
Answer the questions in the spaces provided on the question sheets. If you run out of
room for an answer, ask for a blank paper from the supervisor. Duration of the exam: 100

minutes. Maximum number of points: 75

Name and NEPTUN code:
I certify that during the test I will not use illegal tools and I will work alone:

1 Digital Design (VIMIAA01) exam, 01/05/16

1.1 Short questions – 30 points

1. (5 points) True or false? Write the correct answer!

(a) The ALU can be found in the datapath of the processor.

(b) The AND operator returns 1 when none of its operands are zero.

(c) Shift operation can be used for 2N multiplication or division.

(d) SRAM is a non-volatile memory.

(e) The program counter can be found in the datapath of the processor.

(f) The same bit pattern can mean different numerical values in different number representations.

(g) DRAM requires its content to be refreshed periodically.

(h) In Verilog HDL, sequential logic can be implemented using wire type signals.

(i) Every statement (mnemonic+operands) in an assembly code corresponds to a given CPU
instruction

(j) Load-store architectures can load data from memory and transform it (e.g. add it to a register,
etc.) in the same instruction

2. (6 points) Do the following decimal to binary and binary to decimal conversions! Use 8-bit two’s
complement binary numbers!

Decimal number Binary number
(8-bit two’s comple-
ment)

Binary number
(8-bit two’s comple-
ment)

Decimal number

-32 01001010
127 11000001
-126 10000011

3. (2 points) In a given circuit, the longest path between the input and the output registers has 20 ns
delay. Calculate the maximum clock frequency!

4. (2 points) What is the byte capacity of a 4k x 16 bit memory module?

5. (6 points) Which are the main phases of the instruction execution and which operations are done in
each phase by the processor?

6. (2 points) Sort the following data storage elements by capacity: DRAM, register file, SRAM!

7. (3 points) How can the twos complement of a binary number N be calculated using only negation
and addition? Also, implement this conversion logic in Verilog HDL!

Twos complement of N =

wire [7 : 0] din ; // Input data
wire [7 : 0] dout ; //Twos complement o f din

assign dout = .

8. (4 points) Answer the following questions about multiplexers and functional components!

(a) (2 points) Write the truth table of a 2-to-1 multiplexer!

(b) (2 points) Implement a 4-to-1 multiplexer from 3 2-to-1 multiplexers!

1.2 Task 1 – 15 points

1. (15 points) We want to implement a sequential logic with one input (X) and one output (Z), which
implements the following logic:

Z=1 if the last three bits arrived on X were the sequence 110. For example: the sequence X=1011010110
yields the result: Z=0000100001.

(a) (3 points) Draw the state diagram of the logic (use Moore-model). Use as few states as possible
(hint: 4 states)!

(b) (2 points) From the state diagram create the state table of the logic!

(c) (2 points) For an easier solution, shown during one of the practices: we need a functional compo-
nent, which stores the sequentially arrived last two bits. Which one is this component?

(d) (1 point) If the three bits (the last two bits and the X input) are equal to 110, Z shall be 1.
Which component should we use?

(e) (2 points) Draw the two components and connect them to implement the sequential logic!

(f) While implementing another sequential logic, we received the following Boolean equations for
next state (NS), current state (CS), input (X):

NS1 = CS1 · CS0 +X · CS1 · CS0

NS0 = X1 · CS0 +X1 · CS0 +X · CS1 · CS0

NS0 :

CS1

X

CS0

(2 points) Optimize NS0 with the help of the Karnaugh-map!

(3 points) Draw the schematic of the sequential logic, don’t forget to include the D flip-flops for
CS!

Page 2

1.3 Task 2 – 15 points

1. (9 points) On the FPGA board we used at the lab, there was a four digit 7 segment display. To
reduce the number of wires, the display was controlled with time division multiplexing: the pattern
we want to show on the segments are common for all digits, and we periodically select the different
digits one by one to achieve a continuous pattern. Your task is to create a logic, which can show
four 4-bit number on the 7 segment display. Answer the questions to implement it! Don’t forget
to draw into the schematic when the task asks you to for full points!

