
Efficient Model Transformations
by Combining Pattern Matching Strategies

Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Magyar tudósok krt. 2, Budapest, Hungary
{bergmann, ahorvath, rath, varro}@mit.bme.hu

Abstract. Recent advances in graph pattern matching techniques have demon-
strated at various tool contests that graph transformation tools can scale up to han-
dle very large models in model transformation problems. In case of local-search
based techniques, pattern matching is driven by a search plan, which provides
an optimal ordering for traversing and matching nodes and edges of a graph pat-
tern. In case of incremental pattern matching, matches of a pattern are explicitly
stored and incrementally maintained upon model manipulation, which frequently
provides significant speed-up but with increased memory consumption. In the
current paper, we present a hybrid pattern matching approach, which is able to
combine local-search and incremental techniques on a per-pattern basis. Based
upon experimental evaluation, we identify scenarios when such combination is
highly beneficial, and provide guidelines for transformation designers for opti-
mal selection of pattern matching strategy.

1 Introduction

Model transformations play a crucial role in modern model-driven system engineering,
an application domain where transformations need to handle large, industrial models in
a short amount of time. Graph transformation (GT) [1] based tools have been frequently
used for capturing and executing complex transformations. In GT tools, graph patterns
capture structural conditions and type constraints in a compact visual way. During trans-
formation time, these conditions are evaluated during graph pattern matching, which
aims to derive one or all matches of a given pattern to execute a transformation rule.

Empirical evidence reported at recent tool contests [2,3] proved that GT tools scale
up for transforming very large models, thanks to highly sophisticated, local-search
based graph pattern matching (LS) algorithms proposed in transformation tools such
as GrGEN.NET [4], FUJABA [5], and VIATRA2 [6]. In all these approaches, pattern
matching is driven by a search plan, which provides an optimal ordering for traversing
and matching nodes and edges of a graph pattern.

As an alternative, incremental pattern matching (INC) approaches [7–11] have re-
cently become a hot topic in the model transformation community. The core idea is to
improve the execution time of the time-consuming pattern matching phase by additional
memory consumption. Essentially, the (partial) matches of graph patterns are stored ex-
plicitly, and these match sets are updated incrementally in accordance with elementary



model changes. While model manipulation becomes slightly more complex, all matches
of a graph pattern can be retrieved in constant time in exchange by eliminating the need
for recomputing existing matches.

Initial benchmarking [12] has shown that in many scenarios, the incremental pattern
matching approach (as implemented in the VIATRA2 framework) leads to orders-of-
magnitude increases in speed. However, an important implication of caching match sets
is increased memory consumption, which needs to be taken into account when scaling
up to large models. Unfortunately, in many practical applications of model transfor-
mations, available memory is frequently constrained (e.g. when they are executed on
average desktop computers and not on high performance servers).

In the current paper, we propose a hybrid pattern matching approach which en-
ables the transformation designer to combine local search-based and incremental pat-
tern matching to adapt to memory constraints. At design-time, transformation engineers
may select whether a graph pattern should be matched using the LS or the INC strategy
separately for each pattern. Moreover, based upon runtime monitoring, the execution
engine may automatically switch from incremental pattern matching to local-search
based technique when a certain memory limit has been reached.

Additionally, we present experiments to demonstrate that the incremental strategy is
not always the best choice for pattern matching: we highlight scenarios using a perfor-
mance benchmark of model transformations (object-relational mapping) where a com-
bination of INC with LS significantly outperforms the plain INC-only and LS-only
versions. By the analyzing results of our case study, we provide a list of various fac-
tors (metrics) which we experienced to have significant factor on performance, and give
hints to transformation designers when a graph pattern should be matched using an INC
or an LS strategy in each case.

The rest of the paper is structured as follows. Section 2 briefly introduces graph
patterns and graph transformation rules (as available in the VIATRA2 transformation
language). It also describes the object-relational mapping used as a performance bench-
mark throughout the paper. As related work, we highlight main characteristics of the
local search-based and incremental pattern matcher implementations. In Section 3, we
present scenarios to highlight when a hybrid pattern matching strategy provides signif-
icant performance advantage in typical model transformations. We present metrics to
optimally select LS or INC strategies for patterns at design time. Moreover, we present
an adaptive runtime technique to switch to LS strategy when memory is low (Section 4).
Finally, Section 5 concludes the paper.

