
Incremental Model Queries over EMF Models ?

Gábor Bergmann1, Ákos Horváth1, István Ráth1, Dániel Varró1,
András Balogh2, Zoltán Balogh2, and András Ökrös2

1 Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Magyar tudósok krt. 2, Budapest, Hungary
fbergmann, ahorvath, rath, varrog@mit.bme.hu

2 OptxWare Research and Development LLC,
H-1137 Katona J. u. 39.

fandras.balogh, zoltan.balogh, andras.okrosg@optxware.com

Abstract. Model-driven development tools built on industry standard platforms,
such as the Eclipse Modeling Framework (EMF), heavily utilize model queries
in various activities, including model transformation, well-formedness constraint
validation and domain-specific model execution. As these queries are executed
rather frequently in interactive modeling applications, they have a significant im-
pact on the runtime performance of the tool, and also on the end user experience.
However, due to their complexity, they can be time consuming to implement and
optimize on a case-by-case basis. Consequently, there is a need for a model query
framework that combines an easy-to-use and concise declarative query formal-
ism with high runtime performance, so that even complex model queries can be
executed instantaneously, even on large models found in industrial applications.
In this paper, we propose a declarative EMF model query framework using the
graph pattern formalism as the query specification language. These graph pat-
terns describe the arrangement and properties of model elements that correspond
to, e.g. a well-formedness constraint, or an application context of a model trans-
formation rule.
For improved runtime performance, we employ incremental pattern matching
techniques: matches of patterns are stored and incrementally maintained upon
model manipulation. As a result, query operations can be executed instantly, in-
dependently of the complexity of the constraint and the size of the model. We
demonstrate our approach in an industrial (AUTOSAR) model validation context
and compare it against other solutions.

Keywords: EMF, model query, incremental pattern matching, model validation

1 Introduction

As model management platforms are gaining more and more industrial attraction, the
importance of automated model querying techniques is also increasing. Queries form

? This work was partially supported by EU projects SENSORIA (IST-3-016004), SecureChange
(ICT-FET-231101) and INDEXYS (ARTEMIS-2008-1-100021).

the underpinning of various technologies such as model transformation, code gener-
ation, domain specific behaviour simulation and model validation. In their most di-
rect application, model queries may help find violations of well-formedness constraints
of a domain-specific modeling language. Query evaluation entails a matching process,
where an automated mechanism searches for model elements conforming to the struc-
tural pattern and attribute constraints imposed by the given query.

The leading industrial modeling ecosystem, the Eclipse Modeling Framework (EMF
[1]), provides different ways to query the contents of models. These approaches range
from (1) the use of high-level declarative constraint languages (like OCL [2]) to (2) a
dedicated query language [3] resembling SQL, or, in the most basic case, (3) manually
programmed model traversal using the generic model manipulation API of EMF. How-
ever, industrial experience (including those of the authors) shows scalability problems
of complex query evaluation over large EMF models, taken e.g. from the automotive do-
main. Current practice for improving performance is manual query optimization, which
is time consuming to implement on a case-by-case basis.

A promising way to address the performance problem is incremental pattern match-
ing (INC) [4]. This technique relies on a cache which stores the results of a query ex-
plicitly. The result set is readily available from the cache at any time without additional
search, and the cache is incrementally updated whenever (elementary or transactional)
changes are made to the model. As results are stored, they can be retrieved in con-
stant time, making query evaluation extremely fast. The trade-off is increased memory
consumption, and increased update costs (due to continuous cache updates).

In the current paper, we propose EMF-INCQUERY, a framework for defining declar-
ative queries over EMF models, and executing them efficiently without manual coding.
For the query language, we reuse the concepts of graph patterns (which is a key con-
cept in many graph transformation tools) as a concise and easy way to specify complex
structural model queries. High runtime performance is achieved by adapting incremen-
tal graph pattern matching techniques.

The benefits of EMF-INCQUERY with respect to the state-of-the-art of querying
EMF models include: (i) a significant performance boost when frequently querying
complex structural patterns with a moderate amount of modifications in-between, (ii)
efficient enumeration of all instances of a class regardless of location, and (iii) simple
backwards navigation along references (these latter features address frequently encoun-
tered shortcomings of EMF’s programming interfaces). We demonstrate the advantages
of our approach over existing EMF query alternatives by conducting measurements on
a model validation case study in the context of AUTOSAR [5], an industrial standard
design platform for automotive embedded systems.

The paper is structured as follows: Section 2 introduces EMF and metamodeling,
the mathematical formalism of graph patterns and AUTOSAR. Section 3 presents our
declarative approach for queries over EMF. Section 4 elaborates the on-the-fly model
validation case study in the domain of AUTOSAR, and Section 5 conducts benchmark
measurements to assess the performance. A survey of similar tools and research is pre-
sented in Section 6. Finally, Section 7 summarizes the important points of the paper,
draws conclusions and plots some future plans.

