
A Benchmark Evaluation of Incremental Pattern
Matching in Graph Transformation

Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar Tudósok krt. 2.
bergmann.gabor@gmail.com

{rath, ahorvath,varro}@mit.bme.hu

Abstract. In graph transformation, the most cost-intensive phase of a transfor-
mation execution is pattern matching, where those subgraphs of a model graph
are identified and matched which satisfy constraints prescribed by graph patterns.
Incremental pattern matching aims to improve the efficiency of this critical step
by storing the set of matches of a graph transformation rule and incrementally
maintaining it as the model changes, thus eliminating the need of recalculating
existing matches of a pattern. In this paper, we propose benchmark examples
where incremental pattern matching is expected to have advantageous effect in
the application domain of model simulation and model synchronization. More-
over, we compare the incremental graph pattern matching approach of VIATRA2
with advanced non-incremental local-search based graph pattern matching ap-
proaches (as available in VIATRA2 and GrGen).
Keywords: incremental graph pattern matching, RETE, benchmarking

1 Introduction

Incremental graph pattern matching approaches [17, 1, 2] have recently become a hot
topic in the graph transformation community. The core guideline is to improve the exe-
cution time of the time-consuming pattern matching phase by additional memory con-
sumption. Essentially, the (partial) matches of the left-hand side (LHS) of graph trans-
formation rules are stored explicitly, and these match sets are updated incrementally
in accordance with elementary model changes. While model manipulation becomes
slightly more complex, all matches of a graph pattern can be retrieved in constant time
in exchange by eliminating the need for recomputing existing matches.

Up to now, the performance evaluation of such incremental graph pattern matching
approaches have been limited to dedicated benchmark examples, all of which were
characterized by traditional, batch-like execution strategy.

In the current paper, we first propose two benchmark examples where an incremen-
tal pattern matching strategy appears to be very beneficial: (i) in the simulation exam-
ple, enabled transitions of a Petri net are maintained in an incremental way, while (ii) in
the model synchronization example, an object-relational mapping is carried out where
changes in the source UML model are propagated incrementally to the corresponding
relational database model.



In addition, we evaluate the performance of incremental graph transformation en-
gine of the VIATRA2[1] framework on various benchmark examples. A full-fledged
comparison is provided with respect to the non-incremental version [3] of the VIATRA2
engine, furthermore, an initial comparison is provided with GrGEN.NET [4], which is
currently considered to be the fastest graph transformation engine.

The rest of the paper is structured as follows. Section 2 briefly introduces model
simulation captured by graph transformation rules, which serves as one of the bench-
marks presented in the paper. In Sec. 3, incremental graph pattern matching approach
is overviewed, which was implemented in the VIATRA2 framework. As the main con-
tribution, novel benchmark examples are presented in Sec. 4 for model simulation and
model synchronization with performance evaluation discussed in Sec. 5. Finally, Sec. 6
summarizes the related work and Sec. 7 concludes the paper.

2 Foundations of model simulation

This section overviews the foundations of modeling language specification and simu-
lation. In order to specify the abstract syntax of the modeling language, the concept of
metamodeling is used. For simulating the behaviour of models, the paradigm of graph
transformation [5] is applied.

2.1 Running example: Simulation of Petri nets

In the current paper, we will use the simulation of Petri nets as one of our performance
benchmarks for incremental pattern matching. We will use the same example to demon-
strate the technicalities of incremental pattern matching in graph transformation tools.

Petri nets (Fig. 1) are widely used to formally cap-

Fig. 1. A sample Petri net.

ture the dynamic semantics of concurrent systems due
to their easy-to-understand visual notation and the wide
range of available analysis tools. Petri nets are bipar-
tite graphs, with two disjoint sets of nodes: Places and
Transitions. Places may contain an arbitrary number
of Tokens. A token distribution (marking) defines the
state of the modelled system. The state of the net can

be changed by firing enabled transitions. A transition is enabled if each of its input
places contains at least one token and no place connected with an inhibitor arc contains
a token (if no arc weights are considered). When firing a transition, we remove a token
from all input places (connected to the transition by Input Arcs) and add a token to all
output places (as defined by Output Arcs).