2 Background

2.1 Graph Patterns and Transformation

Graph patterns are frequently considered as the atomic units of model transforma-
tions [13]. They represent conditions (or constraints) that have to be fulfilled by a part
of the instance model. A basic graph pattern consists of (i) structural constraints pre-
scribing the existence of nodes and edges of a given type, and (ii) containment con-
straints specifying containment relation between nodes of graph patterns. A negative



application condition (NAC), defined by a negative subpattern, prescribes contextual
conditions for the original pattern which are forbidden in order to find a successful
match.

Graph transformation (GT) [1] provides a high-level rule and pattern-based ma-
nipulation language for graph models. Graph transformation rules can be specified by
using a left-hand side – LHS (or precondition) pattern determining the applicability of
the rule, and a right-hand side – RHS (postcondition) pattern which declaratively speci-
fies the result model after rule application. Elements that are present only in (the image
of) the LHS are deleted, elements that are present only in the RHS are created, and other
model elements remain unchanged.

In the following, we use the language of the VIATRA2 framework [13] for demon-
stration purposes, which also provides additional control structures (such as rule in-
vocation, variable declaration, sequencing operator, iterative and simultaneous execu-
tion etc.) for assembling complex transformations defined by abstract state machines
(ASM) [14].

Example 1. The graphical representation of an example graph transformation rule, along
with the VIATRA2 textual representation of the LHS, is depicted on Figure 1. Infor-
mally, the meaning of the schemaRule is to map a package P contained by the container
Con to a schema S, unless the mapping has already been performed. Elements labeled
with new are the ones created by the rule; elements labeled with neg constitute the sin-
gle NAC of the rule1. The NAC is used to exclude the cases when the mapping has been
performed; it applies if there is an edge R of type schemaRef between the nodes P and
SN.

How this rule is invoked in VIATRA2 is captured by Lst. 1.1. The forall rule is used
to find all substitutions (matches) for variables defined in its head (P), which satisfies the
LHS of the schemaRule patttern, and then executes the model manipulation operations
for each substitution separately followed by the println rule. Note that the Container
variable will have to be defined prior to the execution of the forall rule as it is assumed
as an input parameter for the schemaRule.

gtrule schemaRule(P,Con) =
{

package(P) below Con;
neg pattern mapped(P, SN, RN) = {

package(P);
schema(SN);
package.schemaRef(RN, P, SN);

}
new schema(SN);
new package.schemaRef(RN, P, SN);
}

Fig. 1. GT rule for unmapped packages below a container

1 we do not display rules with multiple NACs or with deletion action in this paper



...
//invoking the schemaRule GT Rule with Container as a bound input parameter
forall P with apply schemaRule(P,Container) do
//prints the name of the package processed to the console
println("SchemaRule: p="+ name(P));

Listing 1.1. VIATRA2 source code for invoking the schemaRule

2.2 Case study

Transformation overview. The (simplified) Object-to-Relational schema mapping (ORM)
case study was proposed as a performance benchmark of model synchronization trans-
formations in [12, 15]. The aim of the transformation is to produce corresponding rela-
tional database schemas from UML class diagrams according to the following mapping
rules:

– First, a relational schema is created for the specified package below a given con-
tainer by schemaRule (Fig. 1). Transitive containment is represented by an edge
tagged as “contains”.

– Then classes in the package are mapped into tables in the corresponding schema,
each with an id column as a primary key (classRule).

– Each association in the package is mapped into a table in the corresponding schema
with a primary key column (associationRule);

– Each association end in the association is mapped into a foreign key of the corre-
sponding table pointing at the table generated from the class that the association
end points to (assocEndRule);

– Attributes in the class are mapped into columns of the corresponding table (see
attributeRule in Fig. 3).

Fig. 2. Reference metamodel

In incremental synchronization, to avoid rebuild-
ing target models in each pass, a reference model (also
known as trace / correspondence model) is used to es-
tablish a mapping between source and corresponding
target model elements (Fig. 2) and to trace changes
in them. In this context, the reference model is often
referenced in NACs to identify elements in the source
model that have not yet been mapped into the target
model. In the current paper, we restrict our investiga-
tions to one-way synchronization.

