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Abstract—In this paper the effect of roundoff errors on sine wave fitting algorithms is investigated. It is shown that 

the standard calculation of sine wave parameters may result in unexpectedly large errors, even with floating point number 

representation. The three- and four-parameter Least Squares, the Maximum Likelihood and the Quantile-Based 

Estimator methods are investigated. It is pointed out that imprecise phase storage and summation affect almost every 

sine wave fitting algorithm. Furthermore, the necessary solution of sometimes ill-conditioned systems and the imprecisely 

evaluated distribution of the observation noise, as additional error sources are also shown to influence a part of the fitting 

methods. Besides error descriptions, compensation techniques are also suggested in order to mitigate the effect of the 

error sources. The enhancement of precision and robustness due to these suggestions is demonstrated, while keeping the 

given limited precision number representation platform. The Quantile-Based estimator is shown to overcome roundoff 

error problems when its applicability conditions are fulfilled. In addition, its performance over the Least Squares 

estimator is highlighted. Finally, it is pointed out that the investigated methods show similar sensitivity to the inaccurate 

knowledge of the frequency of the sine wave. 

Keywords—Numerical stability, Sine fitting, Roundoff errors, Least Squares methods, Maximum Likelihood estimation, 

Quantization, Quantile-based estimator 

I. INTRODUCTION 

Computers offer a fast and efficient way to process large data sets. In many cases, the properties of the data set 

can be described with a few parameters. For the description of a sine wave with DC, four parameters are needed. A 

sampled sine wave with arbitrary phase and with offset can be described by:  

 
𝑦𝑛 = 𝐴 ∙ cos (2𝜋

𝑓0
𝑓𝑠

𝑛) + 𝐵 ∙ sin (2𝜋
𝑓0
𝑓𝑠

𝑛) + C, (1) 

where A and B denote the amplitudes of the cosine and sine components, respectively, C is the offset, f0 is the 

frequency of the sine wave,  fs is the sampling frequency and n is the ordinal number of the sample. Two cases can 

be distinguished: in the four-parameter fit all the four parameters (i.e., A, B, C and 𝑓0 𝑓𝑠⁄ ) are estimated, while in the 

three-parameter fit frequency ratio 𝑓0 𝑓𝑠⁄  is assumed to be known exactly [1].  

                                                        
1 Please cite as: B. Renczes, I. Kollár, A. Moschitta, P. Carbone, „Numerical Optimization Problems of Sine-

Wave Fitting Algorithms in the Presence of Roundoff Errors“, IEEE Trans. Instrum. Meas., vol. 65, No. 8, pp. 

1785-1795, 2016 
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Performing of the fit with low error is necessary for two reasons. On the one hand, the accuracy of parameter 

estimation depends on the quality of the fitting. On the other hand, these results can be used to test analog-to-digital 

converters (ADCs) [1], and the quality of the test depends on the accuracy of the estimated values of the parameters. 

Different methods are available to estimate sine parameters. The most widespread one is the Least Squares 

Estimator (LSE). This method is obtained by minimizing the sum of the squared errors. The error sequence is the 

difference between the acquired data sequence and (1). The performance and accuracy of this method have been 

widely investigated [2]. Meanwhile, competitive methods have been proposed, including the Maximum Likelihood 

Estimator (MLE) [3] and the Quantile-Based Estimator (QBE) [4]. 

The MLE can iteratively estimate three or four parameters of the signal. It estimates the parameter set that 

maximizes the probability of observing the measured data [3]. The QBE in its current form is restricted to coherent 

sampling. It assumes that frequency ratio 𝑓0 𝑓𝑠⁄  is known exactly, i.e., performs a three-parameter fitting, based on 

the Gauss-Markov theorem. This method can determine parameters in one step. When its applicability conditions 

are fulfilled, the QBE can be shown to approximate the MLE [4]. 

 The results of sine wave fitting can be used to characterize ADCs. In this regard, one of the mostly used 

indicators is the Effective Number of Bits (ENOB) of the converter, given by:  

 

𝐸𝑁𝑂𝐵 = 𝑏 − 𝑙𝑜𝑔2

√1
𝑁

∑ (𝑥𝑛 − 𝑦𝑛)2𝑁
𝑛=1

∆/√12
, 

(2) 

where 𝐱 is the measured data vector, 𝐲 denotes the fitted signal, N is the record length, b is the nominal ADC 

resolution, and  is the quantization step of the converter. The ENOB value describes the ‘true’ resolution of the 

converter, i.e., with increasing fit error the ENOB decreases. 

There are several error sources that can distort the result of parameter estimation and also reduce the ENOB, 

including nonlinear distortions, time base inaccuracies [5], and failing to fulfil the hypotheses on the quantization 

error [6]. Additional errors may be caused by representing data and executing the required operations with limited 

precision.  

Due to the wide number range it can represent, floating point (FP) number representation is used during the 

execution of the parameter estimation methods. FP numbers are given in a normalized form 𝑀 ∙ 2𝐸 , where M denotes 

the mantissa and E is the exponent. In FP number representation the average roundoff error is roughly proportional 

to the represented number. Thus, larger numbers are affected by larger absolute roundoff errors. In Personal 

Computers (PCs) IEEE double precision is used, with a 53-bit mantissa and a relative error epsd=2.2210-16, while 

in Digital Signal Processors (DSPs) single precision is widely used, with epss=1.1910-7. A detailed discussion of 

eps can be found in [7]. 

In particular, the effect of using single precision is considered here for two reasons. First, this representation 

suffers from much higher roundoff errors compared to double precision. Thus, double precision fitting results can 

be used as reference. On the other hand, for many practical applications, involving real time operations performed 

by DSPs, single precision can be advantageous, because it requires a reduced amount of processing power and 

memory [8]. This also applies to embedded systems equipped with small processing devices, such as 

microcontrollers or Field Programmable Gate Arrays (FPGAs), where power consumption and chip area are critical 
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figures of merit. Recent results are mentioned in the literature, discussing efficient FPGA architectures, including 

multiple-precision operations [9][10], as well as single precision implementations of commonly used algorithms and 

mathematical functions [11][12][13]. 

Building on these premises, this paper focuses on the sensitivity of the LSE, the MLE, and the QBE to roundoff 

errors, extending the ideas presented in [14]. Sections II to V follow a decreasing level of generality. Sections II and 

III focus on the sensitivity of the phase storage and the summation to limited precision. These errors influence both 

the LSE and the MLE methods. In Section IV it is pointed out that roundoff errors are also connected to the condition 

number of the equation system to be solved. This phenomenon may distort the result of the four-parameter LSE and 

the MLE. In Section V the evaluation of the Cumulative Distribution Function (CDF) is investigated. This error 

source has an effect specially on the MLE. Besides error descriptions possible techniques are also introduced in 

order to improve performance. In Section VI the Quantile Based Estimator is shown to overcome roundoff problems, 

when its applicability conditions are fulfilled. Its performance over the LSE is also demonstrated. Finally, the 

sensitivity of the LSE, MLE, and QBE to the inaccurate knowledge of the involved frequencies is compared in 

Section VII. 

