
Signal Processing in Resource Insufficient Environment

Sebestyen Bartha, Zoltan Gabriel, Lajos Mezofi, Gabor Peceli
Department of Measurement and Information Systems, Budapest University of Technology and Economics, and

Embedded Information Technology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
Phone: +36 I 463-2057, fax: +36 1 463-41 12, e-mail: peceli@mit.bme.hu

Abslracf - Most embedded signal processing applications are
developed in at least hvo separate ~ t ~ g e ~ : signal-processing design
followed by its digital implementation. With such an approach
computational tasks that implement the signal processing
algorithms are usually scheduled by treating their execution times
and periods as unchangeable purameters. Task schedulability
therefore is independent of the. uctuul state of the physical
environment: it depends only on the amoant of computing
resoarces available. In embedded systems, typicully due Io power
and energV constraints, the available computing resources are
definitely limited A bener overall performance might be achieved
ifsignal-processing design and tusk scheduling are linked, and an
integrated upproach is applied. In this paper an anempt is made to
handle temporary resource insufficiency by introducing Quality-
of-Service (QoS) adaptation into signal processing. Thc approach
applied can be considered as U “never-give-up” strategp, where the
signal processing is performed in any case at the price of lower
qaality. In the proposed solation different algorithms are available
at task execution level, having different execution times and
qaality. The version to be executed is selected by the ongoing
scheduling mechanisnr. In our experimentul setup the Earliest
Deadline First (EDF) algorithm is applied for this purpose, and
different-order median-filters are utilized to illustrate the concept
of QoS adaptation in signalprocessing.

Keywords - QoS adaptation, flexible schedaling, mode adaptation,
adaptive signal processing and confrol

1. INTRODUCTION

This paper reports a recently started research and
development project aiming at flexible real-time execution
schemes and environment for embedded signal processing
and control applications. The expected output of this project
is on one hand a series of new services, which enhance the
capabilities of the latest embedded operating systems, while
on the other a new development environment, which offers

Supported in part by the DARPA’s Software-Enabled Conti
Hungarian Ministry of Education (OM-FKFP 065412000).

efficient tools and methods to prototype distributed real-time
embedded systems.

The addressed schemes can simultaneously handle hard
and soft real-time task executions, and tasks with non-critical
resource utilization. Depending on the nature of the
embedding environment the tasks can have several modes of
operation, which are expressed by different sets of periods,
execution times and deadlines. The scheduler is dynamically
informed which set is valid for the next run. The tasks may
dynamically indicate which task should be co-executed as a
direct consequence of the actual results of the control law or
signal evaluation.

For the resource insufficient situations a different
flexibility is provided. It is based on the fact that signal
processing and control law evaluation can be performed at
different QoS levels. Again the tasks have different modes of
operation, but the version to be used at a given point of
operation is selected by the scheduler based on its actual
knowledge of the available resources. Obviously the QoS
level of the overall system cannot be lowered for longer time.
It is the responsibility of the task, or of a higher lever
supervisory mechanism to counteract if a permanent QoS
degradation is observed. If the system resources are still
available, the task can limit the application of the lower QoS
levels, and implicitly force some other tasks to temporarily
reduce QoS level, if necessary. All the above concepts are
planned to be extended toward sporadic tasks, as well.

QoS adaptivity is a well-known concept in communication
engineering [I], but it is relatively new in the field of
embedded information systems. This is due to the natural
conservatism of control engineers, especially in the case of
safety critical applications [2], where the unavoidable
dependability requirements are met more easily by design-
time decisions, and typically at the price of minimum
flexibility in execution time. Quite recent research papers,
however, are arguing for the run-time QoS adaptivity of

rol Propram (AFRL contract F33615-99-C-361 I), and by the

265 0-7803-7864-4/03/$17.00 02003 IEEE.

WlSP 2003, Budnpest, Hungary * &6 September, 2003

different real-time services in embedded systems ([3]-[6]).
Such flexible embedded solutions become more and more
realistic mainly due to recent advances in microprocessor and
micro-controller technology.