Transformation scenario. In the original benchmark example [12], the source model
consists of two packages, both containing a (generated) set of classes with attributes.
First, (i) the primary package will be mapped into a relational schema to create initial
mappings. Then, the source models are modified, and, in an additional pass, (ii) the
system has to synchronize the changes to the target model (i.e. find the changes in the
source and alter the target accordingly). This scenario is now extended as follows.



gtrule attributeRule(C, A, T) =
{

class(C);
class.attribute(A);
class.cl2attrs(CF1, C, A);
table(T);
class.tableRef(R1, C, T);
neg pattern mapped(A, ColN , RN) = {

class.attribute(A);
column(ColN);
class.attribute.colRef(RN, A, ColN);

}
new column(ColN);
new class.attribute.colRef(RN, A, ColN);
}

Fig. 3. GT rule for unmapped attributes

Check phase First, we check as a precondition of the transformation that no gener-
alization exists in the source UML model to ensure the applicability of the trans-
formation. It is captured by a corresponding simple graph pattern (detectGeneral-
ization in Fig. 4). We intentionally omitted support for inheritance from the model
transformation itself to analyze a case where a transformation has to perform a
preliminary applicability check; the practical consequences of this choice will be
assessed later in Sec. 3.2.

Initial transformation phase When there are no generalizations, the primary package
is mapped into a relational schema by the transformation program.

Refactoring phase A refactoring operation modifies the package hierarchy of the source
model, namely the secondary package is moved inside the primary package.

Synchronization phase Afterwards, synchronization propagates these changes into the
target relational model so that it holds the mapping of the (changed) primary pack-
age once again. This involves creating the tables for classes that stem from the
secondary package, and creating columns for attributes of these classes.

pattern detectGeneralization(Sub,Sup) =
{

general(Gen);
class(Sup);
general.parent(PE,Gen,Sup);
class(Sub);
general.child(CE,Gen,Sub);

}

Fig. 4. Graph pattern checking for generalizations



2.3 Pattern matching strategies and related work

Pattern matching plays a key role in the efficient execution of all model transformation
engines. In case of graph transformation based approaches, the goal is to find the occur-
rences of a graph pattern, which contains structural as well as type constraints on model
elements. During pattern matching, each variable of a graph pattern is bound to a node
in the model such that this matching (binding) is consistent with edge labels, and source
and target nodes of the model.

Most model transformation approaches (e.g. [4, 5, 16, 17] and many more) usually
rely on a local search based pattern matching (LS) that starts the matching process from
a single node and extends it step-by-step by neighboring nodes and edges. Informally,
a search plan [6, 18] defines an ordering of pattern nodes, in which they are bound
to objects of the instance model during pattern matching. With efficient search plans
( [4, 19]), LS strategies can produce good runtime performance with a relatively small
memory footprint, and low update complexity. Other approaches [20,21] use constraint
satisfaction techniques for matching graph patterns.

As an alternate approach, incremental pattern matching (INC) [7,8,10,11] relies on
a cache in which the matches of a pattern are stored explicitly. The match set is readily
available from the cache at any time without searching, and the cache is incrementally
updated whenever changes are made to the model. As pattern occurrences are stored,
they can be retrieved in constant time – excluding the linear cost induced by the size of
the result set itself –, making pattern matching extremely fast. The trade-off is increased
memory consumption, and increased update costs (required to continuously maintain
the stored match set caches.

In the current paper, our goal is to investigate if (and when) the combination of pat-
tern matching strategies within a transformation (referred to as hybrid pattern match-
ing) can provide better runtime performance, especially, with constraints on available
resources (such as memory consumption). For our investigations, we use the VIATRA2
framework, which supports both pattern matching engine strategies and allows to spec-
ify the use of INC or LS strategy separately for each graph pattern.

There are cases where the use of either the incremental or the local search based
pattern matching approach is significantly more efficient than the other. We argue that
many transformations could benefit even more from combining these two approaches,
by using different pattern matcher engines for different graph patterns. As a conceptual
analogy for our current work, recent research in expert systems [22] demonstrated that
an integration between two different incremental strategies can be advantageous.

3 Motivating scenarios for hybrid pattern matching

Recent benchmarks evaluations [12] and tool contests [3] in the graph transformation
community have shown that INC can easily be orders of magnitude faster than (most)
LS approaches for certain problem classes. This section identifies three scenarios where,
on the other hand, LS has a clear advantage, as demonstrated by our experiments2. For

2 Measurement environment: Intel Core Duo t2400@1,83 GHz processor, 3 GB RAM, Windows
XP SP3, Sun HotSpot Java 1.6.0 02 and VIATRA2 Release 3 build 2009.02.03.



each scenario, we identify a hybrid pattern matching approach where some patterns and
transformations should use LS, while the rest of the transformation relies upon INC to
obtain a better performance than the two extremes (LS-only or INC-only).

