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OWADAYS, the designers of computerized medical in- N struments attempt to  extend the performance of the 
measuring systems wi th  data processing capabilities towards 
intelligent reactions. These intelligent instruments can help in 
monitoring, in measurement supervision, and in making 
diagnoses. This paper, based on the authors' experiences in 
the development of intelligent EEG recorders and analyzers, 
introduces those system design methods that can contribute 
to  the resolution of the rather complex requirements in the 
field of medical instrumentation. These requirements involve 
the problems of: 

Efficient implementation of conventional data processing 

Efficient implementation of knowledge-based data proc- 

Event-driven real-time operation 
Integration of problem-oriented user-friendly user inter- 
face, and 
The interactions of the above elements. 

In this paper, both conceptional and implementational as- 
pects are investigated and illustrated by some prototyping 
examples. 

algorithms 

essing algorithms 

FUNCTIONAL AND IMPLEMENTATIONAL EXPERTISE 
In order t o  perform successful measurements, detailed 

knowledge of the specific application field and the particular 
measurement methods are prerequisite. To develop efficient 
measuring instruments of any kind, knowledge of the user's 
requirements and a quite general engineering background are 
also needed. The t w o  basic constituents of this latter 
requirement are the FUNCTIONAL (measurement theoretical) 
and the IMPLEMENTATIONAL (measurement technological) 
EXPERTISE [ l  I .  The background for the functional expertise 
lies in measurement theory, which exposes the general 
properties of the measurement process. This kind of expertise 
covers the specification of the measurement environment, 
information processing, and the evaluation of results. The 
implementational expertise relies on metrology and the mea- 
surement technology valid for the specific domain of applica- 
tion. 

The key issue of intelligent measuring system design is the 
formulation and efficient implementation of the expertise 
required. The complexity of this design procedure depends 
mainly on the measurement problem at hand. In the field of 
biomedicine, this complexity is considerably high, and asks 
for rather careful and systematic design approaches. These 
system design methods serve: 

Efficient implementation of conventional data processing 
algorithms 
Efficient implementation of knowledge-based data proc- 
essing algorithms 
The efficient, event-driven real-time operating environ- 
ment, and 
The realization of problem-oriented user interface. 

The conventional data processing algorithms (i.e., estima- 
tions, decision schemes, etc.) can relatively easily be imple- 
mented using well-developed methods. The knowledge- 
based data processing algorithms are based on non-formal 
heuristic knowledge originating mainly in professional intui- 
tion and experience, but nevertheless very useful in solution 

searching or for solutions wi th  excessive demand for opera- 
tional time and resources. 

Regarding the implementation of heuristic knowledge, the 
following three problems are t o  be considered: 

Representation of knowledge 
Manipulation of the knowledge base 
Integration of the knowledge base with the numerical 
data base and the algorithms within the unified real-time 
control structure of the measuring system 121. 

The first t w o  problems traditionally belong to  the research 
field of artificial intelligence [31, while the third one is an 
emerging chapter of measuring system design. The imple- 
mentation and manipulation of the knowledge base, in 
general, is a task wi th  significant time and resource require- 
ments. Therefore, in real-time measuring systems its usage is 
limited by the built-in processing capability of the measuring 
devices. 

In the following t w o  sections, possible alternatives are 
presented; first for the implementation of conventional data 
processing and later for the knowledge-based data process- 
ing in measuring systems operating in a real-time environ- 
ment. The topic of the problem-oriented user interface is 
outlined in the subsequent section. The paper ends wi th  a 
short presentation of an intelligent EEG recorder development 
by  the authors. 

FIXED VERSUS RUN-TIME PROGRAMMABLE 
SOFTWARE ARCHITECTURES 

One of the first experiences of the authors in the field of 
medical instrumentation, nearly ten years ago, was the 
development of a family of somewhat intelligent medical 
instruments for electrophysiological data recording and analy- 
sis. This family of instruments can be characterized by multi- 
channel data acquisition, feature extraction, parameter esti- 
mation, and decision making capabilities, which are 
connected to  processing real-time events and controlled 
through a problem oriented operator interface. The implemen- 
tation of these functions requires considerable effort. How-  
ever, similarities in data acquisition and signal processing, the 
nature of concurrencies, and real-time operation promise 
analogies utilizable in the design procedure -even of some- 
what  different instruments. This analogy is also valid for 
operator interface, where convenience includes the very 
same "front panel philosophy" to  be applied for instruments 
of the same field. These encouraging facts have initiated 
steps towards standardization in several respects, such as 
data acquisition, signal processing, real-time structures, and 
specification methodology. By extracting the common ele- 
ments, a quite general structuring of the software system is 
possible, which results in a framework useful as a starting 
point for further development of instruments of similar types. 