The purpose of our efforts is to establish a new generation
of flexible and reliable real-time scheduling mechanisms
mainly for signal processing and control applications. These
mechanisms serve as parts of a general background
infrastructure for implementing higher-level adaptivity
services like fault adaptation, reconfigurations and mode
changes, transient management, etc. [7].

To enable experiments with an operating system having
QoS adaptive dynamic scheduler, the modification of a
simple, but efficient embedded operating system (called
gC/OS [8]) was decided. This modification is introduced in
Section I I . Section 111 is devoted to summarize the key
components of the necessary development tools, while
Section IV reports the testing of the adaptive scheduler.
Finally Section V presents some considerations and an
illustrative example concerning resource-adaptive signal
processing.

I f . ADAPTIVE DYNAMIC SCHEDULING

This section describes the parameters, the scheduling
algorithms, and the most important new functions of the
modified version of pCI0S. This software component serves
as the core part of our experimental setup.

A. Input Parameters ofthe Scheduler

The operating system uses the following task parameters:
Priority: This value sets the initial priority of tasks. Its role is
only administrative, because while running the operating
system dynamically swaps the .priorities of tasks. In the
operating system each task mnst have a valid priority, which
must be between 0 and 62 (zero being the highest).
Period The operating system can handle periodical and non-
periodical tasks. In the case of periodical tasks, this value sets
the time between two periods. It is given in operating system
time ticks (ticks). When declaring non-periodical tasks, the
period value must be zero.
Deadline: This value represents the time until which the task
must finish its actual job. It is also given in ticks and is
relative to the starting time of the task. The deadline must not
he longer than the period. but it is preferred to be shorter if
possible.
Computation time: The computation time is the time required
by the task to finish its current job. It is given in ticks and is
relative to the starting time of the task. The computation time
must not be longer than the deadline, and similarly to the
previous value it is preferred to be shorter if possible. This
also means that the computation time must be shorter than the
period. The modified operating system can handle up to three
different computation times for a task. These computation
times represent different qualities of processing, and the

operating system chooses the appropriate one according to
the current CPU load. Less than three computation times can
be set by giving zero value to the ones not needed.
Offset: The tasks do not necessarily start at the same time.
With the offset value the starting time of a task can be set.
This value is given in ticks. The offset can also have a zero
value_ which means that the task starts right when the
operating system starts.
These parameters should be given as constants in the source
code of the corresponding tasks. The operating system will
get these values via the OSTaskCreateO call, and stores them
in Task Control Blocks (TCB). As it is presented later, the
values can be set via a graphical user interface, which saves
them in the format required by the operating system.

B. Algorithms used in Scheduling

The most important algorithm used is the Earliest
Deadline First (EDF) algorithm. This algorithm - in contrast
with the original scheduler of the operating system - does not
use priorities but runs the tasks based on their deadlines. It is
always the task with the earliest deadline that is run by the
scheduler.

To be able to do so, the scheduler must sort the tasks
based on their deadlines, and choose the one with the earliest
deadline. The original version had a simple priority based
scheduler, which was not able to deal with the above
requirements. With a little modification however it is possible
to transform it into a dynamic scheduler. The scheduler must
sort the tasks based on their deadlines before scheduling. The
chosen algorithm for that was the bubble sort algorithm. In
the next step the algorithm compares the second ready to run
task with the rest, and so on. In the end the task with the
earliest deadline will also have highest priority. This means
that from here the original scheduler can be used without
modification.

The order of the tasks changes only when a new task
becomes ready to run or when the current task fmishes its job.
In these cases a rescheduling (which also means a new
sorting) is needed. In this new concept the running of a task
can be interrupted if a new task becomes ready to run with an
earlier deadline. It can be seen that the initial priorities do not
play part in the scheduling, because before the scheduler
would use them, the sorting instantly changes them. And
although the tasks have priorities, they are scheduled based
on their deadlines.

