
Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Efficient Model Transformations
by Combining Pattern Matching Strategies

Gábor Bergmann, Ákos Horváth,
István Ráth, Dániel Varró

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Talk Overview

Introduction
GT & PM
overview

Hybrid PM Measurements

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Introduction

 Common problem to be solved by model
transformation tools:
− Efficient query and manipulation of complex graph-

based patterns
 One possible solution:
− Graph transformation

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Benchmarking

 Aim:
− systematic and reproducible measurements
− on performance
− under varying and precisely defined circumstances

 Overall goal:
− help transformation engineers in selecting tools
− serve as reference for future research

 Popular approach in different fields
− AI
− relational databases
− rule-based expert systems

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Talk overview

Introduction
GT & PM
overview

Hybtid PM Measurements

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Metamodeling

Instance model

 Package Schema

 Class
 Table

 Association

 Attribute

 ForeignKey EndPoint

 Column

schemaRef

tableRef

tableRef

fKeyRef

columnRef
Metamodel

 java: Package

 lang: Package

 jar: Package

 jarEntry: Class

 jarFile: Class

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

schemaRule

Phases of GT matching
– Pattern Matching phase
– Updating phase: delete+ create

Graph Transformation

Pattern Matching is the most critical issue from the
performance viewpoint (in our experience)

Con: Container

SN:Schema
NEG

P: Package

:schemaRef

{NEW} <<contains>>

{NEW}

 java: Package

 lang: Package

 jar: Package

 Schema

:schemaRef

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Pattern matching techniques
 Execution strategies

− Interpreted: AGG (Tiger), VIATRA, MOLA, Groove, ATL
● underlying PM engine

− Compiled: Fujaba, GReAT, PROGRES, Tiger, VMTS,
GrGEN.NET, ...
● directly executed as C(#) or Java code

 Algorithms
− Constraint satisfaction: AGG (Tiger)

● variables + constraints

− Local search (LS): Fujaba, GReAT, PROGRES, VIATRA,
MOLA, Groove, Tiger (Compiled), GrGEN.NET, ...
● step-by-step extension of the matching

− Incremental (INC): VIATRA, Tefkat
● Updated cache mechanism

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Traditional Local Search-based pattern
matching
 Method
− usually defined at design/compile time
− simple search plan
− hard wired precedence for

constraint checking
 (NAC, injectivity, attribute, etc.)
● Can be done adaptively

 Good performance expected when:
− Small patterns, bound input parameters

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Local Search based Pattern Matching Example

P

1

2

3

Search plan

Constraint
checking (NAC,
injectivity, etc.)

Search sequence

order of traversal
in the search plan

Con

schemaRule

Con: Container

SN:Schema
NEG

P: Package

:schemaRef

<<contains>>

<<contains>>

frequently used &
efficient solution

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Incremental Pattern Matching
 Goal
− Store matching sets
− Incremental update
− Fast response

 Good performance expected when:
− frequent pattern matching
− Small updates

 Possible application domain
− E.g. synchronization, constraints, model simulation,

etc.
 In VIATRA: an adapted RETE algorithm

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

INPUT
•  RETE net

–  nodes: intermediate matchings
–  edge: update propagation

•  Example
–  input: schemaRule pattern
–  pattern: contained Package
–  update: new package

Package Class

c2 c1

p1 p2
c2 c1

<<contains>>
p3, p4

NAC
p2, s1

p4
p4

p4 p4

p1 p2 p3

p4

p1, p2

p3

p4

p3, p4

Incremental Pattern Matching Example

 p3: Package

p1: Package

p2: Package

 c1: Class s1:Schema p4: Package

p1, p3

schemaRef

Schema
s1

p4

s1

out
p1, p3 p3,p4

p4

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Talk overview

Introduction
GT & PM
overview

Hybrid PM Measurements

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Hybrid pattern matching
 Idea: combine local search-based and

incremental pattern matching
 Motivation
− Incremental PM is better for most cases, but…

