
Intelligent Medical Instruments
Zoltan Papp, Gabor Peceli, Balazs Bago, and Bela Pataki
Department of Measurement and Instrument Engineering
Technical University of Budapest, Hungary

OWADAYS, the designers of computerized medical in- N struments attempt to extend the performance of the
measuring systems wi th data processing capabilities towards
intelligent reactions. These intelligent instruments can help in
monitoring, in measurement supervision, and in making
diagnoses. This paper, based on the authors' experiences in
the development of intelligent EEG recorders and analyzers,
introduces those system design methods that can contribute
to the resolution of the rather complex requirements in the
field of medical instrumentation. These requirements involve
the problems of:

Efficient implementation of conventional data processing

Efficient implementation of knowledge-based data proc-

Event-driven real-time operation
Integration of problem-oriented user-friendly user inter-
face, and
The interactions of the above elements.

In this paper, both conceptional and implementational as-
pects are investigated and illustrated by some prototyping
examples.

algorithms

essing algorithms

FUNCTIONAL AND IMPLEMENTATIONAL EXPERTISE
In order t o perform successful measurements, detailed

knowledge of the specific application field and the particular
measurement methods are prerequisite. To develop efficient
measuring instruments of any kind, knowledge of the user's
requirements and a quite general engineering background are
also needed. The t w o basic constituents of this latter
requirement are the FUNCTIONAL (measurement theoretical)
and the IMPLEMENTATIONAL (measurement technological)
EXPERTISE [l I . The background for the functional expertise
lies in measurement theory, which exposes the general
properties of the measurement process. This kind of expertise
covers the specification of the measurement environment,
information processing, and the evaluation of results. The
implementational expertise relies on metrology and the mea-
surement technology valid for the specific domain of applica-
tion.

The key issue of intelligent measuring system design is the
formulation and efficient implementation of the expertise
required. The complexity of this design procedure depends
mainly on the measurement problem at hand. In the field of
biomedicine, this complexity is considerably high, and asks
for rather careful and systematic design approaches. These
system design methods serve:

Efficient implementation of conventional data processing
algorithms
Efficient implementation of knowledge-based data proc-
essing algorithms
The efficient, event-driven real-time operating environ-
ment, and
The realization of problem-oriented user interface.

The conventional data processing algorithms (i.e., estima-
tions, decision schemes, etc.) can relatively easily be imple-
mented using well-developed methods. The knowledge-
based data processing algorithms are based on non-formal
heuristic knowledge originating mainly in professional intui-
tion and experience, but nevertheless very useful in solution

searching or for solutions wi th excessive demand for opera-
tional time and resources.

Regarding the implementation of heuristic knowledge, the
following three problems are t o be considered:

Representation of knowledge
Manipulation of the knowledge base
Integration of the knowledge base with the numerical
data base and the algorithms within the unified real-time
control structure of the measuring system 121.

The first t w o problems traditionally belong to the research
field of artificial intelligence [31, while the third one is an
emerging chapter of measuring system design. The imple-
mentation and manipulation of the knowledge base, in
general, is a task wi th significant time and resource require-
ments. Therefore, in real-time measuring systems its usage is
limited by the built-in processing capability of the measuring
devices.

In the following t w o sections, possible alternatives are
presented; first for the implementation of conventional data
processing and later for the knowledge-based data process-
ing in measuring systems operating in a real-time environ-
ment. The topic of the problem-oriented user interface is
outlined in the subsequent section. The paper ends wi th a
short presentation of an intelligent EEG recorder development
by the authors.

FIXED VERSUS RUN-TIME PROGRAMMABLE
SOFTWARE ARCHITECTURES

One of the first experiences of the authors in the field of
medical instrumentation, nearly ten years ago, was the
development of a family of somewhat intelligent medical
instruments for electrophysiological data recording and analy-
sis. This family of instruments can be characterized by multi-
channel data acquisition, feature extraction, parameter esti-
mation, and decision making capabilities, which are
connected to processing real-time events and controlled
through a problem oriented operator interface. The implemen-
tation of these functions requires considerable effort. How-
ever, similarities in data acquisition and signal processing, the
nature of concurrencies, and real-time operation promise
analogies utilizable in the design procedure -even of some-
what different instruments. This analogy is also valid for
operator interface, where convenience includes the very
same "front panel philosophy" to be applied for instruments
of the same field. These encouraging facts have initiated
steps towards standardization in several respects, such as
data acquisition, signal processing, real-time structures, and
specification methodology. By extracting the common ele-
ments, a quite general structuring of the software system is
possible, which results in a framework useful as a starting
point for further development of instruments of similar types.