2 Background

In order to introduce our approach, this section briefly outlines the basics of the Eclipse
Modeling Framework, graph patterns and gives a motivating example from the automo-
tive domain based on the AUTOSAR framework.

2.1 Running Example: Constraint checking in AUTOSAR models

In the current paper, we will demonstrate our model query technique by checking well-
formedness constraints over AUTOSAR models. AUTOSAR (Automotive Open Sys-
tem Architecture, [5]) is an open and standardized automotive software architecture,
jointly developed by automobile manufacturers, suppliers and tool developers. The ob-
jectives of the AUTOSAR partnership include the implementation and standardization
of basic system functions while providing a highly customizable platform which con-
tinues to encourage competition on innovative functions. The common standard should
help the integration of functional modules from multiple suppliers and increase scala-
bility to different vehicle and platform variants. It aims to be prepared for the upcoming
technologies and to improve cost-efficiency without making any compromise with re-
spect to quality.

To improve quality and reliability of electrical/electronic systems, the validation
of AUTOSAR models should be carried out in the early stages of the development
process. The standard specifies a multitude of constraints, which should be satisfied to
ensure proper functionality in this diverse environment. In this paper, we will present
three of these constraints, and define validators for each of them.

2.2 EMF and Ecore Metamodeling

ARElement

ARObject

ARPackage

FibexElement

Identifiable

+ shortName: int

PackageableElement

+subPackage 0..*

+element

0..*

Fig. 1. AUTOSAR metamodel

The Eclipse Modeling Framework (EMF [1])
provides automated code generation and tool-
ing (e.g. notification, persistence, editor) for
Java representation of models. EMF models
consist of an (acyclic) containment hierarchy
of model elements (EObjects) with references
among each other; some references may only
be traversed by programs in one direction
(unidirectional). Additionally, each object has
a number of attributes (primitive data values).
Models are stored in EResources (e.g. files),
and interrelated resources are grouped into
EResourceSets.

EMF uses Ecore metamodels to describe
the abstract syntax of a modeling language. The main elements of Ecore are the follow-
ing: EClass (represented graphically by a rectangle), EAttribute (entries in the rectan-
gle) and EReference (depicted as edges). EClasses define the types of EObjects, enu-
merating EAttributes to specify attribute types of class instances and EReferences to de-
fine association types to other EObjects. Some EReferences additionally imply contain-
ment (graphically represented by a diamond). Unidirectional references are represented

by arrows. Both ends of an association may have a multiplicity constraint attached to
them, which declares the number of objects that, at run-time, may participate in an as-
sociation. The most typical multiplicity constraints are i) the at-most-one (0..1), and (ii)
the arbitrary (denoted by *). Inheritance may be defined between classes (depicted by a
hollow arrow), which means that the inherited class has all the properties its parent has,
and its instances are also instances of the ancestor class, but it may further define some
extra features.

These concepts are illustrated by a simplified core part of the AUTOSAR [5] meta-
model (Figure 1). Note that in all metamodel figures of the paper, only relevant attributes
are depicted, but no elements are omitted from the inheritance hierarchy. Every object
in AUTOSAR is inherited from the common ARObject class. If an element has to be
identified, it has to inherit from the Identifiable class, and the shortName attribute has to
be set. ARElement is a common base class for stand-alone elements, while specializa-
tions of FibexElement represent elementary building blocks within the FIBEX package.
Instances of ARPackage class are arranged in a strict containment hierarchy by the sub-
Package association, and every PackageableElement can be aggregated by one of the
ARPackages using the element association.

2.3 Graph patterns

Fig. 2. Graph Pattern for the
ISignal consistency check

Graph patterns [6] constitute an expressive for-
malism used for various purposes in Model Driven
Development, such as defining declarative model
transformation rules, defining the behavioral se-
mantics of dynamic domain specific languages, or
capturing general purpose model queries including
model validation constraints. A graph pattern (GP)
represents conditions (or constraints) that have to
be fulfilled by a part of the instance model. A ba-
sic graph pattern consists of structural constraints
prescribing the existence of nodes and edges of a
given type. Languages usually include a way to ex-
press attribute constraints. A negative application
condition (NAC) defines cases when the original pattern is not valid (even if all other
constraints are met), in form of a negative sub-pattern. With NACs nested in arbitrary
depth, the expressive power of graph patterns is equivalent to first order logic [7]. A
match of a graph pattern is a group of model elements that have the exact same con-
figuration as the pattern, satisfying all the constraints (except for NACs, which must be
made unsatisfiable).

Figure 2 depicts a sample graph pattern CC ISignal. The structural part contains
only a single node of type ISignal, but the NAC subpattern connects this node to a Sys-
temSignal instance via an ISignal.systemSignal edge (note that some edges of that type
may connect to a SystemSignalGroup instead of a SystemSignal, so the type assertion
is relevant). Thus this graph pattern matches ISignal instances that are not connected to
a SystemSignal. This graph pattern can be used as a declarative model query, in order

to validate the model against a structural well-formedness constraint that requires each
ISignal to be connected to a SystemSignal. See Section 4 for further examples.

