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Introduction
• Chapters 2 & 3: Introduced increasingly complex digital building 

blocks
– Gates, multiplexors, decoders, basic registers, and controllers

• Controllers good for systems with control inputs/outputs
– Control input: Single bit (or just a few), representing environment event or 

state
• e.g., 1 bit representing button pressed

– Data input: Multiple bits collectively representing single entity
• e.g., 7 bits representing temperature in binary

• Need building blocks for data
– Datapath components, aka register-transfer-level (RTL) components, 

store/transform data
• Put datapath components together to form a datapath

• This chapter introduces numerous datapath components, and simple 
datapaths
– Next chapter will combine controllers and datapaths into “processors”

4.1
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Registers
• Can store data, very common in datapaths
• Basic register of Ch 3: Loaded every cycle

– Useful for implementing FSM -- stores encoded state
– For other uses, may want to load only on certain 

cycles

4.2
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Basic register loads on every clock cycle
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Register with Parallel Load
• Add 2x1 mux to front of each flip-flop
• Register’s load input selects mux input to pass

– Either existing flip-flop value, or new value to load
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Basic Example Using Registers

• This example will show how 
registers load simultaneously 
on clock cycles
– Notice that all load inputs set to 

1 in this example -- just for 
demonstration purposes

Q3 Q2 Q1 Q0

a3 a2 a1 a0

I3 I2 I1 I0

Q3 Q2 Q1 Q0

I3ld1 I2 I1 I0

ld1 ld1

Q3 Q2 Q1 Q0

I3 I2 I1 I0
R1

R0

R2

clk
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Basic Example Using Registers

Q3 Q2 Q1 Q0

a3 a2 a1 a0

I3 I2 I1 I0

Q3 Q2 Q1 Q0
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R1
????
R2

–>1111

R0

clk

a3..a0

R0
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Register Example using the Load Input: 
Weight Sampler

• Scale has two displays
– Present weight
– Saved weight
– Useful to compare 

present item with previous 
item

• Use register to store 
weight
– Pressing button causes 

present weight to be 
stored in register

• Register contents 
always displayed as 
“Saved weight,” even 
when new present 
weight appears

Scale

Saved weight

Weight Sampler

Present weight clk

bSave I3 I2 I1 I0

Q3 Q2 Q1 Q0

load3 pounds

0 0 1 1

0 0 1 1

3 pounds

0 0 1 0

2 pounds 1 a
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Register Example: Temperature History Display
• Recall Chpt 3 example

– Timer pulse every hour
– Previously used as clock. Better design only connects oscillator to 

clock inputs -- use registers with load input, connect to timer pulse. 

Q4

C

x4
x3
x2
x1
x0

Q3
Q2
Q1
Q0

Ra Rb

I4
I3
I2
I1
I0

Q4

a4 a3 a2 a1 a0

Q3
Q2
Q1
Q0

I4
I3
I2
I1
I0

Rc

Q4

b4 b3 b2 b1 b0

Q3
Q2
Q1
Q0

I4
I3
I2
I1
I0

c4 c3 c2 c1 c0

TemperatureHistoryStorage

Q4

Clk
C

t4
t3
t2
t1
t0

Q3
Q2
Q1
Q0

ld

Ra Rb Rc

ld

I4
I3
I2
I1
I0

Q4

a4 a3 a2 a1 a0

Q3
Q2
Q1
Q0

I4
I3
I2
I1
I0

ld

Q4

b4 b3 b2 b1 b0

Q3
Q2
Q1
Q0

I4
I3
I2
I1
I0

c4 c3 c2 c1 c0

TemperatureHistoryStoragetimer

osc

new linea
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Register Example: Above-Mirror Display
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reg0
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reg2

reg3
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• Ch2 example: Four 
simultaneous values from 
car’s computer

• To reduce wires: Computer 
writes only 1 value at a time, 
loads into one of four 
registers

– Was: 8+8+8+8 = 32 wires
– Now: 8 +2+1 = 11 wires

0

1

0001010

1

1

0001010

Loaded on clock edge

8

Shorthand notation
a



Digital Design
Copyright © 2006
Frank Vahid

10

Register Example: Computerized Checkerboard
• Each register 

holds values for 
one column of 
lights
– 1 lights light

• Microprocessor 
loads one 
register at a time
– Occurs fast 

enough that 
user sees 
entire board 
change at once

LED

R7 R6

d6 d5 d4 d3 d2 d1 d0d7
8

D

R5 R4 R3 R2 R1 R0

e i2 i1 i0 3 8 decoder

microprocessor

lit LED

1

1

0

0

0

0

0

1

Q
I

R0
load

10100010

from
decoder

from
microprocessor

(b)

(a)
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Register Example: Computerized Checkerboard

010000101 101000101010001010100010 10100010010000101 010000101 010000101

001 (R1) 100 (R4)010 (R2)000 (R0) 110 (R6)011 (R3) 101 (R5) 111 (R7)

clk
e

i2,i1,i0
D

LED

lit LED

10100010 10100010 10100010 10100010

01000101 01000101 01000101 01000101

R7 R6 R5 R4 R3 R2 R1 R0
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Shift Register
• Shift right

– Move each bit one position right
– Shift in 0 to leftmost bit

1  1  0  1 Register contents
before shift right

0  1  1  0

0

Register contents
after shift right

a

Q: Do four right shifts on 1001, showing value after each shift
a

A: 1001 (original)
0100 
0010 
0001 
0000 

shr_in

• Implementation: Connect flip-flop 
output to next flip-flop’s input

a
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Shift Register
• To allow register to either shift or retain, use 2x1 muxes

– shr: 0 means retain, 1 shift
– shr_in: value to shift in

• May be 0, or 1
• Note: Can easily design shift register that shifts left instead

1 0
2 1

D

Q

Q3

1 0

D

Q

Q2

1 0

D

Q

Q1

1 0

D

Q

Q0

sh
r=

11 0
2 1

D

Q

Q3

shr

shr_in

shr
shr_in

1 0

D

Q

Q2

1 0

D

Q

Q1 (b)

(c)

(a)

