 push-buttons (the upper 4 register bits are not used)

MiniRISC processor, 2014.12.04. (v1.1)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

IF7 IF6 IF5 IF4 IF3 IF2 IF1 IF0
R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

IE7 IE6 IE5 IE4 IE3 IE2 IE1 IE0
R/W R/W R/W R/W R/W R/W R/W R/W

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

IN7 IN6 IN5 IN4 IN3 IN2 IN1 IN0
R R R R R R R R

66

BME-MIT
FPGA labor

MiniRISC system
(Peripherals – basic_timer)

basic_timer: timer peripheral
• Structure: a clock prescaler and an 8-bit down-counter

– The clock prescaler enables the timer counter at given intervals
• Counter initial state register (TR)

– BASEADDR + 0x00, 8-bit, write-only
– The initial state of the counter determines the timer period

• Counter register (TM)
– BASEADDR + 0x00, 8-bit, read-only
– Current value of the timer counter

MiniRISC processor, 2014.12.04. (v1.1)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

W W W W W W W W

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

TM7 TM6 TM5 TM4 TM3 TM2 TM1 TM0

R R R R R R R R

67

BME-MIT
FPGA labor

MiniRISC system
(Peripherals – basic_timer)

basic_timer: timer peripheral
• Command register (TC): BASEADDR + 0x01, 8-bit, write-only

• Status register (TS): BASEADDR + 0x01, 8-bit, read-only

MiniRISC processor, 2014.12.04. (v1.1)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

TIT TPS2 TPS1 TPS0 0 TOUT TREP TEN

R R R R R R R R

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

TIE TPS2 TPS1 TPS0 - - TREP TEN

W W W W n.a. n.a. W W

Bit Function

TEN Timer enable bit (0: timer is disabled, 1: timer is enabled)

TREP Timer mode select bit (0: single cycle, 1: repeat)

TOUT Indicates whether the timer period has been elapsed

TPS[2:0] Clock prescaler value select bits
0 : no prescale
1 – 7 : 𝟐𝟐𝟐𝟐� 𝑻𝑻𝑻𝑻𝑻𝑻+𝟏𝟏 prescale (16, 64, 256, 1024, 4096, 16384 or 65536)

TIE / TIT Timer interrupt enable / flag (TIT flag is cleared when TS is read)

68

BME-MIT
FPGA labor

MiniRISC system
(Peripherals – basic_timer)

basic_timer: timer peripheral
• Timer period: 𝑻𝑻 = 𝑻𝑻𝑻𝑻 + 𝟏𝟏 � 𝑻𝑻𝑻𝑻 � 𝑻𝑻𝑪𝑪𝑪𝑪𝑪𝑪

– TR is the initial value of the timer counter (0 – 255)
– PS is the prescale (1, 16, 64, 256, 1024, 4096, 16384 or 65536)
– TCLK is the system clock period (fCLK=16 MHz → TCLK=62,5 ns)

• The maximum timer period that can be set is 1,048576 s
• After setting the parameters (TR, TPS, TREP), the timer can be

started by setting the TEN bit to 1
• In case of single cycle mode (TREP=0), the counter stops after

reaching the last state (0). In case of repeat mode (TREP=1) the
counter is reloaded with TR after reaching the last state.

• The TOUT bit indicates that the timer period has been elapsed, this
bit can be cleared by reading the status register (TS)

• If the interrupt is enabled (TIE=1), the TOUT bit also activates the
interrupt request output of the timer

MiniRISC processor, 2014.12.04. (v1.1) 69

BME-MIT
FPGA labor

MiniRISC system
(Peripherals – slave_usrt)

slave_usrt: peripheral that provides serial communication
• USRT (Universal Serial Receiver Transmitter) data transfer

– Data framing: 1 START bit (0), 8 data bits, 1 STOP bit (1)
– USRT clock: determines the communication speed

• The master device outputs the clock to the slave device
– Transfer: the new bit is shifted out at the rising edge of the

USRT clock
– Reception: the input is sampled at the falling edge of the

USRT clock
• Only the characters without frame error (STOP bit = 1) are stored

MiniRISC processor, 2014.12.04. (v1.1) 70

USRT clk

TXD/RXD START D0 D1 D2 D3 D4 D5 D6 D7inactive STOP inactive

The transmitter shifts out the next bit here The input data is sampled by the receiver here