In our experience, a three-level software module structure
[41 can be used. The function-independent realization of the
real-time control structure provides an instrument "frame"
on which real-time measuring instruments of various func-
tions can be built up. For the sake of wide range applicability,
the following requirements were raised against the realiza-
tion:

In the real-time structure, the elements determining the
real-time characteristics of the instrument should be
separated (e.g., priority dependent scheduling al-
gorithms). These elements should be transformed into a
form in which real-time requirements can be easily
expressed.
The real-time structure should be made modular. This

0739-5175/88/0600-0018$1.000 1988 IEEE 18 IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE JUNE 1 9 8 8

provides "tailorability"; in realization of a given instru-
ment certain elements can be omitted or new elements
can be "pasted." In the course of designing module
interfaces, an effort should be made to maximize infor-
mation hiding [5].
The module structure should be transformed into a three
level structure:
-modules for realization of real-time control structures

and its tables
-modules for realizing measuring function and user

interface
-general library modules.

Of course, there are technological aspects of the realization
of module structure. As a minimal requirement, the language
applied should incorporate tools for modular programming. In
this case, the function related to the real-time operation can
be accomplished by the explicit calling of a real-time operat-
ing system or a run-time operation system. Using a high level
real-time language, the realization can be simplified because
the elements of the access graph (process, resource, pro-
tected resource, synchronization, access rights) correspond
to the elements of the language (process type, module,
interface module, procedure declaration/calling) [61. The
structure modularized according t o foregoing requirements is
shown in Fig. 1 (the figure does not contain all the legal
accesses). The function dependent modules are shaded in the
figure. On the base of naming and access rights, the elements
of the access graph can be identified.

The main features of the module structure are:
The uppermost level contains only the "frames" of the
COMMAND DECODER and M I . . . M m processes (mea-

suring chain drivers). Having started, they immediately
enter the second level, where the function dependent
procedures (PARSER, and M 1 1 . . . Mmk) are realized.
(Of course, inside the level additional decompositions
can be performed.)
The server processes can be utilized via the MEASure-
ment CONTROL interface module. In order to provide
universal applicability, the MEASurement CONTROL
module is table driven; the CONTROL TABLE contains
parameters defining the specification of real-time opera-
tion (e.g., priority of measuring processes, type of
resources, restrictions of its utilization, etc.).
The server processes handle special hardware units, so
their algorithms depend on the measuring functions to be
implemented.
The lower level contains standardized library modules
that supply implementing instrument dependent al-
gorithms.

Using the module structure presented here, the implementa-
tion of a real-time signal processing instrument wi th interac-
tive user interface is simplified into sequential programming.

A simplified version of the above discussed software
architecture was used first in the course of the development
of an EMG analyzer and later in that of an EEG signal analyzer.
Experiences of these instrument developments have verified
the applicability of the software architecture presented. The
modularized system is easy t o manage, both in the module
implementation phase and in the system integration phase.
One of the most advantageous feature is that the various user
interfaces and measuring data processing functions can be
implemented without any modification of the instrument

. _ _ . _ _ pn*l ANSWER yHkk-1 FROCESSING ARlTHMETIC

UTILITY UTILITY LIBRARY LIBRARY

Figure 1. Module structure of a real-time signal processing medical
instrument. Circles indicate process; squares indicate software mod-
ules.

JUNE 1988 IEEE ENGINEERING IN MEDICINE A N 0 BIOLOGY MAGAZINE 19

"frame". Utilizing the frame of the EMG analyzer and the
library modules, the time needed for developing the EEG
analyzer shortened to a quarter of the time needed for the
original EMG analyzer.