1 0

D

Q

Q0

Q3 Q2 Q1 Q0
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Rotate Register

• Rotate right: Like shift right, 
but leftmost bit comes from 
rightmost bit

1  1  0  1

1  1  1  0

Register contents
before shift right

Register contents
after shift right
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Shift Register Example: Above-Mirror Display
• Earlier example: 8 

+2+1 = 11wires from 
car’s computer to 
above-mirror display’s 
four registers
– Better than 32 wires, 

but 11 still a lot --
want fewer for 
smaller wire bundles

• Use shift registers
– Wires: 1+2+1=4
– Computer sends one 

value at a time, one 
bit per clock cycle
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i0
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Note: this line is 1 bit, rather than 8 bits like before
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Multifunction Registers
• Many registers have multiple functions

– Load, shift, clear (load all 0s)
– And retain present value, of course

• Easily designed using muxes
– Just connect each mux input to achieve 

desired function

s1

shr_in

s0

3 2 1

I3

0

D

Q

Q3

Q2 Q1 Q0Q3

I2 I1 I0I3

Q2

0
3 2 1

I2

0

D

Q

0

Q1

3 2 1

I1

0

D

Q

0

Q0

3 2 1

I0

0

D

Q

0

4 1 shr_in
s1
s0

(a)

(b)

Functions:
Operation
Maintain present value
Parallel load
Shift right
(unused - let's load 0s)

s0
0
1
0
1

s1
0
0
1
1
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Multifunction Registers

shr_in
shl_in

3 2 1

I3

0

D

Q

Q3

Q2 Q1 Q0Q3

I2 I1 I0I3

Q2

3 2 1

I2

0

D

Q

Q1

3 2 1

I1

0

D

Q

Q0

3 2 1

I0

0

D

Q

shl_in
shr_in
s1
s0

(a) (b)

Operation
Maintain present value
Parallel load
Shift right
Shift left

s0
0
1
0
1

s1
0
0
1
1
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Maintain value
Shift left
Shift right
Shift right
Parallel load
Parallel load
Parallel load
Parallel load

Note
Operations0s1

0
1
1
1
0
0
0
0

0
1
0
0
1
1
1
1

OutputsInputs

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

ld shr shl

Truth table for combinational circuit

Multifunction Registers with Separate Control 
Inputs

Maintain present value
Shift left
Shift right
Shift right – shr has priority over shl
Parallel load
Parallel load – ld has priority
Parallel load – ld has priority
Parallel load – ld has priority

Operationshlshrld
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Q2 Q1 Q0Q3

Q2 Q1 Q0Q3

I2 I1 I0I3

I2 I1 I0I3

s1
shr_in

shr_in

shr

shl

ld

s0
shl_inshl_in

a

a

?
combi-
national
circuit

a

s1 = ld’*shr’*shl + ld’*shr*shl’ + ld’*shr*shl

s0 = ld’*shr’*shl + ld
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Register Operation Table
• Register operations typically shown using compact version of table

– X means same operation whether value is 0 or 1
• One X expands to two rows
• Two Xs expand to four rows

– Put highest priority control input on left to make reduced table simple

Maintain value
Shift left

Note
Operations0s1

0
1

0
1

OutputsInputs

0
1

0
0

0
0

Shift right
Shift right

1
1

0
0

0
1

1
1

0
0

Parallel load
Parallel load
Parallel load
Parallel load

0
0
0
0

1
1
1
1

0
1
0
1

0
0
1
1

1
1
1
1

ld shr shl

Maintainvalue
Shift left

Operationld shr shl

0
1

0
0

0
0

Parallel loadXX1
Shift rightX10
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Register Design Process
• Can design register with desired operations using simple 

four-step process
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Register Design Example
• Desired register operations

– Load, shift left, synchronous clear, 
synchronous set

Step 1: Determine mux size

5 operations: above, plus maintain 
present value (don’t forget this one!) 
--> Use 8x1 mux

Step 2: Create mux operation table

Step 3: Connect mux inputs

Step 4: Map control lines

Operation
Maintain present value
Parallel load
Shift left
Synchronous clear
Synchronous set
Maintain present value
Maintain present value
Maintain present value

s0
0
1
0
1
0
1
0
1

s1
0
0
1
1
0
0
1
1

s2
0
0
0
0
1
1
1
1

D
Q

Qn

7 6 3 2 1

In

05 4

1 0

s2
s1
s0

from
Qn-1

Operation
Maintain present value
Shift left
Parallel load
Set to all 1s
Clear to all 0s

s0
0
0
1
0
1

s1
0
1
0
0
1

s2
0
0
0
1
0

shl
0
1
X
X
X

ld
0
0
1
X
X

clr
0
0
0
0
1

Inputs Outputs
set
0
0
0
1
X

a

a

s2 = clr’*set
s1 = clr’*set’*ld’*shl + clr
s0 = clr’*set’*ld + clr
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Register Design Example

Step 4: Map control lines
Operation
Maintain present value
Shift left
Parallel load
Set to all 1s
Clear to all 0s

s0
0
0
1
0
1

s1
0
1
0
0
1

s2
0
0
0
1
0

shl
0
1
X
X
X

ld
0
0
1
X
X

clr
0
0
0
0
1

Inputs Outputs
set
0
0
0
1
X

s2 = clr’*set
s1 = clr’*set’*ld’*shl + clr
s0 = clr’*set’*ld + clr

Q2 Q1 Q0Q3

Q2 Q1 Q0Q3

I2 I1 I0I3

I2 I1 I0I3

s1
ld

shl

s0
shl_inshl_incombi-

national
circuitset

clr

s2
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Adders
• Adds two N-bit binary numbers

– 2-bit adder: adds two 2-bit numbers, 
outputs 3-bit result

– e.g., 01 + 11 = 100   (1 + 3 = 4)

• Can design using combinational 
design process of Ch 2, but doesn’t 
work well for reasonable-size N
– Why not?

