
Digital Design
Copyright © 2006
Frank Vahid

1

Digital Design
Chapter 8:

Programmable Processors

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

http://www.ddvahid.com/

Digital Design
Copyright © 2006
Frank Vahid

2

Introduction
• Programmable (general-purpose) processor

– Mass-produced, then programmed to implement different processing tasks
• Well-known common programmable processors: Pentium, Sparc, PowerPC
• Lesser-known but still common: ARM, MIPS, 8051, PIC

– Low-cost embedded processors found in cell phones, blinking shoes, etc.
– Instructive to design a very simple programmable processor

• Real processors can be much more complex

8.1

si

Seatbelt warning
light single-purpose

processor

2x 4

e
2
3
1
0

c0 c1 c2 x t1

r eg

x t0 x t2

+ +

∗ ∗ ∗

x(t) x(t -1) x(t -2)

I nstru c tion
memo r y I

C o n t r oller

PC I R
0

R e g is t er file
RF

D a ta memo r y D

A L U

n-bit
2x 1

Seatbelt
warning light

program

3-tap FIR filter
program

O ther
p r o g r ams

g
t o c o n t r
a tap a

3-tap FIR filter
single-purpose processor

General-purpose processor

a

Control unit Datapat
h

Note: Slides with animation are denoted with a small red "a" near the animated items

Digital Design
Copyright © 2006
Frank Vahid

3

Basic Architecture
• Processing generally consists of:

– Loading some data
– Transforming that data
– Storing that data

• Basic datapath: Useful circuit in a
programmable processor
– Can read/write data memory, where main

data exists
– Has register file to hold data locally
– Has ALU to transform local data

8.2

si

g
t o c o n t r
a tap a

R e g is t er file RF

D a ta memo r y D

A L U

n-bit
2x 1

someh o w
c onne c t ed

t o the
outside
w o r ld

Datapath

Digital Design
Copyright © 2006
Frank Vahid

4

Basic Datapath Operations
• Load operation: Load data from data memory to RF
• ALU operation: Transforms data by passing one or two RF register values through

ALU, performing operation (ADD, SUB, AND, OR, etc.), and writing back into RF.
• Store operation: Stores RF register value back into data memory
• Each operation can be done in one clock cycle

Register file RF

Data memory D

ALU

n-bit
2x 1

Register file RF

Data memory D

ALU

n-bit
2x 1

Register file RF

Data memory D

ALU

n-bit
2x 1

Load operation ALU operation Store operation

a

Digital Design
Copyright © 2006
Frank Vahid

5

Basic Datapath Operations
• Q: Which are valid single-cycle operations for given datapath?

– Move D[1] to RF[1] (i.e., RF[1] = D[1])
• A: YES – That's a load operation

– Store RF[1] to D[9] and store RF[2] to D[10]
• A: NO – Requires two separate store operations

– Add D[0] plus D[1], store result in D[9]
• A: NO – ALU operation (ADD) only works with RF. Requires two load operations

(e.g., RF[0]=D[0]; RF[1]=D[1], an ALU operation (e.g., RF[2]=RF[0]+RF[1]), and
a store operation (e.g., D[9]=RF[2])

Register file RF

Data memory D

ALU

n-bit
2x 1

Register file RF

Data memory D

ALU

n-bit
2x 1

Register file RF

Data memory D

ALU

n-bit
2x 1

Load operation ALU operation Store operation

a

Digital Design
Copyright © 2006
Frank Vahid

6

Basic Architecture – Control Unit
• D[9] = D[0] + D[1] – requires a

sequence of four datapath operations:
0: RF[0] = D[0]
1: RF[1] = D[1]
2: RF[2] = RF[0] + RF[1]
3: D[9] = RF[2]

• Each operation is an instruction
– Sequence of instructions – program
– Looks cumbersome, but that's the world

of programmable processors –
Decomposing desired computations into
processor-supported operations

