Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Synchronization of Abstract and Concrete Syntax
in Domain-Specific Modeling Languages

By Mapping Models and Live Transformations

Istvan Rath!, Andras Okros?, Déaniel Varré!

! Budapest University of Technology and Economics,
Department of Measurement and Information Systems,
H-1117 Magyar tudésok krt. 2, Budapest, Hungary

2 OptXware Research and Development LLC.

H-1137 Budapest, Katona J. u. 39., Budapest, Hungary

Received: date / Revised version: date

Abstract Modern domain-specific modeling (DSM)
frameworks provide refined techniques for developing
new languages based on the clear separation of concep-
tual elements of the language (called abstract syntax)
and their graphical visual representation (called concrete
syntax). This separation is usually achieved by record-
ing traceability information between the abstract and
concrete syntax using mapping models. However, state-
of-the-art DSM frameworks impose severe restrictions on
traceability links between elements of the abstract syn-
tax and the concrete syntax.

In the current paper, we propose a mapping model
which allows to define arbitrarily complex mappings be-
tween elements of the abstract and concrete syntax.
Moreover, we demonstrate how live model transforma-
tions can complement mapping models in providing bidi-
rectional synchronization and implicit traceability be-
tween models of the abstract and the concrete syntax. In
addition, we introduce a novel architecture for domain-
specific modeling environments which enables these con-
cepts, and provide an overview of the tool support.

Key words domain-specific modeling languages —
model synchronization — live model transformations —
traceability

1 Introduction

Domain-specific modeling languages (DSMLs) play an
increasingly important role in various areas of software
engineering, including business process modeling or em-
bedded systems. Their increasing popularity is due to
the recent advances in domain-specific modeling (DSM)
frameworks (like Eclipse Graphical Modeling Framework

GMF [1]), which significantly accelerate the development
of dedicated modeling editors with professional look-
and-feel in a wide range of application domains.

Such DSM frameworks provide refined techniques for
developing new languages based on the clear separation
of conceptual elements of the language called abstract
syntax (or conceptual model) and their visual represen-
tation called concrete syntaz (or diagram model). This
separation is achieved by precisely recording traceability
information between the abstract and concrete syntax
using so-called mapping models (or trace models).

Mapping models in the context of DSMLs can also
be categorized from traditional traceability perspectives.
For instance, first Eclipse-based DSMLs based upon
the Graphical Editing Framework (GEF) used internal
traceability, when concrete syntax elements had a direct
reference to abstract syntax elements. More recent ap-
proaches like the Graphical Modeling Framework have
opted for external traceability when the elements of the
abstract and concrete syntax are interrelated via a sep-
arate mapping model.

However, unfortunately, even state-of-the-art DSM
framework such as GMF impose severe restrictions on
traceability links between elements of the abstract syn-
tax and the diagram models. For instance, each concrete
syntax element in a diagram must correspond to exactly
one element in the underlying abstract syntax. Moreover,
industrial DSM frameworks mostly provide automated
synchronization between the abstract and concrete syn-
tax in one direction: (i) changes of the diagram model
initiated from the editor are propagated to the under-
lying abstract syntax, but (ii) direct changes of the ab-
stract syntax frequently corrupt domain-specific editors
(direct changes to the abstract syntax are usually due to
editing actions in other concrete syntax representations,
such as another diagram or a textual view, or may be re-

sults of automated model transformations). As a result,
the use of DSM frameworks for developing complex, in-
dustrial strength visual modeling languages requires sig-
nificant expertise and additional manual programming
effort to overcome such difficulties.

The first claim for the current paper is that most of
these problems are caused by the very simplistic han-
dling of mapping models in DSM frameworks. For this
purpose, we propose a mapping model which allows to
define arbitrarily complex mappings between the ab-
stract and concrete syntax of visual DSMLs. As a result,
visual abstraction can be introduced to the graphical rep-
resentation, i.e. a single graphical element may represent
(abbreviate) a complex fragment of the underlying ab-
stract syntax.

Obviously, such complex mapping models between
the abstract syntax model and the diagram model intro-
duces synchronization problems between the two models.
Complex changes in the concrete syntax model (caused
by editing operations) need to be immediately reflected
in the underlying abstract syntax, and changes in the
abstract syntax (e.g. caused by running background
model transformations) would have a non-trivial effect
on the concrete syntax model. For this purpose, map-
ping models will be processed with incremental and live
model transformations [2,3], which continuously run in
the background to immediately react to complex, non-
atomic changes in (any of) these models in an incremen-
tal way. These reactions can be designed by relying on a
high-level model transformation language [4].

Unsurprisingly, the handling of arbitrarily complex
mappings between the abstract and concrete syntax
have some architectural impact on the underlying DSM
framework as well. Therefore, we demonstrate the prac-
tical feasibility of the approach using the ViatraDSM
framework [5], which is a non-generative environment for
developing DSMLs based upon the modeling and trans-
formation features of the VIATRA2 model transforma-
tion tool.

The main contributions of the current paper are,
therefore, the following: (1) we introduce a novel archi-
tecture for domain-specific modeling environments; (2)
we propose a mapping model which allows to define arbi-
trarily complex mappings between the abstract syntax
and the diagram model; (3) we demonstrate how live
transformations can support to maintain the coherence
of these models, (4) we provide (an overview of the) tool
support. These concepts will be demonstrated by devel-
oping a simple still representative domain-specific mod-
eling language.

Taking a traceability viewpoint, our proposal com-
bines explicit traceability (the traditional way when
traceability links between two models are explicitly per-
sisted to a mapping model) with implicit traceability
(when traceability is provided implicitly by a live model
transformation transformation running in the back-
ground as a daemon). In fact, it is a design decision (de-

Istvan Réath et al.

pending on the application domain and traceability re-
quirements) how to balance between the two approaches.
In the current paper, we use generic, declarative map-
ping models for explicit traceability (which can be reused
for capturing traceability between other modeling lan-
guages). Then one-to-one mappings between source and
target elements are handled by generic model trans-
formation rules. However, for more complex (arbitrary
m-to-n) synchronizations, we use designated (domain-
specific) transformation rules.

The rest of the paper is structured as follows. Sec. 2
summarizes main concepts of developing domain-specific
modeling languages, and using their corresponding edi-
tors. To better motivate our work, we give an overview of
the state-of-the-art Eclipse Graphical Modeling Frame-
work (Sec. 2.3), and identify its architectural problems
and limitations. Sec. 3.1.1 presents a novel architecture
(exploited in the ViatraDSM framework) for the solving
the synchronization problems in DSMLs. Corresponding
models (abstract syntax, diagram, mapping) are intro-
duced in Sec. 3.1.3-3.1.5 exemplified on Petri nets as a
DSML (Sec. 3.1.1). Sec. 3.2 presents live model trans-
formations as provided by the VIATRA2 model trans-
formation framework. Then, Sec. 4 presents our solution
for the generic synchronization of the abstract and con-
crete syntax of DSMLs using mapping models and live
transformations. Sec. 4.4 provides a brief overview on im-
plementation details. Related work is assessed in Sec. 5,
and finally, Sec. 6 concludes our paper by highlighting
additional applications of our mapping model and syn-
chronization techniques.

2 Challenges of model synchronization in
graphical editors

In this section, we use the Eclipse Graphical Modeling
Framework as a modern, state-of-the-art domain-specific
language engineering environment as the problem con-
text. It is important to note that the ideas and issues
explained are not specific to GMF, in fact, they repre-
sent a generalization of experience gathered in design-
ing and implementing custom domain-specific languages
with various technologies.

2.1 Design of Domain-specific modeling languages

In domain-specific visual language design, the three most
important design aspects are the following:

— Abstract syntax specification, which is typically car-
ried out using metamodeling. The basic notions of
the language (model elements) and their relations
(associations) are defined in a mathematically pre-
cise way, with structural constraints (e.g. to express
containment relations, or type correctness for associ-
ations), multiplicities and implicit relationships (such
as inheritance, refinement).

Synchronization of Abstract and Concrete Syntax in Domain-Specific Modeling Languages 3

— Concrete syntax specification targets the actual vi-
sual appearance of the language, assigning a visual
symbol to those language elements which are to be
represented on diagrams.

— Language constraints are frequently also needed, to
express correctness criteria that are cannot be speci-
fied using metamodeling (e.g. attribute value validity
intervals, or complex structural well-formedness rules
that involve multiple model element configurations).

Early domain-specific modeling tools such as Meta-
Case’s MetaEdit+ [6] derive the structure of the graphi-
cal representation from the abstract syntax, as notation
definitions are assigned directly for each abstract syntax
model element. This is suitable for simple languages with
a few element types, however, in today’s practical appli-
cations, language metamodels are becoming increasingly
large and complex. As a result of the mapping approach,
the complexity is propagated into visual diagrams.

Tackling this visual complexity is a major challenge
in designing domain-specific modeling languages on the
right level of abstraction, which simultaneously provides
(i) intuitive graphical syntax without unnecessary de-
tails, and (ii) an abstract syntax close to the concepts of
the domain.

2.2 Architectural overview of DSMs

A straightforward strategy to balance abstraction with
expressive power is to separate abstract and concrete
syntax representations. Essentially, this approach treats
the visual notation as a separate language with its own
element types, attributes and relations, on an addi-
tional modeling layer. For two dimensional graph-like
languages (as most visual languages are conceptualized),
this visualisation grammar is derived from a core dia-
gram metamodel, which contains attributed nodes and
edges. By refining these concepts to specific model ele-
ments, the structure of the concrete syntax may be elab-
orated; visual appearance is specified by traditional de-
sign tools as previously.