If a task has more than one computation time, the
operating system must decide which one to use. And even if
there were only one computation time it would be good to
know if there is enough CPU time available before its
deadline. The run-time'algorithm that is used to check this is
called immediately after the occurrence of a new request, and
it decides in which mode this new task should run. As a first
attempt a very simple heuristic algorithm was implemented,
which checks only a very simple necessary condition of
scheduling. As it is highlighted in Section IV, based on test

266

WlSP 2003, Budapest, Hungary - 4-6 September, 2003

results, further refinements are needed to improve the
“success rate” of the proposed adaptive dynamic scheduling
algorithm .

As a first step this algorithm collects all information about
the tasks that should start running between the current time
and the deadline of the actual task (the one whose
computation time we want to decide). It sums the
computation times of these tasks. Then it selects the latest
deadline among these tasks. If the remaining time until that
deadline is not less than the sum of the computation times of
the tasks, then the new task can run with the selected
computation time. If the sum of the computation times is
larger, then the same algorithm is replayed assuming an
execution having shorter computation time (if available). The
process goes until the task can tit into the time available.
(Using this simple algorithm the mode of the other tasks will
not be changed.) If none of the computation times can fulfill
that, then the task has to he dropped.

C. The Structure of the ModifiedpC/OS

This sub-section describes the structure of the new scheduler
(see Fig. I)_ and the most important new functions of the
modified operating system.

“”#

OSTiclilSRO: This is the interrupt handler routine that is
called whenever the computer’s hardware clock sends an
interrupt. It’s only task is to call the OSTimeTickO function.
This function makes it possible that the scheduling can be
done in real time. This function was not modified; it is in its
original state.
OSTimeTickO: This function is called after the tick of the
hardware clock. Its original function was to check whether a
task’s delay is finished or not and to increase the inner clock
of the operating system. Besides these, the function now
compares the current time with the time of the tasks’ next
run. If there is a task that should start then the function clears
the task’s suspended state and sets it as ready to run. After
this it calculates the task’s absolute deadline, that is the sum
of the current time and the task’s deadline. It is used in the
sorting of tasks based on their deadlines.
OSSchedO: This is the actual scheduler. It selects the task
with the highest priority and runs it. The only modification
that was done is that at every run it calls the function which
sorts the tasks (OSSortByDeadline()).
OSSortByDeadline(): This function sons the tasks based on
their deadlines. The algorithm used here is described in the
previous section.
OSTaskEndO: This function must be called at the end of each
task’s run. It clears the absolute deadline of the task and
suspends it. The next time the task is run will be at the time
that was set by the OSTaskStart() function.

Ill. DEVELOPMENT TOOLS

This section describes the functionality, abilities and usaxe of
the Graphical User Interface (CUI), which supports the
parameterization of the tasks, the automatic code (task-
skeleton) generation and the monitoring.

A. Description. and Usage of the GUI

The graphical planning tool is meant to aid the development
process by giving a more comfortable interface for task
parameterization, code generation and monitoring. A
screenshot of the tool can be seen on Fig. 2 Fig. 1. The structure of the modified pCiOS

OST,iMruru,: t 3 c h task has id call [his function at thc 17, .~ :,: : .. :-:-:> . :‘.I ..: :. .,. ,: ;,: . .id/ huginning of each ,li th:ir runs The tirst thin; the function * I ((k . - x . c L c
does is to calculate the time when the task starts to work next.
This is only done for periodical tasks and it is the sum of the
current time and the task’s period. Next it selects the
appropriate computation time with which the task should run.
lfthere is no computation time that would fit in the remaining
time then the task is dropped. The algorithm used here is
described in the previous section. The function returns an
integer value with the number of the computation time that
should be used (a special value, OS-TASK-DROPPED is
returned if the task is dropped).

Fig. 2. The planning tool

267

WISP 2003, Budnpest, Hungary - 4-6 September, 2003

Menus and dialogs are used to control the tool. The menu
items’ descriptions, thus the available functions of the tool
and their usage can be read below.
The actual task list can be saved or cleared, and previously
saved task lists can be loaded with the appropriate File menu
items.
View menu:

Display wrings -the displayed width of the time ticks, the
maximal displayed tick’s number, and the list of the
displayed tasks (all tasks are shown by default) can be set.
Zoom inhut - multiplyidivide the width of ticks by two.
 vie^) schedule results - the log file of the current task list’s

Task menu:
Add tusk - add a new task and set its parameters: a short
description, periodicity, number of computation time
altematives, computation times (in decreasing order),
deadline, offset and initial priority.

run (if exists) can be loaded.

