
Change-Driven Model Transformations
Derivation and Processing of Change Histories

István Ráth1, Gergely Varró2, and Dániel Varró1

1 Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

{rath, varro}@mit.bme.hu
2 Department of Computer Science and Information Theory,

H-1117 Magyar tudósok krt. 2, Budapest, Hungary
gervarro@cs.bme.hu

Abstract. Nowadays, evolving models are prime artefacts of model-driven soft-
ware engineering. In tool integration scenarios, a multitude of tools and modeling
languages are used where complex model transformations need to incrementally
synchronize various models resided within different external tools. In the paper,
we investigate a novel class of transformations, which is directly triggered by
model changes. First, model changes in the source model are recorded incremen-
tally by a change history model. Then a model-to-model transformation is carried
out to generate a change model for the target language. Finally, the target change
history model is processed (at any time) to incrementally update the target model
itself. Moreover, our technique also allows incremental updates in an external
model where only the model manipulation interface is under our control (but not
the model itself). Our approach is implemented within the VIATRA2 framework,
and it builds on live transformations and incremental pattern matching.

Keywords: incremental model transformation, change models, change-driven
transformations

1 Introduction

Model transformations play a key role in model-driven software engineering by provid-
ing embedded design intelligence for automated code generation, model refactoring,
model analysis or reverse engineering purposes.

Most traditional model transformation frameworks support batch transformations
where the execution of a transformation is initiated (on-demand) by a systems designer.
Most traditional model transformation frameworks follow this approach. As an alternate
solution (proposed recently in [1, 2]), live transformations (or active transformations)
run in the background as daemons, and continuously react to changes in the underlying
models. In this respect, a transformation can be executed automatically as soon as a
transaction on the model has completed.

Up to now, the design and execution of batch transformations and live transfor-
mations were completely separated, i.e. the same transformation problem had to be
formulated in a completely different way.



In the current paper, we try to bridge this conceptual gap by introducing change-
driven model transformations. More specifically, we first define the concept of a change
history model, which serves as a history-aware log of elementary model changes, which
record causal dependency / timeliness between such changes. We show how change his-
tory models can be derived incrementally by live transformations during model editing.
Then we describe how change history models can be used to incrementally update a
model asynchronously (i.e. at any desired time) by propagating changes using batch
transformations.

The use of change history models in model-to-model transformation scenarios has
far-reaching consequences as incremental model transformations can be constructed
with minimal knowledge about the current structure of the target model. For instance,
transformations can still be implemented when only identifiers and a model manipu-
lation interface are known, but the rest of the actual target model is non-materialized
(i.e. does not exist as an in-memory model within the transformation framework). As
a result, our concepts can be easily applied in the context of runtime models as well
as incremental model-to-code transformation problems (where the latter will actually
serve as the running example of the paper).

The rest of the paper is structured as follows. In Sec. 2, a motivating case study is
introduced as a running example for our paper. The main concepts of change-driven
transformations and change history models are introduced in Sec. 3. Section 4 details
the main steps of the approach on the running example. Finally, Section 5 summarizes
related work and Sec. 6 concludes our paper.

2 Motivating scenario

Our motivating scenario is based on an actual tool integration environment developed
for the SENSORIA and MOGENTES EU research projects.Here high-level workflow
models (with control and data flow links, artefact management and role-based access
control) are used to define complex development processes which are executed auto-
matically by the JBoss jBPM workflow engine, in a distributed environment consisting
of Eclipse client workstations and Rational Jazz tool servers. The process workflows
are designed in a domain-specific language, which is automatically mapped to an an-
notated version of the jPDL execution language of the workflow engine. jPDL is an
XML-based language, which is converted to an XML-DOM representation once the
process has been deployed to the workflow engine.

A major design goal was to allow the process designer to edit the process model and
make changes without the need for re-deployment. To achieve this, we implemented an
asynchronous incremental code synchronizing model transformation. This means that
(i) while the user is editing the source process model, the changes made are recorded.
Then (ii) these changes can be mapped incrementally to the target jPDL XML model
without re-generating it from scratch. Additionally, (iii) the changes can be applied
directly on the deployed XML-DOM representation through jBPM’s process manipu-
lation DOM programming interface, but, (iv) in order to allow the changes to applied
to the remote workflow server, the actual XML-DOM manipulation is executed on a
remote host asynchronously to the operations of the process designer.