Diagram editing Model editing
/ \
Graphical .
<:> <:> Logical model

[Model space]

Fig. 1 Conceptual overview of domain-specific editors

In graphical DSMs, the model is typically manipu-
lated by the designer using a graphical editor over the

concrete syntax. Changes initiated in the concrete syn-
tax are immediately propagated to the abstract syntax
model. However, in many DSMs, there are certain model
elements, which are not visible to the user in the concrete
syntax, thus they need to be manipulated directly in the
abstract syntax (e.g. by using a Property sheet). More-
over, modern DSM may offer multiple visualizations (di-
agrams, textual notation, hierarchical overviews) of the
same abstract syntax model. In this case, a change in one
concrete syntax triggers a change in the abstract syntax,
which needs to be reflected instantaneously in the other
visualizations. Finally, many complex model manipula-
tions (for model analysis or model transformations) are
carried out directly on the abstract syntax, and the re-
sult of their execution needs to be reflected in all concrete
syntax views preferably immediately. All these scenarios
highlight that bidirectional synchronization of various
models of the abstract and concrete syntax is a major
challenge for DSMs.

For this purpose, a modeling environment typically
offers a hybrid view of the model space. Since the user is
working with two separate notations of the same model,
synchronization has to be done on-the-fly. As abstract
and concrete syntax models are stored in separate mod-
eling layers, the solution is a model-to-model synchro-
nizer which maintains both representations and maps
changes symmetrically.

2.8 The GMF approach and its limitations

As a state-of-the-art environment, the Eclipse Graphical
Modeling Framework follows this design pattern.

At run-time, GMF maintains two distinct model in-
stances: the abstract syntax models conforming to the
ECore metamodel, and a Notation model conforming to
a built-in Notation metamodel. Notation models corre-
spond to diagrams and contain only visualisation-specific
information. The user is interacting with a “parameter-
ized”, but generic Notation model editor, where these
parameters contain information on how diagrams can
be manipulated and mapped to domain models.

GMF automatically performs the mapping as the
user is editing the model, according to a built-in se-
mantics. Model synchronization is implemented by us-
ing a simple traceability mechanism, where each Nota-
tion model element references a corresponding abstract
syntax counterpart. This trace model is contained in
the Notation model resource, and implements a simple
one-to-one mapping (with the exception of labels, which
may reference several attributes through special format
strings). By this approach, GMF is able to partially sep-
arate abstract and concrete syntax representations.

Unfortunately, in case of advanced applications, se-
vere problems arise due to architecture-level design de-
cisions and limitations of GMF.

1. The GMF semantics is restricted to one-to-one map-
pings between model elements of the abstract syntax
and their graphical representation. In case of com-
plex modeling languages (like AUTOSAR), abstrac-
tion capabilities of the concrete syntax would be ad-
vantageous e.g. to allow a graphical notation to ab-
breviate more than a single element in the underlying
concrete syntax.

2. It is impossible in GMF to fully separate the abstract
syntax and the concrete syntaz of a language. In fact,
GMF imposes some (hidden) “meta-constraints” on
the abstract syntax such as the existence of a Di-
agram notion in the metamodel, or the connection
classes providing navigation from both directions.
Additionally, as the abstract syntax model is not
independent from GMF’s visualisation, significant
development efforts are required to tailor existing
Eclipse Modeling Framework (EMF [7]) models to
be GMF-compliant.

As the authors themselves experienced in real devel-
opment projects in the automotive domain, overcoming
these problems of frequently require significant program-
ming effort specific to the modeling language itself. For
instance, in case of the industry-standard AUTOSAR
metamodel, developing a GMF based editor requires the
creation of a new GMF-compliant metamodel (for the
sublanguage which is planned to be visualized), with ex-
pensive ad hoc synchronizers in-between (as illustrated
in Fig. 2).

Custom
synchronizer

Graphical Notation
B. DSML
<:1> Sub-language IS model
GMF Editor

Fig. 2 Implementation pattern

3 Preliminaries
3.1 Modeling the Abstract and Concrete Syntax

8.1.1 Nowel architecture for synchronizing abstract and
concrete syntax In the current paper, we propose a
novel solution to completely separate the abstract syntax
and concrete syntax of a graphical modeling language
with arbitrary mapping between them using advanced
traceability models and live model transformations. Our
approach will be demonstrated using ViatraDSM, which
is a framework for developing domain-specific model-
ing languages using a novel underlying architecture (de-
picted in Fig. 3). The essence of the solution can be
summarized as follows.

Istvan Réath et al.

Mapping
metamodel

Mapping Custom
Library Mapping

Base Visual Live . Diagram
DSML DSML <: transformation |:> model
engine
VIATRA Infrastructure

Fig. 3 The ViatraDSM architecture

— A general mapping model is used to connect elements
of abstract and concrete syntax, which significantly
extends the capabilities of GMF mappings.

— Metamodel-tagging is used for the abstract syntax
(conceptual metamodel) of the modeling language,
which eliminates need for introducing a separate con-
ceptual sub-language (as frequently necessitated by
GMF).

— A general model transformation language is used to
specify more complicated mappings between the ab-
stract and concrete syntax on a high-level of abstrac-
tion (namely, as a model transformation solution in-
stead of pure Java code).

— Live model transformations are used as an execution
mechanism driven by changes in the underlying mod-
els to achieve high performance even for large models.

— A mapping library is provided as a guideline to accel-
erate the implementation of abstract-concrete syntax
mappings.

Petri nets as a domain-specific language. Throughout
the paper, we will use the domain-specific language of
Petri nets as a demonstration case study. We use Petri
nets extended with arc weights and place capacities. Arc
weights are integers associated to both Input Arcs and
Output Arcs, and determine the amount of tokens that
a given arc must carry. Place capacities simply impose a
restriction on the amount of tokens assigned to a place
at any given time.

3.1.2 A synchronization problem between abstract and
concrete syntax As a demonstrating example, we will
construct an advanced domain-specific modeling envi-
ronment for the Petri net language (using the architec-
tural considerations discussed in Sec. 2.2 and 3.1.1). The
editor provides a graphical concrete syntax representa-
tion for Petri net graphs, with support creating Place
and Transition nodes and In/OutArc edges (ensuring
syntactic correctness while editing, i.e. an OutArc can
only start at a Place). Graphical attributes (such as to-
ken count for Places and arc weight for Arcs) can be
edited through a standard property editor. As a frame-
work for the example, the ViatraDSM domain-specific
environment [5] based on the VIATRA2 model transfor-
mation system will be used.

Synchronization of Abstract and Concrete Syntax in Domain-Specific Modeling Languages 5

Our example editor implements the abstraction
shown in Fig. 4. It involves “hiding” token instances and
displaying the number of associated Tokens as a numeric
label inside the Place instance, whereby a derived model
property (the number of token instances) is mapped to
a diagram element property (tokenCount).

Abstract syntax Concrete syntax | Visuals

l po : Place l [7p0 : P/aceFigurel p0

‘tokens [:tokens \:tokens J:attrs

tokenCount
‘Attribute

l t0:Token l l t1:Token l l t2:Token l
{3}

Fig. 4 Model layers in the Petri net editor

8.1.8 Metamodels for abstract and concrete syntaz
In the following sections, we will provide a pre-
cise metamodel-based approach to support arbitrary
abstract-concrete syntax mapping abstractions.

Defining abstract syntax. The standard workflow of
creating an editor in the domain-specific framework be-
gins by creating the abstract syntax metamodel.

Hierarchy

topNodes

4

SIc
Node Edge ‘
contains

properties
A

Property properties

(a) Core abstract syntax metamodel

subElements

attributes
DiagramElement |—>| Attribute

fromEdges

EdgeFigure

NodeFigure

root

Diagram

(b) Core concrete syntax metamodel

Fig. 5 ViatraDSM’s core metamodels

Figure 5(a) shows the core metamodel for abstract
syntax (domain) model elements associated to a Hier-
archy. It defines a directed, labeled graph with Nodes
and Edges; both Nodes and Edges can have Properties.
Nodes are organised into a containment hierarchy. In Vi-
atraDSM, language metamodels are refinements of the
core metamodel. This refinement relation is established
by subtyping, effectively “tagging” the elements of the
domain metamodel with elements from the core meta-
model. By this approach, any domain-specific language

can be mapped making it easy to separate a visual sub-
language of the base DSML according to Fig. 3. For in-
stance, in the case of the Petri net domain metamodel
(Fig. 6(a)), a Token instance is only allowed to be added
to a Place instance because of the tokens relation which
is a refinement of the core contains concept.

Petri net Domain
[Hierarchy]

petriNets
[topNodes]

Token
[Node]

Petri net
[Node]

transitions
[contains]

Transition
[Node]

places
tokens [contains]

[contains]

Place
[Node]

capacity InArc [Arc]

trn [src]

| Poll weight [properties]
Place capacity Arc weight
[Property] [Property]

(a) Abstract syntax metamodel

[Diagram] [Attribute]
pnd_root T tcount

Petri net diagram ‘ TokenCount ‘

root] attributes]
pnd_transitions [rool] pnd_places [!

TransitionFigure | _ ["odes] Petri net root | [odes] PlaceFigure
[NodeFigure] [NodeFigure] [NodeFigure]

pnd_outarcs pnd_t_inarcs
fromedges] [fromedges]

pnd_inarcs

pnd_t_outarcs
[toedges]

[toedges]

[EdgeFigure] [EdgeFigure]

| InArcFigure

| OutArcFigure

(b) Concrete syntax metamodel

Fig. 6 Petri net metamodels

Defining concrete syntax. Similarly to the abstract syn-
tax metamodel, a concrete syntax (diagram) metamodel
may be defined. For the Petri net editor example, Fig-
ure 6(b) shows a simple diagram metamodel as a re-
finement of the core concrete syntax (diagram) meta-
model (Fig. 5(b)). In this case, Petri nets, Places and
Transitions are mapped to separate visual graph nodes
(Petri net root, PlaceFigure and TransitionFigure, re-
spectively), while OutArcs and InArces are visualised as
graph edges (OutArcFigure and InArcFigure).

Note that Tokens are not included in the diagram
metamodel. Instead of mapping them to separate visual
nodes, this visualisation language uses an attribute (To-
kenCount) to indicate the number of tokens assigned
to a place. This approach corresponds to the com-
plete abstract-syntax separation principle laid out in
Sec. 3.1.1 and provides the basis for solving the prob-
lem in Sec. 3.1.2.