– Store program in Instruction memory
– Control unit reads each instruction and

executes it on the datapath
• PC: Program counter – address of

current instruction
• IR: Instruction register – current

instruction

signals to control th

Register file RF

Data memory D

ALU

n-bit
2 x 1

Datapath

Instruction memory I

Control unit

Controller

PC IR

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

a

Digital Design
Copyright © 2006
Frank Vahid

7

Basic Architecture – Control Unit
• To carry out each instruction, the control unit must:

– Fetch – Read instruction from inst. mem.
– Decode – Determine the operation and operands of the instruction
– Execute – Carry out the instruction's operation using the datapath

signals to control th
a

signals to control th
signals to control the datapath

signals to control the datapath

RF[0]=D[0] 0 −> 1

R[0]: ?? 99

"load"

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

(a)

Fetch

RF[0]=D[0]

Instruction memory I

Control unit

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

1

(b)

Controller

Decode

Register file RF

Data memory D
D[0]: 99

ALU

n-bit
2 x 1

Datapath

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

RF[0]=D[0] 1

(c) Execute

Digital Design
Copyright © 2006
Frank Vahid

8

Basic Architecture – Control Unit
• To carry out each instruction, the control unit must:

– Fetch – Read instruction from inst. mem.
– Decode – Determine the operation and operands of the instruction
– Execute – Carry out the instruction's operation using the datapath

signals to control th
a

signals to control th
signals to control the datapath

signals to control the datapath

RF[1]=D[1} 1 −> 2

R[1]: ?? 102

"load"

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

(a)

Fetch

RF[1]=D[1]

Instruction memory I

Control unit

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

2

(b)

Controller

Decode

Register file RF

Data memory D
D[1]: 102

ALU

n-bit
2 x 1

Datapath

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

RF[1]=D[1] 2

(c) Execute

Digital Design
Copyright © 2006
Frank Vahid

9

Basic Architecture – Control Unit
• To carry out each instruction, the control unit must:

– Fetch – Read instruction from inst. mem.
– Decode – Determine the operation and operands of the instruction
– Execute – Carry out the instruction's operation using the datapath

signals to control th
a

signals to control th
signals to control the datapath

signals to control the datapath

RF[2]=RF[0]+RF[1] 2 −> 3

R[2]: ?? 201

"ALU (add)"

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

(a)

Fetch

RF[2]=RF[0]+RF[1]

Instruction memory I

Control unit

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

3

(b)

Controller

Decode

Register file RF

Data memory D

ALU

n-bit
2 x 1

Datapath

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

RF[2]=RF[0]+RF[1] 3

(c) Execute

99 102
201

Digital Design
Copyright © 2006
Frank Vahid

10

Basic Architecture – Control Unit
• To carry out each instruction, the control unit must:

– Fetch – Read instruction from inst. mem.
– Decode – Determine the operation and operands of the instruction
– Execute – Carry out the instruction's operation using the datapath

signals to control th
a

signals to control th
signals to control the datapath

signals to control the datapath

D[9]=RF[2] 3 −> 4

R[2]: 201

"store"

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

(a)

Fetch

D[9]=RF[2]

Instruction memory I

Control unit

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

4

(b)

Controller

Decode

Register file RF

Data memory D

ALU

n-bit
2 x 1

Datapath

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

D[9]=RF[2] 4

(c) Execute

D[9]=?? 201

Digital Design
Copyright © 2006
Frank Vahid

11

Basic Architecture – Control Unit

signals to control th

signals to control th
signals to control the datapath

signals to control the datapath

Fetch

Decode

Init

PC=0

Execute

IR=I[PC]
PC=PC+1

Controller

Register file RF

Data memory D

ALU

n-bit
2 x 1

Datapath

Instruction memory I

Control unit

Controller

PC IR

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

Digital Design
Copyright © 2006
Frank Vahid

12

Creating a Sequence of Instructions
• Q: Create sequence of instructions to compute D[3] = D[0]+D[1]+D[2]

on earlier-introduced processor
• A1: One possible sequence

• First load data memory
locations into register file
• R[3] = D[0]
• R[4] = D[1]
• R[2] = D[2]
(Note arbitrary register locations)