(a) Domain-specific workflow
model

(b) JPDL XML Document

(c) Domain-specific workflow metamodel (d) jPDL interface

Fig. 1. Model representations in the motivating scenario

Example. A simple tool integration workflow model is given in Fig. 1(a) together
with its jPDL XML representation (in Fig. 1(b)). Moreover, a metamodel of the source
language is given in Fig. 1(c). In case of the target language, an interface is provided to
manipulate XML documents (see Fig. 1(d)).

Metamodeling background. Since the actual tool integration framework is built upon
the model repository and transformation support of the VIATRA2 framework [3], we
also use it for the current paper for demonstration purposes. However, all metamodels
will be presented as a traditional EMF metamodel to stress that all the main concepts
presented could be transfered to other modeling environments as well.

VIATRA2 uses the VPM [4] metamodeling approach for its model repository, which
uses two basic elements: entities and relations. An entity represents a basic concept of
a (modeling) domain, while a relation represents the relationships between other model
elements. Furthermore, entities may also have an associated value which is a string that
contains application-specific data.

Model elements are arranged into a strict containment hierarchy, which constitutes
the VPM model space. Within a container entity, each model element has a unique local



name, but each model element also has a globally unique identifier which is called a
fully qualified name (FQNs are constructed by hierarchical composition of local names,
e.g. “workflow.model.node0”).

There are two special relationships between model elements: the supertypeOf (in-
heritance, generalization) relation represents binary superclass-subclass relationships
(like the UML generalization concept), while the instanceOf relation represents type-
instance relationships (between meta-levels). By using an explicit instanceOf relation-
ship, metamodels and models can be stored in the same model space in a compact way.

3 Change history models in incremental model synchronization

In the current paper, we investigate a model synchronization scenario where the goal is
to asynchronously propagate changes in the source model MA to the target model MB.
This means, that changes in the source model are not mapped on-the-fly to the target
model, but the synchronization may take place at any time. However, it is important
to stress that the synchronization is still incremental, i.e. the target model is not re-
generated from scratch, but updated according to the changes in the source model.

Moreover, our target scenario also requires that MB is not materialized in the model
transformation framework, but accessed and manipulated directly through an external
interface IF of the their native environment. This is a significant difference to traditional
model transformation environments, where the system relies on model import and ex-
port facilities to connect to modeling and model processing tools in the toolchain.

Fig. 2. Model synchronization driven by
CHMs

To create asynchronous incremen-
tal transformations, we extend tradi-
tional transformations (which take mod-
els as inputs and produce models as out-
put) by change-driven transformations
which take model manipulation opera-
tions as inputs and/or produce model
manipulation operations as output. By
this approach, our mappings may be ex-
ecuted without the need of materializing
source and target models directly in the
transformation system, and may also be executed asynchronously in time.

As we still rely on model transformation technology, operations on models need to
be represented in the model space by special trace models which encode the changes of
models as model manipulation sequences. We call these models change history models
(CHMs in short). These models are generated automatically on-the-fly as the source
model changes (see CHMA in the left part of Fig. 2) using live transformations [2].
Live transformations are triggered by event-driven condition-action rules whenever a
change is performed in the model space, and create an appropriate change history model
fragment (connected to those parts of the model which were affected by the change).

The actual model transformation between the two languages is then carried out by
generating a change history model CHMB for the target language as a separate transfor-
mation (see middle part of Fig. 2).



As change history models represent a trace of model evolution, they may be auto-
matically applied to models (see right part of Fig. 2). More precisely, we combine a
snapshot of the model MB (representing the initial state) and a change history model
CHMB (representing a sequence of operations applicable starting from the initial state)
to create the final snapshot M′B. In other words, the change history model CHMB rep-
resents an “operational difference” between M′B and MB, with the order of operations
preserved as they were actually performed on MB.