In our experience, a three-level software module structure 
[41 can be used. The function-independent realization of the 
real-time control structure provides an instrument "frame" 
on which real-time measuring instruments of various func- 
tions can be built up. For the sake of wide range applicability, 
the following requirements were raised against the realiza- 
tion: 

In the real-time structure, the elements determining the 
real-time characteristics of the instrument should be 
separated (e.g., priority dependent scheduling al- 
gorithms). These elements should be transformed into a 
form in which real-time requirements can be easily 
expressed. 
The real-time structure should be made modular. This 
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provides "tailorability"; in realization of a given instru- 
ment certain elements can be omitted or new elements 
can be "pasted." In the course of designing module 
interfaces, an effort should be made to  maximize infor- 
mation hiding [5]. 
The module structure should be transformed into a three 
level structure: 
-modules for realization of real-time control structures 

and its tables 
-modules for realizing measuring function and user 

interface 
-general library modules. 

Of course, there are technological aspects of the realization 
of module structure. As a minimal requirement, the language 
applied should incorporate tools for modular programming. In 
this case, the function related to  the real-time operation can 
be accomplished by the explicit calling of a real-time operat- 
ing system or a run-time operation system. Using a high level 
real-time language, the realization can be simplified because 
the elements of the access graph (process, resource, pro- 
tected resource, synchronization, access rights) correspond 
to  the elements of the language (process type, module, 
interface module, procedure declaration/calling) [61. The 
structure modularized according t o  foregoing requirements is 
shown in Fig. 1 (the figure does not contain all the legal 
accesses). The function dependent modules are shaded in the 
figure. On the base of naming and access rights, the elements 
of the access graph can be identified. 

The main features of the module structure are: 
The uppermost level contains only the "frames" of the 
COMMAND DECODER and M I  . . . M m  processes (mea- 

suring chain drivers). Having started, they immediately 
enter the second level, where the function dependent 
procedures (PARSER, and M 1 1  . . . Mmk) are realized. 
(Of course, inside the level additional decompositions 
can be performed.) 
The server processes can be utilized via the MEASure- 
ment CONTROL interface module. In order to  provide 
universal applicability, the MEASurement CONTROL 
module is table driven; the CONTROL TABLE contains 
parameters defining the specification of real-time opera- 
tion (e.g., priority of measuring processes, type of 
resources, restrictions of its utilization, etc.). 
The server processes handle special hardware units, so 
their algorithms depend on the measuring functions to  be 
implemented. 
The lower level contains standardized library modules 
that supply implementing instrument dependent al- 
gorithms. 

Using the module structure presented here, the implementa- 
tion of a real-time signal processing instrument wi th interac- 
tive user interface is simplified into sequential programming. 

A simplified version of the above discussed software 
architecture was used first in the course of the development 
of an EMG analyzer and later in that of an EEG signal analyzer. 
Experiences of these instrument developments have verified 
the applicability of the software architecture presented. The 
modularized system is easy t o  manage, both in the module 
implementation phase and in the system integration phase. 
One of the most advantageous feature is that the various user 
interfaces and measuring data processing functions can be 
implemented without any modification of the instrument 

. _ _ . _ _  pn*l ANSWER yHkk-1 FROCESSING ARlTHMETIC 

UTILITY UTILITY LIBRARY LIBRARY 

Figure 1. Module structure of a real-time signal processing medical 
instrument. Circles indicate process; squares indicate software mod- 
ules. 
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"frame". Utilizing the frame of the EMG analyzer and the 
library modules, the time needed for developing the EEG 
analyzer shortened to  a quarter of the time needed for the 
original EMG analyzer. 