3.1.4 Trace metamodels between abstract and concrete
syntax. To maintain a consistent mapping between in-
stances of the abstract and concrete syntax metamodels,

we propose to use trace models conforming to a generic
trace metamodel.

For trace models, we use the core metamodel in
Fig. 7(a). It defines a containment hierarchy between
TopMappings and MappingFElements. A TopMapping in-
stance connects a concrete syntax Diagram with an
abstract syntax Hierarchy, so it serves as a top-level
container for the rest of the trace metamodel ele-
ments. Each DiagramElement (NodeFigures, EdgeFig-
ures) may have multiple MappingFElement associations;
since MappingFElement is abstract, two non-abstract
subclasses (EdgeMappingElement and NodeMappingFEle-
ment) are used to define trace bindings to abstract syn-
tax Fdges and Nodes, respectively. This way, a flexible n-
to-m (many-to-many) mapping can be defined, where a
concrete syntax element may reference multiple abstract
syntax elements by defining multiple MappingElements,
or, an abstract syntax element may be connected to mul-
tiple MappingFElements in the reverse direction.

It is important to note that MappingFElements have
a value attribute, which may be used to store values of
any kind; this is important since in this way, the trace
models are capable of persisting non-structural state in-
formation (e.g. by storing “old” values of a model at-
tribute).

DiagramElement Diagram
[

7y
mappings diagramElement
A3
MappingElement
value {}
diagram
—OITpMapping
| EdgeMappingElement | | NodeMappingElement | i N
ierarchy
edgeMapping nodeMapping v

y * v* Hierarchy
Edge Node

(a) The core mapping metamodel

PNTopMapping
[TopMapping]

- [diagram
PNMapping Element]
[NodeMappingElement]

[diagram
Element]

[edge OutArcM - [diagram
vl o geMappingtlement [
OutArc [EdgeMappingElement] OutArcFigure
(b) Example of a mapping metamodel (Petri net do-

main)

Fig. 7 The mapping metamodel and its usage for the Petri
net domain

Istvan Réath et al.

The refinement of the core metamodel to the Petri
net diagram domain is shown in Fig. 7(b). In this case,
we have constructed a partial one-to-one mapping be-
tween the metamodels in Fig. 6(a) and 6(b). Note this
is still a metamodel, thus it represents a domain-specific
variant of the core mapping concepts; also, certain de-
tails, e.g. containment relations between PNTopMap-
ping and NodeMappingFElements have been omitted from
Fig. 7(b) for the sake of retaining visual clarity.

3.1.5 Trace model instances. Fig. 8 demonstrates how
abstract, concrete, and trace model instances may be
interconnected in an actual modeling scenario. In this
case, the Petri net consists of a place PO with a token
TokO, connected by an outarc 0AO to a transition TO.
This abstract syntax model, as shown with orange, is
presented to the user by a tree view (top right). On the
diagrams, a concrete syntax model (yellow) is rendered
where the token count is shown both graphically (bot-
tom right) and in the properties view (bottom left). Not
directly visible to the user, the system maintains the
trace model (shown in white), which encodes the logical
mapping between the two model representations.

b

OAOQ: OutArc

v 0 PetriNet model elements
< @ sosym
v Oro(1)
 0a0

PO: Place TO: Transition

TokO: Token

* Toko
1T

—| _ : TransitionMapping

_ : OutArcMapping

_ : PlaceMapping
ref = {1}

_ : OutArcFigure
—>| _ : PlaceFigure |
!

_ : TokenCount

= Properties 3¢ . [£! Problems

Property Value

~ Diagram
Height 60
NAME PO

| _ : TransitionFlgure |

TokenCount 1
Width 40
X o1
v 100

PO 0

o1

value = {1}

Fig. 8 Model instances

The PlaceMapping instance stores a reference value
of 1, which is used to store the mapped value of the To-
kenCount attribute. As the user changes this attribute
value by entering the new value in the Properties view,
the system reacts automatically and adjusts the number
of token instances assigned to PO in the abstract model
(concrete — abstract synchronization). Symmetrically,
should the user perform editing directly in the abstract
syntax model (through the tree view), e.g. by adding
another token to PO, the system keeps track of this
change and applies the necessary modification to the
graphical view by updating the tokencount attribute
value.

Synchronization of Abstract and Concrete Syntax in Domain-Specific Modeling Languages 7

8.2 Live Model Transformations

By our approach, bi-directional synchronization is ac-
complished by live model transformations (introduced
in [3]), which incrementally react to various changes of
models including atomic model updates as well as a
complex sequence (set, transaction) of such atomic op-
erations. Prior to the technicalities of live transforma-
tions, we first give an overview of the related fragment of
the VIATRA2 model transformation language [4]. Then
live transformations will be intensively used as means of
incremental synchronization between the abstract and
concrete syntax models of DSMLs later in Sec. 4.

8.2.1 Model transformation language overview. The
VIATRA2 Framework’s transformation language consists
of several constructs that together form an expressive
language for developing both model to model transfor-
mations and code generators. Graph patterns (GP) de-
fine constraints and conditions on models, graph trans-
formation (GT) [8] rules support the definition of ele-
mentary model manipulations, while abstract state ma-
chine (ASM) [9] rules can be used for the description of
control structures.

Graph patterns are the atomic units of model trans-
formations. They represent conditions (or constraints)
that have to be fulfilled by a part of the model space in
order to execute some manipulation steps on the model.
The basic pattern body contains model element and rela-
tionship definitions. In VIATRA2, patterns may call other
patterns using the find keyword. This feature enables the
reuse of existing patterns as a part of a compound pat-
tern. The semantics of this reference is similar to that of
Prolog clauses: the caller pattern can be fulfilled only if
their local constructs can be matched, and if the called
(or referenced) pattern is also fulfilled. A negative ap-
plication condition (NAC, defined by a negative subpat-
tern following the neg keyword) prescribes contextual
conditions for the original pattern which are forbidden
in order to find a successful match. Negative conditions
can be embedded into each other in an arbitrary depth
(e.g. negations of negations).

Graph transformation (GT) [8] provides a high-level
rule and pattern-based manipulation language for graph
models. In VIATRA2, graph transformation rules may
be specified by using a precondition (or left-hand side —
LHS) pattern determining the applicability of the rule,
and a postcondition pattern (or right-hand side — RHS)
which declaratively specifies the result model after rule
application. Elements that are present only in (the im-
age of) the LHS are deleted, elements that are present
only in the RHS are created, and other model elements
remain unchanged. Further actions can be initiated by
calling any ASM instructions within the action part of
a GT rule, e.g. to report debug information or to gen-
erate code. In addition to graph transformation rules,
VIATRAZ2 provides procedural constructs (such as simple

model operations — new, delete, update) as well as pat-
tern and scalar variables. Using these constructs, com-
plex model transformations can be written.

3.2.2 Overview of the live transformation approach.

Match set. In our approach, a model change is detected
by a change in the match set of a graph pattern. The
match set is defined by the subset of model elements
satisfying structural and type constraints described by
the pattern. Formally: a subgraph S of the model G is
an element of the match set M(P) of pattern P, if S is
an isomorphic image of P.

Detecting model changes. Changes in the match set
can be tracked using the RETE network [10]. A model
change occurs if the match set is expanded by a new
match or a previously existing match is lost. Since a
graph pattern may contain multiple elements, a change
affecting any one of them may result in a change in
the match set. The RETE-based incremental pattern
matcher keeps track of every constraint prescribed by
a pattern, thus it is possible to determine the set of
constraints causing a change in the match set. Our ap-
proach can be regarded as an extension of the fact change
approach [11]. It provides support for the detection of
changes of arbitrary complexity; not only atomic and
compound model change facts (with simple and complex
patterns respectively), but also operations, or sequences
of operations can be tracked using this technique (either
by representing operations directly in the model graph,
or by using reference models).

Triggers. Our approach is intended to support a broad
range of live transformations. For this purpose, incre-
mental transformation rules, called triggers are explic-
itly specified by the transformation designer. The for-
mal representation of a trigger is based on a simplified
version of the graph transformation rule: it consists of
a precondition pattern and an action part consisting of
a sequence of VIATRA2 transformation steps (including
simple model manipulations as well as the invocation of
complex transformations).
@Trigger (sensitivity=’rise’)
gtrule newPlace() = {

precondition pattern place(P) = {

Place(P);

¥

action {

print ("A place appeared: "+name(P));

3>

Listing 1 A simple graph transformation trigger

In Listing 1, a simple trigger is shown. It is automat-
ically fired after the user creates a new Place instance,
since the trigger is activated for a newly found match
(sensitivity=rise). We use the Trigger annotation
as an extension to the VIATRA2 language to indicate
that the graph transformation rule should be executed

as an event-driven transformation. The sensitivity an-
notation can take two other parameters (fall and both)
— fall triggers are executed when a previously existing
match is lost; both triggers execute on rises and falls as
well.

Ezxecution context. The system tracks changes changes
in the match sets of patterns and executes the action
sequences in a persistently maintained execution con-
text. This context consists of pattern variables (continu-
ously maintained by the RETE network') and persistent
variables (called ASM functions in VIATRAZ2; essentially
global associative arrays).

3.2.8 Complex change detection in triggers. To detect
complex model changes, the transformation developer
can primarily make use of the rise and fall triggers (and
some advanced VIATRA2 pattern language constructs).

Creation. In practical applications, a chain of triggers
may be used to execute multiple incremental updates.
For instance, after a Token instance has been added by
the user, the system may execute a trigger which auto-
matically connects it to a Place (Listing 2, tokenAdded).

@Trigger (sensitivity=’rise’)

gtrule tokenAdded() =

{

precondition pattern token(T) = {
Token (T);

}

action {
println("A token was added: " + name(T));
// action: find a place and connect the
// unconnected token to it
choose P with find place(P) do
new Place.tokens(_,P,T);

3}
asmfunction numberOfTokens / 1;

@Trigger (sensitivity=°‘rise’,priority=1)
gtrule tokenConnected() = {

precondition pattern connectedToken(P,T) = {
Place (P);
Token (T);
Place.tokens(_,P,T);

}

action {
update numberOfTokens (P) = numberOfTokens(P) + 1;
3}

Listing 2 Trigger to handle the addition of Tokens

After tokenAdded has fired, another trigger similar
to Listing 1 (tokenConnected) updates the numberOfTo-
kens array stored in the execution context.

