
Digital Design
Copyright © 2006
Frank Vahid

1

Digital Design
Chapter 2:

Combinational Logic Design

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

http://www.ddvahid.com/

Digital Design
Copyright © 2006
Frank Vahid

2

Introduction

Combinational

digital circuit

1
a

b

1
F 0

1
a

b

?
F 0

• Let’s learn to design digital circuits
• We’ll start with a simple form of circuit:

– Combinational circuit
• A digital circuit whose outputs depend solely on

the present combination of the circuit inputs’
values

Digital circuit

2.1

Sequential

digital circuit

Note: Slides with animation are denoted with a small red "a" near the animated items

Digital Design
Copyright © 2006
Frank Vahid

3

Switches
• Electronic switches are the basis of

binary digital circuits
– Electrical terminology

• Voltage: Difference in electric potential
between two points

– Analogous to water pressure
• Current: Flow of charged particles

– Analogous to water flow
• Resistance: Tendency of wire to resist

current flow
– Analogous to water pipe diameter

• V = I * R (Ohm’s Law)

4.5 A
4.5 A

4.5 A

2 ohms

9V

0 V 9 V

+ –

2.2

Digital Design
Copyright © 2006
Frank Vahid

4

Switches
• A switch has three parts

– Source input, and output
• Current wants to flow from source

input to output
– Control input

• Voltage that controls whether that
current can flow

• The amazing shrinking switch
– 1930s: Relays
– 1940s: Vacuum tubes
– 1950s: Discrete transistor
– 1960s: Integrated circuits (ICs)

• Initially just a few transistors on IC
• Then tens, hundreds, thousands...

“off”

“on”

output source
input

output source
input

control
input

control
input

(b)

relay vacuum tube

discrete
transistor

IC

quarter
(to see the relative size)

a

Digital Design
Copyright © 2006
Frank Vahid

5

Moore’s Law
• IC capacity doubling about every 18 months

for several decades
– Known as “Moore’s Law” after Gordon Moore,

co-founder of Intel
• Predicted in 1965 predicted that components

per IC would double roughly every year or so
– Book cover depicts related phenomena

• For a particular number of transistors, the IC
shrinks by half every 18 months

– Notice how much shrinking occurs in just about
10 years

– Enables incredibly powerful computation in
incredibly tiny devices

– Today’s ICs hold billions of transistors
• The first Pentium processor (early 1990s)

needed only 3 million

An Intel Pentium processor IC
having millions of transistors

Digital Design
Copyright © 2006
Frank Vahid

6

The CMOS Transistor
• CMOS transistor

– Basic switch in modern ICs

gate

source drain
oxide

A positive
voltage here...

...attracts electrons here,
turning the channel

between source and drain
into aconductor.

(a)

IC package

IC

does not
conduct

0

conducts

1
gate

nMOS

does not
conduct

1
gate

pMOS

conducts

0

Silicon -- not quite a conductor or insulator:
 Semiconductor

2.3

Digital Design
Copyright © 2006
Frank Vahid

7

Boolean Logic Gates
Building Blocks for Digital Circuits

(Because Switches are Hard to Work With)

• “Logic gates” are better digital circuit building blocks than switches (transistors)
– Why?...

2.4

Digital Design
Copyright © 2006
Frank Vahid

8

Boolean Algebra and its Relation to Digital Circuits
• To understand the benefits of “logic gates” vs.

switches, we should first understand Boolean algebra
• “Traditional” algebra

– Variable represent real numbers
– Operators operate on variables, return real numbers

• Boolean Algebra
– Variables represent 0 or 1 only
– Operators return 0 or 1 only
– Basic operators

• AND: a AND b returns 1 only when both a=1 and b=1
• OR: a OR b returns 1 if either (or both) a=1 or b=1
• NOT: NOT a returns the opposite of a (1 if a=0, 0 if a=1)

a
0
0
1
1

b
0
1
0
1

AND
0
0
0
1 a

0
0
1
1

b
0
1
0
1

OR
0
1
1
1 a

0
1

NOT
1
0

Digital Design
Copyright © 2006
Frank Vahid

9

Boolean Algebra and its Relation to Digital Circuits
• Developed mid-1800’s by George Boole to formalize human thought