Fixed software architectures, however, have several short- 
comings when the flexible programmability of the measuring 
device is also required. In our experience, the development of 
a general purpose signal processing system showed that 
conventional command languages support neither the intro- 
duction of additional procedures and data structures nor the 
modification of their internal real-time behavior. A thorough 
investigation of these shortcomings shows that the solution 
of the following problems is required: 

Balance problem: Rather contradictory demands are t o  
be satisfied by a signal processing programming environ- 
ment in the different phases of system development [71. 
The possible solution of the balance problem is obviously 
a compromise among different requirements. However, 
without supporting this by appropriate conceptual and 
implementational tools, the result will be time consuming 
and occasional. 
User interface problem: Programmable signal processing 
systems require (in a sense) multi-tasking and a real-time 
operating environment, which support event-driven ex- 
periment control and interactivity wi th  the user. The 
problem is that, on the one hand, it would be desirable to  
provide high level user interfaces, while on the other 
hand, high level tools may limit the appropriate applica- 
tion of the system facilities, which is not tolerable by the 
user. However, if the user interface is solved by providing 
a lower level programming language, possibly having 
real-time facilities, the user will have a programming task 
of higher complexity, which may easily reach the limits of 
his o w n  programming ability. 
System interface problem: The typical (documented) 
interfaces of the traditional signal processing develop- 
ment system are shown in Fig. 2. Difficulties arise if an 
existing signal processing system has t o  be interfaced 
wi th  other programming languages or programs (e.g., 
expert systems). 
Signal representation problem: Signal processing in- 
volves- besides numerical processing -some symbolic 
processing too (e.g., physical units transformation, deri- 
vation accounting), but  traditional tools facilitate mostly 
the numerical side of signal processing. 

As an attempt to  give a solution to  the above problems, we 
developed an experimental programming environment for 
signal processing (PESP), which gives a multi-level approach 
to  the design and implementation of various data acquisition 
and signal processing programs and measuring devices. The 
conceptual base of PESP is a description language for signal 
processing together wi th  an experiment control mechanism 
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Figure 2. Typical interfaces of traditional signal processing develop- 
ment systems. 
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Figure 3. Components of an experimental Programming Environment 
for Signal Processing (PESP). 

[81. The implementational components of PESP are shown in 
Fig. 3. 

The run-time support level constitutes background for the 
execution of the defined signal processing activity in a real- 
time environment. 

The system builder provides symbolic interface for the 
provisions of the system. Its task is threefold: 

The system builder provides tools for building a network 
from the primitives of the languages. Using this facility 
you can create signal processing instances from process- 
ing element types and connect them together by means 
of signals. 
The system builder realizes multi-level abstraction; a 
subnetwork can be "boxed-up" and after that this item 
can be used as a higher level language "primitive" (a 
new processing element type). 
The system builder facilitates the modificationlexpansion 
of the language primitives. A user written signal process- 
ing function can be "merged" wi th  the existing library, 
after that, it appears as a new language primitive. 

Based on the system builder, different types of command 
languages (shells, etc.) can be constructed. A very advanta- 
geous feature of a well-defined symbolic interface is that its 
syntax can easily be converted t o  another one (e.g., graphic 
representation, dedicated keyboard). 

A generalpurpose programming language can be integrated 
into this signal processing frame. A signal processing pro- 
gram writ ten in that language can communicate wi th  the 
implementational components of signal processing on differ- 
ent levels. I t  can directly use the element of the run-time 
support level (by means of function calls). It should be 
pointed out that in this organization even a sequential 
programming language is suitable for realizing parallel signal 
processing chains. If the programming language used com- 
municates wi th  the implementational components through 
the symbolic interface, the program has to  create the 
symbolic description of the required signal processing archi- 
tecture and pass it to  the system builder, which after 
interpretation, builds up the architecture. 

The operation of a signal processing program is based on 
accepting, producing, and processing signals according to  
the signal f low graph, which is a real-time and, in case of 
parallel branches, parallel processing task. To insure appropri- 
ate run-time behavior, signal processing is executed on the 
basis of an intermediate code. After defining the structure of 
the system, all the checkings and transformations of the 
numerical and symbolical properties of the signals can be 
carried out in advance, before starting the system. Computa- 
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tional power can thus be concentrated on pure data process- 
ing manipulations, which is not typical in conventional 
command languages for signal processing. The run-time 
support gets the description of the signal processing system 
in the form of an intermediate code from the system builder, 
and carries out all the real-time processing. The run-time 
support consists of three parts. 