Deletions. To detect deletions, a trigger for the same
precondition pattern as used in Listing 2 can be used in
fall mode. In this case, a when-clause is used to filter
the case when the match set loss occured because of the
deletion of a model element referenced by the T variable

! This means that the matches stored in a given pattern
variable are always updated and the match set of any pattern
can be retrieved in constant time.

Istvan Réath et al.

(Listing 3). Other pattern variables (pointing to existing
model elements) can be used in the action part in the
usual way.
@Trigger (sensitivity=’fall’,priority=1)
gtrule tokenRemoved() = {
precondition find tokenAdded.connectedToken(P,T)
action {
// only act if token T has been lost (deleted)
when (delete(T)) seq {
update numberOfTokens (P) = numberOfTokens(P) - 1;
13}

Listing 3 Handling token deletion

Attribute updates. The system also provides support
for the incremental detection of attribute changes. V1-
ATRA2 provides a wvalue field for all node types; in this
example, this value field of the Place capacity property
node is used to store the actual value of the capacity of
the connected Place (see Fig. 6(a)).

// associative array to cache place capacity walues
asmfunction capacities / 1;

@Trigger (sensitivity=’fall’)
gtrule capacityChanged() = {
precondition pattern pre(P,PC) = {
Place (P);
’Place capacity’(PC);
Place.capacity(_,P,PC);
// check condition to define a walue constraint
check(value (PC) == capacities(PC))
}
action {
// check whether the attribute update
// caused the activation
when (update(value(PC))) seq {
// update the cache
update capacities(PC) = value(PC);
// the user has changed the attribute
// check if the constraint effectively holds
if (!(numberOfTokens(P) =< value(PC))) {
// constraint is wviolated, notify the user
println("The capacity constraint "+
"is violated at: "+name(P));

}33}
Listing 4 Handling attribute updates

In Listing 4, a fall trigger is defined for changes in the
capacity value (the user may change that any time dur-
ing modeling). The trigger is activated for changes in the
match set of a complex pattern involving a match check
condition, which is a special feature of the VIATRA2
transformation language to define additional attribute
constraints which cannot be expressed using structural
graph patterns. The global array capacities is used to
cache known capacity values; the trigger checks whether
the cause of activation was a change in the attribute
value and proceeds to update the cache and notify the
user if the validity of the capacity constraint is violated
in the given context.

4 Generic abstract-concrete synchronization
with mapping models and live transformations

In this section, we combine our live transformation ap-
proach (as presented in Sec. 3.2) with the trace meta-

Synchronization of Abstract and Concrete Syntax in Domain-Specific Modeling Languages 9

models (Sec. 3.1.3) to provide a generic, metamodel-
driven transformation approach for the on-the-fly syn-
chronization and tracing of abstract and concrete syn-
tax representations of a graphical domain-specific lan-
guage. By our approach, the two modeling layers can be
fully separated, making arbitrary visualisation abstrac-
tions possible.

First, we describe the core cases of simple one-to-
one model synchronizations (Sec. 4.1). These synchro-
nization primitives build on reference mapping models
to define graph transformation rules for handling model
creation, deletion and attribute updates.

Based on these primitives, we propose a Mapping Li-
brary (Sec. 4.2), which uses the metamodels introduced
in Sec. 3.1.3-3.1.5. Our generic approach is applicable to
any domain, as it follows correspondence pairs encoded
in a mapping metamodel. This library replicates GMF’s
mapping functionality for ViatraDSM editors, but also
provides a flexible starting point for further mapping
customization in order to allow language engineers to go
beyond GMF’s mapping capabilities.

Finally, in Sec. 4.3, we demonstrate that by combin-
ing the basic techniques from Sec. 4.1 with the generic
approach in Sec. 4.2, a language engineer may create
custom mappings easily. As a proof-of-concept, we solve
the abstraction mapping problem outlined in Sec. 3.1.5.

4.1 Trace models in live transformations

In a synchronization scenario, a source and a target
model (or an entire source graph and target graph) are
present, which have to be kept synchronised at all times.
Note that usually this is not merely a batch model trans-
formation from a source model to new target models,
both models evolve concurrently. Every modification on
the source model has to be followed on-the-fly with the
relevant modification on the target model. Furthermore,
the consistency of the models has to be maintained, so
every change in the target model which is relevant to the
source model, has to be handled as well. Usually these
two models are fully separated from each other. This
means that a model element in the source model may
not have a direct link (reference) to its corresponding
model element in the target model. Moreover, multiple
elements from the source model can be related to a single
target element, hence it is necessary to use trace models
which connect source and target models.

In the following general example, we outline the core
cases of the source — target synchronization scenario. In
Fig. 9(a), a consistent state of the model space is shown,
where a SourceElement instance is connected to a Tar-
getElement instance by a trace model instance of type
ReferenceElement. This configuration expresses the cor-
respondence relationship between the source and target
model elements.

[:SourceEIementh&ReferenceElemenJT{:TargetElementj

(a) A consistent state of the model space

NEG, NEW,
[:SourceEIement RS :ReferenceEIemenJTb[:TargetEIement}

(b) Source element creation
/’ //’ 77777

/
//// / /)

(c) Source element deletlon

:ReferenceElement :TargetElement

value = ref

:SourceElement
value = n

check (ref != n)

(d) Attribute value change

Fig. 9 Basic patterns of using trace models for live synchro-
nization

4.1.1 Detecting element creation in the source models.
In the following scenario, we define a live transforma-
tion fragment which detects that a new source model
element has been created and creates the corresponding
target model element (Fig. 9(b)). The NEG area marks
a negative application condition over the reference and
target model elements. Therefore, a rise trigger will fire
when a new source model element which does not yet
have a corresponding pair in the target model, has been
created. The action sequence of the graph trigger will
then proceed to create exactly those elements which are
included in the negative application condition (as indi-
cated in Fig. 9(b) by the NEwW keyword).

4.1.2 Detecting element deletion in the source models.

As long as the model space is kept consistent, every
SourceElement has a TargetElement pair, and an ap-
propriate ReferenceElement with its relations. As a con-
sequence, deletions in the source model hierarchy can
be handled by a graph transformation trigger shown
in Fig. 9(c). After deleting a SourceElement, a Refer-
enceElement remains, without the R-S relation.

We again use a negative application condition
(marked NEG) in a rise trigger to detect a new occur-
rence of a such a ReferenceFElement—TargetElement stub
(PRE indicates that both the ReferenceElement and Tar-
getElement instances are included in the precondition).
In the action sequence, the graph transformation rule
will proceed to delete the ReferenceElement and the Tar-
getElement instances.

4.1.8 Detecting attribute updates in the source models.

While attribute value changes can be detected using
techniques described in Sec. 3.2.3, detecting a change
with respect to the last synchronized value involves stor-
ing values in the trace models. As shown in Fig. 9(d), we
define an attribute check condition on the value equal-
ity of attributes stored in the source and trace models.

10

In this way, the pattern matcher will detect when an
attribute update has occurred. Note that the action se-
quence is omitted from Fig. 9(d) since it may be domain-
specific (e.g. the trigger may fire an attribute update in
the target models).

4.2 Generic abstract—concrete syntax mapping

By combining the basic techniques described in Sec. 4.1
with trace metamodeling and modeling as shown in
Sec. 3.1.3 and 3.1.5, we show a generic approach to
abstract-concrete synchronization. Conceptually, this
approach establishes a Mapping Library to provide a
GMF-like one-to-one mapping facility. Note that due to
space constraints, we focus on illustrating the core ideas;
the complete implementation is available as part of the
standard VIATRA2 software distribution.

A metamodel-driven generic transformation takes a
specification metamodel as an input to determine rules
that describe how the transformation should be per-
formed. In the trace metamodel (Fig. 7(b)), correspond-
ing source and target model element types are connected
with MappingElement types to indicate, for instance,
that any given Place instance should be mapped to a
PlaceFigure instance and vice-versa. Note that the core
mapping metamodel (Fig. 7(a) and 5(a)) allows assign-
ing multiple abstract syntax elements to a concrete syn-
tax element: for instance, (i) multiple Nodes and Edges
may be assigned to a MappingElement, and (ii) multi-
ple MappingElements may be assigned to a DiagramkFEle-
ment) supporting a many-to-many mapping semantics.
In this example, we demonstrate a more simple, one-to-
one correspondence which is analogous to GMF’s capa-
bilities.

The graph transformation triggers below are pre-
sented in a compacted notation. In the figures, abstract
syntax model elements appear on the left (with the AS_
prefix for pattern variables), while concrete syntax ele-
ments appear on the right (CS.).

4.2.1 Capturing types in graph patterns. Fig. 10 shows
the generic existsInMetaModel subpattern which demon-
strates how graph triggers can be defined to match any
domain. This subpattern matches domain metamodel
elements (subtypes of the core NodeFigure, NodeMap-
ping and Node elements; subtyping is denoted shortly
by square brackets) and provides pattern variables
(CS_TYPE, TR_TYPE, AS_TYPE in Listing 5) which pass
type information regarding contextual information cap-
tured in the mapping metamodel. For instance, these
pattern variables may take model references to Place-
Figure, PlaceMapping, and Place as values.

pattern existsInMetaModel (AS_TYPE, CS_TYPE, TR_TYPE)=
{

// refinement of core domain metamodel
supertypeOf (MetaNode, AS_TYPE);

// refinement of core mapping metamodel

Istvan Réath et al.

supertypeOf (MetaNodeMappingElement , TR_TYPE);

// connecting relationships
relation(_,TR_TYPE,AS_TYPE);
relation(_,TR_TYPE,CS_TYPE);
}

Listing 5 VIATRA2 code for the existsInMetaModel pat-
tern

4.2.2 Tracking creation in the concrete syntaz. In
Fig. 11(a), the linkNodeFigure trigger is presented. This
trigger creates domain-specific Nodes for every NodeFig-
ure which is created by the user during model editing
(the direct type of Nodes and NodeFigures is passed
as pattern variables from Fig. 10). Since the concrete
syntax metamodel allows for creating concrete syntax
nodes in two contexts (as top nodes placed directly on
the diagram and as sub nodes of a container node), the
live transformation sequence has two modes of opera-
tion. Correspondingly, the precondition pattern of the
linkNodeFigure trigger is an OR pattern, which defines
a logical disjunction for each of the cases?.