3.1 Change history models

Change history models are conceptually derived from the model manipulation opera-
tions defined on the host language. These operations may be generic (i.e. corresponding
to graph-level concepts such as “create node”, “create edge”, “change attribute value”),
or domain-specific (corresponding to complex operations such as “remove subprocess”,
“split activity sequence”). In the current paper, we discuss the generic solution in detail,
however, we also show how our approach can be extended to domain-specific languages
in a straightforward way.

Change history metamodel The generic change history metamodel for VPM host
models is shown in Fig. 3. CHM fragments are derived from the abstract Operation
class, which can be optionally tagged with a Timestamp attibute for time-based tracing
of, e.g. user editing actions. Operations are connected to each other by relations of type
next, which enables the representation of operation sequences (transactions).

It is important to stress that CHMs do not directly reference their corresponding
host models, but use fully qualified name (or unique ID) references. The reason for
this is two-fold: (i) by using indirect references, CHMs may point to model elements
that are no longer existent (e.g. have been deleted by a consecutive operation), and
(ii) CHMs are not required to be materialized in the same model space as the host
model (symmetrically, host models are not required to be materialized when processing
CHMs). This allows to decoupling the actual models from the transformation engine
which is a requirement for non-invasive scenarios where target models are indirectly
manipulated through an interface.

By our approach, change history metamodel elements are either EntityOperations
or RelationOperations. Entity operations use the parentFQN reference to define the
containment hierarchy context in which the target entity is located before the operation
represented by the CHM fragment was executed. Analogously, relation operations use
srcFQN and trgFQN to define source and target endpoints of the target relation element
(prior to execution). Note that we omitted inheritance edges from EntityOperation and
RelationOperation in Fig. 3 for the sake of clarity.

All CHM elements correspond to elementary operations in the VPM model space,
in the following categories:

– creation (shown on the far left): CreateEntity and CreateRelation represent opera-
tions when an entity or relation has been created (an entity in a given container, a
relation between a source and target model element). Both CHM fragments carry
information on the type (typeFQN) of the target element.



Fig. 3. Generic change history metamodel

– deletions (shown on the near left): DeleteEntity and DeleteRelation correspond to
deletions of entities and relations.

– updates (shown on the near right): SetValue indicates an operation where the value
field of an entity is overwritten; similarly, SetName represents an update in the local
name of the target (in this case, as always, targetFQN points to the original FQN
of the target model element, so this CHM fragment needs to be used carefully).

– moves (shown on the far right): MoveEntity corresponds to the reparenting of an
entity in the VPM containment hierarchy. SetRelationTarget and SetRelationSource
represent retargeting and resourcing operations.

4 Change-driven transformations

In this section, we demonstrate the concept and application of change-driven transfor-
mations (see Fig. 2) using change history models by the elaboration of the motivating
scenario described in Sec. 2. First, we demonstrate (in Sec. 4.1) how CHMs can be
derived automatically by recording model manipulations using live transformations.
We introduce both generic (metamodel-independent) and domain-specific (metamodel-
dependent) techniques to achieve this. Then we discuss (in Sec. 4.2) how model trans-
formations can be designed between two CHMs of different languages. Finally, we
describe (in Sec. 4.3) how CHMs can be asynchronously processed to incrementally
update a model resided in a model repository or within a third-party tool accessed via
an external interface.

4.1 Automatic generation of CHMs by live transformations

First, we demonstrate the automatic generation of change history models for record-
ing modification operations carried out on the host model. Model changes may be ob-
served using various approaches, e.g. by model notification mechanisms such as the
EMF notification API, where the model persistence framework provides callback func-
tions for elementary model changes. This approach is limited to recording only basic



model manipulation operations, i.e. an appearance of a complex model element (e.g.
a graph node with attribute values and type information) requires the processing of a
sequence of elementary operations (e.g. “create node”, “set value”, “assign type”, etc).
If the modification operations may be interleaving (e.g. in a distributed transactional
environment, where multiple users may edit the same model), it is difficult to process
operation sequences on this low abstraction level.

In contrast, live transformations [2] define changes on a higher abstraction level
as a new match (or lost match) of a corresponding graph pattern (as used in graph
transformations [6]). By this approach, we may construct a complex graph pattern from
elementary constraints, and the system will automatically track when a new match is
found (or a previously existing one is lost) – thus, model manipulation operations may
be detected on a higher abstraction level, making it possible to assign change history
models not only to elementary operations, but also to domain-specific ones.