Fixed software architectures, however, have several short-
comings when the flexible programmability of the measuring
device is also required. In our experience, the development of
a general purpose signal processing system showed that
conventional command languages support neither the intro-
duction of additional procedures and data structures nor the
modification of their internal real-time behavior. A thorough
investigation of these shortcomings shows that the solution
of the following problems is required:

Balance problem: Rather contradictory demands are t o
be satisfied by a signal processing programming environ-
ment in the different phases of system development [71.
The possible solution of the balance problem is obviously
a compromise among different requirements. However,
without supporting this by appropriate conceptual and
implementational tools, the result will be time consuming
and occasional.
User interface problem: Programmable signal processing
systems require (in a sense) multi-tasking and a real-time
operating environment, which support event-driven ex-
periment control and interactivity wi th the user. The
problem is that, on the one hand, it would be desirable to
provide high level user interfaces, while on the other
hand, high level tools may limit the appropriate applica-
tion of the system facilities, which is not tolerable by the
user. However, if the user interface is solved by providing
a lower level programming language, possibly having
real-time facilities, the user will have a programming task
of higher complexity, which may easily reach the limits of
his o w n programming ability.
System interface problem: The typical (documented)
interfaces of the traditional signal processing develop-
ment system are shown in Fig. 2. Difficulties arise if an
existing signal processing system has t o be interfaced
wi th other programming languages or programs (e.g.,
expert systems).
Signal representation problem: Signal processing in-
volves- besides numerical processing -some symbolic
processing too (e.g., physical units transformation, deri-
vation accounting), but traditional tools facilitate mostly
the numerical side of signal processing.

As an attempt to give a solution to the above problems, we
developed an experimental programming environment for
signal processing (PESP), which gives a multi-level approach
to the design and implementation of various data acquisition
and signal processing programs and measuring devices. The
conceptual base of PESP is a description language for signal
processing together wi th an experiment control mechanism

USER

1
USER

t + I
GENERAL PURPOSE }A,

PROGRAMMING
LANGUAGE(S) I COMMAND LANGUAGE

SIGNAL PROCESSING LIBRARY

Figure 2. Typical interfaces of traditional signal processing develop-
ment systems.

USER USER

I
USER

I I 1

GENERAL
PURPOSE rnV M A NO

LANGUAGE \ LANGUAGE

I SYSTEM BUILDER i
RUN- TlME SUPPORT

Figure 3. Components of an experimental Programming Environment
for Signal Processing (PESP).

[81. The implementational components of PESP are shown in
Fig. 3.

The run-time support level constitutes background for the
execution of the defined signal processing activity in a real-
time environment.

The system builder provides symbolic interface for the
provisions of the system. Its task is threefold:

The system builder provides tools for building a network
from the primitives of the languages. Using this facility
you can create signal processing instances from process-
ing element types and connect them together by means
of signals.
The system builder realizes multi-level abstraction; a
subnetwork can be "boxed-up" and after that this item
can be used as a higher level language "primitive" (a
new processing element type).
The system builder facilitates the modificationlexpansion
of the language primitives. A user written signal process-
ing function can be "merged" wi th the existing library,
after that, it appears as a new language primitive.

Based on the system builder, different types of command
languages (shells, etc.) can be constructed. A very advanta-
geous feature of a well-defined symbolic interface is that its
syntax can easily be converted t o another one (e.g., graphic
representation, dedicated keyboard).

A generalpurpose programming language can be integrated
into this signal processing frame. A signal processing pro-
gram writ ten in that language can communicate wi th the
implementational components of signal processing on differ-
ent levels. I t can directly use the element of the run-time
support level (by means of function calls). It should be
pointed out that in this organization even a sequential
programming language is suitable for realizing parallel signal
processing chains. If the programming language used com-
municates wi th the implementational components through
the symbolic interface, the program has to create the
symbolic description of the required signal processing archi-
tecture and pass it to the system builder, which after
interpretation, builds up the architecture.

The operation of a signal processing program is based on
accepting, producing, and processing signals according to
the signal f low graph, which is a real-time and, in case of
parallel branches, parallel processing task. To insure appropri-
ate run-time behavior, signal processing is executed on the
basis of an intermediate code. After defining the structure of
the system, all the checkings and transformations of the
numerical and symbolical properties of the signals can be
carried out in advance, before starting the system. Computa-

20 IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE JUNE 1988

tional power can thus be concentrated on pure data process-
ing manipulations, which is not typical in conventional
command languages for signal processing. The run-time
support gets the description of the signal processing system
in the form of an intermediate code from the system builder,
and carries out all the real-time processing. The run-time
support consists of three parts.