2.2 Foundations of metamodeling

A metamodel describes the abstract syntax of a modeling language. Formally, it can be
represented by a type graph. Nodes of the type graph are called classes. A class may
have attributes that define some kind of properties of the specific class. Inheritance may
be defined between classes, which means that the inherited class has all the properties

2



its parent has, but it may further contain some extra attributes. Associations define con-
nections between classes. Both ends of an association may have a multiplicity constraint
attached to them, which declares the number of objects that, at run-time, may partici-
pate in an association. The most typical multiplicity constraints are i) the at-most-one
(0..1), and (ii) the arbitrary (denoted by *). A simple Petri net metamodel is shown in
Fig. 2.

The instance model (or, formally, an instance

Fig. 2. Petri net metamodel.

graph) describes concrete systems defined in a
modeling language and it is a well-formed in-
stance of the metamodel. Nodes and edges are
called objects and links, respectively. Objects and
links are the instances of metamodel level classes
and associations, respectively. Attributes in the
metamodel appear as slots in the instance model.
Inheritance in the instance model imposes that in-

stances of the subclass can be used in every situation, where instances of the superclass
are required.

2.3 Graph patterns and graph transformation

Graph patterns are frequently considered as the atomic units of model transformations
[6]. They represent conditions (or constraints) that have to be fulfilled by a part of the
instance model in order to execute some manipulation steps on the model. A basic
graph pattern consists of graph elements corresponding to the metamodel. A negative
application condition (NAC), defined by a negative subpattern, prescribes contextual
conditions for the original pattern which are forbidden in order to find a successful
match. Negative conditions can be embedded into each other in an arbitrary depth (e.g.
negations of negations), where the expressiveness of such patterns converges to first
order logic [7].

As an example, the firing enabledness condition for a Petri net transition may be
expressed using a graph pattern as shown in Fig. 3 using the VIATRA2 notation. This
pattern uses nested negative application conditions to express that a Transition is en-
abled if every input Place instance connected to the Transition instance has at least

pattern isTransitionFireable(Transition) ={
transition(Transition);
neg pattern notFireable_fl(Transition) =
{
place(Place);
outArc(OutArc , Place , Transition);
neg pattern placeToken(Place) =
{

token(Token);
tokens(X, Place , Token);

}
}

}

Fig. 3. Petri-net firing condition

3



one Token instance associated and no inhibitor input Place instance contains tokens. In
this example, embedded NACs are used to express universal quantification with double
negation of existence.

Graph transformation (GT) [8] provides a high-level rule and pattern-based ma-
nipulation language for graph models. Graph transformation rules can be specified by
using a left-hand side – LHS (or precondition) pattern determining the applicability of
the rule, and a right-hand side – RHS (postcondition) pattern which declaratively speci-
fies the result model after rule application. Elements that are present only in (the image
of) the LHS are deleted, elements that are present only in the RHS are created, and other
model elements remain unchanged. For instance, a GT rule may specify how to remove
(or add) a token from a place, as shown in Fig. 4.

// Removes a token from the place ’Place’.
gtrule removeToken(in Place , in Transition) = {
precondition find sourcePlaceWithToken

(Transition , Place , Token);
postcondition find sourcePlaceWithoutToken

(Transition , Place , Token);
}
// Adds a token from the place ’Place’.
gtrule addToken(in Place , in Transition) = {
precondition find targetPlaceWithoutToken

(Transition , Place , Token);
postcondition find targetPlaceWithToken

(Transition , Place , Token);
}

Fig. 4. Graph transformation rules for firing a transition

Complex model transformation can be assembled from elementary graph patterns
and graph transformation rules using some kind of control language. In our examples,
we use abstract state machine (ASM) [9] for this purpose as available in the VIATRA2
framework. The following transformation (which will be used as a benchmark example
in Sec. 4.1) simulates the firing of a transition, i.e. the removal of tokens from input
places and the addition of tokens to output places (see Fig. 5).

rule fireTransition(in T) = seq {
/* perform a check to confirm that the transition is fireable */
if (find isTransitionFireable(T))
seq
{/* remove tokens from all input places */
forall Place with find inputPlace(T, Place)
do apply removeToken(T, Place); // GT rule invocation

/* add tokens to all output places */
forall Place with find outputPlace(T, Place)
do apply addToken(T, Place);

}
}

Fig. 5. Transformation program for firing a transition

4



3 RETE-based Incremental Graph Pattern Matching

The incremental graph pattern matcher of the VIATRA2 framework [1] adapts the RETE
algorithm, which is a well-known technique in the field of rule-based systems.