More precisely, live transformations are defined by event-condition-action triples in
the following sense:

– an event is defined with respect to a graph pattern, and may correspond to an ap-
pearance of a newly found match, or a disappearance of a previously existing one.

– conditions are evaluated on the transaction of elementary operations which resulted
in the triggering of the event. They correspond to elementary operations affecting
elements of the subgraph identified by the event’s (newly found or deleted) match.

– actions are model manipulation operations to be carried out on the model.

Basic patterns Fig. 4 shows three basic graph patterns and their VIATRA2 transfor-
mation language representations. Pattern entity in parent encompasses a contain-
ment substructure where an entity E is matched in a given parent entity Parent. A new
match for this pattern occurs when any entity is created in the host model (when a new
match is detected, concrete references as substitutions for pattern variables E,Parent
are passed to the transformation engine). Similarly, pattern relation source target
corresponds to a relation R with its source S and target T elements, while pattern
modelelement type references any model element with its type. These patterns corre-

pattern entity_in_parent(E,P) =
{
entity(Parent);
entity(E) in Parent;

}

pattern modelelement_type(ME,T) =
{
modelElement(Type);
instanceOf(ME,Type);

}

pattern relation_source_target(R,S,T) =
{
modelElement(S);
modelElement(T);
relation(R,S,T);

}

Fig. 4. Patterns for identifying relevant model manipulation events



spond to basic notions of the VPM (typed graph nodes and edges), and may be com-
bined to create precondition patterns for event-driven transformation rules.

Generic derivation rules On the left, Fig. 5 shows a sample CHM generation rule for
tracking the creation of model elements. A triggered graph transformation rule is de-
fined for a composite disjunctive pattern, which combines cases of new appearances
of entities and relations into a single event. Condition clauses (when(create(E)),
when(create(R))) are used to distinguish between the cases where an entity or a re-
lation was created. Finally, action sequences (encompassed into seq{} rules after the
when-clauses) are used to instruct the VIATRA2 engine to instantiate the change his-
tory metamodel, create a CreateEntity or CreateRelation model element and set their
references to the newly created host model entity/relation.

The right side of Fig. 5 shows an example execution sequence of this rule. The
sequence starts with a model consisting only of a top-level container node w0 of type
Workflow. In Step 2, the user creates a new Invocation node i0 inside w0. Note that
on the VPM level, the creation of i0 actually consists of three operations: (1) create
entity, (2) set entity type to Invocation, (3) move entity to its container. However, the
live transformation engine triggers the execution of handleCreation() only if the
subgraph w0− i0 is complete. In Step 3, handleCreation() is fired with the match
{Parent = w0,E = i0,Type = Invocation}, and – as the condition create(E) is satisfied
in this case – the appropriate CreateEntity instance ce0 is created.

Domain-specific CHMs Change history models can also be defined on a higher ab-
straction level, directly applicable to domain-specific modeling languages. In Fig. 6(a),

@Trigger(sensitivity=’rise ’)
// ’rise’ indicates that the rule
// should fire for newly detected
// matches of the pattern
gtrule handleCreation()=
{
precondition(E,Parent ,R,S,T,Type)=
{
find entity_in_parent(E,Parent);
find modelelement_type(E,Type);

} OR {
find relation_source_target(R,S,T);
find modelelement_type(R,Type);

}
action {
when(create(E)) seq {
new CreateEntity(CE);
setValue(CE.elementName ,name(E));
// store FQNs
setValue(CE.targetFQN ,fqn(E));
setValue(CE.typeFQN ,fqn(Type));
setValue(CE.parentFQN ,fqn(Parent));

}
when(create(R)) seq {
new CreateRelation(CR);
setValue(C.elementName ,name(R));
// store FQNs
setValue(CE.targetFQN ,fqn(R));
setValue(CE.typeFQN ,fqn(Type));
setValue(CE.targetFQN ,fqn(T));
setValue(CE.sourceFQN ,fqn(S));

}}}

Fig. 5. Live transformation rule for automatic CHM generation



a part of the change history metamodel for manipulating jPDL XML documents is
shown. This metamodel uses unique IDs to refer to (non-materialized) model elements
(as defined in the jPDL standard); since jPDL documents also follow a strict contain-
ment hierarchy, creation operations (as depicted in Fig. 6(a)) refer to a parentID in
which an element is to be created. In the follow-up examples of our case study, we will
make use of CreateJPDLNode and CreateJPDLAttribute to illustrate the usage of this
domain-specific change history metamodel.