II. PHASE STORAGE ERROR 

A. Error analysis 

To illustrate the effect of roundoff errors on sine wave fitting algorithms, let us assume that we have a sampled 

sine wave: 

 𝑥𝑛 = 𝐴0 ∙ sin𝜑𝑛 , 𝑛 = 1, … , 𝑁 (3) 

 
𝜑𝑛 = 2𝜋

𝑓0
𝑓𝑠

𝑛,         𝑛 = 1, … , 𝑁 (4) 

where A0 is the peak amplitude of the sine wave, and  𝜑𝑛 = 𝑛𝜑1  is the phase of the nth sample. Let us assume a 12-

bit bipolar ADC with Full Scale FS=1, i.e., the range of the converter is ] − 𝐹𝑆 2⁄ ; 𝐹𝑆 2]⁄ . Let the amplitude of the 

sinusoidal excitation be 𝐴0 = 0.49 (almost fully driven ADC), 𝑁 = 50000, and 
𝑓0

𝑓𝑠
=

1001

50000
. This setting ensures 

coherent sampling. Moreover, it fulfils the relative prime condition of [1]. Using single precision, there are several 

problems to face with. First, relative frequency 𝑓0 𝑓𝑠⁄  cannot be stored precisely. The relative error of the storage of 

this number is −3.2 ∙ 10−8. This inaccuracy in the frequency storage results in a drift phenomenon. The error of the 

signal model increases with increasing n, see Section VII. For the last sample, the roundoff error grows to 1.6 ∙ 10−3. 

As the resolution of a bipolar 12-bit ADC with FS=1 is 2.44 ∙ 10−4, the error of frequency storage cannot be 

neglected. A possible solution to this problem is described in Section II-D. The effect of inaccurate frequency 

knowledge for different estimators is investigated in Section VII. 

Henceforth we assume that the phase information 𝜑𝑛  is not distorted by the error of frequency storage, i.e., it can 

be calculated precisely, but then the result is rounded to the nearest representable single precision value. The 

roundoff error of 𝜑𝑛  leads to the evaluation error of samples in 𝑦𝑛, i.e., in the fitted sine wave [15]. This is illustrated 

in Fig. 1. 
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Fig. 1. Evaluation error of samples in the investigated sine wave 

It can be observed that the error increases with the ordinal number of the sample. The effect of the error of phase 

storage on the samples can be determined with linearization:  

 𝑓(𝑧 + Δ𝑧) ≅ 𝑓(𝑧) + Δ𝑧 ∙ 𝑓′(𝑧) (5) 

that is: 

 𝐴0 sin{𝜑𝑛 + (Δ𝜑)𝑛} ≅ 𝐴0 sin𝜑[𝑛] + 𝐴0 cos𝜑𝑛 ∙ (Δ𝜑)𝑛,  (6) 

where (Δ𝜑)𝑛 is the storage error associated to the phase of the nth element in the record. It is clear from (6) that the 

higher the error in the phase storage, the higher the evaluation error of samples. The latter has a cosinusoidal 

envelope over the data set. Depending on the instantaneous phase, this error can be much larger than the single 

precision epss. 

It is important to notice that the error sequence in Fig. 1 originates from phase storage error, rather than from 

measurement noise. This effect may be modeled as an additional ‘noise’ source injected into the system. Since the 

absolute value of the roundoff error for 𝜑𝑛  increases with n, the maximum value assumed by the error sequence 

grows with increasing record length N. For the considered signal, we have: 

 𝐿𝑆𝐵(𝜑1) = 1.49 ∙ 10−8  and  𝐿𝑆𝐵(𝜑𝑁) = 4.88 ∙ 10−4, (7) 

where LSB is the resolution of the number representation, and LSB(1)=epss. Thus, for the last sample the 

representation error is by 4 orders of magnitude larger than for the first one. According to (6), the evaluation error 

of samples at the end of the data set is also in the order of magnitude 10-4. This error is added to the fitted sine wave 

𝑦𝑛. 

To understand the problem more in detail, let us take the cost function (CF) of the LS estimator: 

 

𝐶𝐹LS = ∑(𝑥𝑛 − (𝑦𝑛 + 𝑒𝑝ℎ𝑎𝑠𝑒,𝑛))
2
= ∑(𝑒𝑛 − 𝑒𝑝ℎ𝑎𝑠𝑒,𝑛)

2
𝑁

𝑛=1

𝑁

𝑛=1

 (8) 

where 𝑒𝑛 = 𝑥𝑛 − 𝑦𝑛 is the error sequence without the evaluation error of samples, and 𝑒𝑝ℎ𝑎𝑠𝑒,𝑛 contains the 

evaluation error of samples, i.e. from (6): 
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 𝑒𝑝ℎ𝑎𝑠𝑒,𝑛 ≈ 𝐴0 cos𝜑𝑛 ∙ (Δ𝜑)𝑛 .  (9) 

Thus, the cost function can be written as: 

 

𝐶𝐹LS = ∑(𝑒𝑛
2 − 2𝑒𝑛𝑒𝑝ℎ𝑎𝑠𝑒,𝑛 + 𝑒𝑝ℎ𝑎𝑠𝑒,𝑛

2 )

𝑁

𝑛=1

 (10) 

Since the expected value of each second term is 0, their sum will be neglected in the further calculations. Notice that 

the cost function is a random variable in a sense that for different sampling sets it assumes different values.  

Introducing notations 

 

𝜀est = ∑ 𝑒𝑛
2

𝑁

𝑛=1

   and   𝜀phase = ∑𝑒𝑝ℎ𝑎𝑠𝑒,𝑛
2

𝑁

𝑛=1

 (11) 

we have 

 𝐶𝐹𝐿𝑆 ≈ 𝜀𝑒𝑠𝑡 + 𝜀phase . (12) 

Here, 𝜀𝑒𝑠𝑡  is of Gaussian distribution, according to the central limit theorem. 

The deviation of 𝐶𝐹𝐿𝑆 from E{𝜀est} is represented by var{𝜀𝑒𝑠𝑡}, E{𝜀phase}, and var{𝜀phase}.  The variance of 𝜀𝑒𝑠𝑡  

depends on the actual distribution of en. A rough guess can be obtained assuming that it is uniformly distributed with 

zero mean. Then: 

 
var{𝑒𝑛

2} =
Δ4

80
− (

Δ2

12
)

2

=
Δ4

180
  and  var{𝜀𝑒𝑠𝑡} = 𝑁

Δ4

180
, (13) 

where Δ is the quantization step of the converter, [7].  