RETE network for graph pattern matching. RETE-based pattern matching relies on a
network of nodes storing partial matches of a graph pattern. A partial match enumerates
those model elements which satisfy a subset of the constraints described by the graph
pattern. In a relational database analogy, each node stores a view. Matches of a pat-
tern are readily available at any time, and they will be incrementally updated whenever
model changes occur.

Input nodes serve as the underlying knowledge base representing a model. There is
a separate input node for each entity type (class), containing a view representing all the
instances that conform to the type. Similarly, there is an input node for each relation
type, containing a view consisting of tuples with source and target in addition to the
identifier of the edge instance.

At each intermediate node, set opera-

Fig. 6. Simple RETE matcher

tions (e.g. filtering, projection, join, etc.)
can be executed on the match sets stored
at input nodes to compute the match set
which is stored at the intermediate node.
The match set for the entire pattern can be
retrieved from the output production node.
A intermediate node of a RETE is the join
node, which performs a natural join on its
input nodes in terms of relational algebra.
A negative node contains the set of tuples
stored at the primary input which do not
match any tuple from the secondary input
(which corresponds to anti-joins in rela-
tional databases).

Updates after model changes. Input nodes receive notifications about each elementary
model change (i.e. when a new model element is created or deleted) and release an
update token on each of their outgoing edges. Such an update token represents changes
in the partial matches stored by the RETE node. Positive update tokens reflect newly
added tuples, and negative updates refer to tuples being removed from the set.

Upon receiving an update token, a RETE node determines how the set of stored
tuples will change, and release update tokens of its own to signal these changes to its
child nodes. This way, the effects of an update will propagate through the network,
eventually influencing the result sets stored in production nodes.

The match set can be retrieved from the network instantly without re-computation,
which makes pattern matching very efficient. As a trade-off, there is increased memory
consumption, and update operations become more complex.

5



4 Benchmarks for Incremental Graph Transformation

In the paper, we propose two new benchmark problems as an extension to the Varro
benchmarks [10]. From a problem-specific viewpoint, they address two important ap-
plication scenarios, namely, model simulation and model synchronization, which were
only partially covered in [10]. Moreover, from a tool-oriented viewpoint, they provide
the first test sets for the “as-long-as-possible” optimization strategy, which was not mea-
sured up to now. Finally, the change propagation scenario in model synchronization is
a highly realistic challenge for model transformation tools.

4.1 Simulation Scenario based on Petri net firing

Description. We selected the Petri net benchmark for the scenario of simulation of
visual languages with dynamic operational semantics. This scenario summarizes typical
domain specific language simulation with the following characteristics: (i) mostly static
graph structure, (ii) relatively small and local model manipulations, and (iii) typical
as-long-as-possible (ALAP) execution mode. This benchmark focuses on the effective
reusability of already matched elements as typical firing of a transition only involves
a small part of the net. While an incremental pattern matcher can track the changes of
the Petri net and updates only the involved sub-matchings, non-incremental local search
based approaches will have to restart the matching from scratch after the net changed.

Test case generation. In the Petri net test set, we selected “regular” Petri nets as test
cases, which are generated automatically. Here regular means that the number of places
and transitions are approximately equal (where their exact ratio is around 1.1). Fur-
thermore, the net has only a low number of tokens, and thus, there are few fireable
transitions in each marking.

To generate the elements of the test set we used six re-

PD

Paradigm 
Features Petri Net
LHS size small
fan-out small

matchings
transformation 

sequence 
length

Small/ 
Long 

Fig. 7. Feature matrix of
Petri Net benchmark

duction operations (in the inverse direction to increase the
size of the net) which are described in [11] as means to
preserve safety and liveness properties of the net. These
operations are combined with a weighted random oper-
ation selection. This allows fine parametrization of the num-
ber of transitions and places with an average fan-out of 3-5
incoming and outgoing edges. In all test cases, the gener-
ation started from the Petri net depicted in Fig. 1 (which is

trivially a live net) and the final test graphs are available in PNML [12] format at [13].
As the size of a Petri net cannot be described by only a single parameter we used the
number of property preserving we applied to indicate the relative ”size” of test cases.

Execution phases. A step in the iterative execution sequence contains two phases: (i)
a fireable transition is non-deterministically selected by pattern isTransitionFireable
(Fig. 3) and then (ii) the GT rules addToken and removeToken are applied to simulate
the token flow (Fig. 4).