3.1 Scenario: match set cache does not fit into memory limit

This scenario demonstrates that the high memory consumption of incrementally main-
tained caches can be a bottleneck of INC. By choosing LS for patterns that are memory-
intensive (i.e. with many matches) but not time-critical, the high memory consumption
can be greatly reduced, while still retaining the short execution time comparable to INC.

Our experiments were performed on the Transform phase of the ORM case study
(see section 2.2), by measuring the heap commit size of the Java VM. In the followings,
we model a frequently occurring development scenario. As the transformation designer
is typically working with small toy models, scaling up to large model sizes might lead to
unexpected results. For instance, while a toy model with 10 classes and 250 attributes
and the corresponding INC cache easily fits in a few megabytes, a memory usage of
128MBs can be reached by increasing the model to 575 classes and 14375 attributes,
as shown on Table 1. With a memory limit of 128M, as the match set cache expands
rapidly, the JVM begins to trash due to memory starvation shortly after the transforma-
tion is started. This leads to significant slowdown (to 21 seconds), and may even result
in a failed execution because of heap exhaustion. If the amount of memory is suitably
large (i.e. 1GB in our case), execution is very fast (4.6 seconds). LS is not an alternative
here: while the memory consumption of the caches is spared, the execution time for this
model size is very long (avg. 184 seconds).

Closely observing this transformation, we may identify LHS pattern attributeRule
(see Figure 3) and its embedded negative application condition as patterns with high
number of occurrences. By sacrificing execution time (runs in 5.0s with a 1G heap),
we marked this pattern to be matched by the LS engine, despite using INC for the rest
of the transformation. This reduced memory consumption to 105M, and allowed the
transformation to run with approximately the same execution time (5.6s) even with a
memory limit of 128M. Therefore the hybrid approach has the potential to efficiently
scale up to higher model sizes given the same memory constraints.

PM Strategy Memory limit [MB] Used heap [MB] Transform phase time [ms]
LS 128 99 183729
INC 128 128 21057
INC 1024 128 4639
Hybrid 128 105 5573

Table 1. Match Set Memory and Performance

3.2 Scenario: construction time penalty

This scenario emphasises that the time required to initialize the incrementally main-
tained caches might itself be too expensive. The construction time of the caches is not



less than the time required to find all occurrences of the pattern, since the match set is
directly available from this cache. If the transformation needs to find only one (or few)
of many pattern occurrences altogether, there is no need for LS to continue the search
and retrieve the entire match set, therefore it can be significantly faster than INC. This
phenomenon only applies if the pattern is efficiently matchable by LS, unlike large
patterns with high combinatorial complexity.

This behaviour was observed in the Check phase of the ORM case study (see section
2.2). We measured the time it takes to find an arbitrary generalization edge if all 2500
generated classes inherit a common superclass, which is a single-occurrence query of a
very simple graph pattern (see Figure 4) consisting of a single edge. The measurements
show (in Table 2) that constructing the cache took 0.14s on average, while INC would
gain only about 16 ms time (too small to be more accurately measured) compared to
LS with each further query (if there were any). To complement these results, we also
took the measurement on a source model without generalization, for which the transfor-
mation could be performed; we found that, in accordance with expectations, LS has no
significant advantage in this case: constructing the cache took 16 ms, while LS needed
36 ms to complete the query (both of them too small to be accurately measured).

PM Strategy Used heap [MB] Cache construction time [ms] Further queries [ms]
with generalization edges

LS 152 - 16
INC 159 143 0

without generalization edges
LS 147 - 36
INC 149 16 0

Table 2. Construction Time Performance

3.3 Scenario: expensive model updates

This scenario happens if there is heavy model manipulation between infrequent pattern
queries. In this case, the time overhead imposed on model manipulation by INC may
outweigh its benefits. The cost of incrementally maintaining the match set caches for a
long period of time with frequent model updates may be larger than the cost of applying
LS and calculating the match set from scratch at each pattern query. In other terms, it
may be superfluous to continuously maintain the match sets if they are not frequently
used for model queries. This cost can be avoided by not using INC, or only using it for
a limited number of patterns.

Expensive update overhead is observable in the Refactoring phase of the ORM case
study (see section 2.2). We measured the time it takes to move a package in the source
model to a different package, while the INC maintains the caches of patterns that rep-
resent the location of classes in the namespace hierarchy of packages, classes and at-
tributes (Table 3). The transitive containment is a model feature of high combinatorial
complexity, and moving a high-level element will cause drastic changes in this relation-
ship, thereby forcing the INC to perform intensive cache updates. The measurements



have shown that the cost of the single move operation can be as high as 2.1 seconds with
INC. Using pure LS was not a feasible solution either, as the Synchronization phase did
not terminate within half an hour. A hybrid pattern matcher assignment solved these
problems: patterns using the transitive containment (see Figure 1) were matched by LS
and the rest by INC, resulting in a fast move operation and an execution time of 14.5 ms
for the entire Refactoring phase. These measurements were taken with both the primary
and secondary packages consisting of 1000 classes and 25000 attributes.