(a) Change history metamodel
for jPDL

(b) Domain-specific CHM generation for jPDL

Fig. 6. Domain-specific change history models

It is important to note, that domain-specific CHMs can be created analogously to
generic ones, by using more complex graphs as precondition patterns for events. The
domain-specific CHM construction rule in Fig. 6(b) includes direct type references to
the domain metamodel (Fig. 1(c)) – in this case, it fires after the creation of an Invoca-
tion and associated DataInputs and DataOutputs is completed, and it creates connected
three domain-specific CHM fragments accordingly.

4.2 Model transformations between change history models

As CHMs are automatically derived as models are modified, they essentially represent
a sequence of operations that are valid starting from a given model snapshot (Fig. 2).
As such, they may be used to drive mapping transformations between two modeling
languages: such a change-driven transformation takes CHMs of the source model and
maps them to CHMs of the target model.

This is a crucially different approach with respect to traditional model transforma-
tions in the sense that the mapping takes place between model manipulation opera-



tions rather than models, which makes non-invasive transformations possible (where
the models are not required to be materialized in the transformation system).

gtrule mapCreation()=
{
precondition(CE)=
{

CreatedEntity(CE);
check (CE.typeFQN ==

"metamodel.Invocation");
}
action {
// calculate names from fqns
let NameE = name(CE.targetFQN),

NameParent = name(CE.parentFQN)
in seq {
// create CHM for JPDL Node
new(CreateJPDLNode(CJN));
setValue(CJN.targetID ,

NameParent+"."+NameE);
setValue(CJN.parentID ,

NameParent);

// create CHM for Attribute node
new(CreateJPDLAttribute(CJA));
// chain the operation sequence
new(Operation.next(_,CJN,CJA));
// set FQN references
setValue(CJA.targetID ,

CJN.targetID+".function");
setValue(CJA.parentID ,

CJN.targetID);
// copy information
// from the source model
setValue(CJA.targetValue ,

ref(CE.targetFQN).functionName);
})}}

Fig. 7. Transformation of change history models

Fig. 7 shows an example transformation rule where the creation of an Invocation in
the domain-specific workflow language is mapped to the creation of a corresponding
jPDL Node and its attribute. In this case, a batch graph transformation rule is used,
however, this transformation may also be formulated as a live transformation. The rule
looks for a CreateEntity element referencing a node of type Invocation, and maps it to
the domain-specific CHMs of the jPDL language. As Invocations are represented by
jPDL Nodes with an attribute node, the target CHM will consist of two “create”-type
elements, chained together by the Operation.next relation.

The core idea of creating CHM transformations is the appropriate manipulation of
reference values pointing to their respective host models (as CHMs only carry infor-
mation on the type of the operation, the contextual information is stored in their ref-
erences). In this example, we make use of the fact that both source and target models
have a strict containment hierarchy (all elements have parents), which is used to map
corresponding elements to each other:

– Based on parentFQN in the source model, we calculate the target parent’s ID par-
entID as name(CE.parentFQN).

– Similarly, the target jPDL node’s ID targetID is calculated as parentID + ”.” +
name(CE.targetFQN), which will place the target node under the target parent.

– Finally, the attribute f unctionName designates a particular function on a remote
interface which is invoked when the workflow engine is interpreting an Invocation



workflow node. It is represented by a separate node in the jPDL XML-DOM tree.
The targetValue attribute of the additional CreateJPDLAttribute element is derived
from the appropriate attribute value of Invocation node in source model (as denoted
by the re f (CE.targetFQN) function in the sample code).

The right side of Fig. 7 shows a sample execution result of the mapCreate() rule.
First, in Step 4, the precondition pattern is matched, and a match is found to the sub-
graph created in Step 3 of Fig. 5. Following the successful matching, the action se-
quence is executed to create the domain-specific CHM nodes c jn0 (corresponding to
a creation of a jPDL Node) and c ja0 (creation of a jPDL attribute node). These CHM
nodes are chained together by a next relation to be executed in sequence.