– Ex: “I’ll go to lunch if Mary goes OR John goes, AND Sally does not go.”
• Let F represent my going to lunch (1 means I go, 0 I don’t go)
• Likewise, m for Mary going, j for John, and s for Sally
• Then F = (m OR j) AND NOT(s)

– Nice features
• Formally evaluate

– m=1, j=0, s=1 --> F = (1 OR 0) AND NOT(1) = 1 AND 0 = 0
• Formally transform

– F = (m and NOT(s)) OR (j and NOT(s))
» Looks different, but same function
» We’ll show transformation techniques soon

a
0
0
1
1

b
0
1
0
1

AND
0
0
0
1

a
0
0
1
1

b
0
1
0
1

OR
0
1
1
1

a
0
1

NOT
1
0

Digital Design
Copyright © 2006
Frank Vahid

10

Evaluating Boolean Equations
• Evaluate the Boolean equation F = (a AND b) OR (c

AND d) for the given values of variables a, b, c, and d:
– Q1: a=1, b=1, c=1, d=0.

• Answer: F = (1 AND 1) OR (1 AND 0) = 1 OR 0 = 1.
– Q2: a=0, b=1, c=0, d=1.

• Answer: F = (0 AND 1) OR (0 AND 1) = 0 OR 0 = 0.
– Q3: a=1, b=1, c=1, d=1.

• Answer: F = (1 AND 1) OR (1 AND 1) = 1 OR 1 = 1.

a
0
0
1
1

b
0
1
0
1

AND
0
0
0
1

a
0
0
1
1

b
0
1
0
1

OR
0
1
1
1

a
0
1

NOT
1
0

Digital Design
Copyright © 2006
Frank Vahid

11

Converting to Boolean Equations
• Convert the following English

statements to a Boolean equation
– Q1. a is 1 and b is 1.

• Answer: F = a AND b
– Q2. either of a or b is 1.

• Answer: F = a OR b
– Q3. both a and b are not 0.

• Answer:
– (a) Option 1: F = NOT(a) AND NOT(b)
– (b) Option 2: F = a OR b

– Q4. a is 1 and b is 0.
• Answer: F = a AND NOT(b)

Digital Design
Copyright © 2006
Frank Vahid

12

Converting to Boolean Equations
• Q1. A fire sprinkler system should spray water if high heat

is sensed and the system is set to enabled.
– Answer: Let Boolean variable h represent “high heat is sensed,” e

represent “enabled,” and F represent “spraying water.” Then an
equation is: F = h AND e.

• Q2. A car alarm should sound if the alarm is enabled, and
either the car is shaken or the door is opened.
– Answer: Let a represent “alarm is enabled,” s represent “car is

shaken,” d represent “door is opened,” and F represent “alarm
sounds.” Then an equation is: F = a AND (s OR d).

– (a) Alternatively, assuming that our door sensor d represents “door
is closed” instead of open (meaning d=1 when the door is closed, 0
when open), we obtain the following equation: F = a AND (s OR
NOT(d)).

Digital Design
Copyright © 2006
Frank Vahid

13

Relating Boolean Algebra to Digital Design

• Implement Boolean operators using transistors
– Call those implementations logic gates.
– Let’s us build circuits by doing math --

powerful concept

Boolean
algebra

(mid-1800s)

Boole’s intent: formalize
human thought

Switches
(1930s)

Shannon (1938)

Digital design

Showed application
of Boolean algebra
to design of switch-

based circuits

x
0
0
1
1

y
0
1
0
1

F
0
0
0
1

x
0
0
1
1

y
0
1
0
1

F
0
1
1
1

x
0
1

F
1
0

F x
x
y F

OR N O T

F
x
y

AND

0

1

y

x

x

y

F

1

0

F x

Symbol

Truth table

Transistor
circuit

0

1

x y

F
y

x

Note: These OR/AND
implementations are inefficient;
we’ll show why, and show better

ones later.