For 𝜀phase the expected value and the variance grows in portion with N. Thus, the standard deviation of 𝜀phase is 

proportional to √𝑁. Consequently, the expected value of 𝜀phase dominates over its standard deviation.  

Let us calculate the expected value of 𝜀phase. The expected value of a single error term, using (9) is:  

 E{𝑒phase,𝑛
2 } = 𝐴0

2 cos2 𝜑𝑛 ∙ 𝑣𝑎𝑟{φ𝑛} (14) 

As an approximation, the variance of the phase storage is approximated to be proportional to the absolute value of 

the phase, i.e., 

 
𝑣𝑎𝑟{𝜑𝑛} =

𝐿𝑆𝐵2(𝜑𝑛)

12
≈ 𝜑𝑛

2 ∙
𝑒𝑝𝑠2

12
, (15) 

also taking into consideration that the roundoff error is uniformly distributed between ±𝐿𝑆𝐵(𝜑𝑛). Substituting this 

result to (14) and considering that the variances of the roundoff errors of the phase storage for adjacent samples can 

be regarded as independent, we get: 

 

𝐸{εphase} ≈ ∑ 𝐴0
2 cos2(𝜑𝑛) ∙ 𝜑𝑛

2 ∙
𝑒𝑝𝑠2

12

𝑁

𝑛=1

= ∑ 𝐴0
2 cos2(𝜑𝑛) ∙ (𝑛 ∙ 𝜑1)

2 ∙
𝑒𝑝𝑠2

12

𝑁

𝑛=1

, (16) 

where 𝜑1 = 2𝜋
𝑓0

𝑓𝑠
. The effect of function cos2 on average can be regarded as 0.5. Furthermore, identity 

∑ 𝑛2 ≈ 𝑁3/3𝑁
𝑛=1  is utilized. With these approximations, the following equation can be obtained: 
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𝐸{εphase} ≈

1

2
𝐴0

2(𝜑1)
2 ∙

𝑒𝑝𝑠2

12
∙
𝑁3

3
 (17) 

Now the standard deviation of 𝜀est and the expected value of εphase should be compared. If the latter assumes higher 

values, the evaluation error of samples dominates over the uncertainty of the cost function: 

 
𝐸{εphase}

√𝑣𝑎𝑟{εest}
≈

1
2𝐴0

2(𝜑1)
2 ∙

𝑒𝑝𝑠2

12 ∙
𝑁3

3
Δ2

√180
√𝑁

 (18) 

Considering that 𝐴0 ≈ 𝐹𝑆/2 and Δ = 𝐹𝑆/2𝑏, we have: 

 𝐸{εphase}

√𝑣𝑎𝑟{εest}
≈

22(𝑏−1)√180

72
∙ (𝜑1)

2 ∙ 𝑒𝑝𝑠2 ∙ 𝑁5/2  (19) 

If the example given by (3) is investigated, i.e., 

 𝑏 = 12,    𝜑1 = 0.1258,   𝑒𝑝𝑠 = 𝑒𝑝𝑠𝑠 ,   𝑁 = 50000 (20) 

we have: 

 E{εphase}

√𝑣𝑎𝑟{εest}
≈ 197 (21) 

which means that  E{εphase} ≫ √𝑣𝑎𝑟{εest}, that is, E{εphase} is important. 

These derivations are valid for the LS cost function. The cost function of the MLE behaves similarly (recall that 

for additive normal observation noise the MLE and the LS estimates coincide, thus they can be expected to behave 

similarly). 

B. Proposed solution to decrease the phase storage error 

As described in Section II-A, the phase storage error originates from the inaccurate storage of the phase 

information in (4). More precisely, the absolute roundoff error increases with increasing 𝜑n, as described in Section 

I. However, the precise phase information can be extracted from the terms of 𝜑n in (4), using the following method. 

Since sine and cosine in (1) are periodic functions, the fractional part of 
𝑓0

𝑓𝑠
𝑛 contains the information that is 

needed to calculate their values for a given n. The proposed method is that the phase information should be calculated 

by 2𝜋 ⟨
𝑓0

𝑓𝑠
𝑛⟩, where 〈∙〉 is the fractional part operator after rounding to the nearest integer value: 

 
⟨
𝑓0
𝑓𝑠

𝑛⟩ =  
𝑓0
𝑓𝑠

𝑛 − round (
𝑓0
𝑓𝑠

𝑛). (22) 

For example, 〈2.3〉  = 0.3 and 〈2.6〉  = −0.4. The calculation of the fractional part does not inject roundoff error 

to the system, since an integer number can be subtracted precisely from a floating-point number. While the fractional 

part is still represented in single precision, its magnitude is mapped to ] − 0.5; 0.5], also limiting the error in (6) to 

a predictable value. In addition, the imprecise storage of has much lower effect on the result, than in the case it is 

multiplied by growing 
𝑓0

𝑓𝑠
𝑛. 
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However, the calculation of the fractional part cannot be performed in the standard way. If  
𝑓0

𝑓𝑠
𝑛 were calculated 

using single precision, it would also be distorted by roundoff error. Consequently, ⟨
𝑓0

𝑓𝑠
𝑛⟩ would also be imprecise. 

Thus, 
𝑓0

𝑓𝑠
𝑛 has to be calculated with enhanced precision. A possible solution for the problem is described in detail in 

Section II-D. 

Summarizing the proposed method, the periodic property can be exploited to perform the operation more 

accurately with the following steps: 

a) calculate 
𝑓0

𝑓𝑠
𝑛 with enhanced precision 

b) calculate ⟨
𝑓0

𝑓𝑠
𝑛⟩ 

c) cast the result back to single 

d) multiple only this fractional part by 2 

Since the resulting phase information is in range ] − 𝜋; 𝜋], the absolute phase storage error is always lower than 

2.4 ∙ 10−7. This is a major improvement compared to the second term of (7).  

The described algorithm is significantly different from the precise sine evaluation of [16]. The latter method 

focuses on the precise evaluation of the sine function, assuming that the sine wave argument (i.e., the phase) is 

accurately known. Here, phase is not accurately known, since the imprecise storage introduces a phase roundoff 

error. Hence, the accurate value of the sine function cannot be determined, since the precise information was lost at 

the storage of the phase. From practical point of view, the proposed method evaluates the phase information with 

enhanced precision instead of single precision, maps the result to a limited range and only after this limitation does 

the rounding – resulting in a much lower absolute error. 

During the enhancement method, only the phase storage in (4) was calculated with increased precision. This 

approach could be extended to other portions of the fitting algorithm, at a price of increased processing time. 

However, as a general rule, only the critical parts of the algorithm should be improved, finding a balance between 

run time and accuracy. 

