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N ,  Nd ‘a Nj 
Fig. 4. Nets in the proof of Theorem 2. 

Deciding whether a graph G = ( V ,  E )  is bipartite is equivalent 
to finding a two-coloring for the vertices of G. This can be done 
in O(lVl+ [El )  time by using depth first search [6]. Furthermore, 
it is impossible to decide whether a general graph is bipartite in 
time less than the number of edges in the graph. Notice that the 
number of edges in an interaction graph of a given channel 
routing problem with n nets can be as large as O(n2).  Fig. 3 
shows an example of such a case. Nevertheless, we would like to 
have an algorithm that recognizes if a channel routing problem 
admits an internal-external layout in O( n) time. 

Using Lemmas 1 and 2, it is easy to prove that the following is 
equivalent to Theorem 1. 

Corollary 1: Let P be a given channel routing problem. P 
admits an internal-external layout if and only if it can be decom- 
posed into two (channel routing) subproblems PA and PE such 

0 
Next, we will present a greedy algorithm that decides whether 

a given channel routing problem P admits an internal-external 
layout. If the answer is positive it decomposes P into two 
subproblems PA and Ps such that both PA and Ps are river 
routing problems. 

(1) Let No be a fictitious net whose terminals are to the left of 
the leftmost terminals on each shore. 

(2) Set front (A) := No; and front (B) := No. 
(3) Scan the terminals on the bottom shore from left to right: 

that both PA and PE are river routing problems. 

Algorithm DECOMPOSE 

for every bottom terminal b, encountered do 
if N, interacts with front ( A )  then 

if N, does not interact with front (B) then 
put N, in set B and set front (B) := 8 

else 
print (“the problem does not admit an internal-external 

layout”); stop 
end-if 

put N, in set A and set front ( A )  := N, 
else 

end-if 
end-for. 0 

Theorem 2: Let P be a given channel routing problem with n 
nets. Algorithm DECOMPOSE decides if P can be decomposed 
into two subproblems PA and PE such that both PA and PE are 
river routing problems, and if the answer is yes, it computes such 
a decomposition. Its time complexity is O( n). 

Proo$ Suppose that the algorithm decides that P cannot be 
decomposed as discussed above. Then there is a net N, such that 
N/ interacts with front ( A )  = Nu and front (B) = Nd (i.e., t, < tu 
and t, < t d ) .  Let N, be the net that is front ( A )  when net Nd is 
encountered ( a  = c is possible). Net N, belongs to the set A and 
interacts with net Nd (i.e., t d  < r,). Hence, t, < t, < t,. Further- 
more, because of the order in which nets are processed, b, < bd < 
b,. This implies that net N/ interacts with nets Nd and N,, see 
Fig. 4. Hence, nets N , ,  N,, and Nd interact pairwise. Therefore, 
P cannot be decomposed into two subproblems PA and PE such 

that both PA and PE are river routing problems. Clearly, if the 
algorithm succeeds, then P can be decomposed as stated in the 
theorem. 

At each iteration of the for loop, the algorithm spends constant 
time. Hence, its time complexity is proportional to the number of 
iterations, which is n. 0 

Notice that algorithm DECOMPOSE needs only a constant 
amount of extra storage. 
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Resonator-Based Digital Filters 

GABOR PECELI 

Abstract-This paper presents a digital filter structure that is both 
structurally passive and can suppress all zero-input limit cycles, and if 
rounding is applied provides minimum roundoff noise. These properties are 
due to the fact that this structure generates its output as a linear combina- 
tion of orthogonal signal components, thus internally implementing an 
orthogonal realization of a lossless transfer function. 

I. INTRODUCTION 

Recently a common structure for recursive discrete transforms 
has been derived [l] that is based on the state-variable formula- 
tion and the results of the observer theory [2 ] .  By applying a 
generalization of the “frequency sampling” method [3], this struc- 
ture can be efficiently used also to FIR and IIR filtering opera- 
tions. The block diagram of the transformer structure is given in 
Fig. 1. This structure consists of digital resonators embedded into 
a common feedback loop. Due to this feedback, the properties of 
this structure substantially differ from that of the well-known 
“frequency sampling” structures [3]. In this paper it is shown that 
using this approach digital filters can be derived that are struc- 
turally passive, suppress all zero-input limit cycles, and if round- 
ing is applied provide minimum roundoff noise. Having these 
properties it can be stated that the proposed structure is a real 
alternative of the best structures known from the literature, like 
the wave digital filters [4], orthogonal filters [5], and the filters 
based on the lossless bounded real (LBR) two-pair extraction [6]. 
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2 F i l t e r  

where 

n=O,l, . . . ,  N-1 -H- 1-2 z-1 

I.,I= 1 

Fig. 1. The suggested common structure for recursive transformations. 