For telephone
switching and other

electronic uses

Digital Design
Copyright © 2006
Frank Vahid

14

NOT/OR/AND Logic Gate Timing Diagrams

0

1

1

0

time

F

x

1

0
x

y

F
1

1

0

0

time

1

0
x

y

F
1

1

0

0

time

Digital Design
Copyright © 2006
Frank Vahid

15

Building Circuits Using Gates

• Recall Chapter 1 motion-in-dark example
– Turn on lamp (F=1) when motion sensed (a=1) and no light (b=0)
– F = a AND NOT(b)
– Build using logic gates, AND and NOT, as shown
– We just built our first digital circuit!

Digital Design
Copyright © 2006
Frank Vahid

16

Example: Converting a Boolean Equation to a
Circuit of Logic Gates

• Q: Convert the following equation to logic gates:
 F = a AND NOT(b OR NOT(c))

a
F

(a)

a
b

c
F

(b)

Digital Design
Copyright © 2006
Frank Vahid

17

Example: Seat Belt Warning Light System
• Design circuit for warning light
• Sensors

– s=1: seat belt fastened
– k=1: key inserted
– p=1: person in seat

• Capture Boolean equation
– person in seat, and seat belt not

fastened, and key inserted
• Convert equation to circuit
• Notice

– Boolean algebra enables easy
capture as equation and conversion
to circuit

• How design with switches?
• Of course, logic gates are built from

switches, but we think at level of logic
gates, not switches

w = p AND NOT(s) AND k

k

p

s

w

BeltWarn

Digital Design
Copyright © 2006
Frank Vahid

18

Some Circuit Drawing Conventions

x
y

F

no yes

no

not ok

ok

yes

Digital Design
Copyright © 2006
Frank Vahid

19

Boolean Algebra
• By defining logic gates based on Boolean algebra, we can use algebraic

methods to manipulate circuits
– So let’s learn some Boolean algebraic methods

• Start with notation: Writing a AND b, a OR b, and NOT(a) is cumbersome
– Use symbols: a * b, a + b, and a’ (in fact, a * b can be just ab).

• Original: w = (p AND NOT(s) AND k) OR t
• New: w = ps’k + t

– Spoken as “w equals p and s prime and k, or t”
– Or even just “w equals p s prime k, or t”
– s’ known as “complement of s”

• While symbols come from regular algebra, don’t say “times” or “plus”
Boolean algebra precedence, highest precedence first.

Symbol Name Description

() Parentheses Evaluate expressions nested in parentheses first

’ NOT Evaluate from left to right

* AND Evaluate from left to right

+ OR Evaluate from left to right

2.5

Digital Design
Copyright © 2006
Frank Vahid

20

Boolean Algebra Operator Precendence
• Evaluate the following Boolean equations, assuming a=1, b=1, c=0, d=1.

– Q1. F = a * b + c.
• Answer: * has precedence over +, so we evaluate the equation as F = (1 *1) + 0 =

(1) + 0 = 1 + 0 = 1.
– Q2. F = ab + c.

• Answer: the problem is identical to the previous problem, using the shorthand
notation for *.

– Q3. F = ab’.
• Answer: we first evaluate b’ because NOT has precedence over AND, resulting in

F = 1 * (1’) = 1 * (0) = 1 * 0 = 0.
– Q4. F = (ac)’.

• Answer: we first evaluate what is inside the parentheses, then we NOT the result,
yielding (1*0)’ = (0)’ = 0’ = 1.

– Q5. F = (a + b’) * c + d’.
• Answer: Inside left parentheses: (1 + (1’)) = (1 + (0)) = (1 + 0) = 1. Next, * has

precedence over +, yielding (1 * 0) + 1’ = (0) + 1’. The NOT has precedence over
the OR, giving (0) + (1’) = (0) + (0) = 0 + 0 = 0.

a

Digital Design
Copyright © 2006
Frank Vahid

21

Boolean Algebra Terminology
• Example equation: F(a,b,c) = a’bc + abc’ + ab + c
• Variable

– Represents a value (0 or 1)
– Three variables: a, b, and c

• Literal
– Appearance of a variable, in true or complemented form
– Nine literals: a’, b, c, a, b, c’, a, b, and c

• Product term
– Product of literals
– Four product terms: a’bc, abc’, ab, c

• Sum-of-products
– Equation written as OR of product terms only
– Above equation is in sum-of-products form. “F = (a+b)c + d” is not.