Model queries with graph patterns. For readers with a strong EMF background,
the idea of querying models by specifying graph patterns might not be straightforward.
The key step in understanding the concept is that graph patterns declare what arrange-
ment of elements is sought after, not how or where to find them. Each node in the
pattern represents an EObject (EMF instance object), and the type of the node identi-
fies the EClass of the object. This feature is useful to select only those model elements
that conform to a certain type. Furthermore, the pattern nodes are connected by di-
rected edges, annotated by an EReference type (or containment), to express how these
elements reference each other. Finally, attribute constraints filtering and comparing the
attributes of these elements can also be added.

3 Incremental Pattern matching over EMF models

3.1 Benefits

The aim of the EMF-INCQUERY approach is to bring the benefits of graph pattern
based declarative queries and incremental pattern matching to the EMF domain. The
advantage of declarative query specification is that it achieves (efficient) pattern match-
ing without time-consuming, manual coding effort compared to ad-hoc model traversal.
While EMF-INCQUERY is not the only technology for defining declarative queries over
EMF (EMF Query or MDT-OCL), it has a distinctive feature to offer: incremental pat-
tern matching, with its special performance characteristics suitable for scenarios such
as on-the-fly well-formedness checking. Additionally, some shortcomings of EMF are
mitigated by capabilities of EMF-INCQUERY, such as cheap enumeration of all in-
stances of a certain type regardless where they are located in the resource tree. Another
such use is the navigation of EReferences in the opposite direction, without having to
augment the metamodel with an EOpposite, which is problematic if the metamodel is
fixed, or beyond the control of the developer.

3.2 Usage

EMF-INCQUERY provides an interface for each declared pattern for (i) retrieving all
matches of the pattern, or (ii) retrieving only a restricted set of matches, by binding
(a-priori fixing) the value of one or more pattern elements (parameters).

In both cases, the query can be considered instantaneous, since the set of matches
of the queried patterns (and certain subpatterns) are automatically cached, and remain
available for immediate retrieval throughout the lifetime of the EMF ResourceSet. Even
when the EMF model is modified, these caches are continuously and automatically
kept up-to-date using the EMF Notification API. This maintenance happens without
additional coding, and works regardless how the model was modified (graphical editor,
programmatic manipulation, loading a new EMF resource, etc.).

3.3 Algorithm for Incremental Pattern Matching

EMF-INCQUERY achieves incremental pattern matching by adapting the RETE algo-
rithm, well-known in the field of rule-based systems. See [4] for the application of
RETE on graph patterns, in a model transformation context, however, only core con-
cepts could be adapted due to significant mismatch between VPM and EMF model man-
agement. The following paragraphs give an overview of the EMF specific behaviour of
RETE.

RETE network for graph pattern matching RETE-based pattern matching relies on
a network of nodes storing partial matches of a graph pattern. A partial match enumer-
ates those model elements which satisfy a subset of the constraints described by the
graph pattern. In a relational database analogy, each node stores a view. Partial matches
of a pattern are readily available at any time, and they will be incrementally updated
whenever model changes occur.

Input nodes serve as the underlying knowledge base representing a model. A RETE
input node is introduced for each EClass, to contain the instances of the class (and sub-
classes), wrapped into unary tuples. The input nodes for EReferences and EAttributes
contain all concrete occurrences of the structural feature as binary tuples (source, tar-
get). Finally, the EMF notion of containment is also represented by binary tuples in an
input node, and usable in pattern definitions.

Fig. 3. RETE matcher of CC ISignal

At each intermediate node,
set operations (e.g. filtering,
projection, join, etc.) can be ex-
ecuted on the match sets stored
at input nodes to compute the
match set which is stored at the
intermediate node. Finally, the
match set for the entire pattern
can be retrieved from the out-
put production node. An impor-
tant kind of intermediate node is
the join node, which performs a
natural join on its parent nodes
in terms of relational algebra;
whereas a anti-join node con-
tains the set of tuples stored at
the primary input which do not match any tuple from the secondary input.

Figure 3 shows a simplified RETE network matcher built for the CC ISignal pattern
(see Figure 2) illustrating the use of join nodes. It uses three input nodes, for instances
of EClass ISignal, EClass SystemSignal and EReference ISignal.systemSignal, respec-
tively. The first join node connects the latter two to find ISignal.systemSignal edges that
actually end in objects of type SystemSignal. The second intermediate node performs
an anti-join of the first input node and the previous join node, therefore containing in-
stances of ISignal that are not connected to a SystemSignal via ISignal.systemSignal.

Fig. 4. Overview of the EMF-INCQUERY approach

This is exactly the match set of pattern CC ISignal, which is stored in the production
node.

Updates after model changes Upon creation, the RETE net is registered to receive no-
tifications about all changes affecting an EMF ResourceSet, such as creation or deletion
of model elements, via a service called EContentAdapter (or similar services provided
by a transactional editing domain). Whenever receiving a notification, the input nodes
of RETE are updated. This task is not always trivial: along containment edges, entire
subtrees can be attached to an EMF Resource in one step, which requires careful traver-
sal and multiple updates of input nodes.