Both subpatterns share the same structure; a neg-
ative application condition (marked with dark grey)
ensures to match against concrete syntax model ele-
ments, which do not yet have corresponding mapping
and abstract syntax elements. Note that NodeFigure,
Diagram, Hierarchy, TopMapping, NodeMapping are in-
direct, generic types in this case, the direct domain-
specific type is only relevant for the concrete, mapping
and abstract syntax nodes (CS_NODE, TR_NODE MAP,
AS_NODE are tagged with type values CS_TYPE, TR_TYPE,
AS_TYPE respectively).

The trigger creates these missing elements, both the
abstract syntax node and the mapping node with con-
necting relationships, similarly to the creation synchro-
nization primitive in Sec. 4.1.1.

4.2.8 Tracing deletions. Fig 11(b) shows the delete-
Handling trigger, which demonstrates how to detect
deletion in both abstract and concrete syntax models.

This rise trigger also references the generic subpat-
tern in Fig. 10 for type information. We use a disjuntive
OR-pattern to handle the following cases:

— The first OR-subpattern corresponds to the case
where a concrete syntax node has been deleted. This
is signaled by the appearance an abstract syntax
node with its related mapping element without a re-
lated concrete syntax node. As a reaction, the map-
ping model element has to be deleted along with the
related abstract syntax element, in parallel with the
GMF mapping semantics (“delete from model” op-
eration).

2 OR patterns are matched if any of the disjunct subpat-
terns match.

Synchronization of Abstract and Concrete Syntax in Domain-Specific Modeling Languages 11

[node

[diagram

: Mapping] :
CS_TYPE [NodeFigure] M

TR_TYPE [NodeMapping]

- element] -

...............

AS_TYPE [Node]

Fig. 10 The existsInMetaModel generic graph pattern

diagram
[cs conTDiagram Je———{ TR CONT_MAP:TopMapping

hierarchy
AS_CONT:Hierarchy

REL:REL TYPE

root
NEG, NEW
[CS_NODE:CS_TYPE TR_NODE_MAP:TR_TYPE

——{ As_Nope:as_TvPE]

(o]
R

node

diagram

mapping element
[cs_conT:NodeFigure Je—————— TR_CONT_MAP:NodeMapping AS_CONT :Node
REL:REL TYPE

subElements

] NEG, NEW
[CS_NODE:CS_TYPE TR_NODE_MAP:TR_TYPE

—— As NobEAs TYPE |

’ Trigger: linkNodeFigure l

(a) The linkNodeFigure graph trigger

= =

CS_NODE:CS_TYPE a7

/l

TR_NODE_MAP:TR_TYPE / 4] As_NODE:AS_TYPE %

(o}

R

% CS_NODE:CS_TYPE } |

NEG
TR_NODE_MAP:TR_TYPE AS_NODE:AS_TYPE]

I Trigger: deleteHandling I

(b) The deleteHandling trigger

Fig. 11 Model synchronization triggers

— In the second case, we define an OR-subpattern
which corresponds to the case when an abstract syn-
tax element is deleted. This event is signaled by the
appearance of a concrete syntax node — mapping
model node pair without a connected abstract syn-
tax node. As a reaction, the concrete syntax element
is be deleted from the graphical representation along
with the mapping element. Note that extending the
basic techniques to bidirectional synchronization is
straightforward, since symmetries can be easily ex-
ploited in pattern definitions.

4.2.4 Relevance In Sec. 4.2, we have highlighted the
foundations of a generic Mapping Library, which lever-
ages our mapping metamodel and live transformation
technology to provide a general solution for the incre-
mental synchronization of abstract and concrete syn-
tax models. By combining simple techniques, our ap-
proach provides a GMF-like one-to-one mapping seman-
tics, which works for arbitrary domains and is specified
using a high abstraction level transformation language.

4.3 Arbitrary abstract—concrete syntax mapping

In practical applications, the need for a custom map-
ping frequently arises, where a mapping rule framework
is needed for a special abstraction, e.g. to simplify the
visualisation of a complex modeling language. In state-
of-the-art frameworks such as GMF, the language en-
gineer is stuck with the default options provided, and
customization beyond those requires extensive program-
ming, which is only possible when the application pro-
gramming interface allows for a straightforward pro-
grammatic hook at the right places.

In contrast, our transformation-driven approach pro-
vides extensibility and customization at a significantly
higher level of abstraction. By simply defining custom
graph triggers or overriding the ones provided by the
Mapping Library, the language engineer may customize
abstract-concrete syntax mappings using the techniques
shown previously. In the following example, we use the
context of the Petri net case study (Sec. 3.1) to demon-
strate a common mapping abstraction, where the visu-
alisation layer presents the number of model elements of

12

a certain type (tokens) as a simple numeric attribute,
instead of assigning a graphical diagram element to each
(Fig. 4).

This custom synchronization transformation has to
perform two tasks:

— concrete — abstract syntax synchronization: when-
ever the attribute value in the concrete syntax model
changes (e.g. the user changes its value through the
GUI), the appropriate number of Token instances
should be assigned to the Place instance the owner
of the changed attribute was mapped to (by creating
new tokens or deleting existing ones).

— abstract — concrete syntax synchronization: sym-
metrically, when a new Token instance is assigned to
the Place, or a previously existing one is deleted, the
attribute value of the PlaceFigure must be updated
accordingly.

4.8.1 Tracking the concrete syntax model. We use the
technique shown in Sec. 4.1 to define a precondition pat-
tern for detecting changes in attribute values in the con-
crete syntax model (Fig. 12).

" TR_MAP_NODE:PlaceMapping
diagram
CS_NODE:PlaceFigure
Value = {ref}
tokenCount

‘ CS_ATTR:TokenCount ’

Value = {n} check (ref == n)

Fig. 12 Tracing attribute value changes in the concrete syn-
tax

4.3.2 Tracking the abstract syntax model. In order to
trace the amount of tokens assigned to a given Place in-
stance, we may use the graph triggers described in List-
ings 2 (trigger tokenConnected) and 3. They update the
global numberOfTokens array whenever Token instances
are created and deleted; by combining that technique
with the one we used in Fig. 12 we define the precondi-
tion pattern in Fig. 13 which includes a check condition
on the equality of the value stored in the trace model
and the one cached in the global array. By defining a fall
trigger with this pattern, the system may detect when
the user has changed the number of Token instances as-
signed to a Place instance whose concrete syntaxr map-
ping is maintained.

4.8.8 Creating the trigger. Finally, in Listing 6, we
combine the two precondition patterns into a disjunction
to provide a complex precondition pattern for the synch-
Tokens trigger. The pattern call to mappedPlaceFigure
is only used to ensure that the entire precondition pat-
tern configuration corresponds to exactly one abstract-
concrete-trace tuple. In the action sequence, we use

Istvan Réath et al.

:nodeMapping

TR_MAP_NODE:PlaceMapping
AS_NODE:Place

Value = {ref}

:mappings

check (numberOfTokens(AS_NODE) == ref)

Fig. 13 Tracing attribute value changes in the abstract syn-
tax

when-clauses to distinguish between the two operation
modes. When synchronizing the attribute value change,
the transformation computes the difference (Diff) in the
number of tokens to the previously known value stored in
the trace model (value (TR-MAP_NODE)) and proceeds to
call a sub-routine which creates or deletes the necessary
amount of tokens (addOrRemoveTokens). After that, the
trace model is updated.

In the other case, when the abstract syn-
tax model was changed, the value of the num-
berOfTokens array is simply copied into the con-
crete syntax attribute (setValue(TR_MAP_NODE,
number0fTokens (AS_NODE))). Finally, the trace model
is updated with the new information.

/* Describes a connected

* abstract syntaxz model

* - trace -

* concrete syntaxz model tuple */
pattern mappedPlaceFigure (AS_NODE,

TR_MAP_NODE , CS_NODE)=

{

// abstract syntaz

Place (AS_NODE) ;

// concrete syntaz

PlaceFigure (CS_NODE);

// trace model
PlaceMapping(TR_MAP_NDDE);
nodeMapping (_, TR_MAP_NODE , AS_NODE) ;
mappings (_,AS_NODE, TR_MAP_NODE) ;
diagramElements (_, TR_MAP_NODE ,CS_NODE) ;
}

asmfunction numberO0fTokens / 1;

@Trigger (sensitivity=’fall’, priority=2)
gtrule synchTokens () =
{
precondition pattern pre() = {
find mappedPlaceFigure (CS_NODE,AS_NODE, TR_MAP_NODE);
find attributeTrace (CS_NODE,CS_ATTR,TR_MAP_NODE)
¥
OR {
find mappedPlaceFigure (CS_NODE,AS_NODE, TR_MAP_NODE) ;
find tokenCountTrace (AS_NODE, TR_MAP_NODE);
¥
action
{
when (update (value (CS_ATTR))) do seq {
// attribute value in the
// concrete syntaz has changed
let Diff = value(CS_ATTR) - value(TR_MAP_NODE) in
call addOrRemoveTokens (AS_NODE,Diff);
// update trace model
setValue (TR_MAP_NODE, value(CS_ATTR));
}
when (update (number0fTokens (AS_NODE))) do seq {
// number of token instances in the
// abstract syntaz has changed
setValue (CS_ATTR, numberOfTokens (AS_NODE));
// update trace model
setValue (TR_MAP_NODE, numberOfTokens (AS_NODE));
}

Synchronization of Abstract and Concrete Syntax in Domain-Specific Modeling Languages 13

}
}
rule addOrRemoveTokens (Place,Diff) = seq
{

let I = Diff in seq

{

if (i>0) try choose Tok
with find placeToken(Place,Tok)

do seq {
// delete Tokens
if (I == 0) fail;

delete (Tok);
update I = I - 1;
}
else seq {
// create Tokens
if (I == 0) fail;
new (Token(Tok) in Place);
new (tokens(_, Place,Tok));
update I =1 + 1;
33}

Listing 6 Attribute value abstraction

4.3.4 A sample execution sequence. In Fig. 14, a sam-
ple execution sequence of the synchTokens trigger is
shown (note that edge types have been omitted for the
sake of simplicity). In Phase 1, the model is in a consis-
tent state, where place PO contains a token Tok0, and
this fact is reflected in the diagram model as a token
count attribute value of 1, stored in TC.