C. The effect of phase storage error 

Phase storage error has an effect on most sine wave fitting algorithms (an exception is the QBE). This is shown 

for the case of the three-parameter LS fitting. For this algorithm, the parameters can be calculated by solving the 

following linear equation system in Least Squares sense [1]: 

 𝐃𝟎𝐬𝟎 = 𝐱 (23) 

where 

 

𝐃𝟎 = [

cos(2𝜋𝑓0𝑡1)    sin(2𝜋𝑓0𝑡1)     1

cos(2𝜋𝑓0𝑡2)    sin(2𝜋𝑓0𝑡2)     1
⋮

cos(2𝜋𝑓0𝑡𝑁)    sin(2𝜋𝑓0𝑡𝑁)     1

], (24) 

 𝐬𝟎 contains the estimated in-phase and quadrature components of the signal model, and the offset i.e., A, B and C 

in (1), respectively, and 𝑡𝑛 = 𝑛 𝑓𝑠⁄   [1]. 
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The algorithm was evaluated for the sine wave given by (3), using singular value decomposition (SVD). The 

ADC under test is bipolar, it has a nominal bit number of b=12, FS=1 and is assumed to be unaffected by noise and 

non-linear distortions. The excitation signal is purely sinusoidal with an amplitude of 0.49, as in Section II-A. To 

overcome the error of frequency storage, relative frequency 𝑓0 𝑓𝑠⁄ = 1 64⁄  was set so that it can be stored precisely 

even with single precision. Thus, only the effect of imprecise phase storage can be observed. 

Results were obtained using different methods. First, single precision arithmetic was used to show the ENOB 

loss caused by roundoff errors. Besides, the method proposed in Section II-B was performed to improve results. 

Finally, double precision evaluation was executed as reference. TABLE I. shows the ENOB values for different 

record lengths. 

TABLE I.  ENOB OF A 12-BIT ADC FOR THE DIFFERENT METHODS 

Record 

length 

ENOB value 

Single precision 

without 

enhancement 

Single precision 

with 

enhancement 

Double 

precision 

10000 11.97 11.97 11.97 

20000 11.96 11.97 11.97 

50000 11.87 11.97 11.97 

100000 11.84 11.97 11.97 

200000 11.59 11.97 11.97 

 

It can be observed that for a record length of 10000 samples there is no significant difference between the 

algorithms. However, with increasing record length, the roundoff errors also increase. For N=50000, the ENOB loss 

for the single precision evaluation without the proposed enhancement is about 0.1 bit which is not negligible. 

Contrarily, the enhanced single precision evaluation eliminates this problem, as shown in the second column of 

TABLE I.  Notice again that the ENOB loss is only due to imprecise phase storage, and it is injected as an additional 

error source, regardless of the quality of the ADC. 

D. Enhanced precision phase evaluation on a given platform 

In Section II-A imprecise phase storage was shown to distort the result of sine fitting. The suggested enhancement 

method was to evaluate the fractional part of 
𝑓0

𝑓𝑠
𝑛 and then multiply it by 2π. The crucial part is the evaluation of the 

fractional part with increased precision. This implies that the operation of multiplication has to be implemented more 

accurately. 

In order to do that, first we have to find a way for increased bit number representation, while not slowing down 

the computer too much. The problem of floating point representation is that it has finite mantissa length. Thus, 

operations cannot be performed with arbitrary precision. To overcome this problem, each number can be split into 

more parts [14]. E.g., in single representation they can be split into 3 parts, so that each part contains 11 significant 

bits. Thus, the difference between the exponents is 11. The original number can be calculated as the sum of these 

three parts. The benefit of splitting is that the product of two splits contains at most 11+11=22 significant bits (and 

single representation has 23-bit mantissa). This means that the product can be stored precisely. 
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 If operation 
𝑓0

𝑓𝑠
𝑛 is to be performed, 

𝑓0

𝑓𝑠
 should be split into three parts. Record length N can be assumed to be less 

than 222 ≈ 4 million. In this case, each n value from 1 to N can be represented with two splits precisely. After 

splitting the terms into parts, the multiplication can be calculated based on convolution:  

 
],,,[],[*],,[ 23132212211121321

0 nfnfnfnfnfnfnnfffn
f

f

enhs











 (25) 

where f1 and n1 denote the first split of the parts from 
𝑓0

𝑓𝑠
 and n, respectively. Notice again that the resulting vector 

elements are not distorted by roundoff errors, since their 23-bit mantissa contains at most 22 significant bits. After 

the multiplication the fraction part of the splits can be calculated. The result contains 4 parts, the sum of which is 

⟨
𝑓0

𝑓𝑠
𝑛⟩. Using this approach, the roundoff error is reduced significantly as shown in Section II-C.  

This method can also solve the problem of imprecise frequency storage. If needed, even the roundoff error of the 

stored frequency can be eliminated. The real frequency can be given as the sum of the nearest single value and a 

correction factor, i.e., the roundoff error: 

 
(
𝑓0
𝑓𝑠

)
real

= (
𝑓0
𝑓𝑠

)
single

+ (
𝑓0
𝑓𝑠

)
corr.

. (26) 

 

The multiplication of the precisely stored frequency with n can be performed similarly to (25). It is important to 

mention again that only the critical part of sine wave fitting algorithms (i.e., the phase evaluation) is calculated with 

enhanced precision. Theoretically arbitrary precision could be achieved on any platform, e.g., double precision could 

be implemented on a single precision DSP. However, due to the increased time consumption the algorithm would 

become practically useless. 

III. SUMMATION  ERROR 

A. Error analysis 

Besides phase evaluation, other error sources also influence the result of sine wave fitting. Fitting algorithms 

typically minimize a cost function (CF). The evaluation usually requires the calculation of a summation. If the record 

length is increased, the error of summation also increases, since the value of the sum is accumulating. For instance, 

the LSE minimizes the sum of the squared errors: 

 

𝐶𝐹LS = ∑(𝑥𝑛 − 𝑦𝑛)2

𝑁

𝑛=1

. (27) 

In the following we assume that the evaluation error of samples has been eliminated. In the computer, the 

calculated 𝐶𝐹LS is also corrupted by roundoff errors. A roundoff error is on average proportional to the magnitude 

of the number to be stored. By assuming standard summation, i.e., the value of the sum is accumulating, the variance 

of the result is [17]: 
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𝑣𝑎𝑟{𝜀sum} ≈ ∑(𝑛 ∙ 𝐸{𝑒𝑛
2})2

𝑁

𝑛=1

𝑒𝑝𝑠2

12
= 𝐸2{𝑒𝑛

2}
𝑁3

3

𝑒𝑝𝑠2

12
, (28) 

where 𝜀sum is the error term, introduced by summation. This variance should be compared to the variance of the 

estimated CF, evaluated in (13): 

 var{𝜀sum}

var{𝜀𝑒𝑠𝑡}
≈

180

5184
∙ 𝑒𝑝𝑠2 ∙ 𝑁2. (29) 

Consequently, using single precision, the summation error will be greater than the uncertainty of the CF 

estimation only if N > 4.5 ∙ 107. On the one hand, this is not a practical case: N is usually much smaller. On the other 

hand, while the summation error in (29) may seem negligible, it was shown in [15] that these roundoff errors cause 

a ragged CF, i.e., a CF featuring local minima, worsening the accuracy of iterative solutions (four-parameter LSE, 

MLE). Therefore, it makes sense to strive for smaller summation error. 

