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Introduction

= Common problem to be solved by model
transformation tools:

— Efficient query and manipulation of complex graph-
based patterns

® One possible solution:
— Graph transformation
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Benchmarking

= Aim:
— systematic and reproducible measurements
— on performance
— under varying and precisely defined circumstances

m Overall goal:
— help transformation engineers in selecting tools
— serve as reference for future research

m Popular approach in different fields
- Al
— relational databases
— rule-based expert systems
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schemaRef
Metamodeling g[ Package} ,[ Schema ]._
:[ Class  L_tableRef
Table ]:
;[ Association ™ tgbleRef
— | fKeyRef _
EndPoint ] ForeignKey
]columnRef
Metamodel [ Attribute ] '[ Column ]

Instance model

[ jarEntry: Class] lang: Package ]

[ jarFile: Class ]—0[ jar: Package ] [ java: Package ]
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Graph Transformation

schemaRule :schemaRef
Con: Container java: Package ]_’[ Schema ]
T <<contains>> | NEG {NEW}
P: Package >| SN:Schema [ lang: Package]
:schemaRef {NE\W} T

jar: Package

Phases of GT matching
— Pattern Matching phase
— Updating phase: delete+ create

Pattern Matching is the most critical issue from the
~ performance viewpoint (in our experience)
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Pattern matching techniques

® Execution strategies
— Interpreted: AGG (Tiger), VIATRA, MOLA, Groove, ATL
e underlying PM engine

— Compiled: Fujaba, GReAT, PROGRES, Tiger, VMTS,
GrGEN.NET, ...

e directly executed as C(#) or Java code

= Algorithms
— Constraint satisfaction: AGG (Tiger)

e variables + constraints
— Local search (LS) Fujaba, GReAT, PROGRES, VIATRA,
MOLA, Groove, Tiger (Compiled), GrGEN.NET, ...

e step-by-step extension of the matching

— Incremental (INC): VIATRA, Tefkat
e Updated cache mechanism
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radltlonal Local Search-based pattern
matching

m \ethod

—usually defined at design/compile time
- simple search plan

—hard wired precedence for
constraint checking
(NAC, injectivity, attribute, etc.)

e Can be done adaptively

m Good performance expected when:
—Small patterns, bound input parameters
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Local Search based Pattern Matching Example

[ frequently used &
efficient solution

schemaRule

Con: Container Search plan
T <<contains>> | NEG Con
P: Package >| SN:Schema 1
:schemaRef <<contains>> 2
P
3
4 \ /
Constraint o
(?h.ecklln.g (NAC, Search sequenc
X injectivity, etc.) 7

order of traversal
in the search plan
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Incremental Pattern Matchlng

m Goal
— Store matching sets
— Incremental update
— Fast response

m Good performance expected when:
— frequent pattern matching
— Small updates

m Possible application domain

- E.g. synchronization, constraints, model simulation,
etc.

® |n VIATRA: an adapted RETE algorithm
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Incremental Pattern Matchlng Example

« RETE net
— nodes Intermedlate matChlngS Q ........................ » INPUT
— edge: update propagation Jpip2psletols
« Example Bl
— input: schemaRule pattern o "
P . P e e Class Schema
— pattern: contained Package p1ip2p3{ell 5
— update: new package
p1: Package ‘
T 1 2<<cont'f]1|ns;> ﬁ
p2: Package p3: Package — oz ] '
schemaRef l T T |\ N;c1
: p2, s
s1:Schema c1: Class [p4: Packag% il
|} out
p1,. p3 ND3.p
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Hybrld pattern matching

® |dea: combine local search-based and
incremental pattern matching

® Motivation

— Incremental PM is better for most cases, but...
e Has memory overhead!
e Has update overhead

— =2 LS might be better in certain cases

m Based on experience with a "real world”
transformation application’

"Kovacs, M., Lollini, P., Majzik, |., Bondavalli, A.: An Integrated Framework for the
Dependability Evaluation of Distributed Mobile Applications (SERENE’08)
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Where LS might be better..