Modifv tasWRemove tusk - modify or remove tasks
Generate tasks’ skeletons - generate source from the actual
parameters. This option’s further description can be found
in the automatic code generation section.

The current task list is displayed on the main canvas in a
table. Each task occupies a row. The first column contains the
parameters of the tasks in a text form ~ each parameter is
indicated with its first letter. The second column contains the
diagram of the ideal timelines of the tasks. The line’s high
state represents running state. while the low state represents
the not running state. All three computation-time versions are
displayed on the same diagram. The thick lines represent the
deadlines for the previous occurrence.
If the log file has been loaded, the first two rows of the table
show the results. The tirst row contains the system’s timeline
and the second shows the dropped tasks. The system’s
timeline is similar to the tasks’ timelines, except that all tasks
are represented in a single diagram. To be able to know
which task is currently running, the ID of the task, the chosen
computation version‘s number and the number of the current
run is written on the diagram, above or under the low-high
state transitions (syntax of the displayed text: <task
ID>.<comp. version>.(<number of run>)).

B. Automatic Code Generation

The tool can generate a C source from the actual parameters
(deadline, offset, computation times, etc.) of the planned
tasks. The source takes place in a single C tile, which
contains the skeletons of the tasks and the configuration of
the operating system.
Each task is represented with a function, which contains an
infinite loop and a four-way branch. Within this loop, one
case stands for each computation algorithm version, and one
for the case the task cannot be scheduled, thus has to be
dropped. Being a skeleton, this only contains the format
required by the operating system; the user must add the

contents of each case. The functions always contain three
cases for the different computation methods. If not all three is
needed, the computation time of the obsolete cases must be
set to zero.
The code generator writes a function for each task in the
source tile, and their parameters are written in Mefine lines.
I t also writes a main function which contains the redirection
of the interrupt vector to the pCIOS, the initialization of the
operating system, the registration of the tasks’ functions (the
OSTaskCreute function with the corresponding parameters
must he called for each task), and the calling of the OSStar-r
function which starts the operating system and never returns.
There is an option in the generation to choose between test
mode and normal source. When choosing test mode, the
source is extended, so that each task writes to a log file the
following: which computation algorithm was chosen, when it
started computing, and when it finished. The results taken
from the log file can be loaded and graphically represented on
the CUI.

C. Monitoring

The monitoringilogging functionality is vital to be able to test
the correcmess of the system. Thus, the plan tool designed for
aiding the development process also supports this
functionality. Collecting data from the running system can be
done in two ways: collecting data to a log file (and analyze
afler the system stopped) or monitoring from a separate
computer via a monitoring task. Of course each method
affects the system performance, but there are no other
efficient ways for monitoring. Currently only the first method
is supported.
The second method offers real-time monitoring, but the
collected data is the same with both methods. This includes:
the selected task‘s ID, this task’s selected algorithm’s ID, the
dropped tasks’ ID and system time. The data is drawn on a
diagram on the GUI. This diagram shows a timeline of the
system’s activity, where the line’s high state represents
activity> and the low state represents inactivity. In addition,
statistical information is calculated, such as processor usage,
ratio of dropped tasks, tasks that never get processor time,
etc. The statistics can be used to calculate optimization for
the tasks’ parameters if possible ~ for example giving
different offset to the tasks, so that processor usage, and
dropped tasks ratio improves.