BME-MIT
FPGA labor

MiniRISC system
(Peripherals – slave_usrt)

slave_usrt: peripheral that provides serial communication
• Control register (UC): BASEADDR + 0x00, 8-bit, writable/readable

• Data register (UD): BASEADDR + 0x03, 8-bit, writable/readable
– Write: write data to the transmit (TX) FIFO (if TXNF=1)
– Read: read data from the receive (RX) FIFO (if RXNE=1)

MiniRISC processor, 2014.12.04. (v1.1)

Bit Mode Function

TXEN R/W 0: USRT transmitter is disabled 1: USRT transmitter is enabled

RXEN R/W 0: USRT receiver is disabled 1: USRT receiver is enabled

TXCLR W Write 1 here to clear the transmit FIFO

RXCLR W Write 1 here to clear the receive FIFO

71

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 RXCLR TXCLR RXEN TXEN

R R R R W W R/W R/W

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

BME-MIT
FPGA labor

MiniRISC system
(Peripherals – slave_usrt)

slave_usrt: peripheral that provides serial communication
• FIFO status register (US): BASEADDR + 0x01, 8-bit, read-only

• Interrupt enable reg. (UIE): BASEADDR + 0x02, 8-bit, writable/readable
– The FIFO status interrupts can be enabled/disabled here
– The interrupt request is active while the enabled events are active

MiniRISC processor, 2014.12.04. (v1.1) 72

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 RXFULL RXNE TXNF TXEMPTY

R R R R R R R R

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 RXFULL RXNE TXNF TXEMPTY

R R R R R/W R/W R/W R/W

Bit Meaning

TXEMPTY 0: the TX FIFO contains data 1: the TX FIFO is empty

TXNF 0: the TX FIFO is full 1: the TX FIFO is not full

RXNE 0: the RX FIFO is empty 1: the RX FIFO contains data

RXFULL 0: the RX FIFO is not full 1: the RX FIFO is full

BME-MIT
FPGA labor

Contents

1. Introduction
2. Internal structure of the MiniRISC CPU

– Datapath
– Control unit

3. Application of the MiniRISC CPU
– Signal interfaces
– I/O extension (with examples)
– MiniRISC system

4. Development environment
– MiniRISC assembler
– MiniRISC IDE
– Software development (with examples)

MiniRISC processor, 2014.12.04. (v1.1) 73

BME-MIT
FPGA labor

MiniRISC assembler
• A development environment (MiniRISC IDE) is available for

the MiniRISC system designed for the LOGSYS Spartan-3E
FPGA board

• The programs written in assembly language can be compiled
using the LOGSYS MiniRISC Lite assembler
– Requires the .NET Framework 4.0 to run (this is the part of

the operating system from Windows 8)
• The capabilities of the assembler fit the MiniRISC CPU

– Simple instruction interpretation
– Generates absolute code (no linker)
– No macros
– No address arithmetic
– No conditional compilation
– Stops in case of error

MiniRISC processor, 2014.12.04. (v1.1) 74

BME-MIT
FPGA labor

MiniRISC assembler
• Running from command line: MiniRISCv2-as filename.s

– Reads the filename.s assembly source file, and in case of
no error, the following files are generated:

• filename.lst assembly list file with addresses, labels,
identifiers and machine code

• code.hex text file for initializing the program memory
from the Verilog source code

• data.hex text file for initializing the data memory
from the Verilog source code

• filename.svf SVF file for initializing the program and data
memories using the LOGSYS GUI

• filename.dbgdat file containing the debug informations
– The error messages appear in the console

• The MiniRISC assembler is integrated with the MiniRISC IDE,
therefore it is not common to run the assembler from
command line

MiniRISC processor, 2014.12.04. (v1.1) 75

BME-MIT
FPGA labor

MiniRISC assembler
• Souce file: simple text file with .s extension
• Processed line-by-line: one instruction per source code line
• Format of the assembly source code lines

LABEL: INSTR OP1{, OP2} ; Comment
– LABEL Identifier representing the address of the

following instruction
– INSTR Mnemonic referring to the operation, for

example: ADD – addition, JMP – jump, etc.
– OP1{, OP2} Operands of the instruction, the OP2 is not

always present
– ; Comment The ’;’ character indicates the start of the

comment which is skipped by the assembler
• Recommendations

– Write comments for each instruction
– Use the TAB character for formatting the code