PM Strategy Used heap [MB] Refactoring phase time [ms] Synchronization phase time [ms]
LS - 0 >2000000
INC 493 2109 13386
Hybrid 298 0 13570

Table 3. Model Update Performance

3.4 Overall performance on the entire case study

Finally, we compare the overall performance of the three approaches on all three steps
of the case study combined. Measurements were taken for various source model sizes,
scaling up until the transformation became too slow (LS) or did not fit into memory
(INC, hybrid). Figure 5 indicates the total execution time versus the number of classes
in the primary source package. For these measurements, the number of classes in the
secondary package (N/4) was always one quarter of the number of classes initially in
the primary package (N), and each class still had 25 attributes (25N, 25N/4); thus the
largest case (N=2400) consisted of 2400 classes and 60000 attributes in the primary
package, 600 classes and 15000 attributes in the secondary package, i.e. more than 150
000 source model elements altogether including edges. As the figure shows, INC scales
up higher than LS, but the hybrid approach is even more efficient (note that due to
overhead, the advantage becomes visible for large models when N >= 1200).

4 Towards intelligent selection of matching strategies

In this section, we first identify various factors (qualitative metrics) which help transfor-
mation designers decide when a certain pattern matching strategy (LS or INC) would be
beneficial (Sec. 4.1). Then, in Sec. 4.2, we discuss how an adaptive run-time behaviour
can be obtained by monitoring relevant metrics, and switching from one strategy to the
other at runtime. Compared to existing adaptive pattern matching solutions [4, 19], the
main novelty of this approach lies in the fact that we are able to automatically switch
between two entirely different pattern matching strategies to increase performance. The
high-level workflow of these techniques is illustrated in Fig. 6.

As identified in Sec. 3, several factors may influence the behaviour of the pattern
matching algorithms. Static factors like (i) static attributes of graph patterns (e.g. pat-
tern size, fan-out, structural complexity) and (ii) control structures of model transfor-
mations (e.g. forall, iterate) determine operative characteristics which, in combination



Fig. 5. Overall Execution Time

Fig. 6. Selecting pattern matching strategies at design-time and runtime

with the characteristics with the different pattern matcher strategies, greatly influence
the cost of pattern matching.

In contrast, dynamic factors change in-between transformation runs on the same
system, and also with different target execution platforms: (iii) model-specific graph
characteristics like qualitative attributes related to structure (e.g. average fan-out) and
quantitative parameters related to model size (e.g. total number of model elements) may
change as the transformation is changing the underlying model. Moreover, (iv) memory
limitations impose external constraints which are related to the execution environment.

4.1 Factors for design-time selection of matching strategies

In the VIATRA2 framework, transformation designer can fine-tune the performance of
graph pattern matching by prefixing a graph pattern with @incremental or @localsearch
annotations to select the designated pattern matching strategy.



Based on our previous experience with performance benchmark transformations
[12] and practical model transformations of large complexity [23], we identified the
following factors to be important for transformation designers to choose between LS
and INC strategies:

(i) Graph pattern static attributes
• number of graph patterns in a transformation program has a huge impact on

the memory consumption. The cache size of the pattern increases memory con-
sumption when matched by INC strategy.

• pattern size: in practical applications, we experienced that the number of matches
gradually decrease as the pattern to be matched becomes more and more com-
plex (having more and more elements). This contradicts the intuition that larger
patterns will have more matches due to more combinatorical possibilities. Al-
though this combinatorical increase may hold for smaller patterns, it is over-
whelmed by the scarcity due to restrictiveness of larger patterns in many practi-
cal scenarios. As a result, large patterns should be preferably matched by INC.

• containment hierarchy constraints, especially transitive containment, may sig-
nificantly increase the memory consumption of incremental pattern matching
due to fact that all containment relation between model elements have to be
cached and incrementally updated. A good compromise could be to decom-
pose the pattern and match only the containment constrained part with the LS
engine while leaving INC strategy for the rest. Another solution would be to
refactor patterns (and possibly the model also) so that they use explicit graph
edges instead of relying on the implicit containment hierarchy.