4.3
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0
0
1
1
0
0
1
1

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

s0
0
1
0
1
1
0
1
0

s1
0
0
1
1
0
1
1
0

c
0
0
0
0
0
0
0
1

b0
0
1
0
1
0
1
0
1

b1
0
0
1
1
0
0
1
1

a1
0
0
0
0
0
0
0
0

Inputs Outputs
a0
0
0
0
0
1
1
1
1
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Why Adders Aren’t Built Using Standard 
Combinational Design Process

• Truth table too big
– 2-bit adder’s truth table shown

• Has 2(2+2) = 16 rows
– 8-bit adder: 2(8+8) = 65,536 rows
– 16-bit adder: 2(16+16) = ~4 billion rows
– 32-bit adder: ...

• Big truth table with numerous 1s/0s yields 
big logic
– Plot shows number of transistors for N-bit 

adders, using state-of-the-art automated 
combinational design tool

4.3

0
1
0
1
1
0
1
0

1
1
0
0
1
0
0
1

0
0
1
1
0
1
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

s0
0
1
0
1
1
0
1
0

s1
0
0
1
1
0
1
1
0

c
0
0
0
0
0
0
0
1

b0
0
1
0
1
0
1
0
1

b1
0
0
1
1
0
0
1
1

a1
0
0
0
0
0
0
0
0

Inputs Outputs
a0
0
0
0
0
1
1
1
1

Q: Predict number of transistors for 16-bit adder
A: 1000 transistors for N=5, doubles for each 
increase of N. So transistors = 1000*2(N-5).  Thus, 
for N=16, transistors = 1000*2(16-5) = 1000*2048 = 
2,048,000.   Way too many!

a
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0
1 2 3 4 5

N
6 7 8

Transis
tors

Tr
an

si
st

or
s
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Alternative Method to Design an Adder: Imitate 
Adding by Hand

• Alternative adder 
design: mimic 
how people do 
addition by hand

• One column at a 
time
– Compute sum, 

add carry to next 
column

1   1   1   1
+  0   1   1   0

0

1

1   1   1   1

10

+   0   1   1   0

01
1   1   1   1

101

+   0   1   1   0

11
1   1   1   1

101

+   0   1   1   0

1

01

A:
B: a
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Alternative Method to Design an Adder: Imitate 
Adding by Hand

• Create 
component for 
each column
– Adds that 

column’s bits, 
generates sum 
and carry bits

0
1   1   1   1

+   0   1   1   0

1

10101

b

co s

0

a ci

A:

B:+ 0

1 1 1 1

1

b

co s

1

a ci

1

b

co s

0

a ci

1

1 1 0

b

co s

1 SUM

a

0

A:
B:

1

Half-adderFull-adders

a
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Half-Adder
• Half-adder: Adds 2 bits, generates 

sum and carry
• Design using combinational design 

process from Ch 2 b
co s

0

a ci

A:

B:+ 0

1 1 1 1

1

1

b
co s

1

a ci

1

1

b
co s

0

a ci

1

0

b
co s

1 SUM

a

0

s
0
1
1
0

co
0
0
0
1

b
0
1
0
1

a
0
0
1
1

Inputs Outputs

Step 1: Capture the function 

Step 2: Convert to equations

Step 3: Create the circuit

co = ab
s = a’b + ab’  (same as s = a xor b) a b

co

co s

a b

s

Half-adder
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Full-Adder
• Full-adder: Adds 3 bits, generates 

sum and carry
• Design using combinational design 

process from Ch 2 b
co s

0

a ci

A:

B:+ 0

1 1 1 1

1

1

b
co s

1

a ci

1

1

b
co s

0

a ci

1

0

b
co s

1 SUM

a

0

Step 1: Capture the function 

s
0
1
1
0
1
0
0
1

co
0
0
0
1
0
1
1
1

ci
0
1
0
1
0
1
0
1

b
0
0
1
1
0
0
1
1

a
0
0
0
0
1
1
1
1

Inputs Outputs Step 2: Convert to equations
co = a’bc + ab’c + abc’ + abc
co = a’bc +abc +ab’c +abc +abc’ +abc
co = (a’+a)bc + (b’+b)ac + (c’+c)ab
co = bc + ac + ab

s = a’b’c + a’bc’ + ab’c’ + abc
s = a’(b’c + bc’) + a(b’c’ + bc)
s = a’(b xor c)’ + a(b xor c)
s = a xor b xor c

Step 3: Create the circuit

co

ciba

s

Full 
adder
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Carry-Ripple Adder
• Using half-adder and full-adders, we can build adder that adds like we 

would by hand
• Called a carry-ripple adder

– 4-bit adder shown: Adds two 4-bit numbers, generates 5-bit output
• 5-bit output can be considered 4-bit “sum” plus 1-bit “carry out”

– Can easily build any size adder

a3

co s

FA

co

b3 a2b2

s3 s2 s1

ciba

co s

FA

ciba

a1b1

co s

FA

ciba

s0

a0 b0

co s

HA

ba

(a)

a3a2a1a0 b3

s3 s2 s1 s0co

b2b1b0

(b)

4-bit adder
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Carry-Ripple Adder
• Using full-adder instead of half-adder for first bit, we can 

include a “carry in” bit in the addition
– Will be useful later when we connect smaller adders to form bigger 

adders

a3

co s

FA

co

b3 a2b2

s3 s2 s1

ciba

co s

FA

ciba

a1b1

co s

FA

ciba

s0

a0 b0 ci

co s

FA

ciba

(a)

a3a2a1a0 b3

s3 s2 s1 s0co

ci

b2b1b0

(b)

4-bit adder
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Carry-Ripple Adder’s Behavior

0 1 1 10 0 0 1 0111+0001
(answer should be 01000)

0

co s

FA

0 0

0 0 0

0 0 00 0 0

0 0

ciba

co s

FA
ciba

0 0

co s

FA
ciba

0

0 0

co s

FA
ciba

0

Assume all inputs initially 0

Output after 2 ns (1FA delay)0 0 1 1 0

co s

FA

0 0

0 0 0

co2 co1 co0

ciba

co s

FA
ciba

co s

FA
ciba

co s

FA
ciba

0

01

Wrong answer -- something wrong? No -- just need more time 
for carry to ripple through the chain of full adders. 