Digital Design
Copyright © 2006
Frank Vahid

22

Boolean Algebra Properties
• Commutative

– a + b = b + a
– a * b = b * a

• Distributive
– a * (b + c) = a * b + a * c
– a + (b * c) = (a + b) * (a + c)

• (this one is tricky!)
• Associative

– (a + b) + c = a + (b + c)
– (a * b) * c = a * (b * c)

• Identity
– 0 + a = a + 0 = a
– 1 * a = a * 1 = a

• Complement
– a + a’ = 1
– a * a’ = 0

• To prove, just evaluate all possibilities

• Show abc’ equivalent to c’ba.
– Use commutative property:

• a*b*c’ = a*c’*b = c’*a*b = c’*b*a =
c’ba.

• Show abc + abc’ = ab.
– Use first distributive property

• abc + abc’ = ab(c+c’).
– Complement property

• Replace c+c’ by 1: ab(c+c’) = ab(1).
– Identity property

• ab(1) = ab*1 = ab.
• Show x + x’z equivalent to x + z.

– Second distributive property
• Replace x+x’z by (x+x’)*(x+z).

– Complement property
• Replace (x+x’) by 1,

– Identity property
• replace 1*(x+z) by x+z.

Example uses of the properties

Digital Design
Copyright © 2006
Frank Vahid

23

Example that Applies Boolean Algebra Properties
• Want automatic door opener

circuit (e.g., for grocery store)
– Output: f=1 opens door
– Inputs:

• p=1: person detected
• h=1: switch forcing hold open
• c=1: key forcing closed

– Want open door when
• h=1 and c=0, or
• h=0 and p=1 and c=0

– Equation: f = hc’ + h’pc’

• Found inexpensive chip that
computes:

• f = c’hp + c’hp’ + c’h’p
– Can we use it?

• Is it the same as f = c’(p+h)?

• Use Boolean algebra:

f = c’hp + c’hp’ + c’h’p

f = c’h(p + p’) + c’h’p (by the distributive property)

f = c’h(1) + c’h’p (by the complement property)

f = c’h + c’h’p (by the identity property)

f = hc’ + h’pc’ (by the commutative property)

Same!

f
h

c
p

DoorOpener

Digital Design
Copyright © 2006
Frank Vahid

24

Boolean Algebra: Additional Properties
• Null elements

– a + 1 = 1
– a * 0 = 0

• Idempotent Law
– a + a = a
– a * a = a

• Involution Law
– (a’)’ = a

• DeMorgan’s Law
– (a + b)’ = a’b’
– (ab)’ = a’ + b’
– Very useful!

• To prove, just
evaluate all
possibilities

Circuit
a

b

c

S

• Behavior
• Three lavatories, each with

sensor (a, b, c), equals 1 if
door locked

• Light “Available” sign (S) if
any lavatory available

• Equation and circuit
• S = a’ + b’ + c’

• Transform
• (abc)’ = a’+b’+c’ (by

DeMorgan’s Law)
• S = (abc)’

• New equation and circuit

Circuit
S a

b
c

• Alternative: Instead of
lighting “Available,”
light “Occupied”

– Opposite of
“Available” function S
= a’ + b’ + c’

– So S’ = (a’ + b’ + c’)’
• S’ = (a’)’ * (b’)’ * (c’)’

(by DeMorgan’s
Law)

• S’ = a * b * c (by
Involution Law)

– Makes intuitive sense
• Occupied if all doors

are locked

Aircraft lavatory sign example

Digital Design
Copyright © 2006
Frank Vahid

25

Representations of Boolean Functions

• A function can be represented in different ways
– Above shows seven representations of the same functions F(a,b), using

four different methods: English, Equation, Circuit, and Truth Table

2.6

a

a

b

F

F

Circuit 1

Circuit 2

(c)

(d)

English 1: F outputs 1 when a is 0 and b is 0, or when a is 0 and b is 1.
English 2: F outputs 1 when a is 0, regardless of b’s value

(a)

