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Introduction 
• Programmable (general-purpose) processor 

– Mass-produced, then programmed to implement different processing tasks 
• Well-known common programmable processors: Pentium, Sparc, PowerPC 
• Lesser-known but still common: ARM, MIPS, 8051, PIC 

– Low-cost embedded processors found in cell phones, blinking shoes, etc.  
– Instructive to design a very simple programmable processor 

• Real processors can be much more complex 
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Basic Architecture 
• Processing generally consists of: 

– Loading some data 
– Transforming that data 
– Storing that data 

• Basic datapath: Useful circuit in a 
programmable processor 
– Can read/write data memory, where main 

data exists 
– Has register file to hold data locally 
– Has ALU to transform local data 
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Basic Datapath Operations 
• Load operation: Load data from data memory to RF 
• ALU operation: Transforms data by passing one or two RF register values through 

ALU, performing operation (ADD, SUB, AND, OR, etc.), and writing back into RF.  
• Store operation: Stores RF register value back into data memory 
• Each operation can be done in one clock cycle 
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Basic Datapath Operations 
• Q: Which are valid single-cycle operations for given datapath? 

– Move D[1] to RF[1] (i.e., RF[1] = D[1]) 
• A: YES – That's a load operation 

– Store RF[1] to D[9] and store RF[2] to D[10] 
• A: NO – Requires two separate store operations 

– Add D[0] plus D[1], store result in D[9] 
• A: NO – ALU operation (ADD) only works with RF. Requires two load operations 

(e.g., RF[0]=D[0]; RF[1]=D[1], an ALU operation (e.g., RF[2]=RF[0]+RF[1]), and 
a store operation (e.g., D[9]=RF[2]) 
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Basic Architecture – Control Unit 
• D[9] = D[0] + D[1] – requires a 

sequence of four datapath operations: 
0: RF[0] = D[0] 
1: RF[1] = D[1] 
2: RF[2] = RF[0] + RF[1] 
3: D[9] = RF[2]  

• Each operation is an instruction  
– Sequence of instructions –  program 
– Looks cumbersome, but that's the world 

of programmable processors – 
Decomposing desired computations into 
processor-supported operations 

– Store program in Instruction memory 
– Control unit reads each instruction and 

executes it on the datapath  
• PC: Program counter – address of 

current instruction 
• IR: Instruction register – current 

instruction  
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Basic Architecture – Control Unit 
• To carry out each instruction, the control unit must: 

– Fetch – Read instruction from inst. mem. 
– Decode – Determine the operation and operands of the instruction 
– Execute – Carry out the instruction's operation using the datapath 
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Basic Architecture – Control Unit 
• To carry out each instruction, the control unit must: 

– Fetch – Read instruction from inst. mem. 
– Decode – Determine the operation and operands of the instruction 
– Execute – Carry out the instruction's operation using the datapath 
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Basic Architecture – Control Unit 
• To carry out each instruction, the control unit must: 

– Fetch – Read instruction from inst. mem. 
– Decode – Determine the operation and operands of the instruction 
– Execute – Carry out the instruction's operation using the datapath 
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Basic Architecture – Control Unit 
• To carry out each instruction, the control unit must: 

– Fetch – Read instruction from inst. mem. 
– Decode – Determine the operation and operands of the instruction 
– Execute – Carry out the instruction's operation using the datapath 
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Basic Architecture – Control Unit 
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Creating a Sequence of Instructions 
• Q: Create sequence of instructions to compute D[3] = D[0]+D[1]+D[2] 

on earlier-introduced processor 
• A1: One possible sequence 

• First load data memory 
locations into register file 
• R[3] = D[0] 
• R[4] = D[1] 
• R[2] = D[2] 
(Note arbitrary register locations) 

 • Next, perform the additions 
• R[1] = R[3] + R[4] 
• R[1] = R[1] + R[2] 

• Finally, store result 
• D[3] = R[1] 

a 

• A2: Alternative sequence 
• First load D[0] and D[1] and 

add them 
• R[1] = D[0] 
• R[2] = D[1] 
• R[1] = R[1] + R[2] 

 • Next, load D[2] and add 
• R[2] = D[2] 
• R[1] = R[1] + R[2] 

a 

• Finally, store result  
• D[3] = R[1] 
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Number of Cycles 
• Q: How many cycles are needed to execute six instructions using the 

earlier-described processor? 