Designing change-driven transformations When designing transformations of change
history models, it is important to focus on the fact that the transformation will operate
on operations rather than models. Consequently, the first step in designing such a trans-
formation is to define the concept of operation – which may be generic (graph-level
operations), or domain-specific. This essentially requires a partitioning scheme for the
host modeling language, where the partitions correspond to parts whose creation/dele-
tion constitutes an operation which can be represented by a CHM fragment (and pro-
cessed later on).

It is important to note that the granularity of this paritioning can be determined
freely (since it is possible to perform the ”aggregation” of operations in, e.g. the trans-
formation between CHMs of source-target host languages); however, we have found
that it is useful to define these partitions so that they represent a consistent change (i.e.
the results of valid modification steps between two consistent states of the host model).

4.3 Processing change history models

On the macro level, change history models are represented as chains of parametrized el-
ementary model manipulation operations. As such, they can be processed linearly, pro-
gressing along the chain until the final element is reached (thus modeling the execution
of a transaction). The consumption (application) of a CHM element is an interpretative
step, where the appropriate action is performed in the context defined by the CHM’s
references. Intuitively, the following rules outline interpretative actions for processing
generic CHM type classes:

– creation: the target entity/relation is created with the correct type assignment; en-
tities are created in the container designated by the parent’s fully qualified name
(parentFQN), relations are created between source and target elements referenced
by sourceFQN and targetFQN, respectively.

– moves: for MoveEntity, the target entity is moved to the container designated by
newParentFQN; for SetRelationSource, the source end of the target relation is redi-
rected according to newSourceFQN.

– updates: SetName and SetValue are mapped to updates in the name and value at-
tributes. SetRelationTarget is handled similarly to SetRelationSource.

– deletions: DeleteEntity and DeleteRelation are interpreted as deletions of their tar-
gets (targetFQN).



Applying CHMs to non-materialized models As Fig. 2 shows, we apply CHMs to
manipulate non-materialized models through an interface. The speciality of this sce-
nario is that instead of working on directly accessible in-memory models, the transfor-
mation engine calls interface functions which only allow basic queries (based on ids)
and elementary manipulation operations. In this case, CHMs are very useful since they
allow incremental updates, as they encode directly applicable operation sequences.

Case study technical details For the jPDL models of the motivating scenario, we
mapped the XML-DOM process model manipulation programming interface to VI-
ATRA2’s native function API, which enables the system to invoke arbirary Java code
from the transformation program. The following native functions are used:

– getElementById(ID): queries the jPDL DOM for a given element, identified by its
unique ID.

– createElement(parentRef,targetID): creates a new jPDL DOM element as a child
of its parent (identified by parentRe f ), with a given unique ID (targetID).

– addElement(elementRef,DocID): adds the element elementRe f to the jPDL DOM
identified by DocID.

– setContents(elementRef,text): sets the textual content of the given DOM element
(elementRe f ) to text.

In our examples, invocations of these interface functions are highlighted in green.

Example transformation rule In this final case study example, we define an applica-
tion rule based on domain-specific CHMs for the jPDL XML-DOM model (Fig. 6(a)).
Fig. 8 shows the newCompoundJPDLNode() rule, which is used to interpret a subse-
quence of CHM chains for the jPDL domain. More precisely, this rule’s precondition
matches the pair of CreateJPDLNode and CreateJPDLAttribute CHM fragments which
correspond to the addition of a new ”compound” jPDL node (with a specified function
invocation attribute). The rule uses native functions createElement, addElement to
instantiate new jPDL XML elements directly in the deployed process model on the
workflow server; setContent is used to overwrite the attribute node’s textual content.

The left side of Fig. 8 shows the final three steps of our running example. In Step 6,
the initial state of the deployed workflow model, the process definition corresponding to
Workflow w0 is still empty. During the rule’s execution, first, the jPDL Node i0 is created
(Step 7), and then in Step 8, the attribute node is added with the appropriate textual
content. (Debug calls are used to write debugging output to the VIATRA2 console.)