MiniRISC processor, 2014.12.04. (v1.1) 76

BME-MIT
FPGA labor

MiniRISC assembler
• Only few rules exist
• The operands of the instructions can be

– Register r0 – r15
– Constant/immediate #0 – #255 (for ALU operations)
– Memory address 0 – 255 (constant for memory addressing)
– Indirect address (r0) – (r15)

• Numeric constants
– No prefix decimal 0 – 255
– 0x prefix hexadecimal 0x00 – 0xFF
– 0b prefix binary 0b00000000 – 0b11111111

• Character constants
– A character between the’ ’ marks (example: #’A’ – value: 65)
– Escape sequences: ’\’’, ’\”’, ’\\’, ’\a’, ’\b’, ’\f’, ’\n’, ’\r’, ’\t’, ’\v’

• String constants
– Characters between the ” ” marks (example: ”MiniRISC\r\n”)
– Can be used only in the data section

MiniRISC processor, 2014.12.04. (v1.1) 77

BME-MIT
FPGA labor

MiniRISC assembler
• Assembler directives

– DEF: assigns an identifier to a constant
DEF SW 0x81 ;Address of the DIP switch

• This is not a CPU instruction. It defines a replacement rule for the
assembler, which provides better readability of the source code for
the user.

– CODE: indicates the beginning of the code section
• The generated code is placed into the program memory

– DATA: indicates the beginning of the data section
• The generated code is placed into the data memory
• Only labels and DB directives are allowed in the data section

– DB: initializes the data memory with constants
DB ”MiniRISC.\r\n”, 0 ;0 terminated string

• Can be used only in the data section
• Numeric, character and string constants can follow the DB directive
• The constants are separated with the comma character

MiniRISC processor, 2014.12.04. (v1.1) 78

BME-MIT
FPGA labor

MiniRISC assembler

• Assembler directives
– ORG: directly defines the start address
ORG memory_address

• Sets the start address of the following code segment
• Can be used in both code and data sections

• The address and the machine code of the instructions,
and the interpretation of the identifiers used by the
compiler can be checked in the generated LST file

• If the program has been compiled without errors, it can
be built in to the design as a memory initializer data
(.HEX output files) or it can be downloaded to the
already configured FPGA device (.SVF output file)

MiniRISC processor, 2014.12.04. (v1.1) 79

BME-MIT
FPGA labor

MiniRISC IDE

MiniRISC processor, 2014.12.04. (v1.1)

Execution
control

Source code
editor

Assembler
console

Peripheral control panel:
- LEDs, DIP switches
- Push-buttons

Content of the
data memory

USRT terminal

Display
control panel

Compile and
download

CPU state:
- PC, flags, top of the stack, register content
- Number of executed instructions
- Number of accepted interrupt requests

80

GPIO control
panel

Run:
- In simulator
- On hardware

BME-MIT
FPGA labor

MiniRISC IDE
Capabilities of the source code editor:
• Syntax highlighting
• Cut, copy, paste (), undo, redo ()
• Comment and uncomment of the selected lines ()
• Underlining the wrong source code lines, and displaying the error

message if the cursor points to a wrong line
• In case of a compiled program, displaying the value of the

identifiers if the cursor points to an identifier
• In case of a downloaded program

– Displaying the value stored in the registers if the cursor points to
a register

– In case of indirect addressing, displaying the address and the
data if the cursor points to a register

MiniRISC processor, 2014.12.04. (v1.1) 81

BME-MIT
FPGA labor

MiniRISC IDE
• From the dropdown menu, it can be selected

whether the program should run
– In the simulator (this option is always available)
– On the hardware (LDCxxx development cable)
– Selection is only possible when the program doesn’t run

• Simulator
– Simulates the processor system implemented in the FPGA

with clock cycle precision
– The program execution is slower in this case

• ~400000 instruction/s → ~1,2 MHz system clock frequency
– Most of the peripherals of the MiniRISC system are

available in the simulator
• Run on the hardware

– Available only, if the FPGA board is connected to the PC

MiniRISC processor, 2014.12.04. (v1.1) 82

BME-MIT
FPGA labor

MiniRISC IDE

• Compiling the program: Compile (, F5) button
– The error messages appear in the console
– The wrong lines are underlined with red color