(ii) Control structures
• parameter passing is using the result of rules or patterns as an input of other

rules or patterns. This technique increases efficiency in LS as search operations
are much more efficient if one or more pattern variables are bound, i.e. their
values are known at time of the query. INC performance is not affected.

• usage frequency of patterns is relevant, since the more often a pattern is used,
the more advantage INC has. Frequently used patterns can be identified by
static analysis of the transformation code, e.g. by marking patterns that are
used from within a loop. Trace analysis can yield more valuable estimates, if
typical example inputs are available, by executing the transformation on these
inputs and counting the times each pattern is accessed.

• model update cost: if program code analysis can reveal that model element
types belonging to a certain pattern are rarely (or never) manipulated, the model
manipulation costs imposed by INC can be neglected.

(iii) Model dependent pattern characteristics
• node type complexity, a rough upper bound on the number of potential matches

can be obtained as the product of the cardinalities (number of model instances)
of the types of each node in the graph pattern. This estimate is, of course, accu-
rate as there are also edges in the pattern to constrain the possible combinations



of nodes. However, high complexity may result in high memory consumption
for INC, and long search operations for LS.

• model statistics generally extend graph pattern static attributes to the entire in-
stance model the transformation is working on. A well-known practical statis-
tics on pattern complexity is the search space tree cost, that has already been
used to adaptively select the search plan for LS-based matchers [19]. It uses
model statistics to assess the branching factors (node type complexity) during
the search process. Other important factors like fan-out, hierarchy depth and
model symmetries can also effectively make the estimation of match set sizes
and time complexity of the pattern matching more precise.

By evaluating these (qualitative) metrics on the ORM case study described in Sec. 2.2,
the observed behaviour in Scenarios 3.1–3.3 can be explained in more detail.

– In Sec. 3.1, we have identified the cause of the performance bottleneck to the at-
tributeRule graph pattern with large match set. Since this pattern is used to filter for
Attributes which have not yet been mapped to a Table column, it can be expected to
have an initially large match set for class models with a large number of attributes.
The match set size can be estimated a-priori by looking at instance count num-
bers for the Attribute type, or, by simply considering the general type composition
characteristics of models the transformation is to be executed on.

– Sec. 3.2 demonstrated the usage of a simple pattern for structural checking (i.e.
executing only once). This case corresponds to low pattern complexity and low
usage count which, especially when combined with a potentially high match count,
indicates a good candidate for switching to LS.

– Finally, Sec. 3.3 uses a pattern with a transitive containment constraint which, when
used for synchronization after a model move high in the containment hierarchy,
caused a drastic overhead for the incremental pattern matcher. As the resolution
suggests, such patterns should generally be matched with LS.

4.2 Adaptive runtime optimization

Dynamic factors like memory consumption can quite easily change in-between transfor-
mation runs (even on the same system), especially using INC pattern matching, leading
to performance degradation or insufficient memory. The current section focuses on an
adaptive approach that can intervene in the predefined matching strategy in order to
adapt to the altered environment.

In accordance with the general strategy described in Sec. 3, the adaptive engine
generally prefers using the incremental pattern matcher for all graph patterns. When
shortage of available memory is detected, pattern match set cache structures are gradu-
ally abandoned. For constructing such an adaptive approach monitoring, the following
parameters are actually considered:

– During the execution of a VIATRA2 transformation the memory consumption is
directly observable through the Java Virtual Machine (JVM), which provides a
straightforward way for monitoring available memory.



– Simple model space statistics (e.g. the total number of model elements) are au-
tomatically registered by the VIATRA2 engine, along with sizes of match sets
available from the incremental pattern matcher that can also be used as a model-
specific indicator for actual memory consumption and to dynamically detect situa-
tions where run-time adaptive matching selection strategy switching is needed.

Note that telemetry registration does have some overhead at run-time (especially in
the case of heap monitoring since several garbage collection runs need to be executed
for reliable heap data), however this overhead is negligible for long-running transfor-
mations.

For the actual strategy the priority order for the cache removal is determined by the
largest-first principle, where the pattern match cache structure with the largest overall
memory footprint is selected for removal resulting, that the forthcoming pattern match
operation requested for the corresponding pattern will always be executed by the LS-
based pattern matcher leading to a smaller memory consumption. In our case, memory
shortage is detected when the available heap memory is less than 15%, which initiates
dropping PM caches and switching to LS strategy.