Summation problems may be mitigated by representing data with increased precision, similarly to the method 

presented in Section II. This would improve the accuracy of the summation at a price of a considerably increased 

processing time. However, advanced summation techniques may also be applied, as shown in the following. 

B. Proposed solutions to decrease the summation error 

As described in Section III-A, the standard deviation of the summation can become much larger than the LSB of 

the number representation. The phenomenon originates from the naive approach of summation. This accumulates 

the result, adding small numbers to a growing sum. Possible solutions for decreasing the summation error in floating 

point is subtracting the mean value beforehand, using Kahan’s compensated summation [18], or executing pairwise 

summation. For the pairwise summation a short analysis is given here. 

In this method groups and subgroups can be built from the numbers and then they can be added gradually, as 

shown in Fig. 2. The groups contain values that assume approximately the same order of magnitude, resulting in 

lower roundoff errors at the summation steps. This technique is similar to the calculation of the FFT. It achieves 

higher accuracy, with low extra computational costs. 

 

Fig. 2. Illustration of pairwise summation for 8 values 
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Accuracy enhancement can be demonstrated, considering the following. During pairwise summation, the sum is 

growing from left to right in Fig. 2. The expected value of every element to be summed is 𝑒RMS
2 . The relative variance 

of the roundoff errors of the elements can be given as 𝐿𝑆𝐵2 12⁄ , considering the relative roundoff error is uniformly 

distributed between −𝐿𝑆𝐵 2⁄  and 𝐿𝑆𝐵 2⁄ . The variances at the addition steps can be regarded as independent. Thus, 

the variance of the summation can be calculated as the sum of these variances. For S12 the expected value is 2𝑒𝑅𝑀𝑆
2 , 

while for S1234 it is 4𝑒𝑅𝑀𝑆
2 . Although the relative variances are still 

𝐿𝑆𝐵2

12
, the absolute variances grow, due to the 

growing sum. For the sake of simplicity, let us assume that the number of values to be summed is a power of 2. The 

variance of the whole summation can be calculated as follows: 

 
𝑣𝑎𝑟{𝜀𝑠𝑢𝑚,𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒} ≈

𝐿𝑆𝐵2

12
(𝑁(𝑒RMS

2 )2 +
𝑁

2
(2 ∙ 𝑒RMS

2 )2 + ⋯+
𝑁

𝑁
(𝑁 ∙ 𝑒RMS

2 )2)

=
𝐿𝑆𝐵2

12
𝑁𝑒RMS

4 ∑ 2𝑛

𝑙𝑜𝑔2(𝑁)

𝑛=1

=
𝐿𝑆𝐵2

6
𝑁2𝑒RMS

4  

(30) 

The result can be compared to the uncertainty of the CF: 

 𝑣𝑎𝑟{𝜀𝑠𝑢𝑚,𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒}

𝑣𝑎𝑟{𝜀𝑒𝑠𝑡}
≈ 30 ∙ 𝑒𝑝𝑠2 ∙ 𝑁 (31) 

The result compared to (29) shows that the summation error significantly decreases using the pairwise summation 

technique. Furthermore, the observed ratio increases in portion with N instead of 𝑁2. With pairwise summation, N 

should be greater than 2.3 ∙ 1012 so that the summation error is greater than the uncertainty of the CF. 

During the proof it was assumed that N is a power of 2, but this method can improve the result of the summation 

for an arbitrary record length [18]. 

IV. CONDITIONING OF THE EQUATION SYSTEM 

A. Error analysis 

In practical cases, the frequency of the measured signal is usually unknown. The LSE and MLE can also estimate 

this parameter iteratively, refining the frequency estimate at each iteration step. Therefore, these algorithms need a 

good initial estimate of the frequency of the sine wave. For this purpose, the interpolated FFT algorithm can be used, 

for example, [19].  

The solution of the four-parameter LS sine fitting problem is similar to that of the three parameter sine fitting 

described in (23). However, in this case frequency correction Δ
𝑓

𝑓𝑠
 is one of the parameters to be estimated. The 

estimation of this fourth parameter introduces additional error sources, because the four-parameter LSE requires 

adding an extra column to system matrix D, [1]: 

 

𝐃 = [

cos𝜑1

cos𝜑2

⋮
cos𝜑𝑁

sin𝜑1

sin𝜑2

⋮
sin𝜑𝑁

1
1
⋮
1

2𝜋𝑡1(−𝐴 sin𝜑1 + 𝐵 cos𝜑1)

2𝜋𝑡2(−𝐴 sin𝜑2 + 𝐵 cos𝜑2)
⋮

2𝜋𝑡𝑁(−𝐴 sin𝜑𝑁 + 𝐵 cos𝜑𝑁)

] 

𝜑𝑛 = 2𝜋
𝑓𝑖

𝑓𝑠
𝑛, 

(32) 
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where 𝑓𝑖 is the frequency estimate in iteration step i. Observe that the maximum value in the fourth column in (32) 

grows with N, since 𝑡𝑁 grows. This may lead to the solution of an ill-conditioned equation system. 

In fact, in numerical calculations the condition number (i.e., the ratio between the highest and lowest singular 

values) of a matrix is a measure of robustness. From practical point of view, it can be treated as sensitivity: the 

higher the condition number, the higher the sensitivity of the result to perturbations. For example, during the solution 

of a general matrix equation for v: 

 𝐋𝐯 = 𝐰, (33) 

where L is a matrix, and v and w are vectors, the condition number of L determines the sensitivity of the solution 

for v to numerical inaccuracies of L and w.  

Let us consider a 12-bit ADC with Δ = 1 and 𝑁 = 50000. The excitation signal has the following parameters: 

 𝐴 = 1200, 𝐵 = 1650, 𝐶 = 2048 ,   
𝑓

𝑓𝑠
=

1

64
, (34) 

so that 99.6% of the entire ADC range is excited by the stimulus. With these parameters the condition number of D 

is 1.2 ∙ 108, larger than 1/epss=8.39∙ 106. Hence, the matrix is very much ill-conditioned.  

The needed frequency correction is usually small. This ill-conditioning may result in calculation errors that may 

distort this small value considerably. Consequently, it is not ensured that after the iteration the system gets closer to 

the optimum frequency. Thus, also convergence problems may occur, see Section IV-B. Notice that the effect of ill-

conditioning is illustrated for the four-parameter LSE, but it also affects the MLE method. 