(b)

a
0
0
1
1

b
0
1
0
1

F
1
1
0
0

T he function F

Truth table

Equation 2: F(a,b) = a’
Equation 1: F(a,b) = a’b’ + a’b

Digital Design
Copyright © 2006
Frank Vahid

26

Truth Table Representation of Boolean Functions
• Define value of F for

each possible
combination of input
values
– 2-input function: 4 rows
– 3-input function: 8 rows
– 4-input function: 16 rows

• Q: Use truth table to
define function F(a,b,c)
that is 1 when abc is 5 or
greater in binary

c
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

d
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

a
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

b
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

F c
0
1
0
1
0
1
0
1

a
0
0
0
0
1
1
1
1

b
0
0
1
1
0
0
1
1

F a
0
0
1
1

b
0
1
0
1

F

(a)

(b)

(c)

c
0
1
0
1
0
1
0
1

a
0
0
0
0
1
1
1
1

b
0
0
1
1
0
0
1
1

F
0
0
0
0
0

1
1

1

Digital Design
Copyright © 2006
Frank Vahid

27

a
0
0
1
1

b
0
1
0
1

F

Inputs Output
a ' b ' a ' b

Converting among Representations
• Can convert from any representation

to any other
• Common conversions

– Equation to circuit (we did this earlier)
– Truth table to equation (which we can

convert to circuit)
• Easy -- just OR each input term that

should output 1
– Equation to truth table

• Easy -- just evaluate equation for each
input combination (row)

• Creating intermediate columns helps

a
0
0
1
1

b
0
1
0
1

F
1
1
0
0

Inputs Outputs

F = sum of
a’b’
a’b

Term

F = a’b’ + a’b

c
0
1
0
1
0
1
0
1

a
0
0
0
0
1
1
1
1

b
0
0
1
1
0
0
1
1

F
0
0
0
0
0

1
1

1

Q: Convert to equation

F = ab’c + abc’ + abc

ab’c
abc’
abc 1

1
0
0

1
0
0
0

0
1
0
0

a

Q: Convert to truth table: F = a’b’ + a’b

Digital Design
Copyright © 2006
Frank Vahid

28

Standard Representation: Truth Table
• How can we determine if two

functions are the same?
– Recall automatic door example

• Same as f = hc’ + h’pc’?
• Used algebraic methods
• But if we failed, does that prove

not equal? No.

• Solution: Convert to truth tables
– Only ONE truth table

representation of a given
function

• Standard representation -- for
given function, only one version
in standard form exists

f = c’hp + c’hp’ + c’h’

f = c’h(p + p’) + c’h’p

f = c’h(1) + c’h’p

f = c’h + c’h’p

(what if we stopped here?)

f = hc’ + h’pc’

a
0
0
1
1

b
0
1
0
1

F
1
1
0
1

F = ab + a '

a
0
0
1
1

b
0
1
0
1

F
1
1
0
1

F = a’b’ +
a’b + ab

Q: Determine if F=ab+a’ is same
function as F=a’b’+a’b+ab, by converting
each to truth table first

Digital Design
Copyright © 2006
Frank Vahid

29

Canonical Form -- Sum of Minterms
• Truth tables too big for numerous inputs
• Use standard form of equation instead

– Known as canonical form
– Regular algebra: group terms of polynomial by power

• ax2 + bx + c (3x2 + 4x + 2x2 + 3 + 1 --> 5x2 + 4x + 4)
– Boolean algebra: create sum of minterms

• Minterm: product term with every function literal appearing exactly
once, in true or complemented form

• Just multiply-out equation until sum of product terms
• Then expand each term until all terms are minterms

Q: Determine if F(a,b)=ab+a’ is same function as F(a,b)=a’b’+a’b+ab, by
converting first equation to canonical form (second already in canonical
form)

F = ab+a’ (already sum of products)
F = ab + a’(b+b’) (expanding term)
F = ab + a’b + a’b’ (SAME -- same three terms as other equation)

Digital Design
Copyright © 2006
Frank Vahid

30

Multiple-Output Circuits
• Many circuits have more than one output
• Can give each a separate circuit, or can share gates
• Ex: F = ab + c’, G = ab + bc

a
b

c

F

G

(a)

a
b

c

F

G

(b)