Despite its simple execution semantics, it is easy to derive additional Petri nets as
new benchmark scenarios with significantly different run-time characteristics for the

6



different graph transformation tools. For example, a Petri net with an equal number of
transitions, places and tokens but with few fireable transitions can be used as a bench-
mark where type-based optimization strategies of pattern matcher algorithms are neu-
tralized, which forces the pattern matchers to use other heuristics.

Note that the only assumption we made on our Petri net test cases is to use live
and bounded nets to have a potentially unbounded execution sequence. We selected
1000 consecutive transition firings as Short execution sequences and 1000000 transition
firings as Long execution sequences.

For this benchmark, we compared the total execution time of the simulation se-
quences. As the actually firing transitions are non-deterministically selected by the
tools, we allowed the pattern matchers to select their own execution paths, but this
turned out to have only insignificant effects on execution times.

Characteristics. In order to give a comparable description of our proposed benchmarks
with the ones defined in [10] we also use feature matrices to describe the characteristics
of the new test sets. The definition of the features are the following:

– Pattern size, or the number of nodes and edges in the LHS graph, is a critical factor
in the runtime phase ofpattern matching.

– The maximum degree of nodes (fan-out) in the model is the number of edges that
are adjacent to a certain node.

– The third feature is the number of matches during the test case execution.
– The length of the transformation sequence also affects the overall execution time.

For example, with large number of rule applications, the relative cost of one-time
overhead of the pattern matcher is decreased.

Fig. 7 presents the feature matrix describing the the Petri net test case. Note that if
the characteristics of a feature depends on the concrete parameter settings of the test
case, then it is called parameter dependent (marked PD).

4.2 Model Synchronization Scenario by Object-Relational Mapping

Description. The Object-to-Relational schema mapping (ORM) benchmark, as pre-
sented in the current paper, is an extension of the original benchmark proposed in Sec.4
of [10]. The original transformation processed UML class diagrams to produce corre-
sponding relational database schemas, according to the known mapping rules. Since a
straightforward application of the incremental pattern matching approach is the syn-
chronization between source and target models, we extended the benchmark by two
additional sequences: (i) after the initial mappings are created, the source models are
modified, and, in an additional pass, (ii) the system has to synchronize the changes to
the target model (i.e. find the changes in the source and alter the target accordingly).
A local seach-based algorithm has to search for the changes first, while an incremental
pattern matcher can track changes in the source model so that the model parts affected
are instantly available for the synchronization sequence.

7



Fig. 8. Generated UML class
diagram for N=K=2.

Test case generation. In order to produce sufficiently
large model graphs for the measurements, we imple-
mented a simple generator as described in [10]. By this
approach, a fully connected graph is created, i.e. for N
UML classes, N(N− 1) directed associations are de-
fined (with each association represented as three nodes
– an association node and two endpoints). Addition-
ally, each UML class can reference K attributes, thus,
for a given N and K, N + 3N(N−1)+ NK nodes and
4N(N−1)+NK edges are created (Fig. 8). Although
the model produced is not “realistic” in the sense that
very few practical UML class diagrams are fully con-
nected, the method is quite efficient in creating large graphs quickly.

Execution phases. The transformation sequence is comprised of four main phases:

1. The generation phase creates the model graph.
2. The build phase maps creates the initial mapping of the UML model into the rela-

tional schema domain, with reference models connecting mapped model objects.
3. The modification phase modifies the UML models programmatically to emulate

user editing actions.
4. Finally, the synchronization phase locates the affected model elements and makes

changes in the schema model accordingly.

Characteristics. For this benchmark, we compare the execution times for the last (syn-
chronization) phase. In order to scale the synchronization sequence as the model size
grows, we designed the modification sequence to extend roughly linearly with the
model. Thus, in the default case, it is composed of the following operations: (i) first,
one third of generated classes, along with their attributes and referenced associations
are deleted; (ii) then, one fifth of remaining associations are deleted; (iii) next, every
second attribute is renamed; (iv) finally, a new class is added and a new fully connected
graph is created (with the remaining UML classes and the newly added class as nodes,
ignoring existing associations). The feature matrix based on the notation in Sec. 4.1 is
shown in Fig. 9.