a
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0 0
0

co s
FA

1 1 1

1 10 1 0

ciba

co s
FA

ciba

1 0

co s
FA

ciba

0 0 0

1 1

co s
FA

ciba

(d)
Output after 8ns (4 FA delays)

Carry-Ripple Adder’s Behavior
0

co s
FA

0 0 1

co1

0 1 0

ciba

co s
FA

ciba

1 0

co s
FA

ciba

0 0 1 0 0

1 1

co s
FA

ciba

(b)

10 1

0 0 0

0

1

0 1

1

Outputs after 4ns (2 FA delays)

00

co s
FA

1 1

0 1

co2

0 1 0

ciba

co s
FA

ciba

1 0

co s
FA

ciba

0 0

1 1
0

co s
FA

ciba

(c)
Outputs after 6ns (3 FA delays)

a

0111+0001
(answer should be 01000)

1

Correct answer appears after 4 FA delays
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Cascading Adders

a3a2a1a0 b3

s3s2s1s0co

s7s6s5s4co

ci

b2b1b0

a7a6a5a4 b7b6b5b4

(a) (b)

4-bit adder

a3a2a1a0 b3

s3s2s1s0

s3s2s1s0

co

ci

b2b1b0

a3a2a1a0 b3b2b1b0

4-bit adder

a7.. a0 b7.. b0

s7.. s0co

ci8-bit adder
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Adder Example: DIP-Switch-Based Adding Calculator
• Goal: Create calculator that adds two 8-bit binary numbers, specified 

using DIP switches
– DIP switch: Dual-inline package switch, move each switch up or down
– Solution: Use 8-bit adder

DIP switches

1
0

a7..a0 b7..b0

s7..s0

8-bit carry-ripple adder

co

ci 0

CALC

LEDs

a
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Adder Example: DIP-Switch-Based Adding Calculator
• To prevent spurious values from appearing at output, can place register 

at output
– Actually, the light flickers from spurious values would be too fast for humans to detect 

-- but the principle of registering outputs to avoid spurious values being read by 
external devices (which normally aren’t humans) applies here.

DIP switches

1
0

a7..a0 b7..b0

s7..s0

8-bit adder

8-bit register

co

ci 0

CALC

LEDs

e

clk
ld
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display register

to display

1 Weight
Adjusterclk

ld

0 0 0 0 0

0

4

7

5

1

3

6 2
weight
sensor

Adder Example: Compensating Weight Scale
• Weight scale with compensation amount of 0-7

– To compensate for inaccurate sensor due to physical wear
– Use 8-bit adder

a7..a0 b7..b0

s7..s0

8-bit adder

co

ci 0

01000010 000

01000010

010

01000100

a
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Shifters
• Shifting (e.g., left shifting 0011 yields 0110) useful for:

– Manipulating bits
– Converting serial data to parallel (remember earlier above-mirror display 

example with shift registers)
– Shift left once is same as multiplying by 2  (0011 (3) becomes 0110 (6))

• Why? Essentially appending a 0 -- Note that multiplying decimal number by 10 
accomplished just be appending 0, i.e., by shifting left (55 becomes 550)

– Shift right once same as dividing by 2

(a)

i2

q3 q2 q1 q0

in

i3 i1 i0

Left shifter

0 1 0 1 0 1 0 1

in

sh

i3

q3 q2 q1 q0

i2 i1 i0

Shifter with left 
shift or no shift

inL

i3

q3 q2 q1 q0

i2 i1 i0

inR

2 0
s0
s1

shL
shR

1 2 0 1 2 0 1 2 0 1

Shifter with left 
shift, right shift, 
and no shift

<<1

Symbol

4.4

a
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Shifter Example: Approximate Celsius to Fahrenheit 
Converter

• Convert 8-bit Celsius input to 8-bit Fahrenheit output
– F = C * 9/5  + 32
– Approximate: F = C*2   + 32 
– Use left shift: F = left_shift(C)  + 32

C
800001100 (12)

00011000 (24)

00111000 (56)

<<1 0  (shift in 0)

8
F

8-bit adder

8 8
00100000 (32)

* 2

a
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Shifter Example: Temperature Averager
• Four registers storing a 

history of temperatures
• Want to output the 

average of those 
temperatures

• Add, then divide by four
– Same as shift right by 2
– Use three adders, and right 

shift by two

Tavg

Ravgld

ld

T

clk

ld

Ra Rb Rc Rd

+ +

+

>>20

divide by 4shift in 0

a

001000 (8) 001100 (12) 001111 (15)0000111 (7)

0101010  (42)

0001010  (10)
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Barrel Shifter
• A shifter that can shift by any amount

– 4-bit barrel left shift can shift left by 0, 
1, 2, or 3 positions

– 8-bit barrel left shifter can shift left by 
0, 1, 2, 3, 4, 5, 6, or 7 positions

• (Shifting an 8-bit number by 8 positions 
is pointless -- you just lose all the bits)

• Could design using 8x1 muxes and 
lots of wires
– Too many wires

• More elegant design
– Chain three shifters: 4, 2, and 1
– Can achieve any shift of 0..7 by 

enabling the correct combination of 
those three shifters, i.e., shifts should 
sum to desired amount

0 1 0 1 0 1 0 1
in

sh

i3

q3 q2 q1 q0

i2 i1 i0

Shift by 1 shifter uses 2x1 muxes. 8x1 
mux solution for 8-bit barrel shifter: too 
many wires.

<<1 insh

0

0

0

x

y

z

8
Q

<<2 insh

8

<<4 insh

8

8
I

Q: xyz=??? to 
shift by 5?

a

1

0

1

00000110

01100000 (by 4)

01100000

11000000 (by 1)Net result: shift by 5:
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Comparators
• N-bit equality comparator: Outputs 1 if two N-bit numbers are equal

– 4-bit equality comparator with inputs A and B
• a3 must equal b3, a2 = b2, a1 = b1, a0 = b0

– Two bits are equal if both 1, or both 0
– eq = (a3b3 + a3’b3’) * (a2b2 + a2’b2’) * (a1b1 + a1’b1’) * (a0b0 + a0’b0’)

• Recall that XNOR outputs 1 if its two input bits are the same
– eq = (a3 xnor b3) * (a2 xnor b2) * (a1 xnor b1) * (a0 xnor b0)

4.5

a3 b3 a2 b2 a1 b1 a0 b0

eq
(a)

(b)

a3a2a1a0 b3

eq

b2b1b0

4-bit equality comparator

a

0110 = 0111 ? 0 1 1 00 1 1 1

01 1 1

0



Digital Design
Copyright © 2006
Frank Vahid

42

Magnitude Comparator
• N-bit magnitude comparator: 

Indicates whether A>B, A=B, or 
A<B, for its two N-bit inputs A and B
– How design? Consider how compare 

by hand. First compare a3 and b3. If 
equal, compare a2 and b2. And so on. 
Stop if comparison not equal --
whichever’s bit is 1 is greater. If never 
see unequal bit pair, A=B. 

