
Answer the questions in the spaces provided on the question sheets. If you run out of
room for an answer, ask for a blank paper from the supervisor. Duration of the exam: 100

minutes. Maximum number of points: 75

Name and NEPTUN code:
I certify that during the test I will not use illegal tools and I will work alone:

1 Digital Design (VIMIAA01) exam, 12/22/15

1.1 Short questions – 30 points

1. (5 points) True or false? Write the correct answer!

(a) The program counter shows the number of executed instructions.

(b) The AND operator returns 0 when all of its operands are zero.

(c) A ROM can be used to implement every combinational logic.

(d) A register file is non-volatile.

(e) The instruction register can be found in the datapath of the processor.

(f) The bit pattern 0111 represents different numbers in binary and 4-bit two’s complement.

(g) The three states of the controller of a simple microprocessor are LOAD, TRANSFORM, STORE.

(h) 8-bit microprocessors are called “8-bit”, because each register is 8 bits long.

(i) The OPCODE part of a CPU instruction tells the CPU from which register should it load
data

(j) In the FETCH state the processor loads the instruction to be executed from the code memory.

2. (6 points) Do the following decimal to binary and binary to decimal conversions! Use 8-bit two’s
complement binary numbers!

Decimal number Binary number
(8-bit two’s comple-
ment)

Binary number
(8-bit two’s comple-
ment)

Decimal number

-11 11001010
100 01000001
-37 11101111

3. (6 points) We want to create a 3-bit adder circuit from 1-bit adders.

(a) (1 point) How do we call that operation when we extend a 1 bit wide circuit to more bits wide?

(b) (5 points) Connect the 3 adders to create the 3-bit adders! Don’t forget to give correct ci input
for the rightmost adder! We’ve already given values on the A and B inputs, do the addition
and write all the results on the connected signals. Mark the result values too!

4. (3 points) We’ve implemented a logic gate with a multiplexer.

(a) (2 points) Write the truth table of the logic!

(b) (1 point) Which logic gate is implemented?

5. (6 points) The block diagram shows a datapath of a simple microprocessor with the MiniRISC
instruction set. Mark the data signals are used and the values of the given control signals (r0=0,
r1=1) during the execution of):

(a) (3 points)
add r0, r1

(b) (3 points)
mov 0x34, r1

6. (4 points) Which functional component shall be used to. . .

(a) (1 point) . . . store small (e.g. 8 bits of) data for 1 clock cycle?

(b) (1 point) . . . create a countdown?

(c) (1 point) . . . compare two binary numbers?

(d) (1 point) . . . store small (e.g. 8 bits of) data until a new one is loaded?

1.2 Task 1 – 15 points

1. (15 points) We want to implement a sequential logic which has a 1-bit wide X input and {z1,z0}
outputs. The behavior of the logic is the following:

When X=1 it does the following sequence on {z1,z0}: {00},{11},{10},{10},{00},{10},{01},{10},
(start over). . . .

(a) (2 points) Draw the state diagram of the logic (use Moore-model). Use as few states as possible!

(b) (1 point) From the state diagram create the state table of the logic!

(c) (1 point) Can we reduce the number of states?

(d) (1 point) How many flip-flops shall we use to implement a logic?

(e) (2 points) For an easier solution to implement the logic (shown in the first homework) we can
use a functional component to store where are we in the sequence (0th element, 1st element,
2nd element, . . . 7th element, 0th element, etc.): Which one is this component?

(f) (1 point) For the 0th element we return 00. For the 1st we return 11. For 2nd 10, etc. We can
use a functional component to implement this combinational logic. Which one?

(g) (2 points) Draw the two components and connect them to implement the sequential logic!

(h) While implementing another sequential logic, we received the following Boolean equations for
next state (NS), current state (CS), input (X):

NS1 = CS1 · CS0 +X · CS1 · CS0

NS0 = X · CS1 · CS0 +X · CS1 · CS0 +X · CS1 · CS0

NS0 :

CS1

X

CS0

(2 points) Optimize NS0 with the help of the Karnaugh-map!

