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A Common Structure for Recursive 
Discrete Transforms 

GABOR PkELI 

Abstract-This paper presents a common framework for the recursive 
implementation of arbitrary discrete transformations. The transform coef- 
ficients to be applied are periodically time-varying and can be derived from 
the discrete basis functions of the transforms. The method is based on 
Hostetter’s dead-beat observer approach to signal processing [l], [2], but 
instead of the ongoing calculation of the transform coefficients, explicit 
expressions are derived. The proposed structure can be efficiently used 
even for FIR and IIR filtering operations. 

I. INTROIXJCTI~N 

Recently, a new recursive method [l], [2] has been introduced 
especially suitable for running transformations and general multi- 
rate sampling situations. The algorithm is based on the state-vari- 
able formulation and the results of the observer theory. This 
approach is extremely attractive, but, except in some special cases 
[l], results in the ongoing calculation of the so-called observer 
gain. This paper derives explicit expressions for the observer 
gain; therefore, all the coefficients to be applied can be calcu- 
lated in advance. 

In Section II, the derivation of the main results is presented. 
The first one is the common observer structure suitable for 
arbitrary discrete transformation. The second one is the explicit 
expression of the observer gain, and finally the applicability of 
this structure to FIR and IIR filtering operations is introduced. 

II. DERIVA~ONOFTHECOMMONSTRUCTURE 

The key element of the observer-based approach to signal 
processing [l], [2] is a conceptual state-variable signal generating 
system model, where the state variables are the components to be 
calculated by the discrete transformation in hand. The state of a 
corresponding dead-beat observer will reach the required trans- 
form value in N steps, where N denotes the transform size. The 
block* diagram of the conceptual model and the corresponding 
observer is given in Fig. 1. For every discrete transformation, to 
provide a dead-beat observer behavior, the {cm(k)}, and the 
{g,(k)], m=o, l,.*., N - 1 values should be the kth compo- 
nents of the basis and reciprocal basis vectors of the transforma- 
tion, respectively. To show this, let’s denote 

x(k) = [x&&x,(k),-., X,cl(k)]T 

4(k) =[%Jk),%,(k),y YvN-l(k)]T 

c(k) = [co(k),c,(k),.*-> c,,-dk)]T 

g(k) = [go(k),g,(k),-.., gN-l@)lT 

and, by expressing the error of the observer and the state of the 

Manuscript received April 8, 1986. 
The author is with the Department of Measurement and Instrumentation 

Engineering, Budapest Technical University, H-1521 Budapest, Hungary. 
IEEE Log Number 8610118. 

-- 
Slhpl yenerpcor 

Fig. 1. The basic conceptual signal model and the corresponding observer. 

observed system [2], we have 

x(k+l)-%(k+l)=(Z-g(k)cT(k))(x(k)-2(k)) 

The error reaches zero in N steps (or less) if 
N-l 
n (Z-g(i)cT(i)) =O. (2) 
i-0 

But this is true for an arbitrary basis/reciprocal basis system, 
since due to the orthogonal&y of the two bases (if i # j) 

di)c’(i)di>c’(j) =O 
and 

N-l 

Xodi)cTti) =Z (4) 

since every basis/reciprocal basis system can be expressed by the 
unit vector system {e(i)}, i = 0,l; .., N -1, using a nonsingular 
transformation F 

c(i) = Fe(i) g’(i) =eT(i)F-’ 

and thus 

N-l N-l 

igodi)cT(i) = iFo(F-l)Te(i)eT(i)FT 

N-l 

=(F-‘)T c e(i)e’(i) FT=Z. (6) 
i-0 i 

After the first N samples, the calculation of the transformed 
values can be continued by periodically applying the two bases of 
the transformation. 

Fig. 2 presents a less general, but rather useful conceptual 
model and the corresponding observer [4]. If u(k) = [ uo( k), 
u,(k),. . ., u,,-l(k>lT, and v(k) = [u,,(k), u,(k),..., 
L+,-~( k)lT are the basis and the reciprocal basis, respectively, 
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Fig. 2. Another conceptual signal model and the corresponding observer. 

then in Fig. 2, assuming u,(k) # 0 

z,(k) = 
urntk+l) 

urn(k) ’ 
m = 0,l; 

and 

gm(k) = %,(k)u,(k+l), m = 0, 

(see [5]). IIR filter zeros are generated in the very same manner as 
for FIR filters. Expressions similar to (13) can be developed 
easily for every observer type of this paper. 

It is very interesting to note that the introduced structures are 
closely related to the Lagrange (and Hermite) interpolation, and 

-.,N-1 (7) that this relation proves to be very helpful in the development of 
expressions like (13) [S]. 

will result in a dead-beat observer. In this model, the time-vary- 
ing first-order sections generate the basis of the transformation. 
If the condition u,(k) f 0 cannot be fulfilled, higher order 
sections should be used. As an example, the Fourier transforma- 
tion is obtained if in Fig. 1 

1 III. CONCLUSIONS 
9.. . TN-1 (8) 

In this paper, explicit expressions has been derived for the 
coefficients of observers which implement recursive discrete 
transformations. Since these observers, and even the related FIR 
and IIR filters, can be realized by the very same structure (Fig. 
l), it can be considered a common base for every linear signal- 
processing operation. 

cm(k) = @dN)mk \ 
m=O,l;..,N-1 (9 

while in Fig. 2 

z, = e S*/N)m 1 g, = N ,&WWm m = O,l,. . . ,N-1 (10) 

As another example, the Walsh transformation is obtained if in 
Fig. 1 

c,,,(k) =wal(m,k) 
m = 0,l; . . ,N-1 (11) 

while in Fig. 2 

z,(k) = 
wa[(m,k+l) 

waZ( m , k) 

g,,,(k) =~wal(m,k)wd(m,k+l) 

m=O,l;..,N-1. 

High-Speed Distributed-Arithmetic Realization of a 
Second-Order Normal-Fonn Digital Filter 

S. A. WHITE 

Abstract-111 a recent publication [l], an excellent tradeoff study was 
presented to show how one could design a normal-form second-order 
digital filter to meet prescribed performance criteria. In this note, an 
extremely efficient set of realizations is shown, one in which the speed and 

(14 complexity can be effectively traded. 

A digital filter structure with optimum low roundoff noise, 
minimum coefficient inaccuracy errors, and absence of limit 
cycles is the normal form [l]. 

Both the recursive Fourier and Walsh transformations are of 
practical interest, and since (10) is independent of k, and multi- 
plication by (11) can be reduced to additions and a single 
division by N, both can be implemented in a relatively simple 
way. 

On the basis of the observers in Figs. 1 and 2, the realization of 
FIR and IIR filters is also possible. Since the observers are 

dead-beat, they have finite memory; thus, only the linear combi- 
nation of the transformed output samples is to be generated 
additionally. This is an obvious generalization of the so-called 
“frequency sampling method” [3]. 

For an IIR filter, the observers cannot be dead-beat. If { p,,}, 
n = 0,l;. . , N - 1, are the poles of the filter, we can apply, e.g., a 
Fig. 2-type time-invariant observer with 

N-l 

(13) 
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