The execufive reads the intermediate code, does the 
scheduling, tests the input signals if they are ready for 
processing or not, handles the control signals, and carries out 
the experimental control, the testing, and the debugging 
operations. 

The extendable signal processing library contains all the 
bodies of the processes. Each process is build up from three 
routines: a data processing routine, a routine for testing and 
transforming signal description tables, and a routine for 
testing and transforming symbolic properties. (These last t w o  
parts, in fact, could be one routine, but the implementation of 
the numerical and symbolical computation is supported by 
different tools. Here they are writ ten in different languages.) 

The ufilifies consist of four main libraries: operating system 
interface, real-time kernel, signal processing utilities, and 
symbolic package. 

The experimental version of the PESP was implemented on 
an IBM PC/AT computer using C and LISP languages. 

Signal processing systems developed using the program- 
ming environment described here can have high-level, sym- 
bolical user interfaces well suited t o  the requirements of the 
application area and the operator, both in research and 
routine measurement situations. 

INSTRUMENTS WITH REAL-TIME KNOWLEDGE 
BASED DATA PROCESSING 

These instruments can be considered as straight-forward 
extensions of instruments dedicated to  "conventional" real- 
time analytical data processing. In this case, the analytical 
data processing chain is followed by a fact generator and a 
(typically forward chaining) inference engine. 

As an early experience, we designed an intelligent EEGer 
instrument assistant [ I  31, which involves and uses some 
measurement technological knowledge. The results of the 
experience were: 

It is difficult to  build a rule base using two-valued facts 
because of the low level expressing power. 
Since these two-valued facts are produced by the fact 
generator, the modification of the knowledge base (rule 
base) usually also induces the modification of the fact 
generator. 
A s  a consequence of the varying instrument environ- 
ment, the inference engine should have fact (value) 
retraction capability. 
For the sake of focusing the searching, meta-rules should 
be used. 
Keeping the run-time on a considerably low level, rule 
compilation should not be put aside. 

The updated version of the instrument mentioned above 
has the following rule structure. 
RULE <id> AND I OR <relation> <relation> , , . 

CONCLUSION cattribute setting> 

cattribute setting> . . .  
OCTION-SET <actions to be done in case OF 

rule €iring> 

ACTION-RET <actions to he done in case OF 

retracting, 
where (relation) is a relational expression on attribute values. 
There are t w o  special actions (INCLUDE, EXCLUDE) by which 

the active set of rules can be controlled (this is the way to  
formulate meta-rules). The rule compiler determines the static 
dependency among attributes, relations, and rules. Using this 
information in the code generation phase, the number of rule 
matchings can be minimized and the propagation of the value 
retraction can be controlled. Figure 4 shows the dependency 
of the following rule set. 

RULE rl AND <relation containing attrlbute al> , tell 

<relation containing attrlbute a?> ; re12 

CONCLUSION (setting attribute ay> 

<setting attribute aS> 

RULE r2 OR <relation containing attribute al> ; re13 

<relation containing attribute a?> ; rely 

<relation containing attribute a 3  ; re15 

CONCLUSION <setting attribute a5> 

Arrows show the propagation of attribute value setting/ 
retracting. A piece of code is generated: 

for each relation to  determine the truth value of the 

for each rule t o  propagate attribute value setting 
for each rule to  propagate attribute value retraction. 

The appropriate invocation of the individual code segments 
is controlled by a small run-time system, which realizes the 
forward chaining control paradigm. 

Our rule compiler can generate C language or LISP code. 
The run-time system is writ ten in C. 

relation 

? 
w 

Figure 4. The dependency graph of the sample rule set. 

PROBLEM-ORIENTED USER INTERFACE 
The main purposes of the user interface are to  determine/ 

control the operation of the instrument (measuring system) 
and to  present the results of the data processing in a user- 
friendly way (i.e., to  support the result interpretation by 
means of showing the result set of various datahignal 
processing activities in a different point of view). 