A=1011 B=1001

1011 1001

a

Equal
1011 1001 Equal
1011 1001 Unequal

So A > B
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Magnitude Comparator
• By-hand example leads to idea for design

– Start at left, compare each bit pair, pass results to the right
– Each bit pair called a stage
– Each stage has 3 inputs indicating results of higher stage, passes results to 

lower stage

Igt
Ieq
Ilt

a3a2a1a0 b3b2b1b0 AgtB
AeqB
AltB

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Igt
Ieq
Ilt

Stage 3

a3 b3

a b
in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage 2

a2 b2

a b
in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage 1

a1 b1

a b
in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

AgtB
AeqB
AltB

Stage 0

a0 b0

a b

(a)

(b)

0

0
1 4-bit magnitude comparator
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Magnitude Comparator

• Each stage:
– out_gt = in_gt + (in_eq * a * b’)

• A>B (so far) if already determined in higher stage, or if higher stages equal but in 
this stage a=1 and b=0

– out_lt = in_lt + (in_eq * a’ * b)
• A<B (so far) if already determined in higher stage, or if higher stages equal but in 

this stage a=0 and b=1
– out_eq = in_eq * (a XNOR b)

• A=B (so far) if already determined in higher stage and in this stage a=b too
– Simple circuit inside each stage, just a few gates (not shown) 

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Igt
Ieq
Ilt

Stage 3

a3 b3

a b
in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage 2

a2 b2

a b
in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage 1

a1 b1

a b
in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

AgtB
AeqB
AltB

Stage 0

a0 b0

a b
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Magnitude Comparator
• How does it 

work?

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Igt
Ieq
Ilt

Stage3

a3 b3

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage2

a2 b2

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage1

a1 b1

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

AgtB
AeqB
AltB

Stage0

a0 b0
1 1 0 0 1 0 1 1

a b

(a)

=

0
1
0

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Igt
Ieq
Ilt

Stage3

a3 b3

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage2

a2 b2

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage1

a1 b1

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

AgtB
AeqB
AltB

Stage0

a0 b0
1 1 0 0 1 0 1 1

a b

(b)

0
1
0

=

0
1
0

1011 = 1001 ?

0
1
0

Ieq=1 causes this 
stage to compare

a
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Magnitude Comparator
• Final answer 

appears on the 
right

• Takes time for 
answer to 
“ripple” from left 
to right

• Thus called 
“carry-ripple 
style” after the 
carry-ripple 
adder
– Even though 

there’s no 
“carry” 
involved

1011 = 1001 ?

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Igt
Ieq

Ilt

Stage3

a3 b3

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage2

a2 b2

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage1

a1 b1

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

AgtB
AeqB
AltB

Stage0

a0 b0
1 1 0 0 1 0 1 1

a b

(c)

0

1
0

1

0
0

>

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Igt
Ieq
Ilt

Stage3

a3 b3

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage2

a2 b2

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage1

a1 b1

a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

AgtB
AeqB
AltB

Stage0

a0 b0
1 1 0 0 1 0 1 1

a b

(d)

0

1
0

0
1

0

a
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Magnitude Comparator Example: 
Minimum of Two Numbers

• Design a combinational component that computes the 
minimum of two 8-bit numbers
– Solution: Use 8-bit magnitude comparator and 8-bit 2x1 mux

• If A<B, pass A through mux. Else, pass B. 

MIN

Igt
Ieq
Ilt

AgtB
AeqB
AltB

0
1
0

A

A B

B

8-bit magnitude comparator
s I1 I0

2x1 mux
8-bit

C

8

88 8 8

8

8

8

C

A B
Min

(a)

(b)

11000000 01111111

0
0
1

01111111

a
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Counters
• N-bit up-counter: N-bit register 

that can increment (add 1) to its 
own value on each clock cycle
– 0000, 0001, 0010, 0011, ...., 1110, 

1111, 0000
– Note how count “rolls over” from 1111 

to 0000
• Terminal (last) count, tc, equals1 

during value just before rollover

• Internal design
– Register, incrementer, and N-input 

AND gate to detect terminal count

4.6

cnt
tc C

4-bit up-counter

4

0000

01

00010010001101000101...11100 111110 00000001

ld
4-bit register

Ctc

4

4 4

4

cnt

4-bit up-counter

+1

a

a
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Incrementer
• Counter design used incrementer
• Incrementer design

– Could use carry-ripple adder with B input set to 00...001
• But when adding 00...001 to another number, the leading 0’s 

obviously don’t need to be considered -- so just two bits being 
added per column

– Use half-adders (adds two bits) rather than full-adders (adds 
three bits)

0 0 1 1
0 1 1

1+

carries:

unused

0000 1

(a)

(b)

a3 a2 a1 a0 1

s0s1s2s3co

a b

co s
HA

a b

co s
HA

a b

co s
HA

a b

co s
HA

I
r
nt

a3

co s3s2
+1

s1s0

a2 a1 a0
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Incrementer
• Can build faster incrementer 

using combinational logic 
design process
– Capture truth table
– Derive equation for each output

• c0 = a3a2a1a0
• ...
• s0 = a0’

– Results in small and fast circuit
– Note: works for small N -- larger 

N leads to exponential growth, 
like for N-bit adder

s2
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0

s1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0

s0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

s3
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0

c0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

a0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

a1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

a3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

Inputs Outputs
a2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
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Counter Example: Mode in Above-Mirror Display
• Recall above-mirror display example from Chapter 2

– Assumed component that incremented xy input each time button 
pressed: 00, 01, 10, 11, 00, 01, 10, 11, 00, ...