11. PROPERTIES OF THE SUGGESTED STRUCTURE 

In this letter we will concentrate on the time-invariant version 
of the common transformer structure (see Fig. l), and for sim- 
plicity we do not consider the case of multiple resonator poles. 
Without loss of generality, starting from the usual form of 
single-input single-output digital transfer functions (having real 
coefficients) 

function from the input to point P (see Fig. 1): 

gnz-l N - 1  
-i- 

It is easy to show that H,(z) is the transfer function of an 
all-pass filter (i.e., it is lossless), if gn = rnzn, n = 0 3 1 7 . . . , N - L  
where { r, } are (for stable transfer functions positive) real num- 
bers, and 

N - 1  c ( 5 )  
f l = O  

see [7]. At this point it worth developing a link to the usual state 
variable formulation. For simplicity we will use the "complex 
version" of the state equations 

X( n +1) = (F-  GC)X( n) + Gu( n) = A X (  n) + Bu( n) 
y ( n )  = Cx( n) + Du( n) (6) 

where x(n) is an N-dimensional vector describing the state 
of the system, u(n) is the scalar input, y ( n )  is the scalar out- 
put, while F, A, G, B, and C are, respectively, N X N, N X N, 
N X 1, N X 1 and 1 X N constant matrices. D = 0 in our case, and 
F=diag(z , ,z , ; . . , z ,~ , ) ,  GT=[go,g , l ; . . ,g , - , l=  RTF, 
where R T =  [ro, r1;. ., rN-l]. 

The LBR lemma [8] states that H'(z) is LBR if and only if for 
the minimal realization { A ,  B, C, D }  there exists a positive defi- 
nite matrix P such that 

N - 1  
anz-n 

H ( z ) =  n = o  N - 1  = a0 + "( z) (1) 
1+ E bnZ-" 

n = l  

we will consider only the implementation of H'(z), which using 
the notations of Fig. 1, can be written in the following form 

gnz-' N - 1  

E- Wn 
"=() 1- znz-l 

H'( z) = 

where lznl=l, wn=H'(zn), n=O, l ; . . ,N- l ,  and if p, , (n= 
O,l,. . . , N - 1) are the poles of H'( z), 

N - 1  n (l-pmznl) 
m - 0  gn=Zn ~ - 1  , n=O,l; . . ,  N-1. (3) 

n (l-zmzil)  
m - 0  m # n  

The internal part of this structure, which realizes the recursive 
part of the transfer function, can be characterized by the transfer 

A*PA + C*C = P 
B*PB -+ D*D = I 
A*PB + C*D = 0 
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To t h e  common feedback  ]J] coscPn Real  p a r t  (Zx) 

t - J Imaginary  p a r t  (2x1 

Fig. 2. A possible second-order resonator block for the common structure. 

where the superscript * denotes conjugate transposition. P is the 
observability Grammian [9]: 

m 

P =  A~'C*CA~ (8) 
k-0 

which for our case has the form of 

P = diag (r;' , r;' , . . . , r i l  l ) .  ( 9) 
Thus we have a "non-scaled" orthogonal realization, the scaling 
(which results in P = I )  affects only the elements of R and C. 

Vaidyanathan and Liu proved [lo], that if Q - A * Q A  is posi- 
tive semidefinite for some diagonal matrix Q of positive ele- 
ments, then all zero-input limit cycles can be suppressed. For our 
case Q=P=diag(t;',r;',...,r,l,) is the proper choice to 
fulfil this condition. The proof is straightforward: the eigenvalues 
of Q - A * Q A  are all zero except one, which is positive. Thus if 
the unavoidable quantizers (Q[x]) are such that each state vari- 
able is quantized independently of others, quantization is per- 
formed in front of the delay elements, and magnitude-truncation 
strategy is applied when - 1 < x < 1, and 2's-complement over- 
flow operation when x exceeds this range, then there are no 
self-sustained zero-input oscillations of either type (roundoff or 
overflow) in the proposed structure. 

Mullis and Roberts [ll] investigated the conditions of mini- 
mum roundoff noise in fixed-point digital filters. They found that 
if the 

K = A K A *  + BB* 
W =  A*WA + C*C 

matrices are simultaneously diagonal, then, if we adopt their 
model, we have an optimal realization considering roundoff noise 
effects. In our case 

( 10) 

K = diag(rq 9 '  . ' 9 'NI - 1 )  = IR 
W = diag ( ro , rl,. . . , rN - ') = P = Q 

(11) 

( 12) 
thus the proposed structure is optimal even in this sense. 