The execufive reads the intermediate code, does the
scheduling, tests the input signals if they are ready for
processing or not, handles the control signals, and carries out
the experimental control, the testing, and the debugging
operations.

The extendable signal processing library contains all the
bodies of the processes. Each process is build up from three
routines: a data processing routine, a routine for testing and
transforming signal description tables, and a routine for
testing and transforming symbolic properties. (These last t w o
parts, in fact, could be one routine, but the implementation of
the numerical and symbolical computation is supported by
different tools. Here they are writ ten in different languages.)

The ufilifies consist of four main libraries: operating system
interface, real-time kernel, signal processing utilities, and
symbolic package.

The experimental version of the PESP was implemented on
an IBM PC/AT computer using C and LISP languages.

Signal processing systems developed using the program-
ming environment described here can have high-level, sym-
bolical user interfaces well suited t o the requirements of the
application area and the operator, both in research and
routine measurement situations.

INSTRUMENTS WITH REAL-TIME KNOWLEDGE
BASED DATA PROCESSING

These instruments can be considered as straight-forward
extensions of instruments dedicated to "conventional" real-
time analytical data processing. In this case, the analytical
data processing chain is followed by a fact generator and a
(typically forward chaining) inference engine.

As an early experience, we designed an intelligent EEGer
instrument assistant [I 31, which involves and uses some
measurement technological knowledge. The results of the
experience were:

It is difficult to build a rule base using two-valued facts
because of the low level expressing power.
Since these two-valued facts are produced by the fact
generator, the modification of the knowledge base (rule
base) usually also induces the modification of the fact
generator.
A s a consequence of the varying instrument environ-
ment, the inference engine should have fact (value)
retraction capability.
For the sake of focusing the searching, meta-rules should
be used.
Keeping the run-time on a considerably low level, rule
compilation should not be put aside.

The updated version of the instrument mentioned above
has the following rule structure.
RULE <id> AND I OR <relation> <relation> , , .

CONCLUSION cattribute setting>

cattribute setting> . . .
OCTION-SET <actions to be done in case OF

rule €iring>

ACTION-RET <actions to he done in case OF

retracting,
where (relation) is a relational expression on attribute values.
There are t w o special actions (INCLUDE, EXCLUDE) by which

the active set of rules can be controlled (this is the way to
formulate meta-rules). The rule compiler determines the static
dependency among attributes, relations, and rules. Using this
information in the code generation phase, the number of rule
matchings can be minimized and the propagation of the value
retraction can be controlled. Figure 4 shows the dependency
of the following rule set.

RULE rl AND <relation containing attrlbute al> , tell

<relation containing attrlbute a?> ; re12

CONCLUSION (setting attribute ay>

<setting attribute aS>

RULE r2 OR <relation containing attribute al> ; re13

<relation containing attribute a?> ; rely

<relation containing attribute a 3 ; re15

CONCLUSION <setting attribute a5>

Arrows show the propagation of attribute value setting/
retracting. A piece of code is generated:

for each relation to determine the truth value of the

for each rule t o propagate attribute value setting
for each rule to propagate attribute value retraction.

The appropriate invocation of the individual code segments
is controlled by a small run-time system, which realizes the
forward chaining control paradigm.

Our rule compiler can generate C language or LISP code.
The run-time system is writ ten in C.

relation

?
w

Figure 4. The dependency graph of the sample rule set.

PROBLEM-ORIENTED USER INTERFACE
The main purposes of the user interface are to determine/

control the operation of the instrument (measuring system)
and to present the results of the data processing in a user-
friendly way (i.e., to support the result interpretation by
means of showing the result set of various datahignal
processing activities in a different point of view).

The effects of the former to the real-time operation and t o
the architecture of the instrument are presented in 141 and 181.
Here we deal wi th the consequences of the latter.