IV. TESTING OF THE SCHEDULER

As it was mentioned in Section II , to demonstrate the
concept, first a very simple scheduling algorithm was
implemented. The refinement is planned to be based on the
results of intensive testing,

While we are testing, we have to verify, among others, the
following properties: the scheduler lets execute as many tasks
as possible; if a task could run in high-quality execution
mode, then it should be avoided, that the scheduler forces this

268

WlSP 2003, Budopest, Hi ingay 4 6 September, 2003

task to reduce execution time; let no task run always at the
lowest level execution mode, and so on. So we have lots of
considerations, which all need to be kept, if we want to have
a correct and near optimal scheduler for real time problems;
for this reason test vectors were constructed, which “study”.
how the scheduler behave in certain situations. Knowing
what are the optimal solutions in all situations (the test
vectors), we can compare the results of the program to our
own theoretical scheduling. If there i s a difference between
the two solutions in a testing situation. and the programs
result seems to be worse, then we have a situation. where the
scheduler doesn’t function properly. Collecting these cases,
we can locate the problems in the source code or in the used
algorithms and after that, we have to correct them.

After creating about 40 test vectors and verifying the
program, we have found some unacceptable failures, which
are not corrected yet, because they need further re-thinking of
some aspects of the scheduling. These are detailed in the
following paragraphs, and are named as: (I) local scheduling
problem, (2) ,,first tasks fa l l out” problem, (3) periodic task
problem. (4) real time scheduling problem.

Local scheduling problem means that the scheduler
examines schedulability only for a single time interval. which
i s determined by the latest deadline of one of the tasks until
all tasks ready to run must be executed (so called outer
deadline). The scheduler adds together the execution times
for every task, and if this sum is below the outer deadline,
then the scheduling can be done with these execution times,
otherwise i t must reduce the execution times or drop one ore
mare tasks. until the sum i s smaller, than the outer deadline.
The problem with this method is_ that it can happen, that in a
smaller time interval the tasks cannot be scheduled; there are
too many of them, and a l l should be executed until a special
deadline, even before the outer deadline. So some o f the tasks
cannot be scheduled, but the scheduler ”is convinced they
can. A possible solution for this can be, when we re-schedule
the tasks at each incoming task, and we always see the newest
tasks deadline as the outer deadline (it i s true, for the solution
we have to pay with time).

To illustrate the local scheduling problem lets investigate a
system consisting of 9 tasks, having execution times:
2&2,2,2,3,3.3,8 and different offsets (starting phases), which
are not detailed here. Figure 3 stands here to illustrate the
scheduling situation: task2, task8 and task9 (not indicated in
the figure) have deadlines at 22: 18_ and 22 ticks,
respectively. The sum of the execution times i s 33 ticks, but
the “last“ task should be executed at time t=32. The
implemented algorithm decides to shorten one of the tasks
with 1 tick. However, this i s not a correct solution, because
there are other critical deadlines at 18 and 22 ticks.

Another remaining problem is, that the ,,first tasks fall
out”. That is because only one task can be modified at a time,
so only one task’s execution time can be reduced in a step.
The program always starts with the first incoming tasks: these
will be changed to lower quality mode or even dropped, to
take the sum of all execution times below the outer deadline.

. .

. -._-
..____ll_..._l_ ”-

Bmsk
“.l ----____- I 1__--

Figure 3. Illustration of scheduling problems

The scheduler tries to reach a schedulable state now at the
first task, and it doesn’t realize, that a scheduling can also be
made, when we don’t harm the first task, and instead try to
change the later tasks. It i s obviously bad for us, but we will
able to replace this method with another one, which possibly
will need more processing time.

The handling of periodic tasks i s also not built in yet, but
it is only a matter of time. The current version only counts
with the first ready-to-run part of each periodic task. Here the
critical point i s to find an outer deadline, even critical if we
have more periodic tasks with different periods. But this i s a
problem can be handled if we can compute a ,.long period,
which i s the time, when we reach the starting state again with
the periodic tasks.

A fourth problem i s that the scheduler currently operates
only in a simulation environment, and therefore real-time
measurements are not available yet. Having the complete
description o f tasks, the current version o f the scheduler finds
the latest deadline of the tasks, and makes the scheduling to
this date. A real time version could make the scheduling in
any time to the latest deadline of the tasks. which have
already appeared until the passing time. What causes further
complications is, that in real time environment the scheduler
doesn’t know anything about the tasks having not showed up
yet. We need some a priori information, or the scheduler
don’t know, that at an incoming task whether it can fill in the
available time or should wait for an other task, which hasn’t
yet appeared.