● Has memory overhead!
● Has update overhead

−  LS might be better in certain cases
 Based on experience with a ”real world”

transformation application1

1Kovacs, M., Lollini, P., Majzik, I., Bondavalli, A.: An Integrated Framework for the
Dependability Evaluation of Distributed Mobile Applications (SERENE’08)

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Where LS might be better…
 Memory consumption
− RETE sizes grow roughly linearly with the model

space
− Constrained memory trashing

 Cache construction time penalty
− RETE networks take time to construct
− „navigation patterns” can be matched quicker by LS

 Expensive updates
− Certain patterns’ matching set is HUGE
− Depends largely on the transformation

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Case study: ORM Synchronization
 : Package

 : Class

: Attribute : Attribute

 : Schema

 : Table

: Column : Column

:schemaRef

:columnRef

:tableRef

:columnRef

Transformation workflow

Check
source
model

Perform
mapping

Modify
source
model

Synchronize

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Phases
 Check Phase

− Well-formedness checking
− Static graph structure
− No model manipulation

  Initial Transformation
− Match reusability
− Unidirectional
− Complex rules
− Batch like execution

 Refactoring
− Single rule executed:

move package in the
hierarchy

− Manual execution

 Synchronization
− Match reusability
− Unidirectional
− Simple rules
− Live execution

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Phases
 Check Phase

− Simple patterns, looking
only for the first match

− INC: cache construction
penalty high

− LS may be a better choice

  Initial Transformation
− Processes the entire

model (full traversal)
− Match set may not fit into

memory
− Solution: decompose, use

LS for certain patterns

 Refactoring
− Move in containment

hierarchy: very expensive
cache update

− LS can be significantly
better

 Synchronization
− INC significantly better (as

demonstrated at ICGT08)

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Assign a PM implementation
on a per-pattern (per-rule)
basis ability to fine tune
performance on a very fine

grained level.

Hybrid PM in the source code

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Talk overview

Introduction
GT & PM
overview

Hybrid PM Measurements

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Environment
 Hardware and OS
− 1.8 GHz Intel Core2 Duo
− 2048 MB RAM
− Windows XP SP3
− Sun JVM 1.6.0_02 for VIATRA

 Tool related
− VIATRA2 R3 Build 2009.02.03
− Standard services of the default distribution

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Composite ORM Synchronization benchmark

Hybrid scales 
be-er with 

increasingly large 
models! 

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Considerations for selecting PM strategy
 Graph pattern static attributes

− Number of patterns
− Pattern size
− Containment constraints

 Control structures
− Parameter passing
− Usage frequencies
− Model update cost

 Model-dependent pattern characteristics
− Model statistics (instance count)

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Adaptive hybrid pattern matching
 Goal: provide (semi-) automatic aid for strategy

selection
  Idea: monitor memory usage

− JVM telemetry
 Prevent heap exhaustion

− Destroy match set cache structures
− Switch to LS

PM Strategy Used heap [MB] Transform phase
execution time [s]

LS 201 77.1
INC 353 13.6
Static hybrid 220 10.9
Adaptive hybrid 235 35.7

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Further benchmarking
 Paper for a GRaBaTS 2008 special issue in

STTT’09: Experimental assessment of
combining pattern matching strategies with
VIATRA2

 In-detail investigation
− hybrid approach
− Transformation language-level optimizations

 Optimization
− Based on experience with ICMT’09 paper

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

AntWorld Results

Linear characteristic
retained, slower by

only a constant
multiplier

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Memory footprint

Linear reduction in
memory overhead

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

Summary

 In short: you may get a linear decrease in
memory for a linear increase in execution time
 retains complexity class characteristics

Optimization strategy Performance Memory footprint
LS High order polynomial Constant
Switch to INC Polynomial order reduction Linear increase with model

size
Switch to Hybrid Linear (~50%) reduction Linear (~50%) reduction

Budapest University of Technology and Economics

Fault-tolerant Systems Research Group

?