Fig. 9. Feature matrix for
the ORM benchmark

Transformation rules for synchronization. In incremental
synchronization, to avoid rebuilding target models in each
pass, a reference model is used to establish a mapping re-
lationship between source and corresponding target model
elements (Fig. 10). With correspondence edges, it is possi-
ble to track changes in both the source and target models:
for instance, the graph pattern on Fig. 11 matches tables
in the schema model which are no longer referenced by
classes or associations in the UML models (orphan tables).

Similarly, a newly created class may be matched by a
negative condition forbidding the existence of a mapped table. Renames (value changes)

8



Fig. 10. Reference metamodel

pattern orphanTable(T) =
{

table(T);
neg pattern mapped(T) =
{

class(C);
table(T);
class.tableRef(_REFN , C, T);

} or {
association(A);
table(T);
association.tableRef(_REFN , A, T);

}
}

Fig. 11. Graph pattern for orphan tables

may be expressed e.g. by matching for both the attribute and the mapped column, and
looking for pairs where the name (attribute value) is different. The modification se-
quence results in the following synchronization sequence: (i) all orphan tables belong-
ing to the deleted classes and their associations are deleted; (ii) all orphan tables belong-
ing to the deleted assocuations are deleted; (iii) column names mapped to the renamed
attributes are changed; (iv) new tables are added for the newly created class and the new
associations.

5 Measurement Results

The measurements reported in this paper have been carried out on a standard desktop
computer with a 2 GHz Intel Core2 processor with 2 gigabytes of system RAM avail-
able, running version 1.6.0 05 of the 32-bit Sun Java SE Runtime (for VIATRA2) and
version 3.0 of the .NET Framework on Windows Vista (for GrGEN.NET). In general,
ten test runs were executed, and the results were calculated by averaging the values
excluding the highest and lowest number. The transformation sequences were coded so
that little or no output was generated; in the case of VIATRA2, we refrained from dis-
abling the GUI. Execution times were measured with millisecond precision as allowed
by the operating system calls.

5.1 Distributed Mutual Exclusion Algorithm

In order to compare the pattern matcher algorithms used in this paper with an already
available benchmark, we evaluated the performance of the VIATRA2 local search based
(VIATRA/LS) and incremental (VIATRA/RETE) pattern matchers along with the Gr-
GEN.NET with the distributed mutual exclusion algorithm test set defined in [10] which
is not a primary application filed for incremental pattern matching.

The results are shown in Fig. 12 with logarithmically scaled axes, where the size
of the process ring represents the number of processes in the run, which is, in turn, the
runtime parameter for the test case. We can make the following observations: (i) the
scaling complexity is a high order polynomial for VIATRA/LS and close to linear for
VIATRA/RETE and linear for GrGEN.NET; (ii) this test set seems to fit better for op-
timized local search based approaches as incremental caching of non-reuseable model

9



100 1000 10000 100000
100

1000

10000

100000

1000000

STS Mutex Benchmark

VIATRA/RETE
VIATAR/LS
GrGen.Net

Size of the process ring [node count]

E
xe

cu
tio

n 
tim

e 
[m

s]

100 1000 10000 100000
100

1000

10000

100000

1000000

STS Mutex Benchmark

VIATRA/RETE
VIATRA/LS
GrGen.Net

Size of the process ring [node count]

E
xe

cu
tio

n 
tim

e 
[m

s]

Fig. 12. Results for the STS mutex benchmark

elements produced in the second phase increases the overhead of the cache synchro-
nization. Additionally, by looking at memory consumption figures, it can be seen that
the static graph structure limits the memory overhead to the same order of magnitude
for VIATRA/RETE and GrGEN.NET.

5.2 Simulation of Petri nets

The Petri net synchronization benchmark was executed with short (1000) and long
(1000000) execution sequences.

Fig. 13. Size of test cases

The size parameters of the nets used as test
cases are depicted in Fig. 13. Net size represents
the number of randomly applied inverse property
preserving operations used during their genera-
tion, while Places, Transitions and Tokens repre-
sent their actual number. The results are shown
in Fig. 14 with logarithmically scaled axes, where
model size indicates the net size of the test case.

As it can be seen from the graph, VIATRA/RETE has a predictable linear scaling
up to model size of 105 with a speed of at least two orders of magnitude faster than
VIATRA/LS. As expected, the incremental approach works well for large model sizes
as long as there is enough memory (the spike in case of long transformation sequences
occured because of garbage collection as the heap was exceeded).