Each time input nodes receive notifications about an elementary model change, they
release an update token on each of their outgoing edges. Such an update token repre-
sents changes in the partial matches stored by the RETE node. Positive update tokens
reflect newly added tuples, and negative updates refer to tuples being removed from the
set. Upon receiving an update token, a RETE node determines how the set of stored
tuples will change, and release update tokens of its own to signal these changes to its
child nodes. This way, the effects of an update will propagate through the network,
eventually influencing the result sets stored in production nodes.

3.4 Architectural Overview of EMF-INCQUERY

Both the query language and the implementation of EMF-INCQUERY are adapted from
the model transformation framework VIATRA2 [8]. However, the role of VIATRA2 is
limited to the development phase, as the runtime module of EMF-INCQUERY is not

tied to it. Queries of EMF-INCQUERY can be defined by graph patterns in the transfor-
mation language [6] of VIATRA2. A generator component can be invoked to translate
them to the EMF-specific query formthat serves as the input for the EMF-based Pattern
Matcher Engine. The latter is responsible for evaluating queries over EMF Resource-
Sets, and is intended to be invoked from arbitrary Java programs.

Graph patterns suitable for the EMF conversion have to refer to the metamodel el-
ements of the relevant EMF format. Therefore VIATRA2 first needs to be aware of the
EMF metamodel (the Ecore model), which can be ensured by importing it into VIA-
TRA2’s (meta-)model representation, the VPM model space. As an additional benefit,
the development of graph pattern based queries can be eased by taking advantage of the
VIATRA2 framework. The VIATRA2 transformation interpreter shares identical func-
tional behavior with EMF-INCQUERY. Therefore VIATRA2 serves as a faithful pro-
totyping environment for graph patterns, capable of experimenting on EMF instance
models imported into its model space. See Figure 4 for a graphical overview of the
various artifacts, software modules and their relations.

4 Benchmark case study

This section presents three well-formedness constraints from the AUTOSAR standard,
which form the basis of our measurements in Section 5.

4.1 ISignal constraint check

The two metamodel elements for this constraint (SystemSignal and ISignal) are illus-
trated in Figure 5. A SystemSignal is the smallest unit of data (it is unique per System)
and it is characterized by its length (in bits). (Also two optional elements can be spec-
ified, Datatypes and DataPrototype constants, but they are not used in this example.)
An ISignal must be created for each SystemSignal (these will be the signals of the
Interaction Layer). The graph pattern representation is explained in Section 2.3.

4.2 Signal group mapping constraint check

FibexElement

ISignal

ARElement

AbstractSignal

IPdu
Identifiable

ISignalToIPduMapping

FibexElement

Pdu

SignalIPdu

SystemSignal

SystemSignalGroup

+systemSignal

0

+signal 0

+signalToPduMapping 0..*+systemSignal 0..*

Fig. 5. AUTOSAR metamodel (ISignal)

Related AUTOSAR elements
The required metamodel ele-
ments for this constraint check
are illustrated in Figure 5. A
PDU (Protocol data unit) is
the smallest information which
is delivered through a network
layer. It is an abstract element
in AUTOSAR, and has multiple
different subtypes according to
the available network layers. In this case study, we will only examine IPdus (Interaction
Layer PDU), and more precisely SignalIPdus. These SignalIPdus used to transfer ISig-
nals. The positions of these ISignals are defined by the ISignalToIPduMappings. The

ISignal can be a SystemSignal and a SystemSignalGroup as well. A signal group refers
to a set of signals that must always be kept together to ensure the atomic transfer of the
information in them.

Constraint check for signal group mapping To ensure the atomic transfer of a Sys-
temSignalGroup, we must pay attention to pack them properly into SignalIPdus. This
means, if we refer to a SignalGroup from a SignalIPdu (with an ISignalToIPduMap-
ping), then every Signal in it should be referenced as well from that IPdu. Note that
an ISignalToIPduMapping references ISignals, but as every SystemSignal and System-
SignalGroup must have an ISignal it is not a problem. This constraint formulated in a
graph pattern can be seen in Figure 6(a).

(a) Pattern to find invalid mappings (b) Pattern to find invalid physical channels

Fig. 6. Consistency check patterns

4.3 Simple PhysicalChannel consistency check

Related AUTOSAR elements To demonstrate the chosen consistency check some
additional AUTOSAR elements has to be described. These elements are illustrated by
Figure 7.