The effects of the former to  the real-time operation and t o  
the architecture of the instrument are presented in 141 and 181. 
Here we deal wi th  the consequences of the latter. 

The model of the system measured (investigated) can be 
considered in various aspects and at different depths. This 
model should be reflected in the user interface. A given 
system parameter (which can be a result of an analytical 
signal processing activity or an inference process) may 
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belong t o  several aspects and may deliver information at 
different depths (Fig. 5). As a consequence the information 
inquiry should be organized according to  the system model. In 
this type of user interface architecture, the demand-driven 
data acquisition and processing operation mode can easily be 
integrated [ l  1 I .  This approach supports the economical 
resource management, too. It should be mentioned that the 
user interface presented can be extended with knowledge- 
based components in a straightforward way (e.g., expert 
system using backward chaining reasoning paradigm for 
automatic result interpretation). In this case, the result-set 
constitutes the dynamic data base (facts) for the interference 
system. This extension requires the modification of the 
system model component only. 

INTELLIGENT EEG RECORDING 
Our latest development in the course of medical instrument 

design is an EEG recorder having "measurement techno- 
logical intelligence," which is comparable wi th the technolog- 
ical knowledge of a well-trained human assistant. The pur- 
pose of the development was threefold: 

Automation of the recording (it is especially advanta- 
geous during the long-time-e.g., sleep-analysis peri- 
ods) 
lncreasing the reliability of the evaluation by means of 
good quality recording, and 
Supporting the physician in the long record evaluation by 
drawing hidher attention t o  the possibly abnormal record 
intervals. 

The developed device is composed of t w o  basic units. One 
of them is a traditional, although microprocessor controlled, 
programmable EEG recorder wi th  remote control facility. The 
other unit is the supervising analyzer receiving the signals 
from the recorder (Fig. 6). During the analysis, the following 
items are closely monitored: 

Amplitude conditions of the channels (average intensity, 
trends) 

DATA PROCESSING 

I - -  ----1 

Power density spectra in the common EEG bands (6,8,  a ,  

Noise spectrum of the channels. 
The results of the measurement are bound to  a set of 

attributes (e.g., representing the spectral component at the 
line frequency, the average intensity in a certain EEG channel, 
etc.). This data base can be extended wi th  the information 
resulting from other sources; non-analogue signals are also 
generated by the recorder and are directly convertable into 
two-valued attributes (e.g., paper is out, some channels 
overdriven, etc.). These attributes form the situation specific 
data structure, which the inference system operates on. 
The operation of the inference system is based upon the 
heuristic knowledge constituted from attribute relations 
(facts) and IF-THEN rules. It results in possible changing of 
the operational parameters of the recorder and/or sending 
messages t o  the operator. 

The rule manipulating strategy of the inference system is 
the common forward-chaining method 131. The inference 
process is induced by changing of a relation value and it 
continues until it runs out of the applicable rules. If no more 
rules are found, the system stops and will start again only if 
some new facts appear. For the sake of run-time efficiency, 
the direct code implementation was chosen instead of the 
more common interpretative one. In certain situations it is 
necessary to  delay the inference process (e.g., to wait until 
the filter transients settle). This problem was solved by the 
introduction of "time-dependent" facts, giving exactly the 
same event-controlled structure of the inference system as in 
the case of the facts coming directly from the measurement 
results. 

The software of the instrument was written by means of 
the real-time programming technology developed at the 
Department of Measurement and Instrument Engineering, 
Technical University of Budapest [121. Approximately 80 
percent of the program was writ ten in this high level 
language; the time critical parts were writ ten in structured 
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Figure 5. Linking user interface to data processing chains. 
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Figure 6. The signal processing scheme of the intelligent EEG recorder. 

assembly language. The whole program required 16 kbytes (3 
kbytes of this was for the rule base itself). 

CONCLUSIONS 
In this paper, some possible alternatives of system design 

methodologies have been presented, which in the authors’ 
experience seem to  be useful in the development procedure 
of fairly complex medical instruments. In addition to  analyti- 
cal and knowledge-based data processing, the requirements 
of the real-time operation are investigated wi th  the intention 
of finding admissible compromises t o  solve the implernenta- 
tion problem. 
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