B. Proposed solution to decrease ill-conditioning 

Ill-conditioning is caused by the fourth column of D, since it may contain much larger values compared to the 

first three columns [8]. The problem can be solved by dividing the elements of the fourth column with a proper 

number, i.e. by proper scaling. If the fourth column were scaled properly, the condition number could be improved 

considerably [20]. The scaled matrix can be given as: 

 

𝐃𝐬𝐜𝐚𝐥𝐞𝐝 =

[
 
 
 
cos𝜑1

cos𝜑2

⋮
cos𝜑𝑁

sin𝜑1

sin𝜑2

⋮
sin𝜑𝑁

1
1
⋮
1

2𝜋𝑡1{−𝐴sin𝜑1 + 𝐵 cos𝜑1}/𝜆𝑠𝑐𝑎𝑙𝑖𝑛𝑔

2𝜋𝑡2{−𝐴sin𝜑2 + 𝐵 cos𝜑2}/𝜆𝑠𝑐𝑎𝑙𝑖𝑛𝑔

⋮
2𝜋𝑡𝑁{−𝐴sin𝜑𝑁 + 𝐵 cos𝜑𝑁} /𝜆𝑠𝑐𝑎𝑙𝑖𝑛𝑔]

 
 
 

 (35) 

where 𝜆𝑠𝑐𝑎𝑙𝑖𝑛𝑔 denotes the scaling factor. In order to solve the same equation system, the fourth parameter to be 

calculated after scaling is (Δ
𝑓

𝑓𝑠
) ∙ 𝜆𝑠𝑐𝑎𝑙𝑖𝑛𝑔. 

In [21] the conditioning of the four-parameter LS problem was investigated. It was shown that for large record 

length, the condition number can be decreased to approx. 3.74. A scaling factor for the problem was suggested in 

[8]. However, it does not contain the amplitude of the input signal. Observations for different parameter settings 

showed that the optimal scaling factor is approximately: 

 𝜆scaling,opt. ≈ 𝐾 ∙ 𝑁 ∙ 𝜋, 𝐾 = √𝐴2 + 𝐵2, (36) 

i.e., the scaling factor is proportional to aggregated amplitude K and to record length N. However, it is independent 

of the ratio between signal frequency and sampling frequency. Using the given scaling factor, the condition number 

of D with the parameters in (34) decreases to 3.78. This value is approximately the optimal condition number 
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determined in [21]. Notice that during the solution the relative frequency, i.e., 𝑓/𝑓𝑠 was determined. The physical 

frequency of the signal can be calculated by multiplying this result with the sampling frequency. 

To show the gained performance enhancement, the four parameter LS fitting algorithm was evaluated using 

single precision, with the parameters given in (34), both with and without the scaling factor given in (36). Let the 

ADC under test be unipolar, with b=12, again. However, the range of the ADC is now [0;4095]. Fine tuning of the 

frequency Δ
𝑓

𝑓𝑠
  in each iteration step is shown in Fig. 3. It can be observed that without scaling the algorithm failed 

to converge. However, scaling the fourth column of D solved the convergence problem.  

 

Fig. 3. Frequency fine tuning without scaling (a) and with scaling (b) 

V. NOISE CDF OF THE MAXIMUM LIKELIHOOD ESTIMATOR (MLE) 

A. Error analysis 

Error sources up to this point affect both the LSE and the MLE methods. This section investigates the effect of 

the observation noise model on the parameter estimation. Since LSE does not utilize any noise model, this error is 

special for the MLE.  

The MLE method [3] tries to find model parameters corresponding to the highest probability of observing the 

collected data set, assuming a known distribution for (random) errors. In particular, if the acquired signal is affected 

by an additive white noise, the complexity of the MLE can be reduced by using the log-likelihood function: 

 

ln 𝐿(𝑝) = ∑𝑙𝑛[P(𝑋𝑛 = 𝑥𝑛)],

𝑁

𝑛=1

 (37) 

where P(𝑋𝑛 = 𝑚) is the probability that the nth sample of X equals to a digital code m, 𝑋𝑛 is a possible output code 

and 𝑥𝑛, with n=1,…,N, denotes the observed sequence of ADC equivalent output levels [3].  
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In this method the additional noise is also taken into consideration, resulting in the signal model: 

 𝑥𝑛 = 𝑄(𝑦𝑛 + 𝜉𝑛)        𝑛 = 1…𝑁 (38) 

where Q denotes the operation of quantization, 𝑦𝑛 is given by (1) and 𝜉𝑛 is the additional noise. The operation of 

quantization is based on the transition levels of the quantizer. If the transition levels are unknown, they  can be 

determined, for instance, by the histogram test [23].  

The noise model of 𝛏 determines the probabilities in (37). The noise is usually assumed to be additive white 

Gaussian noise (AWGN), with zero mean and standard deviation . The probabilities in (37) under the AWGN 

assumption are usually computed by using the erf function. Thus, the probability that the nth sample is in the lth code 

bin can be calculated as: 

 
𝑃(𝑋𝑛 = 𝑙) =

1

2
[erf (

𝑇𝑙 − 𝑦𝑛

𝜎√2
) − erf (

𝑇𝑙−1 − 𝑦𝑛

𝜎√2
)], (39) 

where 𝑇𝑙 is the lth transition level [22], and 

 

𝑒𝑟𝑓(𝑥) =
2

√𝜋
∫𝑒−𝑧2

𝑑𝑧

𝑥

0

. (40) 

From numerical point of view, this calculation method is a potential error source, considering the following. The 

Gaussian distribution can describe the noise model satisfactorily for low noise values, such that |𝜉𝑛| < 3𝜎. However, 

for larger values of |𝜉𝑛|, the Probability Density Function (PDF) of the Gaussian distribution converges quickly to 

zero, and its Cumulative Distribution Function (CDF) converges quickly either to 0 (when 𝜉𝑛 < −3𝜎) or to 1 

(when 𝜉𝑛 > 3𝜎). The argument values of the erf function may assume large values for two reasons. First, during 

real measurements an outlier, i.e., a sample affected by large noise value 𝜉𝑛, may actually appear, despite its low 

probability of occurrence. On the other hand, after initialization, model parameters may significantly differ from the 

optimal values. At run-time, this indicates that the model optimization needs additional iterations. The problem is 

that value of the erf function at 4  is 1 − 1.58 ∙ 10−8. The deviation of this value from 1 is so small that it cannot be 

represented using single precision. 

 For large erf arguments (when 𝜉𝑛 > 3𝜎), the result of (39) can be given in a form: 

 
𝑃(𝑋𝑛 = 𝑙) =

1

2
[(1 + δ1) − (1 + 𝛿2)], (41) 

where δ denotes a small value. If both 
𝑇𝑙−𝑦𝑛

√2𝜎
> 4 and 

𝑇𝑙−1−𝑦𝑛

√2𝜎
> 4 hold, both single precision erf evaluations would 

yield a result of exactly 1. This is caused by the fact that δ1 and δ2 cannot be represented beside 1. The difference 

in (39) is in this case 0, leading to singularity when evaluating the log-likelihood function. Thus, if for only one 

sample the arguments of the erf functions are higher than 4, (37) cannot be determined. Consequently, the algorithm 

in this form is numerically unusable. 

