
Answer the questions in the spaces provided on the question sheets. If you run out of
room for an answer, ask for a blank paper from the supervisor. Duration of the exam: 100

minutes. Maximum number of points: 75

Name and NEPTUN code:
I certify that during the test I will not use illegal tools and I will work alone:

1 Digital Design (VIMIAA01) exam, 01/19/16

1.1 Short questions – 30 points

1. (5 points) True or false? Write the correct answer!

(a) In 5-bit two’s complement both 10000 and 00000 means zero.

(b) The AND operator only returns 0 when all of its operands are zero.

(c) Numbers represented in signed absolute value (signed magnitude) form can be correctly added
with an adder circuit.

(d) A DRAM’s capacity is usually smaller than an SRAM’s.

(e) Multiplexers are universal circuits because we use them to implement microprocessors.

(f) The bit pattern 1101 represents different numbers in binary and 4-bit two’s complement.

(g) The three states of the controller of a simple microprocessor are FETCH, DECODE, EXECUTE.

(h) 8-bit microprocessors are called “8-bit”, because it has 8 registers.

(i) The mov r0,#0 operation on the MiniRISC sets the Z flag to 1 since the result is 0.

(j) In the LOAD state the processor loads the instruction to be executed from the code memory.

2. (6 points) Do the following decimal to binary and binary to decimal conversions! Use 8-bit two’s
complement binary numbers!

Decimal number 8-bit two’s comple-
ment

8-bit two’s comple-
ment

Decimal number

-11 11001010
100 01000001
-37 11101111

3. (5 points) We have a list of functional (datapath) components and input/output signals. Which
component can have which signal? Connect them! (Signals can be connected to more than one
component.)

• Loadable register

• Multiplexer

• Decoder

• Enabelable counter

• Bidirectional shift register with only serial
load

• Clock

• Select

• Enable

• Left/Right

• Parallel data input

4. (4 points) Which functional component is implemented with the following Verilog codes?

(a) (1 point) assign q=(s)?i0:i1;

(b) (1 point) assign q=(a==b);

(c) (1 point) assign q=(a-b);

(d) (1 point) always @(posedge clk) if (ld) q<=d;

5. (5 points) We want to prove that multiplexers are universal logic circuits.

(a) (1 point) What does universality
mean in the case of a logic circuit?

(b) (1 point) To prove that a multiplexer
is universal, we only have to imple-
ment AND, OR and NOT with it.
Why is this enough?

(c) (3 points) Implement the AND, OR and NOT gates with 4:1 multiplexers! In the case of the
NOT gate, you can assume that A==B.

AND: OR: NOT:

6. (6 points) The block diagram shows a datapath of a simple microprocessor with the MiniRISC
instruction set. Mark the data signals are used and the values of the given control signals (r0=0,
r1=1) during the execution of):
(a) (3 points)

add r0, r1

(b) (3 points)
mov r1,0x12

1.2 Task 1 – 15 points

1. (7 points) We want to implement a sequential logic which has a 1-bit wide X input and {z1,z0}
outputs. The behavior of the logic is the following:

When X=1 it does the following sequence on {z1,z0}: {00},{01},{10},{11},{10},{01}, (start over
from {00}). . . .
(a) (2 points) Draw the state diagram of the logic (use Moore-model). Use as few states as possible!

(b) (1 point) From the state diagram create the state table of the logic!

(c) (1 point) Can we reduce the number of states?

(d) (1 point) How many flip-flops shall we use to implement a logic?

1. (8 points) For a different implementation with functional components and a smaller sequential logic:

(a) (2 points) Which functional component can we use to implement this logic? Besides the enable
(which is connected to x) which input signal should it have?
To change the direction (0 means DOWN, 1 means UP) of that component, we are going to use
a sequential logic. The state (DIR) of the logic will tell the component to count up or down.
The behavior of the logic is the following:

• If we count UP and the input of the logic is {z1,z0}={11}, we go to the DOWN state.

• If we count DOWN and the input of the logic is {z1,z0}={00}, we go back to the UP state.

(b) (4 points) Draw the state diagram of this sequential logic!

(c) (2 points) Fill the Karnaugh map for NEXT DIR!

(d) (2 points) Draw this sequential logic (with flip-flops and logic gates) and
connect it to the functional component used in task (a)!!