In order to evaluate the efficiency and impact of this approach, we ran the bench-
mark experiment described in Sec. 3.1 with the adaptive implementation. The results for
this measurement were obtained in a different software environment: we used the 64-
bit version of IcedTea 1.3.1 as a JVM (hence the larger memory consumption figures).
Execution times can be observed in Table 4.

PM strategy Used heap [MB] Transform phase time [ms]
LS 201 77054
INC 353 13693
Static hybrid 220* 10958
Adaptive hybrid 235* 35716

Table 4. Match Set Memory and Performance of the Adaptive Hybrid Strategy

Unsurprisingly, the execution time of the hybrid adaptive approach is between the
fastest INC, the static hybrid approaches and a pure LS run. Note that memory was
constrained for hybrid runs, marked with *; with memory constraints, INC would not
run successfully in this case.

Overall, this technique prevents the transformation engine from trashing due to
memory starvation. However, the largest match set caches may not be the best choice for
abandonment when optimizing for the shortest possible execution time. Therefore the
presented technique is theoretically sub-optimal. A straightforward approach for future
optimization is adjusting the priority order based on static analysis of the transformation
program.



5 Conclusion and future work

Practical experience has shown that performance optimization is an important part of
building powerful model transformations in a model-driven development process. First,
as models are increasing in size and complexity, transformations need to be able to
transform them efficiently. Secondly, as transformations are becoming hidden (e.g. em-
bedded in a design tool), they should execute seamlessly - quickly and using as little
resources as possible.

In this paper, we presented a hybrid pattern matching approach, which provides
smart selection from two entirely different matching strategies (namely, the local search-
based and incremental pattern matching) to improve overall performance.

Based on experience with complex applications of model transformations (e.g. [23]),
we selected three scenarios for the investigation. Based on our experimental analysis,
we argue that many practical transformations may significantly benefit from a hybrid
pattern matching approach with properly selected matching strategies for the patterns.
We gave conceptual guidelines on manual optimization based upon various metrics
in Sec. 4. Additionally, as an initial contribution towards automatic optimization, we
presented an adaptive approach switches pattern matching strategies when memory is
running low.

However, we also recognize that the ultimate goal for optimizing model transfor-
mation performance is to enable the user to concentrate only on functionality and the
software tool should select the optimal pattern matching strategy. In order to provide
semi-automatic aids to the transformation designer for code optimization, and to de-
velop a more optimal method for adaptive strategy switching, several well-known ap-
proaches can be adapted in the future.

– Pattern analysis may be used to classify graph patterns according to complexity,
size, and complex cost metrics (as mentioned in Sec. 4.1) statically. While such
techniques are currently used internally in our LS implementation, direct user in-
terface feedback is needed to expose relevant data to the transformation designer.

– Program analysis aims to identify patterns and model manipulation steps that are
frequently used, rarely used, or unused for a period of time by analyzing the trans-
formation program, without actually running it.

– Trace analysis improves this knowledge of transformation behaviour by actually
running the program on one or more provided typical models and gathering statis-
tics on the type and amount of executed pattern queries and model manipulations.

– Quantitative model analysis is a highly promising approach to estimate the match
set cardinality of graph patterns based on statistics of the model (without actually
running the pattern matching algorithm).

As a main direction for future work, we plan to implement a framework with high-
level support for these static analysis techniques, to find answers for open questions
outlined in Sec. 4.1 (e.g. the limit in pattern size and pattern usage frequency for a
given transformation where the break-even point for INC and LS occurs).

Additionally, we plan to investigate ways to achieve tighter integration between the
two pattern matching engines. This will allow different strategies to be responsible for
matching different subpatterns within the same pattern.



While the direct contributions of the paper are dedicated to graph transformation-
based approaches of model transformations, we believe that the conceptual foundations
are, in fact, adaptable to other transformation techniques. For instance, similar inves-
tigations can be carried out in the future to assess when an OCL constraint should be
evaluated incrementally, and when an evaluation should be initiated from scratch.

References

1. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph Grammars
and Computing by Graph Transformation. Volume 2: Applications, Languages and Tools.
World Scientific (1999)

2. The AGTIVE Tool Contest: official website (2007) http://www.informatik.
uni-marburg.de/˜swt/agtive-contest.

3. GraBaTs - Graph-Based Tools: The Contest: official website (2008) http://www.fots.ua.
ac.be/events/grabats2008/.

4. Geiss, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.M.: GrGen: A Fast SPO-Based
Graph Rewriting Tool. In Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg,
G., eds.: Graph Transformations - ICGT 2006. Lecture Notes in Computer Science, Springer
(2006) 383 – 397 Natal, Brasil.

5. Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: The FUJABA environment. In: The
22nd International Conference on Software Engineering (ICSE), Limerick, Ireland, ACM
Press (2000)

6. Varró, G., Horváth, Á., Varró, D.: Recursive Graph Pattern Matching With Magic Sets and
Global Search Plans. In Schürr, A., Nagl, M., Zündorf, A., eds.: Proc. 3rd Intl. Workshop
on Applications of Graph Transformation with Industrial Relevance (AGTIVE ’07). Volume
5088 of LNCS., Springer (2008)

7. Varró, G., Varró, D., Schürr, A.: Incremental Graph Pattern Matching: Data Structures and
Initial Experiments. In Karsai, G., Taentzer, G., eds.: Graph and Model Transformation
(GraMoT 2006). Volume 4 of Electronic Communications of the EASST., EASST (2006)

8. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in
the VIATRA transformation system. In: GRaMoT’08, 3rd International Workshop on Graph
and Model Transformation, 30th International Conference on Software Engineering (2008)

9. Matzner, A., Minas, M., Schulte, A.: Efficient Graph Matching with Application to Cognitive
Automation. In Schürr, A., Nagl, M., Zündorf, A., eds.: Applications of Graph Transforma-
tions with Industrial Relevance (AGTIVE 2007), Springer Verlag (2007)

10. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for the Evo-
lution of Model-Driven Systems. In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.:
MoDELS. Volume 4199 of Lecture Notes in Computer Science., Springer (2006) 321–335

11. Mészáros, T., Madari, I., Mezei, G.: VMTS AntWorld submission. GraBaTs - 4th Interna-
tional Workshop on Graph-Based Tools: The Contest (September 2008)

12. Bergmann, G., Horvath, A., Ráth, I., Varró, D.: A Benchmark Evaluation of Incremental
Pattern Matching in Graph Transformation. In: ICGT2008, The 4th International Conference
on Graph Transformation. (2008)

13. Varró, D., Balogh, A.: The Model Transformation Language of the VIATRA2 Framework.
Science of Computer Programming 68(3) (October 2007) 214–234

14. Börger, E., Stärk, R.: Abstract State Machines. A method for High-Level System Design and
Analysis. Springer-Verlag (2003)

15. Varró, G., Schürr, A., Varró, D.: Benchmarking for Graph Transformation. Technical Report
TUB-TR-05-EE17, Budapest University of Technology and Economics (March 2005) http:
//www.cs.bme.hu/˜gervarro/publication/TUB-TR-05-EE17.pdf.



16. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES Approach: Language and Environ-
ment. In: In [1]. World Scientific (1999) 487–550

17. ATLAS Group: The ATLAS Transformation Language. Available from http://www.
eclipse.org/gmt.

18. Zündorf, A.: Graph Pattern Matching in PROGRES. In: Selected papers from the 5th Inter-
national Workshop on Graph Gramars and Their Application to Computer Science, London,
UK, Springer-Verlag (1996) 454–468

19. Varró, G., Varró, D., Friedl, K.: Adaptive Graph Pattern Matching for Model Transformations
using Model-sensitive Search Plans. In Karsai, G., Taentzer, G., eds.: Proc. of Int. Workshop
on Graph and Model Transformation (GraMoT’05). Volume 152 of ENTCS., Tallinn, Esto-
nia, Elsevier (September 2005) 191–205

20. Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern matching.
In: 6th International Workshop on Theory an Application of Graph Transformations (TAGT,
Springer (1998) 238–251

21. El-Boussaidi, G., Mili, H.: Detecting patterns of poor design solutions using constraint prop-
agation. In Czarnecki, K., Ober, I., Bruel, J.M., Uhl, A., Völter, M., eds.: Model Driven
Engineering Languages and Systems, 11th International Conference, MoDELS 2008. Pro-
ceedings. Volume 5301 of Lecture Notes in Computer Science., Springer (2008) 189–203

22. Wright, I., Marshall, J.: The execution kernel of RC++: RETE*, a faster RETE with TREAT
as a special case. International Journal of Intelligent Games and Simulation 2(1) (February
2003) 36–48

23. Kovács, M., Lollini, P., Majzik, I., Bondavalli, A.: An Integrated Framework for the Depend-
ability Evaluation of Distributed Mobile Applications. In: Proc. Int. Workshop on Software
Engineering for Resilient Systems (SERENE 2008), Newcastle upon Tyne, UK, November
17-19. (2008) 29–38