• A: Each instruction requires 3 
cycles – 1 to fetch, 1 to decode, 
and 1 to execute 
• Thus, 6 instr * 3 cycles/instr = 

18 cycles 

a 
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Three-Instruction Programmable Processor 
• Instruction Set – List of allowable instructions and their 

representation in memory, e.g., 
– Load instruction—0000 r3r2r1r0 d7d6d5d4d3d2d1d0 

 

– Store instruction—0001 r3r2r1r0 d7d6d5d4d3d2d1d0 

– Add instruction—0010 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0 
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Program for Three-Instruction Processor 
 

Register file RF 
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Program for Three-Instruction Processor 
• Another example program in machine code 

– Compute D[5] = D[5] + D[6] + D[7]  

signals to control the  

0: 0000 0000 00000101  // RF[0] = D[5]
1: 0000 0001 00000110  // RF[1] = D[6]
2: 0000 0010 00000111  // RF[2] = D[7]
3: 0010 0000 0000 0001  // RF[0] = RF[0] + RF[1]
                                        // which is D[5]+D[6]
4: 0010 0000 0000 0010  // RF[0] = RF[0] + RF[2]
                                        // now D[5]+D[6]+D[7]
5: 0001 0000 00000101  // D[5] = RF[0]

–Load instruction—0000 r3r2r1r0 d7d6d5d4d3d2d1d0 

–Store instruction—0001 r3r2r1r0 d7d6d5d4d3d2d1d0 

–Add instruction—0010 ra3ra2ra1ra0 rb3rb2rb1rb0 
rc3rc2rc1rc0 



Digital Design 
Copyright © 2006  
Frank Vahid 

17 

Assembly Code 
• Machine code (0s and 1s) hard to work with 
• Assembly code – Uses mnemonics  

– Load instruction—MOV Ra, d 
•  specifies the operation RF[a]=D[d]. a must be 0,1, ..., or 15—so R0 

means RF[0], R1 means RF[1], etc. d must be 0, 1, ..., 255 
– • Store instruction—MOV d, Ra 

•  specifies the operation D[d]=RF[a] 
– • Add instruction—ADD Ra, Rb, Rc 

•  specifies the operation RF[a]=RF[b]+RF[c] 
 0: MOV R0, 0 

1: MOV R1, 1 
2: ADD R2, R0, R1 
3: MOV 9, R2 

0: RF[0]=D[0] 
1: RF[1]=D[1] 
2: RF[2]=RF[0]+RF[1] 
3: D[9]=RF[2] 

Desired program 0: 0000 0000 00000000 
1: 0000 0001 00000001 
2: 0010 0010 0000 0001 
3: 0001 0010 00001001 

machine code assembly code 
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Control-Unit and Datapath for Three-Instruction 
Processor 

• To design the processor, we can begin with a high-level state machine 
description of the processor's behavior 
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Control-Unit and Datapath for Three-Instruction 
Processor 

• Create detailed connections among components 
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Control-Unit and Datapath for Three-Instruction 
Processor 

• Convert high-level state machine 
description of entire processor to FSM 
description of controller that uses 
datapath and other components to 
achieve same behavior 
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A Six-Instruction Programmable Processor 
• Let's add three more instructions: 

– Load-constant instruction—0011 r3r2r1r0 c7c6c5c4c3c2c1c0 
• MOV Ra, #c—specifies the operation RF[a]=c 

– Subtract instruction—0100 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0 
• SUB Ra, Rb, Rc—specifies the operation RF[a]=RF[b] – RF[c] 

– Jump-if-zero instruction—0101 ra3ra2ra1ra0 o7o6o5o4o3o2o1o0 
• JMPZ Ra, offset—specifies the operation PC = PC + offset if RF[a] is 0 

8.4 
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Extending the Control-Unit and Datapath 
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3x1, add another mux control signal, and 
also create a new signal coming from the 
controller labeled RF_W_data, which will 
connect with IR[7..0]. 