VIATRA/RETE matches and outperforms the GrGEN.NET tool for very large mod-
els in case of both short and long execution sequences. Moreover, with additional mem-
ory provided, the characteristics of VIATRA2 are expected to better for even larger
models with predictable execution time.

This result is a significant achievement considering the architectural and run-time
differences between VIATRA2 and GrGEN.NET. Most notably, GrGEN.NET uses compile-

10



100 1000 10000 100000
10

100

1000

10000

100000

Petri Net Simulation

VIATRA/RETE *1k
VIATRA/LS *1k
GrGen.NET * 1k
VIATRA/RETE *1M
GrGen.NET * 1M

Net Size [operation count]

E
xe

cu
tio

n 
tim

e 
[m

s]

100 1000 10000 100000
10

100

1000

10000

100000

Petri Net Simulation

VIATRA/RETE (small)
VIATRA/LS (small)
GrGen.NET (small)
VIATRA/RETE l(arge)
GrGen.NET (large)

Net Size [operation count]

E
xe

cu
tio

n 
tim

e 
[m

s]

100 1000 10000 100000
10

100

1000

10000

100000

Petri Net Simulation

VIATRA/RETE (small)
VIATRA/LS (small)
GrGen.NET (small)
VIATRA/RETE (large)
GrGen.NET (large)

Net Size [operation count]

E
xe

cu
tio

n 
tim

e 
[m

s]

Fig. 14. Results for the Petri net firing benchmark

time optimizations and an entirely different model persistence approach based on compile-
time generated type information, whereas VIATRA2 uses a generic model storage sup-
porting dynamic typing and support for interactive applications such as a notification
and transaction management mechanism (note that the VIATRA2 GUI was not disabled
for the measurement, while GrGEN.NET was used without GUI through GrShell).
However, for fairness, it should be pointed out that (unlike the mutual exclusion case)
this benchmark was prepared by ourselves (i.e. by GrGEN non-experts), thus additional
language or tool-specific optimizations might be available.

5.3 Object-Relational Mapping Synchronization

The ORM synchronization benchmark was executed with the VIATRA2 tool (due to
time constraints, measurements with GrGEN.NET and others are left as future work).
Models up to 67800 nodes (with edges, the total model size is 157800 model elements)
were generated (Fig. 15) and the execution time for the build and synchronization
phases was measured.

Fig. 15. Model and synchronization sequence sizes for the ORM benchmark

The results are shown in Fig. 16 (model size is the total number of nodes). It is
again revealed that the scaling characteristic of both phases is exponential for VIA-

11



Fig. 16. Results for the ORM synchronization benchmark

TRA/LS and linear for VIATRA/RETE. With respect to synchronization, the constant
difference between the build and sync phases for VIATRA/RETE means a constant
multiplier; thus, since the model elements affected by the modification sequence are
a linear fraction of the whole model, it can be concluded that the execution time for
the synchronization process is a linear function of the model elements affected (as ex-
pected), and independent of the size of the rest of the model. VIATRA/LS, on the other
hand, exhibits an ever increasing time difference between build and sync, thus, the time
taken for the synchronization process increases exponentially with the number of af-
fected model elements (again, as expected, since in the case of local seach, the system
has to locate the changed elements first which is an additional graph traversal). It is im-
portant to note that for “practical” model sizes (e.g. below the 5000 node count range),
VIATRA/RETE can perform a synchronization affecting a considerable portion of the
model in the 10-500 msec range which makes the approach very suitable for interactive
applications.

In addition to execution times, the memory consumed by the Java Virtual Machine
was also recorded. The sequence for the RETE matcher (75, 100, 114, 245, 490, 750,
1000 megabytes respectively for model sizes from 85 to 67800 nodes) shows a linearly
expanding RETE network as the node count grows, which is in-line with our expecta-
tions based on the nature of the RETE building algorithm (note that the above figures
include the whole user interface with a complete Eclipse instance).

5.4 Summary

Analyzing the results obtained in our test cases, the following conclusions can be drawn:
(i) A major concern of any incremental pattern matching implementation is the

increased memory consumption. While our implementation does indeed consume more
memory than the standard local search-based VIATRA engine, this overhead, even for
the extreme model sizes in the benchmark problems, is still within the bounds of RAM

12



available in modern desktop computers making the approach feasible for a wide range
of applications.