Option 1: Separate circuits Option 2: Shared gates

Digital Design
Copyright © 2006
Frank Vahid

31

Multiple-Output Example:
BCD to 7-Segment Converter

a = w’x’y’z’ + w’x’yz’ + w’x’yz + w’xy’z +
w’xyz’ + w’xyz + wx’y’z’ + wx’y’z

abcdefg = 1111110 0110000 1101101

a
f
b

d

g
e
c

(b)(a)

b = w’x’y’z’ + w’x’y’z + w’x’yz’ + w’x’yz +
w’xy’z’ + w’xyz + wx’y’z’ + wx’y’z

Digital Design
Copyright © 2006
Frank Vahid

32

Combinational Logic Design Process
Step Description

Step 1 Capture the
function

Create a truth table or equations, whichever is
most natural for the given problem, to describe
the desired behavior of the combinational logic.

Step 2 Convert to
equations

This step is only necessary if you captured the
function using a truth table instead of equations.
Create an equation for each output by ORing all the
minterms for that output. Simplify the equations if
desired.

Step 3 Implement
as a gate-
based
circuit

For each output, create a circuit corresponding
to the output’s equation. (Sharing gates among
multiple outputs is OK optionally.)

2.7

Digital Design
Copyright © 2006
Frank Vahid

33

Example: Three 1s Detector
• Problem: Detect three consecutive 1s

in 8-bit input: abcdefgh
• 00011101 1 10101011 0

11110000 1
– Step 1: Capture the function

• Truth table or equation?
– Truth table too big: 2^8=256 rows
– Equation: create terms for each

possible case of three consecutive 1s
• y = abc + bcd + cde + def + efg + fgh

– Step 2: Convert to equation -- already
done

– Step 3: Implement as a gate-based
circuit

bcd

def

fgh

abc

cde

efg

y

a
b
c

d

e

f

g

h

Digital Design
Copyright © 2006
Frank Vahid

34

Example: Number of 1s Count
• Problem: Output in binary on

two outputs yz the number of 1s
on three inputs

• 010 01 101 10 000 00
– Step 1: Capture the function

• Truth table or equation?
– Truth table is straightforward

– Step 2: Convert to equation
• y = a’bc + ab’c + abc’ + abc
• z = a’b’c + a’bc’ + ab’c’ + abc

– Step 3: Implement as a gate-
based circuit

a
b
c

a
b
c

a
b
c

a
b
c

z

a
b
c

a
b
c

a
b

y

Digital Design
Copyright © 2006
Frank Vahid

35

More Gates

• NAND: Opposite of AND (“NOT AND”)
• NOR: Opposite of OR (“NOT OR”)
• XOR: Exactly 1 input is 1, for 2-input

XOR. (For more inputs -- odd number
of 1s)

• XNOR: Opposite of XOR (“NOT XOR”)

2.8

x
0
0
1
1

y
0
1
0
1

F
1
0
0
1

x
0
0
1
1

y
0
1
0
1

F
0
1
1
0

x
0
0
1
1

y
0
1
0
1

F
1
0
0
0

x
0
0
1
1

y
0
1
0
1

F
1
1
1
0

x
y

x
y F F

NOR NAND XOR XNOR
1

0

x y

F
x

y

1

0

x

x

y

y

F

NAND NOR

• NAND same as AND with power &
ground switched

• Why? nMOS conducts 0s well, but not
1s (reasons beyond our scope) -- so
NAND more efficient

• Likewise, NOR same as OR with
power/ground switched

• AND in CMOS: NAND with NOT
• OR in CMOS: NOR with NOT
• So NAND/NOR more common

Digital Design
Copyright © 2006
Frank Vahid

36

More Gates: Example Uses

• Aircraft lavatory sign
example
– S = (abc)’

• Detecting all 0s
– Use NOR

• Detecting equality
– Use XNOR

• Detecting odd # of 1s
– Use XOR
– Useful for generating “parity”

bit common for detecting
errors

S

Circuit

a
b
c

0
0
0

1 a0
b0

a1
b1

a2
b2

A=B

Digital Design
Copyright © 2006
Frank Vahid

37

Completeness of NAND
• Any Boolean function can be implemented using just NAND

gates. Why?
– Need AND, OR, and NOT
– NOT: 1-input NAND (or 2-input NAND with inputs tied together)
– AND: NAND followed by NOT
– OR: NAND preceded by NOTs