NEXT DIR :

Z1

DIR

Z0

Page 2

1.3 Task 2 – 15 points

We want to create an RTL design, which searches for the maximal value stored in a ROM. The hardware
gives back the maximum value (max out) and the address the value is stored at (ind out).

1. (2 points) What is the algorithm of the search? Write with your own words (=no C code needed)!

It begins with waiting for a START signal. After that

2. (6 points) Consider the block diagram of the datapath:

(a) (1 point) What kind of a component is marked with ????.

(b) (2 points) Classify the signals in the datapath:

• Control signals:

• Data signals:

• Status (condition) signals:

(c) (3 points) How should you set the control signals if you want to step the counter, update the
value stored in MAX and clear INDEX ?

3. (7 points) Consider the state diagram of the controller:

(a) (2 points) The state diagram is incomplete. Finish it with the missing state transitions!

(b) (5 points) Fill the incomplete Verilog code which partially implements the controller!

parameter WAIT=0; parameter INIT=1; parameter CMP=2; . . .
reg [2 : 0] n ex t s t a t e ;
always @ () /∗ 0.5 po in t ∗/

case (s t a t e)
WAIT: i f (s t a r t) nex t s ta t e<= ; /∗ 0.5 po in t ∗/

else next s ta t e<= ; /∗ 0.5 po in t ∗/
INIT : ; /∗ 0.5 po in t ∗/
. . .
default : n ex t s ta t e<= ; /∗ 0.5 po in t ∗/

endcase
. . .
reg [2 : 0] s t a t e ;
always @ () /∗ 0.5 po in t ∗/

i f (r s t) s ta te<= ; /∗ 0.5 po in t ∗/
else s ta te<= ; /∗ 0.5 po in t ∗/

. . .
assign max ld= ; /∗ 1 po in t ∗/

INIT

WAIT

CMP

STEP

UPD

RDY

cntr gt 255 = 1

START = 1

START = 0

Page 3

1.4 Task 3 – 15 points

1. (15 points) In this task we are going to create the famous (at least in parts of Europe) “Knight Rider”
effect with the MiniRISC CPU. The “Knight Rider” effect is a light pattern shown on the LEDs (O
is ON o is OFF): Oooooooo, oOoooooo, ooOooooo, oooOoooo, ooooOooo, oooooOoo, ooooooOo,
oooooooO, ooooooOo, oooooOoo, ooooOooo, oooOoooo, ooOooooo, oOoooooo, Oooooooo – the
light bounces between the rightmost and the leftmost position: we shift right until the last LED is
turned on, then we shift left.

The algorithm will be the following:

1. Initialize the LEDs to the first pattern (Oooooooo)

2. Store the direction (LEFT=0, RIGHT=1) into a given register – you should use r1

3. Based on the value of r1 you have to show the next pattern on the LEDs

4. Afterwards you wait a bit in a loop to slow down the LED patterns.

(a) (5 points) We’ve already written a subroutine which does the left shifting, however the com-
ments for the different operations were not included correctly. Write the number of the appro-
priate comment to the “. . . ” marked instructions! Instructions can have the same comment.
shift_left:

mov r0,LD ; ...

sl0 r0 ; ...

mov LD,r0

cmp r0,#0b10000000 ; ...

jnz skip ; ...

mov r1,1 ; ...

skip:

rts

1. Change the direction.

2. Are we at the last position?

3. Calculate next pattern

4. Check current pattern

5. No: we shall return immediately

(b) (3 points) Based on the code in (a) implement the similar shift right !

(c) (2 points) Now for the software delay: to execute one CPU instruction, 3 clock cycles are
needed. If the clock frequency of the MiniRISC is 900 kHz, how many instructions it takes to
have a delay of 1ms (include the calculations)?

(d) (1 point) Complete the following code to have a 300 instruction delay!

delay: mov r2, #..... ; write the constant to the dotted line!

delay_loop: sub r2,#1

jnz delay_loop

rts

(e) (4 points) In the end: write the main program based on the comments:

; load the initial LED pattern value to r0

; load r0 to the LEDS

; set the direction to RIGHT (1)

loop: ;

; check if direction ==0

; if yes go where we will call shift_right

; call shift_left

; jump where we call delay

call_shift_right: jsr shift_right

call_delay: jsr delay

; jump back to loop: infinite loop

Page 4

