Efficient Model Transformations
by Combining Pattern Matching Strategies

Gabor Bergmann, Akos Horvath,
Istvan Rath, Daniel Varrd

Talk Overview

GT & PM
Introduction |—» overview

> Hybrid PM [—> Measurements

Fault-tolerant Systems Research Group

s Budapest University of Technology and Economics

Introduction

= Common problem to be solved by model
transformation tools:

— Efficient query and manipulation of complex graph-
based patterns

® One possible solution:
— Graph transformation

SISIELE] Fault-tolerant Systems Research Group

s Budapest University of Technology and Economics

Benchmarking

= Aim:
— systematic and reproducible measurements
— on performance
— under varying and precisely defined circumstances

m Overall goal:
— help transformation engineers in selecting tools
— serve as reference for future research

m Popular approach in different fields
- Al
— relational databases
— rule-based expert systems

<y

CISIEL=] Fault-tolerant Systems Research Group

N

Talk overview

GT & PM
Introduction —» overview

Ly Hybtid PM | —{ Measurements

& x Fault-tolerant Systems Research Group

NSNS

i

i_ﬁﬂ"’“." ‘“?-‘g = ."T‘T'@

Budapest University of Technology and Economics

schemaRef
Metamodeling g[Package} ,[Schema]._
:[Class L_tableRef
Table]:
;[Association ™ tgbleRef
— | fKeyRef _
EndPoint] ForeignKey
]columnRef
Metamodel [Attribute] '[Column]

Instance model

[jarEntry: Class] lang: Package]

[jarFile: Class]—0[jar: Package] [java: Package]

@z@\z@:@ Fault-tolerant Systems Research Group

@ Budapest University of Technology and Economics

Graph Transformation

schemaRule :schemaRef
Con: Container java: Package]_’[Schema]
T <<contains>> | NEG {NEW}
P: Package >| SN:Schema [lang: Package]
:schemaRef {NE\W} T

jar: Package

Phases of GT matching
— Pattern Matching phase
— Updating phase: delete+ create

Pattern Matching is the most critical issue from the
~ performance viewpoint (in our experience)

x@ Fault-tolerant Systems Research Group

€S

mrerdmmmd Budapest University of Technology and Economics

Pattern matching techniques

® Execution strategies
— Interpreted: AGG (Tiger), VIATRA, MOLA, Groove, ATL
e underlying PM engine

— Compiled: Fujaba, GReAT, PROGRES, Tiger, VMTS,
GrGEN.NET, ...

e directly executed as C(#) or Java code

= Algorithms
— Constraint satisfaction: AGG (Tiger)

e variables + constraints
— Local search (LS) Fujaba, GReAT, PROGRES, VIATRA,
MOLA, Groove, Tiger (Compiled), GrGEN.NET, ...

e step-by-step extension of the matching

— Incremental (INC): VIATRA, Tefkat
e Updated cache mechanism

CISIEE Fault-tolerant Systems Research Group

i Budapest University of Technology and Economics

radltlonal Local Search-based pattern
matching

m \ethod

—usually defined at design/compile time
- simple search plan

—hard wired precedence for
constraint checking
(NAC, injectivity, attribute, etc.)

e Can be done adaptively

m Good performance expected when:
—Small patterns, bound input parameters

CISIEL=] Fault-tolerant Systems Research Group

ey Budapest University of Technology and Economics

Local Search based Pattern Matching Example

[frequently used &
efficient solution

schemaRule

Con: Container Search plan
T <<contains>> | NEG Con
P: Package >| SN:Schema 1
:schemaRef <<contains>> 2
P
3
4 \ /
Constraint o
(?h.ecklln.g (NAC, Search sequenc
X injectivity, etc.) 7

order of traversal
in the search plan

Fault-tolerant Systems Research Group

Incremental Pattern Matchlng

m Goal
— Store matching sets
— Incremental update
— Fast response

m Good performance expected when:
— frequent pattern matching
— Small updates

m Possible application domain

- E.g. synchronization, constraints, model simulation,
etc.

® |n VIATRA: an adapted RETE algorithm

i : Fault-tolerant Systems Research Group

Incremental Pattern Matchlng Example

« RETE net
— nodes Intermedlate matChlngS Q » INPUT
— edge: update propagation Jpip2psletols
« Example Bl
— input: schemaRule pattern o "
P . P e e Class Schema
— pattern: contained Package p1ip2p3{ell 5
— update: new package
p1: Package ‘
T 1 2<<cont'f]1|ns;> ﬁ
p2: Package p3: Package — oz] '
schemaRef l T T |\ N;c1
: p2, s
s1:Schema c1: Class [p4: Packag% il
|} out
p1,. p3 ND3.p

CHIED

] Fault-tolerant Systems Research Group

&t
N2

¢
¢

Talk overview

GT & PM
Introduction [—» overview

! Hybrid PM | —3] Measurements

& x Fault-tolerant Systems Research Group

NSNS

i

gmm] Budapest University of Technology and Economics

Hybrld pattern matching

® |dea: combine local search-based and
incremental pattern matching

® Motivation

— Incremental PM is better for most cases, but...
e Has memory overhead!
e Has update overhead

— =2 LS might be better in certain cases

m Based on experience with a "real world”
transformation application’

"Kovacs, M., Lollini, P., Majzik, |., Bondavalli, A.: An Integrated Framework for the
Dependability Evaluation of Distributed Mobile Applications (SERENE’08)

@j : :@ Fault-tolerant Systems Research Group

mrmd Budapest University of Technology and Economics

Where LS might be better..