Identifiable

IPduTriggering

FibexElement

CommunicationCluster

Pdu

IPdu

FibexElement

ISignal

Identifiable

ISignalToIPduMapping

Identifiable

ISignalTriggering

Identifiable

PhysicalChannel
SignalIPdu

+signal

0

+signalToPduMapping 0..*

+signal

0

+iPdu 0

+iSignalTriggering 0..*

+iPduTriggering

0..*

+physicalChannel 0..*

Fig. 7. AUTOSAR metamodel (Channel)

In AUTOSAR, ECU (Elec-
tronic Control Unit) instances
can communicate with each
other through a communication
medium represented by a Phys-
icalChannel. Physical Channels
are aggregated by a Communi-
cationCluster, which is the main
element to describe the topo-
logical connection of communi-
cating ECUs. A Physical Chan-
nel can contain ISignalTriggering

and IPduTriggering elements. The IPduTriggering and ISignalTriggering describe the us-
age of IPdus and Signals on physical channels. ISignalTriggering defines the manner of

triggering of an ISignal on the channel, on which it is sent. IPduTriggering describes on
which channel the IPdu is transmitted.

Consistency check for physical channels The following constraint has to be satisfied
for a physical channel: if a CH PhysicalChannel contains an IPDU SignalIPdu (through
an IPduTriggering), then all of the S ISignal, contained by IPDU (through an ISignal-
ToIPduMapping), must have a related STR ISignalTriggering in the CH channel. In
other words the channel is invalid if there is at least one S ISignal that has no related
ISignalTriggering in the channel. This informal definition is formalized in Figure 6(b)
as a form of graph pattern. If the CC Channel(CH) pattern can be matched for a Physi-
cal channel CH, then it is considered to be invalid.

5 Benchmarking and Evaluation

5.1 Generating sample models for benchmarking

For a benchmarking evaluation, we designed a randomized model generator to create
sample models of increasing size. For the three constraint cases, we used two different
model families: (A) for ISignal and SSG and (B) for Channel. Both families contain
an approximately equal number of valid and invalid model elements. The size of the
sample model families ranges from a few thousand elements up to 600.000 (A) and
1.500.000 (B). A detailed description of the generation algorithm is in Appendix A.3

5.2 Benchmarking

The benchmark simulates the typical scenario of model validation. The user is working
with a large model, the modifications are small and local, but the result of the valida-
tion needs to be computed as fast as possible. To emulate this, the benchmark sequence
consists of the following sequence of operations:
(1) First, the model is loaded into memory. In the case of EMF-INCQUERY, most of the
overhead is expected to be registered in this phase, as the pattern matching cache needs
to be constructed. Note however, that this is a one-time penalty, meaning that the cache
will be maintained incrementally as long as the model is kept in memory. To highlight
this effect, we recorded the times for the loading phase separately.
(2) Next, in the first query phase, the entire matching set of the constraints is queried.
This means that a complete validation is performed on the model, looking for all ele-
ments for which the constraint is violated.
(3) After the first query, model manipulations are executed. These operations only affect
a small fixed subset of elements, and change the constraint’s validity (Appendix A.2).
(4) Finally, in the second query phase, the complete validation is performed again, to
check the net effect of the manipulation operations on the model.

3 All appendices, along with the complete source code and all test cases can be found at
http://viatra.inf.mit.bme.hu/models10

Benchmark implementations In addition to our EMF-INCQUERY-based implemen-
tation, we created two separate prototypes: a plain Java variant and an OCL variant that
uses MDT-OCL [2]. The exact versions of EMF and MDT-OCL were 2.5.0 and 1.2.0
respectively, running on Eclipse Galileo SR1 20090920-1017. We ran the benchmarks
on an Intel Core2 E8400-based PC clocked at 3.00GHz with 3.25GBs of RAM on Win-
dows XP SP3 (32 bit), using the Sun JDK version 1.6.0 17 (with a maximum heap size
of 1536 MBs). Execution times were recorded using the java.lang.System class, while
memory usage data has been recorded in separate runs using the java.lang.Runtime
class (with several garbage collector invocations to minimize the transient effects of
Java memory management). The data shown in the results correspond to the averages
of 10 runs each.

All implementations share the same code for model manipulation (implementing
the specification in Appendix A.2). They differ only in the query phases:

– The EMF-INCQUERY variant uses our API for reading the matching set of the
graph patterns corresponding to constraints. These operations are only dependent
on the size of the graph pattern and the size of the matching set itself (this is empir-
ically confirmed by the results, see Section 5.3).

– The plain Java variant performs model traversal using the generated model API of
EMF. This approach is not naive, but intuitively manually optimized based on the
constraint itself (but not on the actual structure of the model [9]).

– The OCL variant has been created by systematically mapping the contents of the
graph patterns to OCL concepts, to ensure equivalence. We did not perform any
OCL-specific optimization. The exact OCL expressions are in Appendix A.1.

To ensure the correctness of the Java implementation, we created a set of small test
models and verified the results manually. The rest of the implementations have been
checked against the Java variant as the reference, by comparing the number of valid and
invalid matches found in each round.