= Memory consumption

— RETE sizes grow roughly linearly with the model
space

— Constrained memory - trashing
m Cache construction time penalty

— RETE networks take time to construct

- ,havigation patterns” can be matched quicker by LS
® Expensive updates

— Certain patterns’ matching set is HUGE

— Depends largely on the transformation
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Case study: ORM Synchronization

-schemaRef
- Schema

-tableRef

. Attribute

Transformation workflow

. Attribute

:columnRef

Check Modify

Perform —== :
source Manbin source Synchronize
model PPINg model
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m Check Phase m |nitial Transformation

- Well-formedness checking — Match reusability
— Static graph structure — Unidirectional
— No model manipulation — Complex rules

— Batch like execution

m Refactoring ® Synchronization
— Single rule executed: — Match reusability
move package in the — Unidirectional
hierarchy

— Simple rules

— Manual execution _ Live execution
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Phases

m Check Phase m |nitial Transformation
— Simple patterns, looking — Processes the entire
only for the first match model (full traversal)
— INC: cache construction — Match set may not fit into
penalty high memory
— LS may be a better choice — Solution: decompose, use
LS for certain patterns
m Refactoring ® Synchronization
— Move in containment — INC significantly better (as
hierarchy: very expensive demonstrated at ICGTO08)

cache update

— LS can be significantly
better
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Hybrld PM in the source code

@incremental

pattern orphanTable(T) = ///7 ‘\\\
{ table(T); Assign a PM implementation
ped pattern napped(T) = on a per-pattern (per-rule)
%gizggi basis = ability to fine tune
class.tableref(REFN, ¢, T); | [erformance on a very fine
bor grained level.

assoc(A);
table(T); 4///
assoc.tableRef(REFN, A, T);
} @localsearch
pattern schemaRule lhs(P) =
{
package(P);
neg pattern mapped(P, SN, REFN) = {
package(P);
schema(SN) ;
package.schemaRef (REFN, P, SN);

}
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E nvironment

® Hardware and OS
- 1.8 GHz Intel Core2 Duo
- 2048 MB RAM
- Windows XP SP3
- Sun JVM 1.6.0_02 for VIATRA

m Tool related
- VIATRAZ2 R3 Build 2009.02.03
— Standard services of the default distribution
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Composﬂe ORM Synchronization benchmark

Overall Run Time
10000000

1000000

&S
v 9INC

4/; v V- Hybrid
10000 / \
Hybrid scales

1000 better with
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Classes [N] models! /

100000

Run Time [ms]
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Considerations for selecting PM strategy

®m Graph pattern static attributes
— Number of patterns
— Pattern size
— Containment constraints

® Control structures

— Parameter passing
- Usage frequencies
— Model update cost

® Model-dependent pattern characteristics
— Model statistics (instance count)
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Adaptlve hybrld pattern matching

m Goal: provide (semi-) automatic aid for strategy
selection

® |dea: monitor memory usage
- JVM telemetry

= Prevent heap exhaustion
— Destroy match set cache structures

- Switch to LS
execution time [s]
LS 201 77.1
INC 353 13.6
Static hybrid 220 10.9

Adaptive hybrid 235 35.7
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Further benchmarking

m Paper for a GRaBaTS 2008 special issue in
STTT09: Experimental assessment of

combining pattern matching strategies with
VIATRAZ

® |n-detail investigation
— hybrid approach
— Transformation language-level optimizations

m Optimization
— Based on experience with ICMT’09 paper
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AntWorId Results

Runtime Performance
Cumulative Execution Time [ms] vs. Number of Ants

256000?/ \

128008 Linear characteristic
6400C  retained, slower by
32000 only a constant

16000 multlpller
8000%\' == |ncremental
40000 Solution
== Hybrid Solution
20000 == Local Search
10000 Solution
5000
2500 5000 10000 20000 40000

Number of Ants
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Memory footprlnt

Memory Performance Comparison

g T MR Number of Grid Fields
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Linear reduction in

S0 memory overhead
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Optimization strategy Performance Memory footprint

LS High order polynomial Constant

Switch to INC Polynomial order reduction  Linear increase with model
size

Switch to Hybrid Linear (~50%) reduction Linear (~50%) reduction

® |n short: you may get a linear decrease in
memory for a linear increase in execution time
- retains complexity class characteristics ©
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