(a) (2 points) We select a signal from the four 4-bit binary inputs (dig0, dig1, etc.) to show it from
the currently active digit. Which functional component is needed? . Draw it
in the schematic and connect it!

(b) (2 points) To periodically select from the different 4-bit inputs, we have to select dig0, then
dig1, then dig2, then dig3, etc. Which component should be used to do this periodical sequence
(0,1,2,3,0,1,2,3,. . .)? Draw it in the schematic and connect it to the component drawn in (a)!

(c) (2 points) With the sel[] signal we need to select one digit at a time. If the selection is active
high (meaning that a “1” value on a wire means the digit is selected), what pattern should we put
sequentially to sel[] to have the digits selected in this order: A,B,C,D,A,B,. . . ?

(d) (2 points) Now that we have a source for a periodical sequence (in (b)), and we know how we
should set the digit selector sel[] signal to select A,B,C,D respectively, which component should
we use to “convert” between the binary sequence and the pattern needed on sel[]? .
Draw it in the schematic and connect it!

(e) (1 point) What happens when we use a slow (1Hz) clock signal to periodically select between
the four digits?

2. (6 points) Now that we have a display which can show four digits, we want to use it from our
MiniRISC processor. We want to access it similarly as the LEDs, with mov -ing data into a given
address. Your task will be to answer the questions and thus design the interface for the display.

(a) (2 points) For each digit, we need a functional component into which the value to be shown
(a 4-bit binary number, called DATA, it comes from the CPU) can be loaded, and it stores it.
What is this functional component? Draw it for dig0!

(b) (2 points) As you remember, we can select the peripherals with their address. For example, the
address of the LEDs is 0x80. For the 7 segment display we will use the address 0xC0 for dig0,
0xC1 for dig1, etc. If the address[7:0] from the processor is known, with which component can
we determine that this address equals to the address for digit 0? Draw it!

(c) (2 points) Now to connect everything: we know that the processor wants to load a value into
dig0 when it asserts a WRITE signal and the ADDRESS is 0xC0. So complete the schematic:
connect the ld signal of the component drawn in (a) so it only loads when we write to the given
address!

Page 3

1.4 Task 3 – 15 points

1. (15 points) We want to create some spectacular Christmas lights with our MiniRISC processor. For
this, we are going to use the LEDs, which can be accessed on address 0x80. The pattern shall be
the following (o means off, O means on):

ooooooOO, oooooOOo, ooooOOoo, oooOOooo, ooOOoooo, oOOooooo, OOoooooo, OooooooO,
ooooooOO . . .

By answering the questions, your lights will be ready.

(a) (5 points) Write a subroutine (called led pattern), which loads the current pattern from the
LEDs into a register, changes it to the next pattern, puts the new pattern to the LEDs, and
then returns!

Should we call this subroutine in an infinite loop, it would be too fast, so we are going to use
the timer. The registers of the timer peripheral are on the programmer’s card. Answer the
questions to achieve a correct timing!

(b) (5 points) Originally, the timer counts down from the value stored in TR with the clock fre-
quency fCLK=16 Mhz. With a prescaler (TPS bits in the programmer’s card), we can scale it
down:

ftimer =

{
fCLK if TPS=0,

fCLK

2(TPS+1)∗2 otherwise.
(1)

Fill the following table:

TPS ftimer Minimum delay (when TR=1) Maximum delay (when
TR=255)

1 1 MHz 1 µs 255 µs
2
7

What shall we load into TPS and into TR if we want to set the delay to 0.4096 seconds?

(c) (5 points) To use the timer answer the following questions! Write an assembly code which
initializes the timer (it shall count down from 100, TPS=7, we want to enable interrupts, we
want to enable reloading after countdown, we want to enable the countdown!). It should also
initialize the LEDs to the initial state (ooooooOO). Afterwards it should enable the interrupts
and go to an infinite loop!

Write an assembly code for the timer interrupt: it should read from TS (to acknowledge the
interrupt), call the subroutine written in task (a), and in the end it returns from the interrupt.

Page 4