– Can use 2-bit up-counter
• Assumes mode=1 for just one clock cycle during each button press

– Recall “Button press synchronizer” example from Chapter 3

cnt
tc c1c0

x y

2-bit upcountermode

clk
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Counter Example: 1 Hz Pulse Generator Using 256 Hz 
Oscillator

• Suppose have 256 Hz 
oscillator, but want 1 Hz 
pulse
– 1 Hz is 1 pulse per second 

-- useful for keeping time
– Design using 8-bit up-

counter, use tc output as 
pulse

• Counts from 0 to 255 (256 
counts), so pulses tc every 
256 cycles

cnt
tc C

(unused)

8-bit up-counter
1

osc
(256 Hz) 8

p
(1 Hz)
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Down-Counter
• 4-bit down-counter

– 1111, 1110, 1101, 1100, …, 
0011, 0010, 0001, 0000, 
1111, …

– Terminal count is 0000
• Use NOR gate to detect

– Need decrementer (-1) –
design like designed 
incrementer

ld
4-bit register

Ctc

4

4 4

4

cnt

4-bit down-counter

–1



Digital Design
Copyright © 2006
Frank Vahid

54

Up/Down-Counter
• Can count either up 

or down
– Includes both 

incrementer and 
decrementer

– Use dir input to 
select, using 2x1: 
dir=0 means up

– Likewise, dir selects 
appropriate terminal 
count value

ld 4-bit register

Ctc

4

44 44

4

cnt
clrclr

dir

4-bit up/down counter

4 4

–1 +1

1 02x1

1 04-bit 2 x1
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Counter Example: Light Sequencer
• Illuminate 8 lights from right 

to left, one at a time, one per 
second

• Use 3-bit up-counter to 
counter from 0 to 7

• Use 3x8 decoder to 
illuminate appropriate light

• Note: Used 3-bit counter 
with 3x8 decoder
– NOT an 8-bit counter – why 

not?

lights

0 0 00 0 10 1 0

3-bit up-countercnt

tc c2 c1 c0

3x8 dcd i2 i1 i0

unused

1

clk
(1 Hz)

d7 d6 d5 d4 d3 d2 d1 d0

a
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Counter with Parallel Load
• Up-counter that can be 

loaded with external 
value
– Designed using 2x1 mux 

– ld input selects 
incremented value or 
external value

– Load the internal register 
when loading external 
value or when counting

ld
4-bit register

Ctc

4

4 4

cnt

ld

+1

1 04-bit 2x1

L 4

4
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Counter with Parallel Load
• Useful to create pulses at 

specific multiples of clock
– Not just at N-bit counter’s natural 

wrap-around of 2N

• Example: Pulse every 9 clock 
cycles
– Use 4-bit down-counter with 

parallel load
– Set parallel load input to 8 (1000)
– Use terminal count to reload

• When count reaches 0, next cycle 
loads 8.

– Why load 8 and not 9? Because 0 
is included in count sequence: 

• 8, 7, 6, 5, 4, 3, 2, 1, 0  9 counts

cnt

ld

tc C

L
1

clk
4

4

1000

4-bit down-counter
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Counter Example: 
New Year’s Eve Countdown Display

• Chapter 2 example previously used microprocessor to counter from 59 
down to 0 in binary

• Can use 8-bit (or 7- or 6-bit) down-counter instead, initially loaded with 
59

d0i0
i1
i2
i3
i4
i5

c0
c1
c2
c3
c4
c5
c6
c7

tc

d1
d2
d3

d58
d59
d60
d61
d62
d636x64

dcd

8-bit
down-
counter

59 8
L

ld

cnt

clk
(1 Hz)

reset

fireworks

Happy
New
Year

0

1
2
3

58
59

countdown
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Counter Example: 
1 Hz Pulse Generator from 60 Hz Clock

• U.S. electricity standard 
uses 60 Hz signal
– Device may convert that to 

1 Hz signal to count 
seconds

• Use 6-bit up-counter
– Can count from 0 to 63
– Create simple logic to 

detect 59 (for 60 counts)
• Use to clear the counter 

back to 0 (or to load 0)

Ctc

p

1

osc
(60 Hz)

(1 Hz)

clr

cnt 6-bit up counter



Digital Design
Copyright © 2006
Frank Vahid

60

Timer
• A type of counter used to measure time

– If we know the counter’s clock frequency and the count, we know the time 
that’s been counted

• Example: Compute car’s speed using two sensors
– First sensor (a) clears and starts timer
– Second sensor (b) stops timer
– Assuming clock of 1kHz, timer output represents time to travel between 

sensors. Knowing the distance, we can compute speed
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Multiplier – Array Style
• Can build multiplier that mimics multiplication by hand

– Notice that multiplying multiplicand by 1 is same as ANDing with 1

4.7
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Multiplier – Array Style
• Generalized representation of multiplication by hand



Digital Design
Copyright © 2006
Frank Vahid

63

Multiplier – Array Style
• Multiplier design – array of 

AND gates

A B

P
*

Block symbol

+ (5-bit)

+ (6-bit)

+ (7-bit)

0 0

0 0 0

0

a0a1a2a3

b0

b1

b2

b3

0

p7..p0

pp
1

pp
2

pp
3

pp
4
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Subtractor
• Can build subtractor as we built carry-ripple adder

– Mimic subtraction by hand
– Compute borrows from columns on left

• Use full-subtractor component: 
– wi is borrow by column on right, wo borrow from column on left

4.8

1 1 00

0 1 1

1

1

1
0

-

1stcolumn

1 1 0
10

10

0 1 1

10 1

1-

3rd column

1 1 0
0

0

0 1 1

100 1

1-

4th column

wo

a3

a b

FS

wi

wo s

b3

s3

a2

a b

FS

wi

wo s

b2

s2

a1

a b

FS

wi

wo s

b1

s1

a0

a3 a2 a1 a0 b3

s3s2s1s0wo

wi

b2 b1 b0a b

FS

wi

wi

wo s
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Subtractor Example: DIP-Switch Based 
Adding/Subtracting Calculator