5.3 Analysis of the results

All relevant data recorded is shown in Figure 8. Overall, we have made the following
observations:
(1) As expected, query operations with EMF-INCQUERY are nearly instantaneous, they
only grow to measurable values when the size of the matching set is large (in the case of
large models). In contrast, query times show a polynomially increasing (with respect to
model size) characteristic, both with the pure Java and the OCL variants. As intuitively
expected, the optimized Java implementation outperforms OCL, but only by a constant
multiplier. (As there was no observable difference between the two query phases, we
show their sum in Figure 8).
(2) Although not shown in Figure 8, the times for model manipulation operations were
also measured for all variants, and found to be uniformly negligible. This is expected
since very few elements are affected by these operations, therefore the update overhead
induced by the RETE network is negligible.
(3) The major overhead of EMF-INCQUERY is registered in the resource loading times

Fig. 8. Results overview

(shown in the Res column in Figure 8). It is important to note that the loading times for
EMF itself is included in the values for EMF-INCQUERY. By looking at the values for
loading times and their trends, it can be concluded that EMF-INCQUERY exhibits a lin-
ear time increase in both benchmark types, with a factor of approximately 2 compared
to the pure EMF implementation. MDT-OCL does not cause a significant increase.
(4) The memory overhead also grows linearly with the model size, but depends also on
the complexity of the constraint itself. (More precisely, it depends on the structure of
the underlying RETE network.)

It has to be emphasized that in practical operations, the resource loading time in-
crease is not important as it occurs only once during a model editing session. So, as long
as there is enough memory, EMF-INCQUERY provides nearly instantaneous query per-
formance, independently of the complexity of the query and the contents of the model.
In certain cases, like for the SSG and ISignal benchmarks, EMF-INCQUERY is the only
variant where the query can be executed in the acceptable time range for large models
above 500000 elements, even when we take the combined times for resource loading
and query execution into consideration. On the other hand, it has to be noted that this
performance advantage is generally apparent for more complex queries, as indicated by
the figures for the Channel benchmark, where the difference remains in the range of a
few seconds even for large models.

Overall, EMF-INCQUERY suits those application scenarios very well where there
are complex queries, invoked many times, with relatively small model manipulations in-
between (like model validation for large, industrial models). Even though the memory
consumption overhead is acceptable even for large models on today’s PCs, the tech-
niques previously presented for VIATRA2 to reduce the memory footprint by using a
combination of pattern matcher implementations [9], are applicable here too (even if
their implementation will on EMF-level require some future work).

6 Related Work

Model queries over EMF There are numerous technologies for providing declarative
model queries over EMF. Here we give a brief summary of the mainstream techniques,
none of which support incremental behavior.

The project EMF Model Query [3] provides query primitives for selecting model
elements that satisfy a set of conditions; these conditions range from type and attribute
checks to enforcing similar condition checks on model elements reachable through ref-
erences. The query formalism has several important restrictions: (i) it can only describe
tree-like patterns (as opposed to graph patterns); (ii) nodes cannot be captured in vari-
ables to be referenced elsewhere in the query; and (iii) the query can only traverse uni-
directional relations in their natural direction. Indeed, the expressive power of Model
Query is intuitively similar to a formal logic belonging to a class of languages called
description logics [10], and weaker than first order logic. Therefore more complex pat-
terns involving circles of references or attribute comparisons between nodes cannot be
detected by EMF Model Query without additional coding.

EMF Search [11] is a framework for searching over EMF resources, with control-
lable scope, several extension facilities, and GUI integration. Unfortunately, only simple
textual search (for model element name/label) is available by default; advanced search
engines can be provided manually in a metamodel-specific way.

EMF-INCQUERY is not the first tool to apply graph pattern based techniques to
EMF [12, 13], but its incremental pattern matching feature is unique.

Incremental OCL evaluation approaches OCL [14] is a standardized navigation-
based query language, applicable over a range of modeling formalisms. Taking advan-
tage of the expressive features and wide-spread adoption of OCL, the project MDT
OCL [2] provides a powerful query interface that evaluates OCL expressions over EMF
models. However, backwards navigation along references can still have low perfor-
mance, and there is no support for incrementality.

Cabot et al. [15] present an advanced three step optimization algorithm for incre-
mental runtime validation of OCL constraints that ensures that constraints are reeval-
uated only if changes may induce their violation and only on elements that caused
this violation. The approach uses promising optimizations, however, it works only on
boolean constraints, therefore it is less expressive than our technique.

An interesting model validator over UML models [16] incrementally re-evaluates
constraint instances (defined in OCL or by an arbitrary validator program) whenever
they are affected by changes. During evaluation of the constraint instance, each model
access is recorded, triggering a re-evaluation when the recorded parts are changed. This
is also an important weakness: the approach is only applicable in environments where
read-only access to the model can be easily recorded, unlike EMF. Additionally, the
approach is tailored for model validation, and only permits constraints that have a single
free variable; therefore general-purpose model querying is not viable.

Incremental Model Transformation approaches The model transformation tool TefKat
includes an incremental transformation engine [17] that also achieves incremental pat-

tern matching over the factbase-like model representation of the system. The algorithm
constructs and preserves a Prolog-like resolution tree for patterns, which is incremen-
tally maintained upon model changes and pattern (rule) changes as well.