= Memory consumption

— RETE sizes grow roughly linearly with the model
space

— Constrained memory - trashing
m Cache construction time penalty

— RETE networks take time to construct

- ,havigation patterns” can be matched quicker by LS
® Expensive updates

— Certain patterns’ matching set is HUGE

— Depends largely on the transformation

SISIEL Fault-tolerant Systems Research Group

zammmd Budapest University of Technology and Economics

Case study: ORM Synchronization

-schemaRef
- Schema

-tableRef

. Attribute

Transformation workflow

. Attribute

:columnRef

Check Modify

Perform —== :
source Manbin source Synchronize
model PPINg model

@Z@j@j@ Fault-tolerant Systems Research Group

m Check Phase m |nitial Transformation

- Well-formedness checking — Match reusability
— Static graph structure — Unidirectional
— No model manipulation — Complex rules

— Batch like execution

m Refactoring ® Synchronization
— Single rule executed: — Match reusability
move package in the — Unidirectional
hierarchy

— Simple rules

— Manual execution _ Live execution

SISIELE] Fault-tolerant Systems Research Group

s Budapest University of Technology and Economics

Phases

m Check Phase m |nitial Transformation
— Simple patterns, looking — Processes the entire
only for the first match model (full traversal)
— INC: cache construction — Match set may not fit into
penalty high memory
— LS may be a better choice — Solution: decompose, use
LS for certain patterns
m Refactoring ® Synchronization
— Move in containment — INC significantly better (as
hierarchy: very expensive demonstrated at ICGTO08)

cache update

— LS can be significantly
better

CISIEE Fault-tolerant Systems Research Group |

Hybrld PM in the source code

@incremental

pattern orphanTable(T) = ///7 ‘\\\
{ table(T); Assign a PM implementation
ped pattern napped(T) = on a per-pattern (per-rule)
%gizggi basis = ability to fine tune
class.tableref(REFN, ¢, T); | [erformance on a very fine
bor grained level.

assoc(A);
table(T); 4///
assoc.tableRef(REFN, A, T);
} @localsearch
pattern schemaRule lhs(P) =
{
package(P);
neg pattern mapped(P, SN, REFN) = {
package(P);
schema(SN) ;
package.schemaRef (REFN, P, SN);

}

Fault-tolerant Systems Research Group

Talk overview

GT & PM
Introduction [—» overview

Ly Hybrid PM |31 Measurements

& x Fault-tolerant Systems Research Group

NSNS

i

E nvironment

® Hardware and OS
- 1.8 GHz Intel Core2 Duo
- 2048 MB RAM
- Windows XP SP3
- Sun JVM 1.6.0_02 for VIATRA

m Tool related
- VIATRAZ2 R3 Build 2009.02.03
— Standard services of the default distribution

i : Fault-tolerant Systems Research Group

el Budapest University of Technology and Economics

Composﬂe ORM Synchronization benchmark

Overall Run Time
10000000

1000000

&S
v 9INC

4/; v V- Hybrid
10000 / \
Hybrid scales

1000 better with

200 400 300 1200 1600 2 increasingly |arge
Classes [N] models! /

100000

Run Time [ms]

Fault-tolerant Systems Research Group

i Budapest University of Technology and Economics

Considerations for selecting PM strategy

®m Graph pattern static attributes
— Number of patterns
— Pattern size
— Containment constraints

® Control structures

— Parameter passing
- Usage frequencies
— Model update cost

® Model-dependent pattern characteristics
— Model statistics (instance count)

CISIEL=] Fault-tolerant Systems Research Group

Adaptlve hybrld pattern matching

m Goal: provide (semi-) automatic aid for strategy
selection

® |dea: monitor memory usage
- JVM telemetry

= Prevent heap exhaustion
— Destroy match set cache structures

- Switch to LS
execution time [s]
LS 201 77.1
INC 353 13.6
Static hybrid 220 10.9

Adaptive hybrid 235 35.7

i : Fault-tolerant Systems Research Group

s Budapest University of Technology and Economics

Further benchmarking

m Paper for a GRaBaTS 2008 special issue in
STTT09: Experimental assessment of

combining pattern matching strategies with
VIATRAZ

® |n-detail investigation
— hybrid approach
— Transformation language-level optimizations

m Optimization
— Based on experience with ICMT’09 paper

CISIEL=] Fault-tolerant Systems Research Group

crsmmmd Budapest University of Technology and Economics

AntWorId Results

Runtime Performance
Cumulative Execution Time [ms] vs. Number of Ants

256000?/ \

128008 Linear characteristic
6400C retained, slower by
32000 only a constant

16000 multlpller
8000%\' == |ncremental
40000 Solution
== Hybrid Solution
20000 == Local Search
10000 Solution
5000
2500 5000 10000 20000 40000

Number of Ants

Fault-tolerant Systems Research Group

Memory footprlnt

Memory Performance Comparison

g T MR Number of Grid Fields

600
Linear reduction in

S0 memory overhead

-

300 I\GHIGOQIUII 'Vl

Hybrid Solution

40(

s

200
100
0

5000 15000 25000 35000 45000 55000 65000
Grid Fields

Fault-tolerant Systems Research Group

s Budapest University of Technology and Economics

Optimization strategy Performance Memory footprint

LS High order polynomial Constant

Switch to INC Polynomial order reduction Linear increase with model
size

Switch to Hybrid Linear (~50%) reduction Linear (~50%) reduction

® |n short: you may get a linear decrease in
memory for a linear increase in execution time
- retains complexity class characteristics ©

: Fault-tolerant Systems Research Group

Budapest University of Technology and Economics

@Z@\Z \:@ Fault-tolerant Systems Research Group