• Likewise for NOR

Digital Design
Copyright © 2006
Frank Vahid

38

Number of Possible Boolean Functions
• How many possible functions of 2

variables?
– 22 rows in truth table, 2 choices for each
– 2(22) = 24 = 16 possible functions

• N variables
– 2N rows
– 2(2N) possible functions

a
0
0
1
1

b
0
1
0
1

0 or 1 2 choices
0 or 1 2 choices
0 or 1 2 choices
0 or 1 2 choices

F

24 = 16
possible functions

f0
0
0
0
0

b
0
1
0
1

a
0
0
1
1

f1
0
0
0
1

f2
0
0
1
0

f3
0
0
1
1

f4
0
1
0
0

f5
0
1
0
1

f6
0
1
1
0

f7
0
1
1
1

f8
1
0
0
0

f9
1
0
0
1

f10
1
0
1
0

f11
1
0
1
1

f12
1
1
0
0

f13
1
1
0
1

f14
1
1
1
0

f15
1
1
1
1

0

a
A

N
D

 b
 a b

a
X

O
R

 b

a
O

R
 b

a
N

O
R

 b

a
X

N
O

R
 b

b’

a’

a
N

A
N

D
 b

 1

Digital Design
Copyright © 2006
Frank Vahid

39

Decoders and Muxes
• Decoder: Popular combinational

logic building block, in addition to
logic gates
– Converts input binary number to

one high output
• 2-input decoder: four possible

input binary numbers
– So has four outputs, one for each

possible input binary number
• Internal design

– AND gate for each output to
detect input combination

• Decoder with enable e
– Outputs all 0 if e=0
– Regular behavior if e=1

• n-input decoder: 2n outputs

2.9

i0
i1

d0
d1

d2
d3 1

1
1

0
0
0

i0
i1

d0
d1

d2
d3 0

0
0

0
0
1

i0
i1

d0
d1

d2
d3

i0
i1

d0
d1

d2
d3 0

0
1

0
1
0

0
1
0

1
0
0

i0

d0

d1

d2

d3

i1

i0
i1

d0
d1
d2
d3 e 1

1

1
1

0
0
0

e

i0
i1

d0
d1
d2
d3 0

1
1

0
0
0

0

i1’i0’

i1’i0

i1i0’

i1i0

Digital Design
Copyright © 2006
Frank Vahid

40

Decoder Example
• New Year’s Eve

Countdown Display
– Microprocessor counts

from 59 down to 0 in
binary on 6-bit output

– Want illuminate one of 60
lights for each binary
number

– Use 6x64 decoder
• 4 outputs unused

d0
d1
d2
d3

i0
i1
i2
i3
i4
i5

e

6x64
dcd

d58
d59
d60
d61
d62
d63

M
icroprocessor

0 Happy
New Year

1
2
3

58
59

0
1
0
0

0

0
0
1
0

0
0

2 2 1
1
0
0
0
0
0

0
1
0
0

0
0

1
0
0
0
0
0
0

1
0
0
0

0
0

0 0

Digital Design
Copyright © 2006
Frank Vahid

41

Multiplexor (Mux)
• Mux: Another popular combinational building block

– Routes one of its N data inputs to its one output, based on binary
value of select inputs

• 4 input mux needs 2 select inputs to indicate which input to route
through

• 8 input mux 3 select inputs
• N inputs log2(N) selects

– Like a railyard switch

Digital Design
Copyright © 2006
Frank Vahid

42

Mux Internal Design

s0

d
i0

i1

2 × 1

i1
i0

s0
1

d

2 × 1

i1
i0

s0
0

d

2 × 1

i1
i0

s0

d

0

i0 (1*i0=i0)

i0
(0+i0=i0)

1

0

2x1 mux

i0
4 ⋅ 1

i2
i1

i3
s1 s0

d

s0

d

i0

i1

i2

i3

s1

4x1 mux

0

Digital Design
Copyright © 2006
Frank Vahid

43

Mux Example
• City mayor can set four switches up or down, representing

his/her vote on each of four proposals, numbered 0, 1, 2, 3
• City manager can display any such vote on large green/red