As a new effort for the EMF-based model transformation framework ATL [18],
incremental transformation execution is supported, including a version of incremental
pattern matching that incrementally re-evaluates OCL expressions whose dependencies
have been affected by the changes. The approach specifically focuses on transforma-
tions, and provides no incremental query interface as of now.

VMTS [19] uses an off-line optimization technique to define (partially) overlapping
graph patterns that can share result sets (with caching) during transformation execution.
Compared to our approach, it focuses on simple caching of matching result with a small
overhead rather than complete caching of patterns.

Giese et al. [20] present a triple graph grammar (TGG) based model synchroniza-
tion approach, which incrementally updates reference (correspondence) nodes of TGG
rules, based on notifications triggered by modified model elements. Their approach
share similarities with our RETE based algorithm, in terms of notification observing,
however, it does not provide support for explicit querying of (triple) graph patterns.

7 Conclusion and Future Work

In this paper, we presented EMF-INCQUERY as the next evolutionary step in efficiently
executing complex queries over EMF models by adapting on incremental graph pattern
matching technology [4]. However, due to the significant mismatch between EMF and
VPM model representation and management (unidirectionally navigable graph model
stored in multiple files vs. bidirectionally navigable graph model with multiple typing
stored in a single resource of the model space), we could actually reuse only the core
concepts of RETE networks from our previous results [4, 9], and we had to build an
incremental solution specific to EMF technology, which is the scope of our paper.

The main lesson we learned from our experiments is that query evaluation should
be tailored to the designated application scenario. We have specifically targeted EMF-
INCQUERY to support the fast evaluation of complex model queries. Due to the fun-
damentals of the technology, this works best in the case of interactive applications,
where the model modification operations are small (with respect to the size of the en-
tire model). Our results have confirmed the high performance of our implementation,
but also the fact that the designer needs to keep the memory impact in mind. Practical
applications of this technology include on-the-fly model validation, interactive execu-
tion of domain-specific languages, incremental model synchronization and incremental
maintenance of (aggregated) model views for development tool environments.

As future work, we intend to work on further automatic optimization, since, as with
every declarative query formalism, there is always room for improvement. In the case
of our RETE engine, this optimization targets the construction of the cache network,
based on the pattern and the contents of the model itself. Additionally, we plan to work
on integration with OCL as a query specification language. As it has been shown [21], a
significant subsection of OCL can be mapped to the graph pattern formalism, especially
if the pattern language is augmented with cardinality expressions.

References

1. The Eclipse Project: Eclipse Modeling Framework. http://www.eclipse.org/emf.
2. The Eclipse Project: MDT OCL. http://www.eclipse.org/modeling/mdt/?project=

ocl.
3. The Eclipse Project: EMF Model Query. http://www.eclipse.org/modeling/emf/

?project=query.
4. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in the

VIATRA model transformation system. In Karsai, G., Taentzer, G., eds.: Graph and Model
Transformation (GraMoT 2008), ACM (2008)

5. AUTOSAR Consortium: The AUTOSAR Standard. http://www.autosar.org/.
6. Varró, D., Balogh, A.: The Model Transformation Language of the VIATRA2 Framework.

Science of Computer Programming 68(3) (October 2007) 214–234
7. Rensink, A.: Representing first-order logic using graphs. In: International Conference on

Graph Transformations (ICGT), LNCS 3256, Springer (2004) 319–335
8. Fault Tolerant System Research Group at BME: VIATRA2 - VIsual Automated model

TRAnsformations, URL: http://wiki.eclipse.org/VIATRA2.
9. Bergmann, G., Horváth, A., Ráth, I., Varró, D.: Efficient model transformations by com-

bining pattern matching strategies. In: Proc. of ICMT’09, 2nd Intl. Conference on Model
Transformation, Springer (2009)

10. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: The
description logic handbook: theory, implementation, and applications. Cambridge University
Press, New York, NY, USA (2003)

11. The Eclipse Project: EMFT Search. http://www.eclipse.org/modeling/emft/
?project=search.

12. Biermann, E., Ermel, C., Taentzer, G.: Precise semantics of emf model transformations by
graph transformation. In: MoDELS ’08: Proceedings of the 11th international conference on
Model Driven Engineering Languages and Systems, Springer-Verlag (2008) 53–67

13. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by interpreting
story diagrams. In Magaria, T., Padberg, J., Taentzer, G., eds.: Proceedings of GT-VMT
2009. Volume 18., Electronic Communications of the EASST (0 2009)

14. The Object Management Group: Object Constraint Language, v2.0. (May 2006) http:
//www.omg.org/spec/OCL/2.0/.

15. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual schemas. J.
Syst. Softw. 82(9) (2009) 1459–1478

16. Groher, I., Reder, A., Egyed, A.: Incremental consistency checking of dynamic constraints.
In: Fundamental Approaches to Software Engineering (FASE 2009). Volume 6013 of Lecture
Notes in Computer Science., Springer (2010) 203–217

17. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the evolution
of model-driven systems. In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Proc. of
the 9th International Conference on Model Driven Engineering Languages and Systems.
Volume 4199 of LNCS., Genova, Italy (2006) 321–335

18. Jouault, F., Tisi, M.: Towards incremental execution of ATL transformations. In: Proc. of
ICMT’10, 3rd Intl. Conference on Model Transformation, Springer (2010) To appear.