The model of the system measured (investigated) can be
considered in various aspects and at different depths. This
model should be reflected in the user interface. A given
system parameter (which can be a result of an analytical
signal processing activity or an inference process) may

JUNE 1988 IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE 2 1

belong t o several aspects and may deliver information at
different depths (Fig. 5). As a consequence the information
inquiry should be organized according to the system model. In
this type of user interface architecture, the demand-driven
data acquisition and processing operation mode can easily be
integrated [l 1 I . This approach supports the economical
resource management, too. It should be mentioned that the
user interface presented can be extended with knowledge-
based components in a straightforward way (e.g., expert
system using backward chaining reasoning paradigm for
automatic result interpretation). In this case, the result-set
constitutes the dynamic data base (facts) for the interference
system. This extension requires the modification of the
system model component only.

INTELLIGENT EEG RECORDING
Our latest development in the course of medical instrument

design is an EEG recorder having "measurement techno-
logical intelligence," which is comparable wi th the technolog-
ical knowledge of a well-trained human assistant. The pur-
pose of the development was threefold:

Automation of the recording (it is especially advanta-
geous during the long-time-e.g., sleep-analysis peri-
ods)
lncreasing the reliability of the evaluation by means of
good quality recording, and
Supporting the physician in the long record evaluation by
drawing hidher attention t o the possibly abnormal record
intervals.

The developed device is composed of t w o basic units. One
of them is a traditional, although microprocessor controlled,
programmable EEG recorder wi th remote control facility. The
other unit is the supervising analyzer receiving the signals
from the recorder (Fig. 6). During the analysis, the following
items are closely monitored:

Amplitude conditions of the channels (average intensity,
trends)

DATA PROCESSING

I - - ----1

Power density spectra in the common EEG bands (6,8, a ,

Noise spectrum of the channels.
The results of the measurement are bound to a set of

attributes (e.g., representing the spectral component at the
line frequency, the average intensity in a certain EEG channel,
etc.). This data base can be extended wi th the information
resulting from other sources; non-analogue signals are also
generated by the recorder and are directly convertable into
two-valued attributes (e.g., paper is out, some channels
overdriven, etc.). These attributes form the situation specific
data structure, which the inference system operates on.
The operation of the inference system is based upon the
heuristic knowledge constituted from attribute relations
(facts) and IF-THEN rules. It results in possible changing of
the operational parameters of the recorder and/or sending
messages t o the operator.

The rule manipulating strategy of the inference system is
the common forward-chaining method 131. The inference
process is induced by changing of a relation value and it
continues until it runs out of the applicable rules. If no more
rules are found, the system stops and will start again only if
some new facts appear. For the sake of run-time efficiency,
the direct code implementation was chosen instead of the
more common interpretative one. In certain situations it is
necessary to delay the inference process (e.g., to wait until
the filter transients settle). This problem was solved by the
introduction of "time-dependent" facts, giving exactly the
same event-controlled structure of the inference system as in
the case of the facts coming directly from the measurement
results.

The software of the instrument was written by means of
the real-time programming technology developed at the
Department of Measurement and Instrument Engineering,
Technical University of Budapest [121. Approximately 80
percent of the program was writ ten in this high level
language; the time critical parts were writ ten in structured

01, 02)

USER INTERFACE

t omponents

ASPECT 1

depth

hos-.-lo$!!-9:- -- I
1- - - / \

I
- - - -,L- - -

ASPECT 2

ASPECT 3

Figure 5. Linking user interface to data processing chains.

22 IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE JUNE 1988

i

Figure 6. The signal processing scheme of the intelligent EEG recorder.

assembly language. The whole program required 16 kbytes (3
kbytes of this was for the rule base itself).

CONCLUSIONS
In this paper, some possible alternatives of system design

methodologies have been presented, which in the authors’
experience seem to be useful in the development procedure
of fairly complex medical instruments. In addition to analyti-
cal and knowledge-based data processing, the requirements
of the real-time operation are investigated wi th the intention
of finding admissible compromises t o solve the implernenta-
tion problem.

REFERENCES
1.

2.

Sztipanovits J, Bourne JR: Design of Intelligent Instrumentation. Proc of
the First Conference on Artificial Applications. Denver, pp. 490-495, 1984.

Sztipanovits J. Bourne JR: Architecture of Intelligent Medical Instru-
ments. Proc o f the Annual Conference o f the IEEE Engineering in Medicine and
Biology Society. Chicago, pp. 1 132- 1 136, 1985.