• Downloading the compiled program: Download (, F6) btn.
– If the FPGA hasn’t configured yet, the MiniRISC system is

downloaded first
– The execution stops at address 0x00 (reset vector)

• Controlling the execution of the program
– Run (, F7): resumes the execution of the program
– Break (, F8): suspends the execution of the program, the

next instruction is highlighted with yellow color
– Step (, F10): the current instruction is executed and the

execution stops at the next instruction

MiniRISC processor, 2014.12.04. (v1.1) 83

BME-MIT
FPGA labor

MiniRISC IDE

• Controlling the execution of the program
– Auto step (): the Step command issued automatically

• The frequency can be set in the Debug menu
• The auto stepping can be stopped using the Break command

– Reset (, F9): issues a reset signal to the processor system
– Stop (): stops the execution of the program

• After the command, the program has to be downloaded again
• Breakpoints can be placed to any assembly instruction in the

source code editor by clicking on the margin
– The breakpoint is indicated with a red circle on the margin

– Stepping to a breakpoint suspends the execution
• Basically, a hardware Break command is issued

MiniRISC processor, 2014.12.04. (v1.1) 84

BME-MIT
FPGA labor

MiniRISC IDE

• Modifying the processor state and the data
memory, and controlling the peripherals is
possible only when the execution of the program
is suspended (break state)

• Processor state panel
– Value of the program counter (PC)
– Value of the flags (Z, C N, V, IE, IF – read-only)
– Value of the top of the stack (read-only)
– Value of the registers
– Number of the executed instructions
– Number of the accepted interrupt requests

• Control panel of the basic peripherals
– Displays the state of the LEDs, the DIP

switches and the push buttons
– Allows register-level control

MiniRISC processor, 2014.12.04. (v1.1) 85

BME-MIT
FPGA labor

MiniRISC IDE
• Memory window

– Displays the content of the 128 x 8 bit data memory
– Each byte can be modified by clicking on them
– The memory content can be loaded from file (Send file… button) and

can be saved to file (Save to file… button)
• Display window

– Allows controlling the seven-segment and the dot-matrix displays
– The display segments can be turned on/off by clicking on them
– The segment values and the character to be displayed can be specified

in the textboxes

MiniRISC processor, 2014.12.04. (v1.1) 86

BME-MIT
FPGA labor

MiniRISC IDE
• USRT terminal window

– Provides serial communication with the MiniRISC system
– The pressed characters will be sent, the received characters are

displayed in the terminal window
– Files can be sent, received data can be saved to a file

• GPIO window
– Displays the state of the GPIO peripherals and provides their

register-level control (output data, input data, direction)
– Pinout of the expansion connectors

MiniRISC processor, 2014.12.04. (v1.1) 87

BME-MIT
FPGA labor

Steps of the software development

• Think over the problem and create the basic
concept of the solution

• Decompose the problem into MiniRISC assembly
instructions and create the source code

• The source code can be compiled using the Compile
(F5) command

• If there are errors, correct them
• If the program compiled without errors, it can be

downloaded using the Download (F6) command
• Verify the operation of the program in debug mode

using the services of the MiniRISC IDE

MiniRISC processor, 2014.12.04. (v1.1) 88

BME-MIT
FPGA labor

Example programs

Example 1: displaying the state of the DIP switch on the LEDs
• Very simple: in an endless loop, read the state of the DIP

switch (0x81) and write it to the LEDs (0x81)

MiniRISC processor, 2014.12.04. (v1.1)

DEF LD 0x80 ; LED register
DEF SW 0x81 ; DIP switch register

CODE

;***
;* Start of the program. The addr. 0x00 is the reset vector. *
;***
start:

mov r0, SW ; Read the state of the sw. to r0.
mov LD, r0 ; Value of r0 is written to the LEDs.
jmp start ; Jump to the beginning of the loop.

