
Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Efficient Model Transformations
by Combining Pattern Matching Strategies

Gábor Bergmann, Ákos Horváth,
István Ráth, Dániel Varró

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Talk Overview

Introduction
GT & PM
overview

Hybrid PM Measurements

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Introduction

 Common problem to be solved by model
transformation tools:
− Efficient query and manipulation of complex graph-

based patterns
 One possible solution:
− Graph transformation

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Benchmarking

 Aim:
− systematic and reproducible measurements
− on performance
− under varying and precisely defined circumstances

 Overall goal:
− help transformation engineers in selecting tools
− serve as reference for future research

 Popular approach in different fields
− AI
− relational databases
− rule-based expert systems

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Talk overview

Introduction
GT & PM
overview

Hybtid PM Measurements

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Metamodeling

Instance model

 Package Schema

 Class
 Table

 Association

 Attribute

 ForeignKey EndPoint

 Column

schemaRef

tableRef

tableRef

fKeyRef

columnRef
Metamodel

 java: Package

 lang: Package

 jar: Package

 jarEntry: Class

 jarFile: Class

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

schemaRule

Phases of GT matching
– Pattern Matching phase
– Updating phase: delete+ create

Graph Transformation

Pattern Matching is the most critical issue from the
performance viewpoint (in our experience)

Con: Container

SN:Schema
NEG

P: Package

:schemaRef

{NEW} <<contains>>

{NEW}

 java: Package

 lang: Package

 jar: Package

 Schema

:schemaRef

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Pattern matching techniques
 Execution strategies

− Interpreted: AGG (Tiger), VIATRA, MOLA, Groove, ATL
● underlying PM engine

− Compiled: Fujaba, GReAT, PROGRES, Tiger, VMTS,
GrGEN.NET, ...
● directly executed as C(#) or Java code

 Algorithms
− Constraint satisfaction: AGG (Tiger)

● variables + constraints

− Local search (LS): Fujaba, GReAT, PROGRES, VIATRA,
MOLA, Groove, Tiger (Compiled), GrGEN.NET, ...
● step-by-step extension of the matching

− Incremental (INC): VIATRA, Tefkat
● Updated cache mechanism

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Traditional Local Search-based pattern
matching
 Method
− usually defined at design/compile time
− simple search plan
− hard wired precedence for

constraint checking
 (NAC, injectivity, attribute, etc.)
● Can be done adaptively

 Good performance expected when:
− Small patterns, bound input parameters

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Local Search based Pattern Matching Example

P

1

2

3

Search plan

Constraint
checking (NAC,
injectivity, etc.)

Search sequence

order of traversal
in the search plan

Con

schemaRule

Con: Container

SN:Schema
NEG

P: Package

:schemaRef

<<contains>>

<<contains>>

frequently used &
efficient solution

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Incremental Pattern Matching
 Goal
− Store matching sets
− Incremental update
− Fast response

 Good performance expected when:
− frequent pattern matching
− Small updates

 Possible application domain
− E.g. synchronization, constraints, model simulation,

etc.
 In VIATRA: an adapted RETE algorithm

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

INPUT
•  RETE net

–  nodes: intermediate matchings
–  edge: update propagation

•  Example
–  input: schemaRule pattern
–  pattern: contained Package
–  update: new package

Package Class

c2 c1

p1 p2
c2 c1

<<contains>>
p3, p4

NAC
p2, s1

p4
p4

p4 p4

p1 p2 p3

p4

p1, p2

p3

p4

p3, p4

Incremental Pattern Matching Example

 p3: Package

p1: Package

p2: Package

 c1: Class s1:Schema p4: Package

p1, p3

schemaRef

Schema
s1

p4

s1

out
p1, p3 p3,p4

p4

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Talk overview

Introduction
GT & PM
overview

Hybrid PM Measurements

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Hybrid pattern matching
 Idea: combine local search-based and

incremental pattern matching
 Motivation
− Incremental PM is better for most cases, but…