Next, we follow the scenario where the user adds a to-
ken to PO (Phase 2). As a reaction, the pattern matching
RETE network assigned to the connectedToken graph
pattern signals a new match, and the tokenConnected
trigger is fired (Listing 2). As the slot assigned to PO
in the numberOfTokens global array is updated by trig-
ger, the RETE network again signals a match set loss
in the tokenCountTrace graph pattern (Fig. 13), which
in turn fires the synchTokens trigger (Listing 6). As a
result, first, the attribute value in the concrete syntax is
updated (Phase 3), and finally the reference value in the
trace model is modified (Phase 4).

4.8.5 Relevance 1In Sec. 4.3, we have demonstrated the
flexible extensibility of our core approach. By combining
basic mapping techniques from the Mapping Library, the
language engineer is able to specify an arbitrary mapping
between abstract and concrete syntax models. This way,
the domain-specific visualization and editing framework
can be directly adapted to any abstract syntax meta-
model, without the need of constructing an intermediate
language (Fig. 3).

Our approach can be extended to scenarios where the
same abstract syntax model is mapped to multiple dia-
grams, which is a frequent requirement in advanced mod-
eling environments. In that case, for n diagram types,
n (bi-directional) mapping transformations have to be
developed; whenever a change is made in one of the dia-
grams, the change is propagated to the abstract syntax
and then automatically propagated further to those di-
agrams where the affected abstract syntax elements are

displayed. This way, the consistency across multiple di-
agrams can be automatically preserved.

4.4 Implementation details

The authors have developed a complete implementation
of the approach described in Sec.4, which is adapted
to the ViatraDSM domain-specific language engineer-
ing framework. The Mapping Library (Fig. 3) consists
of generic live transformation programs written in the
VIATRA2 Textual Command Language, and are capa-
ble of facilitating a two-way, one-to-one correspondence
mapping based on the trace metamodels described in
Sec. 3.1.3.

Along with this implementation, we have also pro-
vided a prototype VIATRA2 import facility, which is
able to process GMF specification models (.ecore, .gm-
feraph, .gmfmap). The importer generates a domain-
specific graphical editor for the ViatraDSM framework,
which is functionally equivalent to the GMF editor.

The converted editor (the working example Petri
net editor is shown in Fig. 15) works similarly to the
original GMF editor; the user can place the same
elements on the diagrams and edit the same attributes.
However, ViatraDSM allows direct access to the full
abstract syntax model (as shown in the Outline view
on the right in Fig. 15), so it can be manipulated inde-
pendently of the concrete syntax. The Mapping Library
provides bi-directional synchronization between the
two representations; it can be easily extended at run-
time so that a custom mapping can be developed rapidly.

5 Related work

In this related work section, we provide a brief evalua-
tion of leading commercial and academic initiatives in
the field of domain-specific modeling frameworks, with
a special focus on support for abstract—concrete syntax
synchronization and model transformation support.

5.1 Model synchronization and traceability models

Our application of traceability is different from the tradi-
tional traceability applications to requirements manage-
ment and tracking in model driven scenarios, described
in many papers (e.g. [12,13]). In the current paper, trace-
ability models are used to link two representations of the
same modeling language (namely, abstract and concrete
syntax) together, to drive a bi-directional synchroniza-
tion transformation (conceptually similar to e.g. Fonde-
ment’s work [14]). As emphasised, our contribution is
two-fold: (i) we use event-driven live transformations to
facilitate the automatic generation of trace models and

14

| TokO: Token |

| TokO: Token |

Tok1: Token

PM : PlaceMapping

ref = {1}

PM : PlaceMapping

ref = {1}

l

!

| PF : PlaceFigure |

| PF : PlaceFigure |

TC : TokenCount

value = {1}

TC : TokenCount

value = {1}

(a) Phase 1

(b) Phase 2

Fig. 14 Petri net synchronization execution phases

Ale Edit Navigate Search Project Bun Window Help

| TokO: Token | | Tok1: Token | | TokO: Token | | Tok1: Token |

PM : PlaceMapping
ref = {1}

PF : PlaceFigure

TC : TokenCount

value = {2}

(c) Phase 3

PM : PlaceMapping
ref = {2}

PF : PlaceFigure

TC : TokenCount

value = {2}

(d) Phase 4

Istvan Réath et al.

o H e | o ov o | @ v o[
12 3 synchwvtel (modelSpace2) = B |5z outline =
.% Palette b |¥ [PetriNet model elements
[+ select = Q4 sosym
[Marquee ~ Oro(1)
- - H OAQ
(= PetriNetDiagram <
. & Toko
PlaceFigure
[TransitionF P OrL0)
ransitionFigure
- 9 > Cp3(0)
PetriNetFigure
K b 1T
5 .
& OutArcFigure b oBTL
£ InArcFigure 'RE
Viatra Modelspace Petri net -~ Sensoria Workflow | Entity-Relationship ~
=l properties & “._[Z{ Problems | () SVN Repositories | 2] VIATRAZ XMLDOM Buffers | V2| VIATRAZ Textual Output| # Viatra EMF | 5] \ i ¥ =0

Property Value

Height 60

NAME PO

TokenCount 1

Width 40

X 91

Y 100
< Modeling

Token count

@a | B

e

g 9

Fig. 15 The Petri net editor in ViatraDSM

the execution of the mapping, (ii) we use a generic ap-
proach to trace metamodels which enables the designer
to choose how much information is contained in the trace
models and how much mapping logic is (implicitly) im-
plemented in the transformations themselves.

Event-driven techniques, which are the technological
basis of live model transformations, have already been
used in many other fields of computer engineering. In re-
lational database management systems (RDBMS), even
the concept of triggers [15] can be considered as simple
operations whose execution is initiated by events. Later,
event-condition-action (ECA) rules [16,17] were intro-
duced for active database systems as a generalization of
triggers, and the same idea was adopted in rule engines
[18] as well. Specification of live model transformations
is structurally and conceptually similar to ECA rules as
discussed in Sec. 3.2. However, ECA-based approaches

lack the support for triggering by complex graph pat-
terns, which is an essential scenario in model-driven de-
velopment.

In case of live transformations, changes of the source
model are categorized as (i) an atomic model update
consisting of an operation (e.g. create, delete, update)
and operands (model elements); or, more generally, (ii)
a complex sequence (set, transaction) of such atomic op-
erations. To execute an incremental update, an atomic
or complex model change has to be captured and pro-
cessed. For this purpose, the following approaches have
been proposed in case of declarative transformation lan-
guages:

— The Progres [19] graph transformation tool supports
incremental attribute updates to invalidate partial
matchings in case of node deletion immediately. On

Synchronization of Abstract and Concrete Syntax in Domain-Specific Modeling Languages 15

the other hand, new partial matchings are only lazily
computed.

— The incremental model synchronization approach
presented in [20] relies on various heuristics of the
correspondence structure interconnecting the source
and target models using triple graph grammars[21].
Dependencies between correspondence nodes are
stored explicitly, which drives the incremental engine
to undo an applied transformation rule in case of in-
consistencies. Other triple graph grammar based ap-
proaches for model synchronization (e.g. [22]) do not
address incrementality.

— In relational databases, materialized views, which ex-
plicitly store their content on the disk, can be up-
dated by incremental techniques like Counting and
DRed algorithms [23]. As reported in [24], these in-
cremental techniques are also applicable for views
that have been defined for graph pattern matching
by the database queries of [25]. The use of non-
materialized views have been discussed in [26].

— Triple graph grammar techniques are also used in
[27] for tool integration based on UML models. The
aim of the approach is to provide support for change
synchronization between various languages in several
development phases. Based on an integration algo-
rithm, the system merges changed models on user
request. Although it is not a live transformation ap-
proach, it could benefit from being implemented as
such.

— QVT Relations [28] is the OMG standard language
for capturing model transformations with specific fo-
cus on bidirectional transformations for incremen-
tal model synchronization. Concerning its expressive-
ness, the QVT Relations language uses a similar for-
malism to triple graph grammars (and our approach).
However, none of the existing QVT tools support
event-driven live execution.

— [11] proposes a more general solution where fact ad-
dition and fact removal constitute an elementary
change. Since the underlying TefKat [29] tool uses
a transformation engine based on SLD resolution, a
fact change may represent atomic updates (involving
a single operation) as well as more complex changes,
since a fact may encode information about multiple
model elements (such as a complex pattern describ-
ing a UML class with attributes). This approach is
only applicable to fully declarative transformation
languages, since incremental updates involve the pro-
cessing and modification of the SLD resolution tree
(which, in broad terms, can be thought of as a special
structure storing the whole transformation context).

— [30] describes a special application of incremental
updates for the consistency checking of UML mod-
els. The approach provides a rule-based formalism to
specify well-formedness constraints which are evalu-
ated instantly after model modifications. Our demon-
strating example illustrates how specialised transfor-

mations can be applied to a similar problem, but on
a higher abstraction level.

— Recently, [31] emphasized the use of weaving mod-
els as a special kind of correspondence models
to semi-automatically derive model transformation
rules for model synchronization. The authors present
a metamodel-based method that exploits metamodel
data to automatically produce weaving models in the
AMW System. The weaving models are then derived
into model integration transformations.