B. Proposed solution to evaluate the CDF with small error 

The proposed solution for the problem is that for the samples at which the noise level is high, the complementary 

error function (erfc) should be used instead of the erf function. This function analytically equals to 1 − erf, but due 
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to the storage of the deviation from 1, it can represent function values for larger operand values much more accurately 

than the erf function. 

The calculation of (39) can be given using erfc: 

  
𝑃(𝑋𝑛 = 𝑙) =

1

2
[erfc (

𝑇𝑙−1 − 𝑦𝑛

𝜎√2
)− erfc (

𝑇𝑙 − 𝑦𝑛

𝜎√2
)] =

1

2
(δ1 − δ2), (42) 

It can be observed that instead of calculating the small difference of relatively large numbers in (41), the difference 

can be calculated directly.  

However, this approach cannot handle arguments, for which  
𝑇𝑙−𝑦𝑛

𝜎√2
< −3. In this case, erf is close to −1 and erfc 

is close to 2. Thus, the same problem occurs, as for high erf argument values: a small number should be represented 

beside 2. The problem can be solved, using identity erfc(−𝑧) = 2 − erfc(𝑧). The calculation of (39) in this case can 

be given as: 

 
𝑃(𝑋𝑛 = 𝑙) =

1

2
[erfc (−

𝑇𝑙 − 𝑦𝑛

𝜎√2
) − erfc (−

𝑇𝑙−1 − 𝑦𝑛

𝜎√2
)]. (43) 

Depending on argument values 
𝑇𝑙−𝑦𝑛

𝜎√2
 and 

𝑇𝑙−1−𝑦𝑛

𝜎√2
, the following rule should be followed: 

 

used evaluation:{

(39), if  −0.477 ≤ argument values ≤ 0.477
(42), if  0.477 < 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠
(43), if argument values < −0.477

, (44) 

With this technique, the representable range is widened to |
𝑇𝑙−𝑦𝑛

𝜎√2
| < 26. This is a major improvement, compared to 

the original range |
𝑇𝑙−𝑦𝑛

𝜎√2
| < 4. 

It should be noted that if 
𝑇𝑙−𝑦𝑛

𝜎√2
 and 

𝑇𝑙−1−𝑦𝑛

𝜎√2
 are in different ranges of (44), the importance of using different 

evaluations becomes less important. In this case, the difference between the erf values is never zero. Thus, (39) can 

be used without singularity issues.  

VI. QUANTILE BASED ESTIMATOR (QBE) 

 

In this section the Quantile Based Estimator (QBE) is considered. It is shown that this estimator can be very 

robust to roundoff error sources described in Sections II and III, at least when its applicability conditions are fulfilled. 

The QBE can be derived based on the Gauss-Markov Theorem [4]. The measured signal is assumed to be 

digitized by a quantizer with known transition levels. The transition levels can be determined, for instance by the 

histogram test [23], similarly to the MLE.  QBE can easily be given for the estimation of a constant signal affected 

by AWGN, by linearizing the effect of the noise on the CDF of the samples. This approximates the Best Linear 

Unbiased Estimator (BLUE) [24].  

The QBE can be extended to the three-parameter sine wave fitting case. In this case, the sampling has to be 

synchronized so that the sine wave is sampled at the same phase positions m times. In order to ensure this property, 

the sampling should be coherent and  

 𝑓0
𝑓𝑠

=
𝐽

𝑅
 (45) 
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should hold, J and R being relative prime integers. In fact, the instantaneous phase of the sampled sinusoidal stimulus 

can assume only R distinct values [25]. The record length can be given by 𝑁 = 𝑚𝑅. Thus, by grouping the collected 

samples on a “per-phase” basis, the three-parameter sine fitting can be transformed into an equivalent set of R DC 

estimation problems. Each set is based on the usage of a constant stimulus at the ADC input and contains m samples. 

In absence of noise that is: 

 𝑑𝑟 = 𝐴 cos𝜑𝑟 + 𝐵 sin𝜑𝑟 + 𝐶      𝑟 = 1, … , 𝑅,  (46)  

 

where 𝜑𝑟  is the phase of the rth set. Having these data sets, the conventional Gauss-Markov estimate can be 

determined. 

The QBE takes quantizer non-linearities into consideration, providing almost unbiased results for the sine wave 

parameters [4]. In fact, the QBE approximates the MLE that is asymptotically unbiased for large data records, 

regardless of the ADC resolution and signal dynamics. The QBE is also faster than the MLE, since the Gauss-

Markov estimate can be determined in one step. However, in its present form it can only estimate A, B and C, but 

not the frequency.  

The QBE takes advantage of restriction that a coherently sampled sine wave is repeated m times. The advantage 

is that in this case the phases of the repeated samples are exactly the same as in the first period. Formally, 𝜑𝑟+𝑘𝑅 =

𝜑𝑟 , 𝑘 ∈ 𝑍+. This implies that for high phase values, 𝜑𝑟+𝑘𝑅 can be substituted with 𝜑𝑟 , similarly to Section II.B. 

Consequently, the phase evaluation and storage problem is avoided inherently. In addition, the samples are divided 

into subgroups. This division decreases the roundoff error caused by the summation error, similarly to Section III.B. 

Thus, roundoff error problems described in Sections II and III can be reduced considerably using the QBE.  
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The robustness of the QBE to the usage of single precision representation was verified through simulations and 

was compared to that of the LSE, for different values of ADC resolution, record length, and for different INL 

(integral non-linearity) levels. The results show that the QBE is increasingly advantageous over the LSE, when the 

record length or the ADC resolution is increased. For instance, Fig. 4(a), obtained for a 12-bit ADC unaffected by 

INL, shows the mean ENOB as a function of the sinewave amplitude A, assuming values in [0.49FS;0.49FS+], 

with f0/fs=1/64, =0.2, and N=105. When double precision is used, the LSE and the QBE behave identically (see 

upper plot). However, when single precision is used (see lower plot), the QBE ENOB is almost unchanged, while 

the LSE ENOB is decreased by about 0.05 bits. This phenomenon is magnified when record length N is increased. 

In fact, when N is increased to 106, Fig. 4(b) shows that the performance of the QBE is unaffected by the usage of 

single precision, while the ENOB of the LSE drops by about 1.6 bits.  