 • Next, perform the additions
• R[1] = R[3] + R[4]
• R[1] = R[1] + R[2]

• Finally, store result
• D[3] = R[1]

a

• A2: Alternative sequence
• First load D[0] and D[1] and

add them
• R[1] = D[0]
• R[2] = D[1]
• R[1] = R[1] + R[2]

 • Next, load D[2] and add
• R[2] = D[2]
• R[1] = R[1] + R[2]

a

• Finally, store result
• D[3] = R[1]

Digital Design
Copyright © 2006
Frank Vahid

13

Number of Cycles
• Q: How many cycles are needed to execute six instructions using the

earlier-described processor?

• A: Each instruction requires 3
cycles – 1 to fetch, 1 to decode,
and 1 to execute
• Thus, 6 instr * 3 cycles/instr =

18 cycles

a

Digital Design
Copyright © 2006
Frank Vahid

14

Three-Instruction Programmable Processor
• Instruction Set – List of allowable instructions and their

representation in memory, e.g.,
– Load instruction—0000 r3r2r1r0 d7d6d5d4d3d2d1d0

– Store instruction—0001 r3r2r1r0 d7d6d5d4d3d2d1d0

– Add instruction—0010 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0

8.3

Instruction memory I

0: 0000 0000 00000000
1: 0000 0001 00000001
2: 0010 0010 0000 0001
3: 0001 0010 00001001

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2}

Desired program

a

opcode operands

Instructions in 0s and 1s –
machine code

a

Digital Design
Copyright © 2006
Frank Vahid

15

Program for Three-Instruction Processor

Register file RF

Data memory D

ALU

n-bit
2 ⋅ 1

Datapath

Instruction memory I

Control unit

Controller

PC I R

signals to control the

0: 0000 0000 00000000
1: 0000 0001 00000001
2: 0010 0010 0000 0001
3: 0001 0010 00001001

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2}

Desired program

Computes
D[9] = D[0] + D[1]

Digital Design
Copyright © 2006
Frank Vahid

16

Program for Three-Instruction Processor
• Another example program in machine code

– Compute D[5] = D[5] + D[6] + D[7]

signals to control the

0: 0000 0000 00000101 // RF[0] = D[5]
1: 0000 0001 00000110 // RF[1] = D[6]
2: 0000 0010 00000111 // RF[2] = D[7]
3: 0010 0000 0000 0001 // RF[0] = RF[0] + RF[1]
 // which is D[5]+D[6]
4: 0010 0000 0000 0010 // RF[0] = RF[0] + RF[2]
 // now D[5]+D[6]+D[7]
5: 0001 0000 00000101 // D[5] = RF[0]

–Load instruction—0000 r3r2r1r0 d7d6d5d4d3d2d1d0

–Store instruction—0001 r3r2r1r0 d7d6d5d4d3d2d1d0

–Add instruction—0010 ra3ra2ra1ra0 rb3rb2rb1rb0
rc3rc2rc1rc0

Digital Design
Copyright © 2006
Frank Vahid

17

Assembly Code
• Machine code (0s and 1s) hard to work with
• Assembly code – Uses mnemonics

– Load instruction—MOV Ra, d
• specifies the operation RF[a]=D[d]. a must be 0,1, ..., or 15—so R0

means RF[0], R1 means RF[1], etc. d must be 0, 1, ..., 255
– • Store instruction—MOV d, Ra

• specifies the operation D[d]=RF[a]
– • Add instruction—ADD Ra, Rb, Rc

• specifies the operation RF[a]=RF[b]+RF[c]
 0: MOV R0, 0

1: MOV R1, 1
2: ADD R2, R0, R1
3: MOV 9, R2

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

Desired program 0: 0000 0000 00000000
1: 0000 0001 00000001
2: 0010 0010 0000 0001
3: 0001 0010 00001001

machine code assembly code

Digital Design
Copyright © 2006
Frank Vahid

18

Control-Unit and Datapath for Three-Instruction
Processor

• To design the processor, we can begin with a high-level state machine
description of the processor's behavior