(3 points) Draw the schematic of the sequential logic, don’t forget to include the D flip-flops for
CS!

Page 2

1.3 Task 2 – 15 points

1. (9 points) In the MiniRISC processor system – as was shown during the labs – we have a timer
peripheral. By solving the following task you are going to design a timer peripheral which you can
use.

(a) (1 point) The behavior of the timer was the following: we loaded an initial value into the timer.
Afterwards, it periodically decreased this value on each clock cycle until it reached zero. Which
component can be used to implement it?

(b) (1 point) We need to load an initial value (call it DATA) into this component. Which signal of
the component shall we use for this?

(c) (1 point) One special event is when the timeout happened: the timer reaches 0. With which
component can we check if the timer has the value 0 (in the following, we call this event
TIMER EXPIRED)?

(d) (1 point) Sometimes we want to pause this timer, so it only counts only when we want it to.
What signal should the functional component (used in the first question) have?

(e) (1 point) We want to enable the countdown on two cases: the timer is enabled (an external TEN
signal), AND the timer value is not zero. Write the Boolean-expression for this!

(f) (1 point) We want to generate a software interrupt when the timer expires. What is the defi-
nition of a software interrupt?

(g) (1 point) We want to support disabling the interrupt request (call it IRQ): The processor should
be notified only when the timer expired AND the interrupt requests are enabled (call it TIE).
Write the boolean function for IRQ!

(h) (2 points) Draw the schematic (block diagram) for the timer!

2. (6 points) Now that we have a timer, we want to use it from our MiniRISC processor. We want to
access it similarly as the LEDs, with mov -ing data into a given address. Your task will be to answer
the questions and thus design the processor interface for the timer.

(a) (2 points) As you remember, we can select the peripherals with their address. For example,
the address of the LEDs is 0x80. For the timer initial value we will use the address 0x82. If the
address[7:0] from the processor is known, with which component can we determine that this
address equals to the address for timer? Draw it!

(b) (2 points) When the address is correct, and the processor wants to write (call this signal WR),
we want to load the value (call it DATA IN, a 8-bit value) into the timer. Write the Boolean
equation of the LOAD signal, and also implement it into the block diagram (you’ve drawn in
one of the previous questions)!

(c) (2 points) When the address is correct, and the processor wants to read (call this RD), we
have to put the current value of the timer to DATA OUT, else we have to put 0). With which
component can we select from the current value and from constant 0? Connect this component
with the rest of the block diagram!

Page 3

1.4 Task 3 – 15 points

1. (15 points) As you see it on the instruction set of the MiniRISC processor (you do have it?), the
MiniRISC processor can not divide numbers, we have to implement it manually with assembly code,
we will write a subroutine. The algorithm of the division will be the following (r0: the dividend, r1:
the divisor, r2: result). In the algorithm we assume that the divisor is never 0.

r2=0

while(r0>r1){

r0=r0-r1

r2=r2+1

}

For the following questions the answer will be the assembly code. Call the subroutine idiv!

(a) (1 point) Set r2 to zero:

(b) (2 points) Check if r0 greater than r1:

(c) (2 points) If true, jump to the end:

(d) (1 point) Do the subtraction:

(e) (1 point) Increment r2:

(f) (1 point) Continue the loop:

(g) (1 point) In the end return from subroutine:

(h) (6 points) Now that we have a subroutine, we are going to test it. The test will be the following:

1. Wait for a button press (BT0 in the button register (shown on the instruction set paper)
is 1, the others can hold an arbitrary value.): read the status of the buttons into a register
while BT0 is 0.

2. Read the dividend from the switches.

3. Wait for a button press.

4. Read the divisor from the switches.

5. Call the subroutine!

6. Show the result on the LEDs!

Page 4