2: The subtract instruction requires that we 
use an ALU capable of subtraction, so we 
add another ALU control signal. 
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we be able to detect if a register is zero, 
and that we be able to add IR[7..0] to the 
PC.  
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Controller FSM for the Six-Instruction Processor 
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Program for the Six-Instruction Processor 
• Example program – Count number of non-zero words in D[4] and D[5] 

– Result will be either 0, 1, or 2 
– Put result in D[9] 

PC_clr PC_ld PC_inc IR_ld 

I _rd 

              
              
             

             
         

            
             

           
             

                  
               
             

                
               

              
      

0011 0000 00000000
0011 0001 00000001
0000 0010 00000100
0101 0010 00000010
0010 0000 0000 0001
0000 0010 00000101
0101 0010 00000010
0010 0000 0000 0001
0001 0000 00001001

        MOV R0, #0; // initialize result to 0
        MOV R1, #1; // constant 1 for incrementing result
        MOV R2, 4; // get data memory location 4
        JMPZ R2, lab1; // if zero, skip next instruction
        ADD R0, R0, R1; // not zero, so increment result
lab1:MOV R2, 5; // get data memory location 5
        JMPZ R2, lab2; // if zero, skip next instruction
        ADD R0, R0, R1; //not zero, so increment result
lab2:MOV 9, R0; // store result in data memory location 9

(a) (b)
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Further Extensions to the Programmable 
Processor 

• Typical processor instruction set will 
contain dozens of data movement 
(e.g., loads, stores), ALU (e.g., add, 
sub), and flow-of-control (e.g., jump) 
instructions 
– Extending the control-unit/datapath follows 

similarly to previously-shown extensions 

• Input/output extensions 
– Certain memory locations may actually be 

external pins 
• e.g, D[240] may represent 8-bit input I0, 

D[255] may represent 8-bit output P7 

8.5 

256 x 16 D 

W_data R_data 

addr 
rd 
wr 

0: 
1: 
2: 

239: 

240: 
241: 

248: 

255: 

00..0 
00..0 

I 0 
I 1 

P0 

P7 
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Program using I/O Extensions – Recall Chpt 1 
C-Program Example 

• Microprocessors a 
common choice to 
implement a digital 
system 

– Easy to program 
– Cheap (as low as 

$1) 
– Available now 

I 3 
I 4 
I 5 
I 6 
I 7 

I 2 
I 1 
I 0 

P3 
P4 
P5 
P6 
P7 

P2 
P1 
P0 M r op r o c 

void main() 
{ 
   while (1) { 
      P0 = I0 && !I1;  
      // F = a and !b, 
   } 
} 0 

F 

b 

a 

1 
0 
1 
0 
1 

6:00 7:05 7:06 9:00 9:01 time 

Desired motion-at-night detector 
Programmed 

microprocessor 
Custom designed 

digital circuit 
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Program Using Input/Output Extensions 

0: MOV R0, 240 // move D[240], which is the value at pin I0, into R0 
1: MOV R1, 241 // move D[241], which is that value at pin I1, into R1 
2: NOT R1, R1 // compute !I1, assuming existence of a complement 
instruction 
3: AND R0, R0, R1 // compute I0 && !I1, assuming an AND instruction 
4: MOV 248, R0 // move result to D[248], which is pin P0 

256 x 16 D 

W_data R_data 

addr 
rd 
wr 

0: 
1: 
2: 

239: 

240: 
241: 

248: 

255: 

00..0 
00..0 

I 0 
I 1 

P0 

P7 

Underlying assembly code for C expression I0 && !I1.  

void main() 
{ 
   while (1) { 
      P0 = I0 && !I1;  
      // F = a and !b, 
   } 
} 
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Chapter Summary 
• Programmable processors are widely used 

– Easy availability, short design time 
• Basic architecture 

– Datapath with register file and ALU 
– Control unit with PC, IR, and controller 
– Memories for instructions and data 
– Control unit fetches, decodes, and executes 

• Three-instruction processor with machine-level programs 
– Extended to six instructions 
– Real processors have dozens or hundreds of instructions 
– Extended to access external pins 
– Modern processors are far more sophisticated 

• Instructive to see how one general circuit (programmable processor) 
can execute variety of behaviors just by programming 0s and 1s into 
an instruction memory 
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