19. Mészáros, T., et al.: Manual and automated performance optimization of model transforma-
tion systems. Software Tools for Technology Transfer (2010) To appear.

20. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model syn-
chronization. Software and Systems Modeling (SoSyM) 8(1) (3 2009)

21. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted OCL con-
straints into graph constraints for generating meta model instances by graph grammars. Elec-
tron. Notes Theor. Comput. Sci. 211 (2008) 159–170

A Appendix

A.1 OCL Representation of the ISignal, Channel and SSG AUTOSAR
validation rules

The current appendix describes the OCL constraints as used in the Eclipse MDT-OCL
framework to validate our benchmark case studies.

– The OCL expression for the ISignal constraint
context ISignal inv CC_ISignal:
self.systemSignal ->isEmpty()

Listing 1.1. OCL invariants of the ISignal validation expression

– The OCL expression for the Signal group mapping constraint (SSG)
context ISignalToIPduMapping inv CC_SSG_1:
SystemSignalGroup.allInstances()
-> exists(ssp|ssp.systemSignal
-> exists(ssc|ssc=self.signal.systemSignal)

and self.eContainer().oclAsType(SignalIPdu).signalToPduMapping
-> forAll(mp|mp.signal.systemSignal <>ssp))

Listing 1.2. OCL invariants of the SSG validation expression

– The OCl expression for the Simple Physical Channel consistency (Channel)
context PhysicalChannel inv CC_Channel:
self.iPduTriggering
-> exists(itr|itr.iPdu.oclAsType(SignalIPdu).signalToPduMapping
-> exists(map|self.iSignalTriggering
-> forAll(str|str.signal <>map.signal)))

Listing 1.3. OCL invariant of the Channel validation expression

A.2 Model Generation for the AUTOSAR case study

The current appendix summarizes how the models used in our benchmarks were gener-
ated along with the modification of the model for the constraint reevaluation.

SSG and ISignal - Model Family A As a first step, the model generator creates an
ARPackage element which contains all the generated models. Next, a constant number
of SignalIpdus are created, with each containing a fixed number of blocks. These blocks,
in turn, may contain four combinations of elements (the generator picks all combination
types with equal probability):

– In the first case, an ISignalToIPduMapping, which correctly refers an ISignal. This
ISignal instance may, in approximately half of the overall cases, not contain a Sys-
temSignal, which constitutes a match where the constraint of Section 4.1 is violated,
however the constraint of Section 4.2 still holds. In the other half of the cases, this
ISignal does have a SystemSignal, so it will correctly match against both the pattern
shown in Section 4.1 and Section 4.2.

All other cases only concern the constraint of Section 4.2, the pattern of Section 4.1
will match correctly against them.

– In the second case, the block contains two instances of ISignalToIPduMapping,
which correspond to a correct match for Section 4.2 (a SystemSignalGroup contain-
ing a SystemSignal, both have an ISignal, referred by the ISignalToIPduMappings).

The last two cases correspond to violated constraint matches for Section 4.2.
– The third block type corresponds to the case where a ISignalToIPduMapping is cre-

ated along with a SystemSignal and a SystemSignalGroup, but only the SystemSig-
nal is connected to the mapping through an ISignal.

– The third block type corresponds to the case where a ISignalToIPduMapping is cre-
ated along with a SystemSignal and a SystemSignalGroup, but only the SystemSig-
nalGroup is connected to the mapping through an ISignal.

Channel consistency checking - Model Family B The model generator creates a Com-
municationCluster instance, containing a fixed number of PhysicalChannels. Each of
these refer to a random number of IPduTriggering elements containing a SignalIPdu.
In turn, each of the SignalIPdus contain a random number of ISignalToIPduMappings
containing an ISignal. Finally, the generator, in approximately half of the cases, cre-
ates a valid configuration by instantiating the ISignalTriggering element connecting the
Channel and ISignal. In the other half of the cases, this element is omitted to make the
Channel invalid in terms of the constraint described in Section 4.3.

Model manipulation operations We define the model manipulation sequences as fol-
lows:

– for the ISignal case (Section 4.1), the manipulator randomly picks 10 ISignal in-
stances, deletes their corresponding systemSignal edge (if present).

– for the SSG case (Section 4.2), the manipulator randomly picks 10 SignalIPdus,
and deletes their first mapping (this may cause new invalid locations, or also valid
ones).

– for the Channel case (Section 4.3), the manipulator randomly picks 5 ISignals, and
”inverts” the validity of the match by either deleting the ISignalTriggering connec-
tion (if it was present) or creating a new one to the appropriate Channel (if not
present).