(ii) Within the memory boundaries, our new RETE-based pattern matcher provides
a predictable, linear scaling up to the 105 model size range in all three scenarios. While
even generic transformations experience a speed-up, the real potential of the implemen-
tation is revealed in the scenarios especially suited for incremental pattern matching
where the execution speed matches, or even surpasses the speed of the fastest conven-
tional graph transformation tool employing compile-time optimization.

(iii) By comparing the run-time characteristics of our multiple test cases, it seems
evident that the best results could be achieved by employing different pattern match-
ing strategies for different execution phases, or, even for different patterns in a model
transformation program.

6 Related work

Incremental pattern matching. Incremental updating techniques have been widely
used in different fields of computer science. Now we give a brief overview on incre-
mental techniques that are used in the context of graph transformation. The transfor-
mation engine of TefKat [15] performs an SLD resolution based interpretation during
which a search space tree is constructed to represent the trace of transformation exe-
cution. This tree is maintained incrementally in consecutive steps of transformations as
described in [16]. The uniform, incremental handling of model elements and patterns
can be considered a unique, advanced feature of the approach. [17] proposes a graph
pattern matching technique, which constructs and stores a tree for partial matchings of
a pattern, and incrementally updates it, when the model changes. The main advantage
of this solution is that only matchings, which appear as leaves of the tree, have to be
physically stored, which possibly saves a significant amount of memory. The memory
saving technique of [17] is orthogonal to the structure of the underlying RETE network,
and, thus, it can expectedly be used for our approach as well, but the exact integration
requires further research and implementation tasks.

RETE networks. RETE networks [18], which stem from rule-based expert sys-
tems, have already been used as an incremental graph pattern matching technique in
several application scenarios including the recognition of structures in images [19], and
the co-operative guidance of multiple uninhabited aerial vehicles in assistant systems
as suggested by [20]. Our contribution extends this approach by supporting a more ex-
pressive and complex pattern language.

Graph transformation benchmarking. Some of the measurements in the current
paper are conceptual continuations of the comprehensive graph transformation bench-
mark proposed in [10] (described more extensively in [21]), which gave an overview
on typical application scenarios of graph transformation together with their character-
istic features. [14] suggested some improvements to the benchmarks described in [10]
and reported measurement results for many graph transformation tools including AGG
[22], PROGRES [23], Fujaba [24], and GrGEN.NET [4]. A similar approach to graph
transformation benchmarking was used for the AGTIVE Tool Contest [25], including
a simulation problem for the Ludo table game. Our Petri net firing test case is better

13



suited for benchmarking performance since it can be parameterized to scale up to large
model sizes and long transformation sequences.

7 Conclusion and Future Work

In the current paper, we have have proposed two new test cases as performance bench-
marks of graph transformation which are suitable for assessing incremental graph trans-
formation strategies. For this purpose, we focused on two scenarios: (i) The Petri net
model simulation benchmark was designed to provide a parameterizable and scalable
test case for analyzing the impact of incremental pattern matching on a typical sim-
ulation scenario; (ii) the Object-Relational Mapping scenario was adapted to model
synchronization which is a prime target for an event-driven application of graph trans-
formation, where models have to be mapped on-the-fly as the user is editing the model.

We carried out various measurements to assess the performance of the incremental
pattern matcher of the VIATRA2framework [1], which clearly demonstrate the viabil-
ity of the approach: very fast execution with predictable, linear scaling up to memory
limitations.

By analyzing the test runs with a Java code profiler, we have identified some key
areas where the performance of the VIATRA/RETE tool could be further improved in
the future, such as (i) optimizing VIATRA model persistence, especially with regard
to type information storage and attribute handling; (ii) employing more efficient search
plan generation for the construction of the RETE network; (iii) reducing code interpre-
tation overhead by precompiling model manipulation sequences into native Java calls.

In additon to improving performance, we plan to provide support for mixing differ-
ent pattern matching strategies to allow the transformation designer to specify which
pattern matcher implementation should be used on a per-pattern basis. Additionally, we
plan to investigate the possibilities of adaptive pattern matching strategy change based
on automatic profiling.

References

1. Bergmann, G. et al.: Incremental pattern matching in the VIATRA transformation system.
In: GRaMoT’08, 3rd International Workshop on Graph and Model Transformation, 30th
International Conference on Software Engineering (2008) Accepted.