— Fondement’s work shares a lot of concepts presented
in our paper: a complete mapping metamodel with
semantics is provided in [14] to support arbitrary
mappings between abstract and concrete syntaxes
of textual DSLs (transformation execution is carried
out with the Kermeta tool). By his approach, map-
ping semantics is precisely defined for the model ele-
ments (e.g. sequence, alternation, iteration, template
substitution rules); in our approach, the designer is
free to choose how much semantic information is in-
cluded in the mapping model and how much is im-
plicitly defined in the transformation rules. Also, it is
important to note that while the mapping transfor-
mations are incremental, they are not live, but ex-
ecuted in a recursive descent-type batch execution
scheme.

5.2 Domain-specific modeling

A number of third-party tools have been developed to
simplify the complicated GMF workflow. Exeed [32] and
EuGENia are modern EMF-based domain-specific edi-
tor tools of the Epsilon [33] project. They aid the tool
builder in the prototyping phase by significantly simpli-
fying the task of creating an EMF-based reflective tree
view editor (in the case of Exeed) or a simple GMF-based
graphical editor (EuGENia), by using an annotated tex-
tual representation of ECore metamodels.

MetaEdit+ [34] is one of the first commercial DSM
modeling frameworks with support for generating and
customizing domain-specific editors and code generators.
Since 1995, it has been applied successfully in various ap-
plication domains. While MetaEdit+ supports multiple
concrete syntax representations for a conceptual domain
model, there is no automated support for working with
multiple domains simultaneously within an integrated
editor. Model transformations can be implemented by
hand-coding using an API. On the MetaEdit+ website,
there is an example, where the generated code is “back-
annotated”, to enable visual tracking while the debugger
is stepping through the code.

Microsoft has also released its DSL tools [35] in order
to support software factories [36]. New domain-specific
languages are integrated into Visual Studio as plugins.
While Microsoft DSL tools offer an advanced way for
customizing the graphical representation, the framework

16

is not based on a model transformation backend which
leaves the language engineer with application program-
ming as the only option to create model conversions,
code generators or model mappings.

The Pounamu [37] is a meta-tool for multi-view
visual language environment construction for Eclipse-
based editors. The tool permits rapid specification of
visual notational elements, underlying tool information
model requirements, visual editors, the relationship be-
tween notational and model elements, and behavioural
components. While offering a rich support for the gen-
erated editors, model transformations are currently not
supported by the framework.

Xactium XMF-Mosaic is an integrated, Eclipse-based
extensible development environment for domain-specific
visual and textual languages [38]. It has support for
domain metamodel specification with OCL constraints,
and editor generation (concrete textual and graphical
syntaxes can be supported for the same language). Us-
ing snapshots, prototyping a new language is acceler-
ated considerably. However, unfortunately, as the gen-
erator feature is still in its infancy (e.g. constraints are
not propagated to the generated source code), using ad-
vanced capabilities of the XMF platform require a con-
siderable amount of manual coding effort.

There are also several DSM frameworks which are
complemented with support for model transformations,
typically, using a graph transformation [8] based ap-
proach, which approaches show the closest correspon-
dence with our approach.

The TIGER project [39] (which is a conceptual con-
tinuation of the GenGEd [40] and DiaGen [41] tools from
the 90s) primarily aims at generating syntax-directed
editors as Eclipse plugins based upon the EMF and
GEF technologies and the AGG graph transformation
engine. Recent development focused on the tight inte-
gration of TIGER’s model transformation infrastructure
with Eclipse GMF; currently, TIGER is able to generate
GMF-based editors with rich and complex editing facil-
ities (such as the execution of a complex editing action
based on a single graph transformation rule). However,
currently TIGER only supports the execution of a sin-
gle graph transformation rule, and thus, lacking a con-
trol flow language, complex transformations required for
model synchronization can only be implemented using
extensive Java-coding.

DiaMeta (a follow-up of DiaGen [41]) replaces hyper-
graph grammars by MOF as provided by the MOFLON
tool suite [42] to allow users not only to specify domain-
specific modeling languages but also to generate corre-
sponding diagram editors. As DiaMeta focuses primarily
on freehand editing, their contribution is complementary
to ours as our main focus is syntax-driven editing.

The Generic Modeling Environment (GME) [43]

combined with the GReAT model transformation engine
[44] provides similar functionality to GMF outside the

Istvan Réath et al.

Eclipse world, with a static one-to-one mapping between
abstract and concrete syntax models.

The VMTS [45] framework also provides support for
domain-specific modeling and model transformations by
providing plugins for Microsoft Visual Studio. It offers
core editing functionalities comparable to Eclipse GEF,
but further manual coding is required for visual syn-
tax and editing functionality. Its distinguishing feature is
an optimizing OCL processor for efficient handling well-
formedness constraints. Since VMTS includes a powerful
model transformation engine, it would be possible to im-
plement an approach that is similar to ours. However, no
such research has been published yet.

Most advanced multi-domain modeling features are
supported by ATOMS3 [46], which defines the concept of
view metamodels sharing a common metamodel of a vi-
sual language. In [47], user-guided manipulation events
are directly represented as model elements in the model
store, while triple graph grammars [21] are extended to
event driven grammars to determine the kind of event
and the model elements affected. Change detection is di-
rectly linked to user interface events as this approach pri-
marily targets (domain-specific) modeling environments.
Note that this approach, does not rely on live trans-
formations since the transformation context is not pre-
served; instead, the underlying ATOM3 [46] engine is
started whenever an event from the Ul is received.

6 Conclusion

As the core contribution of this paper, we presented a
new approach for constructing syntax-driven domain-
specific graphical editors. Building on this infrastruc-
ture, we provide high level support for the specifica-
tion and efficient execution of live transformations which
seamlessly maintain correspondence between completely
separated abstract and concrete syntax representations.
Our approach provides a scalable solution in terms of
complexity, since language engineers can build on a
generic Mapping Library to create custom mapping rules
which focus strictly on those cases where customization
is really necessary.

In the paper, we deliberately focus on solving model
synchronization problems in DSM environments. It is
important to note that our approach has been imple-
mented and tested in more complex case studies than
the Petri net example of the paper. We successfully ap-
plied the proposed mapping models in other application
scenarios such as incremental well-formedness constraint
evaluation (discussed in detail in [3]) where mapping
models are used to indicate model contexts where a par-
ticular constraint is violated. The approach has also been
applied to interactive model execution and design-time
discrete simulation of DSMLs, elaborated as case studies
in [5].

As a research contribution to the SENSORIA EU
FP6 project, we have implemented a workflow model

Synchronization of Abstract and Concrete Syntax in Domain-Specific Modeling Languages 17

editor based on a customized version of the JBoss Pro-
cess Definition Language for the SENSORIA Develop-
ment Environment [48]. Additionally, the DSM editor
was augmented with an incremental code generator ap-
plied in an exogenous transformation scenario, where the
domain-specific process model contained in the editor
was synchronized incrementally on-the-fly with the pro-
cess description deployed in the JBoss jBPM workflow
server. The mapping models used were based on the con-
cepts described in the current paper — the case study has
been reported in [49].

At the core of our approach is a novel event-driven,
incremental execution scheme, which is based on the
high performance incremental pattern matcher of Via-
TRA2, capable of efficiently scaling up to 100000 model
sizes on a desktop computer (for a detailed performance
investigation and benchmarks see [50]).

— With incremental live transformations, complex
language-specific constraints can be formulated as
graph patterns [3]. Similarly to our synchronization
transformations, model manipulation sequences are
used to (i) signal constraint violations to the user on-
the-fly as the errors have been introduced; and, (ii)
corrective measures can be applied in a best-effort
approach to correct models accordingly.

— Also, live transformations can be easily applied for
model execution scenarios. In an integrated envi-
ronment like ViatraDSM, such an infrastructure can
support interactive model simulations where a user
is allowed to edit models as they are being executed
[5]. As the incremental pattern matcher provides in-
stantaneous feedback, the user’s editing actions affect
the simulation state directly. This way, model execu-
tion can be efficiently supported at design-time, in-
tegrated into the syntax-driven editing environment.

As a main direction of future research, we intend to
investigate how complex mapping semantics can be em-
bedded into mapping metamodels. While our main tar-
get for the current paper was to match the mapping
capabilities of GMF, a straightforward extension to the
mapping metamodel would incorporate advanced map-
ping rules being specifiable for abstract-concrete syntax
pairs (e.g. value abstraction as presented in Sec. 4.3).
Such an approach would merge trace modeling contri-
butions such as [31] with our domain-specific research
context.

References

1. The Eclipse Project: Graphical Modeling Framework
http://wuw.eclipse.org/gnf.

2. Hearnden, D., Lawley, M., Raymond, K.: Incremental
model transformation for the evolution of model-driven
systems. In Nierstrasz, O., Whittle, J., Harel, D., Reg-
gio, G., eds.: Proc. of the 9th International Conference on

10.

11.

12.

13.

14.

15.

16.

17.

Model Driven Engineering Languages and Systems. Vol-
ume 4199 of Lecture Notes in Computer Science., Gen-
ova, Italy, Springer (October 2006) 321-335

Réth, I., Bergmann, G., Okrés, A., Varrd, D.: Live model
transformations driven by incremental pattern matching.
In: Theory and Practice of Model Transformations. Vol-
ume 5063/2008 of Lecture Notes in Computer Science.,
Springer Berlin / Heidelberg (2008) 107-121

Varré, D., Balogh, A.: The model transformation lan-
guage of the VIATRA2 framework. Science of Computer
Programming 68(3) (October 2007) 214-234

Rath, 1., Vagé, D., Varrd, D.: Design-time Simulation of
Domain-specific Models By Incremental Pattern Match-
ing. In: 2008 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). (2008)
Metacase: MetaEdit+ http://www.metacase.com/mep/.
The Eclipse Project: Eclipse Modeling Framework http:
//wuw.eclipse.org/emf.

Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G.,
eds.: Handbook on Graph Grammars and Computing
by Graph Transformation. Volume 2: Applications, Lan-
guages and Tools. World Scientific (1999)

Borger, E., Stark, R.: Abstract State Machines. A
method for High-Level System Design and Analysis.
Springer-Verlag (2003)

Bergmann, G., Okrés, A., Réth, 1., Varré, D., Varré, G.:
Incremental pattern matching in the VIATRA transfor-
mation system. In: GRaMoT’08, 3rd International Work-
shop on Graph and Model Transformation, 30th Inter-
national Conference on Software Engineering (2008)
Hearnden, D., Lawley, M., Raymond, K.: Incremen-
tal Model Transformation for the Evolution of Model-
Driven Systems. In: Proc. of 9th International Confer-
ence on Model Driven Engineering Languages and Sys-
tems (MODELS 2006). Volume 4199 of LNCS., Heidel-
berg, Germany, Springer Berlin (2006) 321-335
Champeau, J., Rochefort, E.: Model Engineering and
Traceability. In: SIVOES-MDA Workshop. UML 2003
Conference (2003)

Walderhaug, S., Johansen, U., Stav, E., Aagedal, J.: To-
wards a Generic Solution for Traceability in MDD. In:
5th ECMDA Workshop on Traceability. ECMDA Con-
ference (2006)

Muller, P.A., Fleurey, F., Fondement, F., Hassenforder,
M., Schneckenburger, R., Grard, S., Jzquel, J.M.: Model-
Driven Analysis and Synthesis of Concrete Syntax.
Model Driven Engineering Languages and Systems,
Springer LNCS 4199/2006 (November 2006) 98-110
DOI 10.1007/11880240._8.

Garcia-Molina, H., Ullman, J.D., Widom, J.: Database
Systems: The Complete Book. Prentice Hall (2001)
Dittrich, K.R., Gatziu, S., Geppert, A.: The active
database management system manifesto: A rulebase of
ADBMS features. In Sellis, T., ed.: Proc. of the 2nd
International Workshop on Rules in Database Systems.
Volume 985 of Lecture Notes in Computer Science., Gly-
fada, Athens, Greece, Springer (September 1995) 1-17
Alferes, J.J., Banti, F., Brogi, A.: An Event-Condition-
Action Logic Programming Language. In: In the pro-
ceedings of the 10th European Conference on Logics in
Artificial Intelligence (JELIA 06), Springer (2006) 29-42

18

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Seiri6, M., Berndtsson, M.: Design and implementation
of an ECA rule markup language. In Adi, A., Stouten-
burg, S., Tabet, S., eds.: Proc. of the 1st International
Conference on Rules and Rule Markup Languages for the
Semantic Web. Volume 3791 of Lecture Notes in Com-
puter Science., Galway, Ireland, Springer (October 2005)
98-112

Schiirr, A.: Introduction to PROGRES, an attributed
graph grammar based specification language. In Nagl,
M., ed.: Graph—Theoretic Concepts in Computer Sci-
ence. Volume 411 of LNCS., Berlin, Springer (1990) 151
165

Giese, H., Wagner, R.: Incremental model synchroniza-
tion with triple graph grammars. In Nierstrasz, O., Whit-
tle, J., Harel, D., Reggio, G., eds.: Proc. of 9th Inter-
national Conference on Model Driven Engineering Lan-
guages and Systems, (MoDELS 2006). Volume 4199 of
LNCS., Springer (2006) 543-557

Schiirr, A.: Specification of graph translators with triple
graph grammars. Technical report, RWTH Aachen,
Fachgruppe Informatik, Germany (1994)

Klar, F., Konigs, A., Schiirr, A.: Model transformation
in the large. In: ESEC-FSE ’07: Proceedings of the the
6th joint meeting of the European software engineer-
ing conference and the ACM SIGSOFT symposium on
The foundations of software engineering, New York, NY,
USA, ACM (2007) 285-294

Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintain-
ing views incrementally. In: ACM SIGMOD Proceedings,
Washington, D.C., USA (1993) 157-166

Varrd, G., Varrd, D.: Graph transformation with incre-
mental updates. In Heckel, R., ed.: Proc. of the 4th Work-
shop on Graph Transformation and Visual Modeling
Techniques (GT-VMT 2004). Volume 109 of ENTCS.,
Barcelona, Spain, Elsevier (December 2004) 71-83
Varré, G., Friedl, K., Varr6, D.: Graph transformation
in relational databases. Journal of Software and Systems
Modelling (2005) In press.

J. Jakob, A.K., Schiirr, A.: Non-materialized model view
specification with triple graph grammars. In A. Corra-
dini, ed.: International Conference on Graph Transfor-
mations. Volume 4178 of Lecture Notes in Computer Sci-
ence (LNCS)., Heidelberg, Springer Verlag (2006) 321-
335

Simon M. Becker, Thomas Haase, B.W.: Model-based a-
posteriori integration of engineering tools for incremental
development processes. Software and Systems Modeling
4(2) (May 2005) 123-140

The Object Management Group: Documents Asso-
ciated With Meta Object Facility (MOF) 2.0 and
Query/View/Transformation, V1.0 (2008) http://www.
omg.org/spec/QVT/1.0.

The University of Queensland: The TefKat tool home-
page http://tefkat.sourceforge.net/.

Egyed, A.: Instant consistency checking for the uml.
In: Proceedings of the 28th international conference on
Software engineering, New York, NY, USA, ACM (2006)
381-390

Marcos Didonet Del Fabro and Patrick Valduriez: To-
wards the efficient development of model transforma-
tions using model weaving and matching transforma-
tions. Software and Systems Modeling (July 2008) Spe-

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Istvan Réath et al.

cial section paper. Springer Berlin / Heidelberg. DOI
10.1007/s10270-008-0094-z.

Kolovos, D.S.: Editing EMF models with Exeed. Tech-
nical report, Department of Computer Science, Univer-
sity of York (2007) www.eclipse.org/gmt/epsilon/doc/
Exeed.pdf.

Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.:
The Epsilon Generation Language. Model Driven Archi-
tecture Foundations and Applications, Springer LNCS
5095/2008 (June 2008) 1-16 DOI 10.1007/978-3-540-
69100-6_1.

Metacase: MetaEdit+ http://www.metacase.com/mep/.
Microsoft: DSL Tools http://lab.msdn.microsoft.
com/teamsystem/workshop/dsltools/default.aspx.
Greenfield, J.: Software Factories: Assembling Appli-
cations with Patterns, Models, Frameworks, and Tools
http://msdn.microsoft.com/library/en-us/dnbda/
html/softfact3.asp.

Zhu, N., Grundy, J.C., Hosking, J.G.: Pounamu: a meta-
tool for multi-view visual language environment con-
struction. In: Proceedings of the 2004 International Con-
ference on Visual Languages and Human-Centric Com-
puting, Rome, Italy (September 2004) 254-256

Daniel Amyot, H.F., Roy, J.F.: Evaluation of De-
velopment Tools for Domain-Specific Modeling Lan-
guages. System Analysis and Modeling: Language Pro-
files, Springer LNCS 4320/2006 (December 2006) 183—
197 DOI 10.1007/11951148_12.

Ehrig, K., Ermel, C., Hénsgen, S., Taentzer, G.: Genera-
tion of visual editors as Eclipse plug-ins. In Redmiles,
D.F., Ellman, T., Zisman, A., eds.: 20th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE 2005), November 7-11, 2005, Long Beach,
CA, USA, ACM (2005) 134-143

Bardohl, R., Ehrig, H.: Conceptual model of the graphi-
cal editor GENGED for the visual definition of visual lan-
guages. In Ehrig, H., Engels, G., Kreowski, H.J., Rozen-
berg, G., eds.: Proc. Theory and Application to Graph
Transformations (TAGT’98). Volume 1764 of LNCS.,
Springer (2000) 252-266

Koth, O., Minas, M.: Generating diagram editors provid-
ing free-hand editing as well as syntax-directed editing.
In Ehrig, H., Taentzer, G., eds.. GRATRA 2000 Joint
APPLIGRAPH and GETGRATS Workshop on Graph
Transformation Systems, Berlin, Germany (March 25-27
2000) 32-39

Minas, M.: Generating visual editors based on fujaba/-
moflon and diameta. Technical report, University Pader-
born (2006) Proc. 4th Fujaba Days, pp. 35-42, Technical
Report tr-ri-06-275.

GME: The Generic Modeling Environment http://wuw.
isis.vanderbilt.edu/Projects/gme.

Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the
use of graph transformation in the formal specification
of model interpreters. Journal of Universal Computer
Science (2003)

Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.:
A systematic approach to metamodeling environments
and model transformation systems in vmts. In: Proc.
GraBaT's 2004: International Workshop on Graph Based
Tools, Elsevier (2004)

de Lara, J., Vangheluwe, H.: AToM3: A Tool for
Multi-formalism and Meta-modelling. In Kutsche, R.D.,

Synchronization of Abstract and Concrete Syntax in Domain-Specific Modeling Languages

47.

48.

49.

50.

Weber, H., eds.: 5th International Conference, FASE
2002: Fundamental Approaches to Software Engineering,
Grenoble, France, April 8-12, 2002, Proceedings. Volume
2306 of LNCS., Springer (2002) 174188

Guerra, E., de Lara, J.: Event-driven grammars: Relating
abstract and concrete levels of visual languages. Software
and Systems Modeling 6(3) (2007) 317-347

The SENSORIA EU FP6 Research Project: The SEN-
SORIA Development Environment Homepage (2009)
http://svn.pst.ifi.lmu.de/trac/sct.

Polgar, B., Rath, I., Szatméri, Z., Majzik, I.. Model-
based Integration, Execution and Certification of De-
velopment Tool-chains. In: 2nd ECMDA Workshop on
Model-Driven Tool and Process Integration. (2009)
Bergmann, G., Akos Horvath, Réth, 1., Varré, D.: A
Benchmark Evaluation of Incremental Pattern Matching
in Graph Transformation. In: ICGT2008, The 4th Inter-
national Conference on Graph Transformation. (2008)