111. FILTER DESIGN AND IMF'LEMENTATION 

If (5)  holds, Hf (I) implements an all-pass filter, and if so, we 
know even its zeros, since they are in mirror image relationship 
with the poles of H'(z).  This property is the key to the determi- 
nation of those resonator positions which will provide the above 
properties. These positions coincide with the zeros of 1 - Hp(z) 
[7]. We will have two sets of resonator poles, since the filter poles 
do not specify the sign of Hf(z). The number of nonzero filter 

poles should be at least one less than that of the resonator poles, 
since Hp(z) is forced to have at least one zero at the origin, 
otherwise the loop would be delay free. Thus the filter design 
consists of the following steps. 

1) Find the proper transfer function H'(z) having not more 
than N - 1 nonzero poles and zeros. (According to (l), H'(z) has 
a zero at the origin, which can be easily eliminated by modifying 
the tap connections in Fig. 1, if necessary.) 
2) Find the transfer function Hf(z) from the poles of H'(z), 

and determine the resonator pole positions from the zeros of 
1 - H p ( z ) .  Note that Hf (z) should have at least one zero at the 
origin, and there are two sets of resonator poles. 

3) Find the r,, n = O,l,. . . , N - 1, (positive real) values 
N - 2  

Il I-prnz,' 

n 1- zrnz,l 
m = O  
N - l  , n=O,l;..,N-l (13) rn = 

m = O  m # n  

[see (3)]. Note that two sets of rn values will be available. 

plex) values 
4) Find the two sets of w,, n = 0,l; . ., N - 1, (typically com- 

wn = H'( zn) . (14) 
5) Select one of the parameter sets for realization. The practical 

implementation requires for real resonator poles first order, and, 
for complex resonator poles, second-order sections. The block 
diagram of a possible alternative for this latter is given in Fig. 2. 
Other structures that preserve the "internal orthogonality," like 
the different versions of the coupled-form [12], are also suitable. 
For such resonator blocks all the properties discussed in Section 
I1 remain valid, only the matrices will have a slightly different 
form. 

IV. CONCLUSIONS 

In this paper a resonator-based structure has been investigated, 
which seems to be suitable to form a (possibly VLSI imple- 
mented) common base for every linear filtering-like signal pro- 
cessing operation. The proposed structure can be applied in a 
wide variety of forms. One form is the direct utilization of the 
common structure (see Figs. 1 and 2). An alternative utilization 
can be the implementation of those filters which are based on 
parallel connection of two all-pass filters [13]. Obviously simple 
first- and second-order building blocks can also be derived, and 
the realization of adaptive filters can also be considered. All these 
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versions are of practical interest, since at the price of some 
redundancy, all of them provide efficient realizations concerning 
sensitivity, stability and roundoff noise. 
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A Class-C Loop Gain Amplitude Modulator 

DAVID J. COMER AND RICHARD HERRON 

Abstract -A class-C loop-gain amplitude modulator is reported. This 
circuit exhibits excellent modulation linearity while requiring a very low 
level of modulating source power. 

INTRODUCTION 
The class-A loop-gain amplitude modulator, recently reported 

in [l], exhibits a high degree of modulation linearity for indexes 
of modulation approaching unity. This modulator is useful in 
low-power high-quality applications but cannot compete with 
class-C stages in high power applications. This paper reports on 
the extension of the loop-gain modulation concept to the class-C 
stage. The class-C loop gain circuit not only produces the char- 
acteristic high degree of modulation linearity, but also allows the 
modulating signal to be applied to the base circuit of the tran- 
sistor modulator. Along with small modulation source current 
very small modulation voltages are required to achieve large 
carrier amplitude deviations. This reduces the modulating source 
power by two or three orders of magnitude over the traditional 
collector modulation stage. 
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Fig. 2. Definition of 8 

THEORY OF OPERATION 

Fig. 1 indicates the configuration of the class-C loop-gain 
modulator. This circuit operates as a class-C oscillator with the 
output signal serving as the carrier signal. The tuned collector 
circuit determines the carrier frequency. The feedback factor 
from collector-to-base circuit is equal to the reciprocal of the 
transformer turns ratio or 

The forward gain of the circuit is given by [ 2 ]  

-BRP sin28 
A = - [ 0 - 4 

R B  

where p is the current gain of the transistor from base to 
collector, 0 is one-half of the conduction angle as defined in Fig. 
2,  and R ,  is the resonant tank circuit impedance. The loop gain 
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