2. Matzner, A., Minas, M., Schulte, A.: Recursive graph pattern matching with magic sets
and global search plans. In Proc. Applications of Graph Transformations with Industrial
Relevance (AGTIVE 2007), Springer Verlag (2007)

3. Varró, G., Horváth, Á., Varró, D.: Efficient graph matching with application to cognitive
automation. In Proc. Applications of Graph Transformations with Industrial Relevance (AG-
TIVE 2007), Springer Verlag (2007)

4. Geiss, R. et al.: GrGEN: A fast spo-based graph rewriting tool. In Proc. Graph Transforma-
tions - ICGT 2006. LNCS, Springer (2006) 383 – 397 Natal, Brasil.

5. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph Transforma-
tions: Foundations. World Scientific (1997)

6. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework. Sci.
Comput. Program. 68(3) (2007) 214–234

14



7. Rensink, A.: Representing first-order logic using graphs. In Proc. 2nd International Con-
ference on Graph Transformation, Rome, Italy. Volume 3256 of LNCS., Springer (2004)
319–335

8. Ehrig, H. et al.: Handbook on Graph Grammars and Computing by Graph Transformation.
Volume 2: Applications, Languages and Tools. World Scientific (1999)

9. Börger, E., Särk, R.: Abstract State Machines. A method for High-Level System Design and
Analysis. Springer-Verlag (2003)

10. Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. In: Proc. IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC 05), Dallas,
Texas, USA, IEEE Press (September 2005) 79–88

11. Murata, T.: Petri nets: Properties, analysis and applications. In: Proceedings of the IEEE.
(April 1989) 541–580 Published as Proceedings of the IEEE, volume 77, number 4.

12. Jungel, M., Kindler, E., Weber, M.: The Petri Net Markup Language. In: Algorithmen und
Werkzeuge fur Petrinetze (AWPN), Koblenz. (June 2002)

13. The VIATRA2 Framework: official website (2008) http://viatra.inf.mit.bme.hu.
14. Geiss, R., Kroll, M.: On improvements of the Varro benchmark for graph transformation

tools. Technical Report 2007-7, Universität Karlsruhe, IPD Goos (12 2007) ISSN 1432-
7864.

15. Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat. In Proc. Inter-
national Workshop on Model Transformation in Practice (MTiP 2005). (October 2005)

16. Hearnden, D. et al.: Incremental model transformation for the evolution of model-driven
systems. In Proc. 9th International Conference on Model Driven Engineering Languages
and Systems. Volume 4199 of LNCS., Genova, Italy, Springer (October 2006) 321–335

17. Varró, G., Varró, D., Schürr, A.: Incremental graph pattern matching: Data structures and
initial experiments. In Proc. Graph and Model Transformation (GraMoT 2006). Volume 4 of
Electronic Communications of the EASST.

18. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1) (September 1982) 17–37

19. Bunke, H., Glauser, T., Tran, T.H.: An efficient implementation of graph grammar based
on the RETE-matching algorithm. In: Proc. Graph Grammars and Their Application to
Computer Science and Biology. Volume 532 of LNCS. (1991) 174–189

20. Matzner, A., Minas, M., Schulte, A.: Efficient graph matching with application to cognitive
automation. In Proc. 3rd International Workshop and Symposium on Applications of Graph
Transformation with Industrial Relevance, Kassel, Germany (October 2007) 293–308

21. Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. Technical Report
TUB-TR-05-EE17, Budapest University of Technology and Economics (March 2005) http:
//www.cs.bme.hu/˜gervarro/publication/TUB-TR-05-EE17.pdf.

22. Ermel, C., Rudolf, M., Taentzer, G.: The AGG-Approach: Language and Tool Environment.
In: In [8]. World Scientific (1999) 551–603

23. Schürr, A.: Introduction to PROGRES, an attributed graph grammar based specification
language. In Nagl, M., ed.: Graph–Theoretic Concepts in Computer Science. Volume 411 of
LNCS., Berlin, Springer (1990) 151–165

24. Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: The FUJABA environment. In: The
22nd International Conference on Software Engineering (ICSE), Limerick, Ireland, ACM
Press (2000)

25. The AGTIVE Tool Contest: official website (2007) http://www.informatik.
uni-marburg.de/˜swt/agtive-contest.

15


