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Introduction 

 Common problem to be solved by model 
transformation tools: 
− Efficient query and manipulation of complex graph-

based patterns 
 One possible solution: 
− Graph transformation 
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Benchmarking 

 Aim: 
− systematic and reproducible measurements 
− on performance 
− under varying and precisely defined circumstances 

 Overall goal: 
− help transformation engineers in selecting tools 
− serve as reference for future research 

 Popular approach in different fields 
− AI 
− relational databases 
− rule-based expert systems 
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Metamodeling 

Instance model 
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schemaRule 

Phases of GT matching 
– Pattern Matching phase 
– Updating phase: delete+ create 

Graph Transformation 

Pattern Matching is the most critical issue from the 
performance viewpoint (in our experience) 
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Pattern matching techniques 
 Execution strategies 

− Interpreted: AGG (Tiger), VIATRA, MOLA, Groove, ATL 
● underlying PM engine 

− Compiled: Fujaba, GReAT, PROGRES, Tiger, VMTS, 
GrGEN.NET, ... 
● directly executed as C(#) or Java code 

 Algorithms 
− Constraint satisfaction: AGG (Tiger) 

● variables + constraints 

− Local search (LS): Fujaba, GReAT, PROGRES, VIATRA, 
MOLA, Groove, Tiger (Compiled), GrGEN.NET, ... 
● step-by-step extension of the matching 

− Incremental (INC): VIATRA, Tefkat 
● Updated cache mechanism  
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Traditional Local Search-based pattern 
matching 
 Method 
− usually defined at design/compile time 
− simple search plan 
− hard wired precedence for  

constraint checking 
 (NAC, injectivity, attribute, etc.) 
● Can be done adaptively 

 Good performance expected when: 
− Small patterns, bound input parameters  
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Local Search based Pattern Matching Example 
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Incremental Pattern Matching 
 Goal  
− Store matching sets 
− Incremental update 
− Fast response 

 Good performance expected when:  
− frequent pattern matching 
− Small updates 

 Possible application domain   
− E.g. synchronization, constraints, model simulation, 

etc. 
 In VIATRA: an adapted RETE algorithm 
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INPUT 
•  RETE net 

–  nodes: intermediate matchings 
–  edge: update propagation 

•  Example  
–  input: schemaRule pattern 
–  pattern: contained Package 
–  update: new package 
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Hybrid pattern matching 
 Idea: combine local search-based and 

incremental pattern matching 
 Motivation 
− Incremental PM is better for most cases, but… 

● Has memory overhead! 
● Has update overhead 

−  LS might be better in certain cases 
 Based on experience with a ”real world” 

transformation application1 

1Kovacs, M., Lollini, P., Majzik, I., Bondavalli, A.: An Integrated Framework for the  
Dependability Evaluation of Distributed Mobile Applications (SERENE’08) 
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Where LS might be better… 
 Memory consumption 
− RETE sizes grow roughly linearly with the model 

space 
− Constrained memory  trashing 

 Cache construction time penalty 
− RETE networks take time to construct 
− „navigation patterns” can be matched quicker by LS  

 Expensive updates 
− Certain patterns’ matching set is HUGE 
− Depends largely on the transformation 
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Case study: ORM Synchronization 
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Phases 
 Check Phase 

− Well-formedness checking 
− Static graph structure 
− No model manipulation 

  Initial Transformation  
− Match reusability 
− Unidirectional 
− Complex rules 
− Batch like execution 

 Refactoring  
− Single rule executed: 

move package in the 
hierarchy 

− Manual execution 

 Synchronization  
− Match reusability 
− Unidirectional 
− Simple rules 
− Live execution 
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Phases 
 Check Phase 

− Simple patterns, looking 
only for the first match 

− INC: cache construction 
penalty high 

− LS may be a better choice 

  Initial Transformation 
− Processes the entire 

model (full traversal) 
− Match set may not fit into 

memory 
− Solution: decompose, use 

LS for certain patterns   

 Refactoring  
− Move in containment 

hierarchy: very expensive 
cache update 

− LS can be significantly 
better 

 Synchronization  
− INC significantly better (as 

demonstrated at ICGT08) 
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Assign a PM implementation 
on a per-pattern (per-rule) 
basis  ability to fine tune 
performance on a very fine 

grained level. 

Hybrid PM in the source code 
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Environment 
 Hardware and OS 
− 1.8 GHz Intel Core2 Duo 
− 2048 MB RAM 
− Windows XP SP3 
− Sun JVM 1.6.0_02 for VIATRA  

 Tool related 
− VIATRA2 R3 Build 2009.02.03 
− Standard services of the default distribution 
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Composite ORM Synchronization benchmark 

Hybrid scales 
be-er with 

increasingly large 
models! 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Considerations for selecting PM strategy 
 Graph pattern static attributes 

− Number of patterns 
− Pattern size 
− Containment constraints 

 Control structures 
− Parameter passing 
− Usage frequencies 
− Model update cost 

 Model-dependent pattern characteristics 
− Model statistics (instance count) 
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Adaptive hybrid pattern matching 
 Goal: provide (semi-) automatic aid for strategy 

selection 
  Idea: monitor memory usage 

− JVM telemetry 
 Prevent heap exhaustion 

− Destroy match set cache structures 
− Switch to LS 

PM Strategy Used heap [MB] Transform phase 
execution time [s] 

LS 201 77.1 
INC 353 13.6 
Static hybrid 220 10.9 
Adaptive hybrid 235 35.7 
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Further benchmarking 
 Paper for a GRaBaTS 2008 special issue in 

STTT’09: Experimental assessment of 
combining pattern matching strategies with 
VIATRA2  

 In-detail investigation 
− hybrid approach 
− Transformation language-level optimizations 

 Optimization 
− Based on experience with ICMT’09 paper 
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AntWorld Results 

Linear characteristic 
retained, slower by 

only a constant 
multiplier 
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Memory footprint 

Linear reduction in 
memory overhead 
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Summary 

 In short: you may get a linear decrease in 
memory for a linear increase in execution time 
 retains complexity class characteristics  

Optimization strategy Performance Memory footprint 
LS High order polynomial Constant 
Switch to INC Polynomial order reduction Linear increase with model 

size 
Switch to Hybrid Linear (~50%) reduction Linear (~50%) reduction 
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