The entire algorithm which applies CHMs follows the linear sequnce of operations
along the relations with type Operation.next; the first operation in a transaction can be
determined by looking for a CHM fragment without an incoming Operation.next edge.

5 Related Work

Now an overview is given on various approaches showing similarity to our proposal.
Event-driven techniques. Event-driven techniques, which are the technological

basis of live model transformations, have already been used in many other fields of



gtrule newCompoundJDPLNode(JPDL_DOM) =
{
precondition(CJN,CJA) =
{
CreateJPDLNode(CJN);
CreateJPDLAttribute(CJA);
Operation.next(_,CJN,CJA);

}
action {
// create JPDL Node -- Step 7
let TargetNode = createElement(

getElementById(CJN.parentID),
CJN.targetID),

Result0 = addElement(TargetNode , JPDL_DOM) in
println("Debug created JPDL Node:"+Result0);
// create JPDL Attribute -- Step 8
let TargetAttributeNode = createElement(

getElementById(CJA.parentID),
CJA.targetID),

Result1 = setContent(TargetAttributeNode ,
ref(CJN.targetFQN).functionName),

Result2 = addElement(TargetAttributeNode ,
JPDL_DOM) in

println("Debug created JPDL Attribute:"+Result2);
}

}

Fig. 8. Applying CHMs through the jPDL XML-DOM API

computer engineering. In relational database management systems (RDBMS), even the
concept of triggers [7] can be considered as simple operations whose execution is initi-
ated by events. Later, event-condition-action (ECA) rules [8] were introduced for active
database systems as a generalization of triggers, and the same idea was adopted in
rule engines [9] as well. Specification of live model transformations is structurally and
conceptually similar to ECA rules as discussed in Sec. 4.1. However, ECA-based ap-
proaches lack the support for triggering by complex graph patterns, which is an essential
scenario in model-driven development.

Calculation of model differences. Calculating differences (deltas) of models has
been widely studied due to its important role in the process of model editing, which
requires undo and redo operations to be supported. In [10], metamodel independent al-
gorithms are proposed for calculating directed deltas, which can later be merged with
initial model to produce the resulting model. The approach of [10] generates both back-
ward and forward directed deltas to support the calculation of previous and following
models, respectively. This behaviour is not needed in synchronization scenarios as mod-
ifications caused by undo and redo tasks appear as regular create, delete, move, and up-
date operations performed on the source model, which can be transformed by the same
process to deltas on the target side. Unfortunately, the algorithms proposed by [10] for
difference and merge calculation may only operate on a single model, and they are not
specified by model transformation.

In [11], a metamodel independent approach is presented for visualizing backward
and forward directed deltas between consecutive versions of models. Differences (i.e.,
change history models) have a model-based representation, and calculations are driven
by (higher order) transformations in both [11] and our approach. However, in contrast
to [11], our current proposal operates in an exogeneous transformation context, and
thus, it is able to propagate change descriptions from source to target models.

Incremental synchronization for exogeneous model transformations. Incremen-
tal synchronization approaches already exist in model-to-model transformation context.



One representative direction is to use triple graph grammars [12] for maintaining the
consistency of source and target models in a rule-based manner. The proposal of [13]
relies on various heuristics of the correspondence structure. Dependencies between cor-
respondence nodes are stored explicitly, which drives the incremental engine to undo
an applied transformation rule in case of inconsistencies. Other triple graph grammar
approaches for model synchronization (e.g. [14]) do not address incrementality.

Triple graph grammar techniques are also used in [15] for tool integration based on
UML models. The aim of the approach is to provide support for change synchroniza-
tion between various languages in several development phases. Based on an integration
algorithm, the system merges changed models on user request. Although it is not a live
transformation approach, it could benefit from being implemented as such.

The approach of [16] shows the largest similarity to our proposal as both (i) focus
on change propagation in the context of model-to-model transformation, (ii) describe
changes in a model-based and metamodel independent way, and (iii) use rule-driven
algorithms for propagating changes of source models to the target side. In the proposal
of [16] target model must be materialized and they can also be manually modified,
which results in a complex merge operation to be performed to get the derived model. In
contrast, our algorithms can be used on non-materialized target models, and the derived
models are computed automatically on the target side.