LED (light) by setting two switches to represent binary 0, 1,
2, or 3

• Use 4x1 mux

i0
4x1

i2

i1

i3

s1 s0

d

1

2

3

4

Mayor’s switches

P r

manager's
switches

Green/
Red
LED

on/off

Digital Design
Copyright © 2006
Frank Vahid

44

Muxes Commonly Together -- N-bit Mux

• Ex: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
– 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select

between A or B

i0

s0 i1

2 ⋅ 1
d

i0

s0 i1

2 ⋅ 1
d

i0

s0 i1

2 ⋅ 1
d

i0

s0 i1

2 ⋅ 1
d

a3
b3

I 0

s0

s0

I 1

4-bit
2x1

D C
A

B

a2
b2

a1
b1

a0
b0

s0

4
C

4
4

4

c3

c2

c1

c0

is short
f or

Simplifying
notation:

Digital Design
Copyright © 2006
Frank Vahid

45

N-bit Mux Example

• Four possible display items
– Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and

Miles remaining (M) -- each is 8-bits wide
– Choose which to display using two inputs x and y
– Use 8-bit 4x1 mux

Digital Design
Copyright © 2006
Frank Vahid

46

Additional Considerations
Schematic Capture and Simulation

• Schematic capture
– Computer tool for user to capture logic circuit graphically

• Simulator
– Computer tool to show what circuit outputs would be for given inputs

• Outputs commonly displayed as waveform

2.10

Simulate Simulate

d3

d2

d1

d0

i0

i1
Outputs

Inputs

d3

d2

d1

d0

i0

i1
Outputs

Inputs

Digital Design
Copyright © 2006
Frank Vahid

47

Additional Considerations
Non-Ideal Gate Behavior -- Delay

• Real gates have some delay
– Outputs don’t change immediately after inputs change

Digital Design
Copyright © 2006
Frank Vahid

48

Chapter Summary
• Combinational circuits

– Circuit whose outputs are function of present inputs
• No “state”

• Switches: Basic component in digital circuits
• Boolean logic gates: AND, OR, NOT -- Better building block than

switches
– Enables use of Boolean algebra to design circuits

• Boolean algebra: uses true/false variables/operators
• Representations of Boolean functions: Can translate among
• Combinational design process: Translate from equation (or table) to

circuit through well-defined steps
• More gates: NAND, NOR, XOR, XNOR also useful
• Muxes and decoders: Additional useful combinational building blocks

	Digital Design
	Introduction
	Switches
	Switches
	Moore’s Law
	The CMOS Transistor
	Boolean Logic Gates�Building Blocks for Digital Circuits �(Because Switches are Hard to Work With)
	Boolean Algebra and its Relation to Digital Circuits
	Boolean Algebra and its Relation to Digital Circuits
	Evaluating Boolean Equations
	Converting to Boolean Equations
	Converting to Boolean Equations
	Relating Boolean Algebra to Digital Design
	NOT/OR/AND Logic Gate Timing Diagrams
	Building Circuits Using Gates
	Example: Converting a Boolean Equation to a Circuit of Logic Gates
	Example: Seat Belt Warning Light System
	Some Circuit Drawing Conventions
	Boolean Algebra
	Boolean Algebra Operator Precendence
	Boolean Algebra Terminology
	Boolean Algebra Properties
	Example that Applies Boolean Algebra Properties
	Boolean Algebra: Additional Properties
	Representations of Boolean Functions
	Truth Table Representation of Boolean Functions
	Converting among Representations
	Standard Representation: Truth Table
	Canonical Form -- Sum of Minterms
	Multiple-Output Circuits
	Multiple-Output Example: �BCD to 7-Segment Converter
	Combinational Logic Design Process
	Example: Three 1s Detector
	Example: Number of 1s Count
	More Gates
	More Gates: Example Uses
	Completeness of NAND
	Number of Possible Boolean Functions
	Decoders and Muxes
	Decoder Example
	Multiplexor (Mux)
	Mux Internal Design
	Mux Example
	Muxes Commonly Together -- N-bit Mux
	N-bit Mux Example
	Additional Considerations�Schematic Capture and Simulation
	Additional Considerations�Non-Ideal Gate Behavior -- Delay
	Chapter Summary