• Extend earlier 
calculator example
– Switch f indicates 

whether want to 
add (f=0) or 
subtract (f=1)

– Use subtractor and 
2x1 mux

DIP switches

1
0

8-bit register
CALC

LEDs

e

f

clk
ld

8

8

8

0 0

8

8

8

88
2x10 1

1
0

wiciA AB B

S Sco wo
8-bit adder 8-bit subtractor
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Subtractor Example: 
Color Space Converter – RGB to CMYK

• Color
– Often represented as weights 

of three colors: red, green, and 
blue (RGB)

• Perhaps 8 bits each, so 
specific color is 24 bits

– White: R=11111111, 
G=11111111, B=11111111

– Black: R=00000000, 
G=00000000, B=00000000

– Other colors: values in 
between, e.g., R=00111111, 
G=00000000, B=00001111 
would be a reddish purple

– Good for computer monitors, 
which mix red, green, and blue 
lights to form all colors

• Printers use opposite color scheme
– Because inks absorb light
– Use complementary colors of RGB: 

Cyan (absorbs red), reflects green 
and blue, Magenta (absorbs green), 
and Yellow (absorbs blue) 
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Subtractor Example: 
Color Space Converter – RGB to CMYK

• Printers must quickly convert 
RGB to CMY 
– C=255-R, M=255-G, Y=255-B
– Use subtractors as shown - - -

R G B

8
888

88

8 8 8

255 255 255

C M Y
RGB
to CMY
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Subtractor Example: 
Color Space Converter – RGB to CMYK

• Try to save colored inks
– Expensive
– Imperfect – mixing C, M, Y doesn’t 

yield good-looking black

• Solution: Factor out the black or 
gray from the color, print that part 
using black ink
– e.g., CMY of (250,200,200)= 

(200,200,200) + (50,0,0).
• (200,200,200) is a dark gray – use 

black ink
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Subtractor Example: 
Color Space Converter – RGB to CMYK

• Call black part K
– (200,200,200): K=200
– (Letter “B” already used for blue)

• Compute minimum of C, 
M, Y values
– Use MIN component 

designed earlier, using 
comparator and mux, to 
compute K

– Output resulting K value, 
and subtract K value from 
C, M, and Y values

– Ex: Input of (250,200,200) 
yields output of 
(50,0,0,200)

RGB
to CM
K

- - -

8 8
C2 M2 Y2 K

8

8

888 8

8 8

MIN

MIN

C

C M Y

R G
RGB t o CMY

YB

M Y

K

R G B8 8 8
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Representing Negative Numbers: Two’s 
Complement

• Negative numbers common
– How represent in binary?

• Signed-magnitude
– Use leftmost bit for sign bit

• So -5 would be:
1101 using four bits
10000101 using eight bits 

• Better way: Two’s complement
– Big advantage: Allows us to perform subtraction using addition
– Thus, only need adder component, no need for separate 

subtractor component!
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Ten’s Complement

• Before introducing two’s complement, let’s 
consider ten’s complement
– But, be aware that computers DO NOT USE TEN’S 

COMPLEMENT. Introduced for intuition only.
– Complements for each base ten number shown to 

right – Complement is the number that when added 
results in 10

9

8

7

6

5

4

3

2

1

1

2

3

4

5

6

7

8

9
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Ten’s Complement
• Nice feature of ten’s complement

– Instead of subtracting a number, adding its complement results in answer 
exactly 10 too much

– So just drop the 1 – results in subtracting using addition only

4 6
10

7

Ð4 +6
0 10 20

3 13
13

3

0 10

1

2

3

4

5

6

7

8

9

9

8

7

6

5

4

3

2

1

complements

7Ð4=3 7+6=13 3
Adding thecomplement results in an answer

exactly 10 too much – dropping the tenscolumn gives
the right answer.

-

-
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Two’s Complement is Easy to Compute: 
Just Invert Bits and Add 1

• Hold on!
– Sure, adding the ten’s complement achieves subtraction using addition 

only
– But don’t we have to perform subtraction to have determined the 

complement in the first place? e.g., we only know that the complement of 4 
is 6 by subtracting 10-4=6 in the first place.

• True – but in binary, it turns out that the two’s complement can be 
computed easily
– Two’s complement of 011 is 101, because 011 + 101 is 1000
– Could compute complement of 011 as 1000 – 011 = 101
– Easier method: Just invert all the bits, and add 1
– The complement of 011 is 100+1 = 101 -- it works!

Q: What is the two’s complement of 0101? A: 1010+1=1011
(check: 0101+1011=10000)

a

Q: What is the two’s complement of 0011? A: 1100+1=1101
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Two’s Complement Subtractor Built with an Adder
• Using two’s complement

A – B = A + (-B) 
= A + (two’s complement of B) 
= A + invert_bits(B) + 1

• So build subtractor using 
adder by inverting B’s bits, 
and setting carry in to 1

1
cin

BA
Adder

S

BA

N-bit
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Adder/Subtractor

• Adder/subtractor: control 
input determines whether 
add or subtract
– Can use 2x1 mux – sub input 

passes either B or inverted B
– Alternatively, can use XOR 

gates – if sub input is 0, B’s 
bits pass through; if sub input 
is 1, XORs invert B’s bits
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Adder/Subtractor Example: Calculator
• Previous calculator 

used separate 
adder and 
subtractor

• Improve by using 
adder/subtractor, 
and two’s 
complement 
numbers

DIP switches

1
0

8-bit register

8-bit adder/subtractorsub

CALC

LEDs

e

S

A Bf

clk
ld

1
0

8 8

8

8
DIP switches

1
0

8-bit register
CALC

LEDs

e

f

clk
ld

8

8

8
0 0

8

8

8

88
2x10 1

1
0

wiciA AB B

S Sco wo
8-bit adder 8-bit subtractor
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Overflow
• Sometimes result can’t be represented with given number 

of bits
– Either too large magnitude of positive or negative
– e.g., 4-bit two’s complement addition of 0111+0001 (7+1=8). But 4-

bit two’s complement can’t represent number >7
• 0111+0001 = 1000  WRONG answer, 1000 in two’s complement is -8, 

not +8
– Adder/subtractor should indicate when overflow has occurred, so 

result can be discarded
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Detecting Overflow: Method 1
• Assuming 4-bit two’s complement numbers, can detect overflow by 

detecting when the two numbers’ sign bits are the same but are 
different from the result’s sign bit
– If the two numbers’ sign bits are different, overflow is impossible