Fetch

Decode

Init

PC=0

Store

IR=I[PC]
PC=PC+1

Load Add

RF[ra] =
 RF[rb]+
 RF[rc]

D[d]=RF[ra] RF[ra]=D[d]

op=0000 op=0001 op=0010

Digital Design
Copyright © 2006
Frank Vahid

19

Control-Unit and Datapath for Three-Instruction
Processor

• Create detailed connections among components

Fetch

Decode

Init

PC=0

Store

IR=I[PC]
PC=PC+1

Load Add

RF[ra] =
 RF[rb]+
 RF[rc]

D[d]=RF[ra] RF[ra]=D[d]

op=0000 op=0001 op=0010

PC
clr up

16

PC_clr I _rd PC_inc

I R
Id

16

16

I R_ld

I data rd addr

Controller

Control unit Datapath

RF_W_wr
RF_Rp_addr

RF_Rq_addr
RF_Rq_rd

RF_Rp_rd

RF_W_addr

D_addr 8

D_rd
D_wr

RF_s

alu_s0

addr D
rd
wr

256 x 16

16 x 16
RF

16-bit
2 x 1

W_data R_data

Rp_data Rq_data

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr
Rq_rd

0

16

16

16

16 16

16

s
1

A B s0 ALU

4

4

4

Digital Design
Copyright © 2006
Frank Vahid

20

Control-Unit and Datapath for Three-Instruction
Processor

• Convert high-level state machine
description of entire processor to FSM
description of controller that uses
datapath and other components to
achieve same behavior

Fetch

Decode

Init

PC=0

Store

IR=I[PC]
PC=PC+1

Load Add

RF[ra] =
 RF[rb]+
 RF[rc]

D[d]=RF[ra]RF[ra]=D[d]

op=0000 op=0001 op=0010

PC_clr I _rd PC_inc I R_ld

PC
clr up

16
I R

Id

16

16

I data rd addr

Controller

Control unit Datapath

RF_W_wr
RF_Rp_addr

RF_Rq_addr
RF_Rq_rd

RF_Rp_rd

RF_W_addr

D_addr 8
D_rd
D_wr

RF_s

alu_s0

addr D
rd
wr

256 x 16

16 x 16
RF

16-bit
2 x 1

W_data R_data

Rp_data Rq_data

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr
Rq_rd

0

16

16

16

16 16

16

s
1

A B s0 ALU

4

4

4

Fetch

Decode

Init

PC=0
PC_ clr=1

Store

I R= I [PC] PC=PC+1
I _rd=1 PC_inc=1
I R_ld=1

Load Add

Execute states RF[ra] = RF[rb]+
 RF[rc]

D[d]=RF[ra] RF[ra]=D[d]

op=0000 op=0001 op=0010

D_addr=d
D_wr=1
RF_s=X
RF_Rp_addr=ra
RF_Rp_rd=1

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s=0
RF_Rq_addr=rc
RF_Rq _rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s0=1

D_addr=d
D_rd=1
RF_s=1
RF_W_addr=ra
RF_W_wr=1

a

Digital Design
Copyright © 2006
Frank Vahid

21

A Six-Instruction Programmable Processor
• Let's add three more instructions:

– Load-constant instruction—0011 r3r2r1r0 c7c6c5c4c3c2c1c0
• MOV Ra, #c—specifies the operation RF[a]=c

– Subtract instruction—0100 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0
• SUB Ra, Rb, Rc—specifies the operation RF[a]=RF[b] – RF[c]

– Jump-if-zero instruction—0101 ra3ra2ra1ra0 o7o6o5o4o3o2o1o0
• JMPZ Ra, offset—specifies the operation PC = PC + offset if RF[a] is 0

8.4

Digital Design
Copyright © 2006
Frank Vahid

22

Extending the Control-Unit and Datapath

PC_clr PC_ld PC_inc IR_ld

I _rd

1: The load constant instruction requires
that the register file be able to load data
from IR[7..0], in addition to data from data
memory or the ALU output. Thus, we widen
the register file’s multiplexer from 2x1 to
3x1, add another mux control signal, and
also create a new signal coming from the
controller labeled RF_W_data, which will
connect with IR[7..0].