6 Conclusion and Future Work

In the paper, we discussed how model synchronization can be carried out using change-
driven model transformations, which rely upon the history of model changes. We pre-
sented an approach to automatically (and generically) derive change history models by
recording changes in a (source) model using live transformations. Then a change history
model of the target language is derived by a second (problem-specific) model transfor-
mation. Finally, the target change history model can automatically drive the incremental
update of the target model itself even in such a case when only an external model ma-
nipulation interface is available for the target model. Our approach was examplified
using an incremental code generation case study.

As future work, we plan to investigate how to derive aggregated and history inde-
pendent change delta models (like in [11]) automatically as union of change history
models. Furthermore, we aim at using change history models in the context of model
merging.

Acknowledgements: This paper was partially supported by the SENSORIA Euro-
pean Project (IST-3-016004).

References

1. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the evolution
of model-driven systems. In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Proc.
of the 9th International Conference on Model Driven Engineering Languages and Systems.
Volume 4199 of Lecture Notes in Computer Science., Genova, Italy, Springer (October 2006)
321–335



2. Rth, I., Bergmann, G., krs, A., Varr, D.: Live model transformations driven by incremental
pattern matching. In: Theory and Practice of Model Transformations. Volume 5063/2008 of
Lecture Notes in Computer Science., Springer Berlin / Heidelberg (2008) 107–121

3. Varró, D., Balogh, A.: The Model Transformation Language of the VIATRA2 Framework.
Science of Computer Programming 68(3) (October 2007) 214–234

4. Varró, D., Pataricza, A.: VPM: A visual, precise and multilevel metamodeling framework
for describing mathematical domains and UML. Journal of Software and Systems Modeling
2(3) (October 2003) 187–210

5. The Eclipse Project: Eclipse Modeling Framework http://www.eclipse.org/emf.
6. Ehrig, H., Montanari, U., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph Gram-

mars and Computing by Graph Transformation. Volume 3: Concurrency and Distribution.
World Scientific (1999)

7. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book. Pren-
tice Hall (2001)

8. Dittrich, K.R., Gatziu, S., Geppert, A.: The active database management system manifesto:
A rulebase of ADBMS features. In Sellis, T., ed.: Proc. of the 2nd International Workshop
on Rules in Database Systems. Volume 985 of Lecture Notes in Computer Science., Glyfada,
Athens, Greece, Springer (September 1995) 1–17

9. Seiriö, M., Berndtsson, M.: Design and implementation of an ECA rule markup language.
In Adi, A., Stoutenburg, S., Tabet, S., eds.: Proc. of the 1st International Conference on
Rules and Rule Markup Languages for the Semantic Web. Volume 3791 of Lecture Notes in
Computer Science., Galway, Ireland, Springer (October 2005) 98–112

10. Alanen, M., Porres, I.: Difference and union of models. In Stevens, P., Whittle, J., Booch,
G., eds.: Proc. of the 6th International Conference on the Unified Modeling Language, Mod-
eling Languages and Applications (UML 2003). Volume 2863 of Lecture Notes in Computer
Science., San Francisco, California, USA, Springer (October 2003) 2–17

11. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: A metamodel independent approach to differ-
ence representation. Journal of Object Technology 6(9) (October 2007) 165–185

12. Schürr, A.: Specification of graph translators with triple graph grammars. Technical report,
RWTH Aachen, Fachgruppe Informatik, Germany (1994)

13. Giese, H., Wagner, R.: Incremental model synchronization with triple graph grammars. In
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Proc. of 9th International Conference
on Model Driven Engineering Languages and Systems, (MoDELS 2006). Volume 4199 of
LNCS., Springer (2006) 543–557

14. Klar, F., Königs, A., Schürr, A.: Model transformation in the large. In: ESEC-FSE ’07:
Proceedings of the the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering, New York,
NY, USA, ACM (2007) 285–294

15. Simon M. Becker, Thomas Haase, B.W.: Model-based a-posteriori integration of engineering
tools for incremental development processes. Software and Systems Modeling 4(2) (May
2005) 123–140

16. Jimenez, A.M.: Change propagation in the MDA: A model merging approach. Master’s
thesis, The University of Queensland (June 2005)