• Adding a positive and negative can’t exceed largest magnitude positive or 
negative

• Simple circuit
– overflow = a3’b3’s3 + a3b3s3’
– Include “overflow” output bit on adder/subtractor

0 1 1 1

1 0 0 0

+ 00 0 1

sign bits

overflow
(a)

1 1 1 1

0 1 1 1

+ 01 0 0

overflow
(b)

1 0 0 0

1 1 1 1

+ 10 1 1

no overflow
(c)

If the numbers’ sign bits have the same value, which
differs from the result’s sign bit, overflow has occurred.
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Detecting Overflow: Method 2
• Even simpler method: Detect difference between carry-in to sign bit and 

carry-out from sign bit
• Yields simpler circuit: overflow = c3 xor c4

0 1 1
1 1 1

1

10 010 0 0

+ 00 0 1

overflow
(a)

1 1 1
0 0 0

1

0 1 1 1

+ 01 0 0

overflow
(b)

1 0 0
0 0 0

0

1 1 1 1

+ 10 1 1

no overflow
(c)

If the carry into the sign bit column differs from the
carry out of that column, overflow has occurred.
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Arithmetic-Logic Unit: ALU
• ALU: Component that 

can perform any of 
various arithmetic (add, 
subtract, increment, 
etc.) and logic (AND, 
OR, etc.) operations, 
based on control inputs 

• Motivation:
– Suppose want multi-

function calculator that 
not only adds and 
subtracts, but also 
increments, ANDs, ORs, 
XORs, etc.

4.9
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Multifunction Calculator without an ALU
• Can build multifunction 

calculator using separate 
components for each 
operation, and muxes
– But too many wires, and 

wasted power computing 
all those operations when 
at any time you only use 
one of the results

DIP switches

1
0

8-bit register

8-bit 8  1

CALC

LEDs

e

z
y
x

clk
Id

s0
s1
s2

1 0 0 1 2 3 4 5 6 7

NOTXORORAND+1Ð+

8 8

8
8

8

8

8

8 8
8

88

A B

A lot of wires

Wasted
power
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ALU
• More efficient design uses ALU

– ALU design not just separate components multiplexed (same problem as previous 
slide!), 

– Instead, ALU design uses single adder, plus logic in front of adder’s A and B inputs
• Logic in front is called an arithmetic-logic extender

– Extender modifies the A and B inputs such that desired operation will appear at output 
of the adder 
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Arithmetic-Logic Extender in Front of ALU

• xyz=000: Want S=A+B – just pass a to ia, b to ib, and set cin=0
• xyz=001: Want S=A-B – pass a to ia, b’ to ib, and set cin=1
• xyz=010: Want S=A+1 – pass a to ia, set ib=0, and set cin=1
• xyz=011: Want S=A – pass a to ia, set ib=0, and set cin=0
• xyz=1000: Want S=A AND B – set ia=a*b, b=0, and cin=0
• others: likewise
• Based on above, create logic for ia(x,y,z,a,b) and ib(x,y,z,a,b) for each abext, and 

create logic for cin(x,y,z), to complete design of the AL-extender component
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ALU Example: Multifunction Calculator

• Design using ALU is 
elegant and efficient
– No mass of wires
– No big waste of power

DIP switches

1
0

1
0

8-bit register

ALU
S

CALC

LEDs

e

z
y
x

clk
ld

z
y
x

8

8

8

8
A

A
B

B

DIP swi tches

1
0

8-bit reg ist er

8-bit 8  1

CALC

LEDs

e

z
y
x

clk
Id

s0
s1
s2

1 0 0 1 2 3 4 5 6 7

NOTXORORAND+1Ð+

8 8

8
8

8

8

8

8 8 8

88

A B

A lot of wi res.

Wast ed
pow er
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om the car's
ompu
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load
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Fr cen
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load

load

load

load

reg0

reg1

reg2

reg3

T

A

I
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Register Files
• MxN register file

component provides 
efficient access to M N-
bit-wide registers
– If we have many 

registers but only need 
access one or two at a 
time, a register file is 
more efficient

– Ex: Above-mirror display 
(earlier example), but this 
time having 16 32-bit 
registers   

• Too many wires, and 
big mux is too slow

4.10

Fr
om the car
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omput
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T
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mirr
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ay
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d0

d15
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i0

i15load
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4 16
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32

32

4
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s3-s0

32-bit
16x1

load

load

reg0

reg15

congestion

too much
fanout

huge mux

a



Digital Design
Copyright © 2006
Frank Vahid

86

Register File
• Instead, want component that has one data input and one data output, 

and allows us to specify which internal register to write and which to read

32

4

32

4
W_data

W_addr

W_en

R_data

R_addr

R_en
16×32

register file

a

a
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Register File Timing Diagram
• Can write one 

register and read 
one register each 
clock cycle
– May be same 

register
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OLD designC
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Register-File Example: Above-Mirror Display
• 16 32-bit registers that 

can be written by car’s 
computer, and 
displayed 
– Use 16x32 register file
– Simple, elegant design

• Register file hides 
complexity internally
– And because only one 

register needs to be 
written and/or read at a 
time, internal design is 
simple
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4
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W_addr
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R_addr
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Chapter Summary
• Need datapath components to store and operate on multibit data

– Also known as register-transfer-level (RTL) components
• Components introduced

– Registers
– Shifters
– Adders
– Comparators
– Counters
– Multipliers
– Subtractors
– Arithmetic-Logic Units
– Register Files

• Next, we’ll combine knowledge of combinational logic design, 
sequential logic design, and datapath components, to build digital 
circuits that can perform general and powerful computations