89

BME-MIT
FPGA labor

Example programs

Example 1: displaying the state of the DIP switch on the LEDs
• Content of the list file generated by the assembler

MiniRISC processor, 2014.12.04. (v1.1)

LOGSYS MiniRISC v2.0 assembler v1.0 list file
Copyright (C) 2013 LOGSYS, Tamas Raikovich
Source file: example1.s
Created on : 2013.03.27. 12:51:08

S Addr Instr Source code
--

DEF LD 0x80 ; LED register
DEF SW 0x81 ; DIP switch register

CODE

;***
;* Start of the program. The addr. 0x00 is the reset vector. *
;***

C 00 start:
C 00 D081 mov r0, SW[81] ; Read the state of the sw. to r0.
C 01 9080 mov LD[80], r0 ; Value of r0 is written to the LEDs.
C 02 B000 jmp start[00] ; Jump to the beginning of the loop.

90

	MiniRISC_CPU_1
	The MiniRISC processor
	Contents
	MiniRISC processor - Introduction
	MiniRISC processor - Introduction
	Contents
	MiniRISC processor - Structure
	MiniRISC processor - Structure�(Datapath)
	MiniRISC processor - Structure�(Datapath)
	MiniRISC processor - Structure�(Datapath of the MiniRISC processor)
	MiniRISC processor - Structure�(Datapath of the MiniRISC processor – Register file)
	MiniRISC processor - Structure�(Datapath of the MiniRISC processor – ALU)
	MiniRISC processor - Structure�(Datapath of the MiniRISC processor – ALU)
	MiniRISC processor - Structure�(Datapath of the MiniRISC processor – ALU)
	MiniRISC processor - Structure�(Datapath of the MiniRISC processor – ALU)
	MiniRISC processor - Structure�(Datapath of the MiniRISC processor – ALU)
	MiniRISC processor - Structure�(Datapath of the MiniRISC processor – ALU)
	MiniRISC processor - Structure�(Control unit)
	MiniRISC processor - Structure�(Control unit)
	MiniRISC processor - Structure�(Control unit)
	MiniRISC processor - Structure�(Control unit)
	MiniRISC processor - Structure�(Control unit)
	MiniRISC processor - Structure�(Control unit)
	MiniRISC processor - Structure�(Control unit)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Instruction set)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Subroutine call)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Interrupt)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Interrupt)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Stack)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Stack)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – IR and PC)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Controller FSM)
	MiniRISC processor - Structure�(Control unit of the MiniRISC CPU – Controller FSM)
	MiniRISC processor - Structure�(Block diagram of the MiniRISC processor)
	Contents
	MiniRISC processor – Interfaces

	MiniRISC_CPU_2
	MiniRISC processor – Interfaces�(Clock, reset, program memory interface)
	MiniRISC processor – Interfaces�(Program memory interface)
	MiniRISC processor – Interfaces�(Data memory interface)
	MiniRISC processor – Interfaces�(Data memory interface – Write cycle)
	MiniRISC processor – Interfaces�(Data memory interface – Read cycle)
	MiniRISC processor – Interfaces�(Debug module, debug interface)
	MiniRISC processor – Interfaces�(Debug module, debug interface)
	MiniRISC processor – Interfaces�(Debug module, debug interface)
	MiniRISC processor – I/O extension
	MiniRISC processor – I/O extension�(Examples)
	MiniRISC processor – I/O extension�(Examples)
	MiniRISC processor – I/O extension�(Examples)
	MiniRISC processor – I/O extension�(Examples)
	MiniRISC processor – I/O extension�(Examples)
	MiniRISC system�(Simplified MiniRISC system – Block diagram)
	MiniRISC system�(Peripherals – basic_owr and basic_in)
	MiniRISC system�(Peripherals – basic_in_irq)
	MiniRISC system�(Peripherals – basic_timer)
	MiniRISC system�(Peripherals – basic_timer)
	MiniRISC system�(Peripherals – basic_timer)
	MiniRISC system�(Peripherals – slave_usrt)
	MiniRISC system�(Peripherals – slave_usrt)
	MiniRISC system�(Peripherals – slave_usrt)
	Contents
	MiniRISC assembler
	MiniRISC assembler
	MiniRISC assembler
	MiniRISC assembler
	MiniRISC assembler
	MiniRISC assembler
	MiniRISC IDE
	MiniRISC IDE
	MiniRISC IDE
	MiniRISC IDE
	MiniRISC IDE
	MiniRISC IDE
	MiniRISC IDE
	MiniRISC IDE
	Steps of the software development
	Example programs
	Example programs