2: The subtract instruction requires that we
use an ALU capable of subtraction, so we
add another ALU control signal.

3: The jump-if-zero instruction requires that
we be able to detect if a register is zero,
and that we be able to add IR[7..0] to the
PC.
 3a: We insert a datapath component to
detect if the register file’s Rp read port is all
zeros (that component would just be a
NOR gate).
 3b: We also upgrade the PC register so it
can be loaded with PC plus IR[7..0]. The
adder used for this also subtracts 1 from
the sum, to compensate for the fact that the
Fetch state already added 1 to the PC.

Datapath

RF_Rp_addr

RF_Rq_addr

RF_Rp_zero

RF_W_addr

D_addr
D_rd
D_wr

RF_s1

RF_W_data

RF_s0

alu_s1
alu_s0

addr D
rd
wr

256 x 16

16 x 16
RF

16-bit
3 x 1

W_data R_data

Rp_data Rq_data

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr
Rq_rd

0

16

16

16

16 16

16

s1
s0

1 2

A B s1
s0 ALU

4

4

4

3a

2

=0

1

1
8

8

s1
0
0
1

s0
0
1
0

ALU operation
pass A through
A+B
A-B

PC
clr ld up

16
I R

Id

16
data rd addr

Controller

Control unit

a+b-1

16
∗

∗

+

3b IR[7..0]

PC
_c

lr

PC
_l

d

PC
_i

nc

IR
_l

d

Digital Design
Copyright © 2006
Frank Vahid

23

Controller FSM for the Six-Instruction Processor

Fetch

Decode

Init

PC_clr=1

Store

I _rd=1
PC_inc=1
I R_ld=1

Load Add

D_addr=d
D_wr=1
RF_s1 = X
RF_s0 = X
RF_Rp_addr=ra
RF_Rp_rd=1

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1 = 0
RF_s0 = 0
RF_Rq_add=rc
RF_Rq_rd=1
RF_W_addr_ra
RF_W_wr=1
alu_s1 = 0
alu_s0 = 1

D_addr=d
D_rd=1
RF_s1 = 0
R F _ s0 = 1
RF_W_addr=ra
RF_W_wr=1

Subtract Load-
constant Jump-if-zero

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_addr=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=1
alu_s0=0

RF_Rp_addr=ra
RF_Rp_rd=1

RF_s1=1
RF_s0=0
RF_W_addr=ra
RF_W_wr=1

Jump-if-
zero-jmp

PC_ld=1

RF_Rp_zero

RF_Rp_

?

op=0100 op=0101 op=0010 op=0011 op=0001 op=0000

R
F_

R
p_

ze
ro

R
F_

R
p_

ze
ro

'

Digital Design
Copyright © 2006
Frank Vahid

24

Program for the Six-Instruction Processor
• Example program – Count number of non-zero words in D[4] and D[5]

– Result will be either 0, 1, or 2
– Put result in D[9]

PC_clr PC_ld PC_inc IR_ld

I _rd

0011 0000 00000000
0011 0001 00000001
0000 0010 00000100
0101 0010 00000010
0010 0000 0000 0001
0000 0010 00000101
0101 0010 00000010
0010 0000 0000 0001
0001 0000 00001001

 MOV R0, #0; // initialize result to 0
 MOV R1, #1; // constant 1 for incrementing result
 MOV R2, 4; // get data memory location 4
 JMPZ R2, lab1; // if zero, skip next instruction
 ADD R0, R0, R1; // not zero, so increment result
lab1:MOV R2, 5; // get data memory location 5
 JMPZ R2, lab2; // if zero, skip next instruction
 ADD R0, R0, R1; //not zero, so increment result
lab2:MOV 9, R0; // store result in data memory location 9