● Has memory overhead!
● Has update overhead

−  LS might be better in certain cases
 Based on experience with a ”real world”

transformation application1

1Kovacs, M., Lollini, P., Majzik, I., Bondavalli, A.: An Integrated Framework for the
Dependability Evaluation of Distributed Mobile Applications (SERENE’08)

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Where LS might be better…
 Memory consumption
− RETE sizes grow roughly linearly with the model

space
− Constrained memory  trashing

 Cache construction time penalty
− RETE networks take time to construct
− „navigation patterns” can be matched quicker by LS

 Expensive updates
− Certain patterns’ matching set is HUGE
− Depends largely on the transformation

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Case study: ORM Synchronization
 : Package

 : Class

: Attribute : Attribute

 : Schema

 : Table

: Column : Column

:schemaRef

:columnRef

:tableRef

:columnRef

Transformation workflow

Check
source
model

Perform
mapping

Modify
source
model

Synchronize

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Phases
 Check Phase

− Well-formedness checking
− Static graph structure
− No model manipulation

  Initial Transformation
− Match reusability
− Unidirectional
− Complex rules
− Batch like execution

 Refactoring
− Single rule executed:

move package in the
hierarchy

− Manual execution

 Synchronization
− Match reusability
− Unidirectional
− Simple rules
− Live execution

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Phases
 Check Phase

− Simple patterns, looking
only for the first match

− INC: cache construction
penalty high

− LS may be a better choice

  Initial Transformation
− Processes the entire

model (full traversal)
− Match set may not fit into

memory
− Solution: decompose, use

LS for certain patterns

 Refactoring
− Move in containment

hierarchy: very expensive
cache update

− LS can be significantly
better

 Synchronization
− INC significantly better (as

demonstrated at ICGT08)

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Assign a PM implementation
on a per-pattern (per-rule)
basis  ability to fine tune
performance on a very fine

grained level.

Hybrid PM in the source code

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Talk overview

Introduction
GT & PM
overview

Hybrid PM Measurements

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Environment
 Hardware and OS
− 1.8 GHz Intel Core2 Duo
− 2048 MB RAM
− Windows XP SP3
− Sun JVM 1.6.0_02 for VIATRA

 Tool related
− VIATRA2 R3 Build 2009.02.03
− Standard services of the default distribution

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Composite ORM Synchronization benchmark

Hybrid scales 
be-er with 

increasingly large 
models! 

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Considerations for selecting PM strategy
 Graph pattern static attributes

− Number of patterns
− Pattern size
− Containment constraints

 Control structures
− Parameter passing
− Usage frequencies
− Model update cost

 Model-dependent pattern characteristics
− Model statistics (instance count)

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Adaptive hybrid pattern matching
 Goal: provide (semi-) automatic aid for strategy

selection
  Idea: monitor memory usage

− JVM telemetry
 Prevent heap exhaustion

− Destroy match set cache structures
− Switch to LS

PM Strategy Used heap [MB] Transform phase
execution time [s]

LS 201 77.1
INC 353 13.6
Static hybrid 220 10.9
Adaptive hybrid 235 35.7

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Further benchmarking
 Paper for a GRaBaTS 2008 special issue in

STTT’09: Experimental assessment of
combining pattern matching strategies with
VIATRA2

 In-detail investigation
− hybrid approach
− Transformation language-level optimizations

 Optimization
− Based on experience with ICMT’09 paper

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

AntWorld Results

Linear characteristic
retained, slower by

only a constant
multiplier

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Memory footprint

Linear reduction in
memory overhead

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Summary

 In short: you may get a linear decrease in
memory for a linear increase in execution time
 retains complexity class characteristics 

Optimization strategy Performance Memory footprint
LS High order polynomial Constant
Switch to INC Polynomial order reduction Linear increase with model

size
Switch to Hybrid Linear (~50%) reduction Linear (~50%) reduction

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

?