V. ILLUSTRATIVE EXAMPLE

Imagine a system with different operational modes.
Figures 4-6 show signals in three operational regions, where
different processing algorithms, having different execution
times, might be required. The simple problem i s to reduce the
effect of impulse noise by median filtering. The available
computational power in the second region i s supposed to be
limited; therefore here a reduced quality median filtering i s
applied (7-points median fi lter in the first and the third
regions, while 3-points median filter in the second one).
Investigating Fig. 6 i t i s obvious, that in the second region the

269

WISP 2003, Budnpest, Hirngnry 46 September, 2003

noise reduction is almost minimum, while in the other two
quite acceptable.

The proposed QoS adaptation can be utilized with every
recursive signal-processing algorithm, which follows the so-
called prediction-correction scheme, because temporarily the
evaluation of the correction term can of lower quality without
affecting the overall performance seriously.

VI. CONCLUSIONS

The introduction of QoS adaptivity into the implementation
of signal processing and control can considerably improve
resource utilization at the prize of occasional quality
degradations. The power and energy constraints in embedded
systems ask for serious design considerations in several
respects. The proposed approach suggests a cooperative
design procedure, where signal processing and control
designs are interacting with that of resource utilization and
scheduling in hard real-time systems. An other important
aspect of the proposed contribution is, that it opens or widens
research areas in modem systems engineering, where mode
adaptation and mode control seems to be a rather promising
compromise to handle complexity and assure robustness.

REFERENCES

5c i 1 [I] M. Metso, A. Koivisto, J. Sauvola. "Multimedia
adaptation for dynamic environments" in Proc. IEEE
Signal Processing Society Workshop on Multimedia
Signal Processing, Vol. 02, pp. 203 - 208, December
1998.

[2] H. Kopetz, Real-Eme Systems: Design Principles for
Distributed Embedded Applications, Kluwer Academic
Publishers, 1997.

[3] C. Lu, J.A. Stankovic, S.H. Son. G . Tao. "Feedback
Control Real-Time Scheduling: Framework. Modeling,
and Algorithms," Real-Time Systems, Vol. 23, No. 1-2,
pp. 85-126, July-September, 2002.

[4] D. Seto, J.P. Lehoczky, L. Sha, K.G. Shin, "Trade-off
Analysis of Real-Time Control Performance and
Schedulability," Real-Time Systems, Vol. 21, No. 3, pp.
199-217, November, 2001.

., , . ,
m3

Figure 4. Sinusoidal waves in the three different operational regions

[5] R. Chandra, X. Liu, L. Sha, "On the Scheduling of
Flexible and Reliable Real-Time Control Systems,"
Real-Time Systems, Vol. 24, No. 2, pp. 153-169, March.
2nn1 Figure 5. Sinusoidal waves + impulsive noise

,l_.."l"l..l_llll".. ._._"I "I.I". [6] D.C. Schmidt, "Adaptive and Reflective Middleware for
Distributed Real-Time and Embedded Systems," in
Proceedings of the 2"d International Conference on
Embedded Sofhynre, EMSOFT'2002, (eds. A.
Sangiovanni-Vincentelli, J. Sifakis) Grenoble, France,
October 7-9,2002, Springer Verlag, pp. 282-293.

[7] G . Simon, T. Kovacshazy, G . Peceli. "Transient
Management in Recontigurable Systems," in P.
Robertson, H. Shrobe, R. Laddaga (Eds.), Se(f--Adaptive
Soffware. Lecture Notes in Computer Science, Vol.
1936, Springer, 2000.

[SI Jean Labrosse, MicroC/OS-11, The Real-Time Kernel, Znd

"*I

i
.,?

n Edition, CMP Books, 2002. URL: http://www.ucos-
i

,*i

ii.com
Figure 6. Median-filtered time-sequences in the three different

operational regions

270

http://www.ucos