(a) (b)

Digital Design
Copyright © 2006
Frank Vahid

25

Further Extensions to the Programmable
Processor

• Typical processor instruction set will
contain dozens of data movement
(e.g., loads, stores), ALU (e.g., add,
sub), and flow-of-control (e.g., jump)
instructions
– Extending the control-unit/datapath follows

similarly to previously-shown extensions

• Input/output extensions
– Certain memory locations may actually be

external pins
• e.g, D[240] may represent 8-bit input I0,

D[255] may represent 8-bit output P7

8.5

256 x 16 D

W_data R_data

addr
rd
wr

0:
1:
2:

239:

240:
241:

248:

255:

00..0
00..0

I 0
I 1

P0

P7

Digital Design
Copyright © 2006
Frank Vahid

26

Program using I/O Extensions – Recall Chpt 1
C-Program Example

• Microprocessors a
common choice to
implement a digital
system

– Easy to program
– Cheap (as low as

$1)
– Available now

I 3
I 4
I 5
I 6
I 7

I 2
I 1
I 0

P3
P4
P5
P6
P7

P2
P1
P0 M r op r o c

void main()
{
 while (1) {
 P0 = I0 && !I1;
 // F = a and !b,
 }
} 0

F

b

a

1
0
1
0
1

6:00 7:05 7:06 9:00 9:01 time

Desired motion-at-night detector
Programmed

microprocessor
Custom designed

digital circuit

Digital Design
Copyright © 2006
Frank Vahid

27

Program Using Input/Output Extensions

0: MOV R0, 240 // move D[240], which is the value at pin I0, into R0
1: MOV R1, 241 // move D[241], which is that value at pin I1, into R1
2: NOT R1, R1 // compute !I1, assuming existence of a complement
instruction
3: AND R0, R0, R1 // compute I0 && !I1, assuming an AND instruction
4: MOV 248, R0 // move result to D[248], which is pin P0

256 x 16 D

W_data R_data

addr
rd
wr

0:
1:
2:

239:

240:
241:

248:

255:

00..0
00..0

I 0
I 1

P0

P7

Underlying assembly code for C expression I0 && !I1.

void main()
{
 while (1) {
 P0 = I0 && !I1;
 // F = a and !b,
 }
}

Digital Design
Copyright © 2006
Frank Vahid

28

Chapter Summary
• Programmable processors are widely used

– Easy availability, short design time
• Basic architecture

– Datapath with register file and ALU
– Control unit with PC, IR, and controller
– Memories for instructions and data
– Control unit fetches, decodes, and executes

• Three-instruction processor with machine-level programs
– Extended to six instructions
– Real processors have dozens or hundreds of instructions
– Extended to access external pins
– Modern processors are far more sophisticated

• Instructive to see how one general circuit (programmable processor)
can execute variety of behaviors just by programming 0s and 1s into
an instruction memory

	Digital Design
	Introduction
	Basic Architecture
	Basic Datapath Operations
	Basic Datapath Operations
	Basic Architecture – Control Unit
	Basic Architecture – Control Unit
	Basic Architecture – Control Unit
	Basic Architecture – Control Unit
	Basic Architecture – Control Unit
	Basic Architecture – Control Unit
	Creating a Sequence of Instructions
	Number of Cycles
	Three-Instruction Programmable Processor
	Program for Three-Instruction Processor
	Program for Three-Instruction Processor
	Assembly Code
	Control-Unit and Datapath for Three-Instruction Processor
	Control-Unit and Datapath for Three-Instruction Processor
	Control-Unit and Datapath for Three-Instruction Processor
	A Six-Instruction Programmable Processor
	Extending the Control-Unit and Datapath
	Controller FSM for the Six-Instruction Processor
	Program for the Six-Instruction Processor
	Further Extensions to the Programmable Processor
	Program using I/O Extensions – Recall Chpt 1 C-Program Example
	Program Using Input/Output Extensions
	Chapter Summary