3.
4.

Rich E: Arfrficial Intelligence. McGraw-Hill, 1983.
Papp 2, Bago B. Dobrowiecki T, Peceli G: Software Architecture of Real-

Time Medical Instruments. Proc of the Seventh Annual Conference o f the IEEE
Engineering in Medicine and Biology Society. Chicago, pp. 11 37-1 142, 1985.

Parnas DL: On the Criteria To Be Used in Decomposing Systems into
Modules. Comrnof theACM, 15112):1053-1058, 1972.

Wirth N: Toward a Discipline of Real-Time Programming. Comm of the
ACM, 20(8):577-583, 1977.

Kopec GE: The Integrated Signal Processing System ISP. IEEE Trans on
Acoustics, Speech and Signal Proc, 33(4):842-851, 1984.

Bago B. Papp 2 , Peceli G , Reguly 2 : A Multi-Level Signal Processing
System. Proc o f the Erghfh Annual Conference o f rhe IEEE Engineering in
Medicine and Biology Socrety. Dallas-Fort Worth, pp. 825-828, 1986.

9. Forgy CL: Rete: Fast Algorithm for the Many PatterniMany Object
Pattern Match Problem. Arfificial lntelligence, 19: 17-37, 1982.

10. Doyle J: Expert Systems and the ”Myth” of Symbolic Reasoning. IEEE
Trans. on Sofrware Engineering, 11 : 1386-1 390, 1985.

11. Biegl C, Karsai G, Sztipanovits J, Bourne J, Harrison C. Mushlin R:
Execution Environment for Intelligent Real-Time Instruments. Proc o f the Eighth
Annual Conference o f the IEEE Engineering in Medicine and Biology Sociefy.
Dallas-Fort Worth, pp. 807-810, 1986.

Bag0 E. Gerhardt T, Karsai G, Papp 2, Peceli G: Software Tools for
Medical Instruments. Proc of the Seventh Annual Conference of the IEEE
Engineering in Medicine and Biology Society. pp. 1143-1 147, 1985.

Zoltan Papp received the B.Sc., M.Sc. and
university doctoral degree in electrical engi-
neering and measurement theory from the
Technical University of Budapest, Hungary, in
1978, 1980, and 1984, respectively. He is an
assistant professor at the Technical University
of Budapest, Department of Measurement and
Instrument Engineering (from 1982). and
teaches measuring system design in under-
graduate and postgraduate courses. He is
author and coauthor of more than thirty tech-
nical articles and coauthor of a book. His

5.

6.

7.

8.

12.

research interests include real-time programming, measuring system
design and application of artificial intelligence techniques in measure-
ment technology.

Gabor Peceli received the diploma in electrical
engineering (1 9741 and university doctorate
(1979) from the Technical University of Buda-
pest, Hungary, as well as a candidate degree
in technical sciences from the Hungarian
Academy of Sciences in 1985. He is an
associate professor in the Department of Mea-
surement and Instrument Engineering, Techni-
cal University of Budapest, and teaches circuit
theory, electronic circuits, electronic measur-
ing instruments, and digital signal processing.
His research interests include network theory,

analog and digital filtering, theoretical background of digital signal
processing, and implementation of signal processing algorithms.

Balazs Bag0 received the diploma in electrical
engineering (19801 and university doctorate
(1984) from the Technical University of Buda-
pest, Hungary. He is an assistant lecturer in
the Department of Measurement and Instru-
ment Engineering at the Technical University
of Budapest (from 1982) and teaches elec-
tronical instruments, measuring system de-
sign, and real-time programming. His research
interests include measurement theory, micro-
processor-based instrumentation, parallel
computing, concurrent, real-time and system

programming.

Bela Pataki received the M.Sc. degree in
electrical engineering and measurement the-
ory from the Technical University of Budapest,
Hungary, in 1978. He worked with the Works
for Electronic Measuring Gear, Budapest. In
1982 he joined the staff of the Department of
Measurement and Instrument Engineering at
the Technical University of Budapest, as an
assistant lecturer. His research interests in-
clude measurement theory, microprocessor-
based instrumentation, and digital signal proc-
essing.

JUNE 1988 IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE 23