The QBE consents a more accurate estimation of the sinewave parameters, even if the calculated ENOB is similar 

to that of the LSE. For instance, Fig. 5(a), obtained under the same conditions as Fig. 4(a), shows the ratio between 
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Fig. 4(a). Mean ENOB, for a record length of 105 samples, 

performing phase evaluation in double precision (upper 
plot) and single precision (lower plot) 

Fig. 4(b). Mean ENOB, for a record length of 106 samples, 

performing phase evaluation in double precision (upper 

plot) and single precision (lower plot) 

0.49 0.4901 0.4902 0.4903 0.4904 0.4905
0

100

200

A/FS

m
s
e

L
S

E
/m

s
e

Q
B

E double precision

0.49 0.4901 0.4902 0.4903 0.4904 0.4905
0

100

200

A/FS

m
s
e

L
S

E
/m

s
e

Q
B

E single precision

0.49 0.4901 0.4902 0.4903 0.4904 0.4905
0

200

400

600

800

A/FS

m
s
e

L
S

E
/m

s
e

Q
B

E double precision

0.49 0.4901 0.4902 0.4903 0.4904 0.4905
0

200

400

600

800

A/FS

m
s
e

L
S

E
/m

s
e

Q
B

E single precision

Fig. 5(a). Ratio between the mse of the LSE and the QBE, for 

the estimation of sinewave amplitude A, under the same 

conditions as Fig. 4(a) 

Fig. 5(b). Ratio between the mse of the LSE and the QBE, for 

the estimation of sinewave amplitude A, when the ADC is 

affected by INL 



18 

 

the mean squared error (mse) of the LSE and the QBE, when both estimators are used to estimate sinewave amplitude 

A. It can be observed that, even if the QBE and the LSE yield similar ENOB, the QBE has a much lower mse (mean 

squared error of the estimated amplitude of the sine wave with respect to the true one), because it is almost unbiased. 

Notice that in this case the exact value of A is known, since the results are simulated. 

 

The above described effect is increased when the ADC is affected by INL. Fig. 5(b) was derived under the same 

conditions as Fig. 5a. The only exception is that the 12-bit ADC is affected by INL, uniformly distributed in [-

0.3;0.3]. As expected, the mse ratio increases with respect to Fig. 5(a), because the QBE uses information about 

quantizer thresholds, while the LSE does not.  

The drawback of the presented QBE is that it is only applicable when the relative frequency satisfies (45). 

Consequently, the frequency of the sine wave has to be set precisely for several digits on a generator. This means 

that the QBE is potentially sensitive to synchronization inaccuracies (also due to roundoff errors in the representation 

of f0/fs), leading to estimation errors in practical scenarios.  

VII. THE EFFECT OF INACCURATE KNOWLEDGE  OF THE FREQUENCY OF THE SINE WAVE 

In this section the sensitivity of different methods to the inaccurate knowledge of the frequency is investigated. 

Note that in the previous sections the frequency was assumed to be known precisely. The frequency error may 

originate from imprecise estimation and imprecise storage. The latter problem can be solved by the method described 

in Section II.D. In this case, the original assumption of precise frequency knowledge is met. However, if the 

frequency is estimated imprecisely or the imprecise storage is not compensated, an additional error is injected to the 

system. In this case, instead of (4) we have: 

 
2𝜋

𝑓0 + Δ𝑓0
𝑓𝑠

𝑛 = 𝜑𝑛 + (Δ𝜑)𝑛,freq.,                𝑛 = 1,… ,𝑁 (47) 

and the phase error is: 

 (Δ𝜑)𝑛,freq. = 2𝜋
Δ𝑓0

𝑓𝑠
𝑛,                𝑛 = 1, … , 𝑁, (48) 

where (Δ𝜑)𝑛,freq. denotes the phase error due to imprecise frequency information. It should be noticed that contrarily 

to the error of phase storage, this error is systematic, i.e., its sign and amplitude can be given exactly. Furthermore, 

the amplitude of this error grows with increasing record length. 

To gain further insight and compare the sensitivity of the LSE, MLE, and QBE algorithms to frequency 

inaccuracy, a Monte Carlo analysis was carried out. To this aim, each estimator’s signal model assumed a frequency 

ratio f0/fs=1/20. A relative error =10-6 on the frequency of the sinewave was assumed, simulating the acquisition of 

a sinewave with A0.2501036, C0.2500010 and a ratio f0/fs=(1+)1/20. The simulation also assumed the signal to 

be digitized by a bipolar uniform ADC with FS=1, unaffected by integral nonlinearities (INL). ADC resolutions of 

8, 10, and 12 bits were considered. An AWGN was assumed, again with standard deviation =0.4 for each 

considered resolution. Thus, the three estimators were tested against a three-parameter sine fitting scenario, for 

several values of record length N. The simulator generated a stimulus, digitized it, and run each estimator 5 times, 

evaluating the ENOB. 
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Fig. 6. Mean ENOB for the three-parameter estimation of a sine wave using different estimators (b=8, 10, 12) 

Fig. 6 shows the mean values of the ENOB as a function of record length N. It can be observed that, when N is 

increased beyond a critical value, the calculated ENOB decreases considerably. On the other hand, the three 

considered estimators show similar sensitivity to frequency inaccuracy. Such behavior can be explained by 

observing that when the sample index is large, the instantaneous phase of a collected sample may significantly differ 

from the instantaneous phase assumed by the estimators’ signal models. Fig. 6 also shows that the requirements on 

frequency accuracy become less stringent if the record length or the ADC resolution is decreased. Note that on the 

other hand, sensitivity to frequency error also means for the four-parameter LSE and the MLE (that is, when the 

frequency also is estimated) that minimization vs. frequency is effective, since frequency changes noticeably change 

the cost function. Thus, the frequency is well determined by the minimization of the CF. 

VIII. CONCLUSIONS 

In this paper numerical optimization problems of sine wave fitting algorithms were investigated. It was pointed 

out that the roundoff errors of numerical calculations may distort the result of the fitting algorithms considerably.  

Roundoff errors due to imprecise phase storage and imprecise summation were shown to affect both the Least 

Squares estimator and the Maximum Likelihood estimator. To decrease the influence of the phase storage error, it 

was shown that dealing with only the fractional part (mod 2π) of the phase information helps, exploiting the periodic 

property of the sine wave. Pairwise summation was proven to decrease the summation error.  

Ill-conditioned matrix equations were pointed out to cause numerical instability in the four-parameter Least 

Squares and in the Maximum Likelihood methods. An illustrative example was given to demonstrate that even 

divergence issues may occur due to ill-conditioning. Finally, a good scaling factor was given for the Least Squares 

estimator in order to ensure well-conditioning.  

Numerical evaluation of the distribution of the utilized observation noise was also considered. The Maximum 

Likelihood estimator is influenced by this error. By evaluating the cumulative distribution function of the Gaussian 

distribution using the erfc function, the numerical instability of the method was be significantly decreased.  
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The Quantile Based Estimator was pointed out to be robust to the phase storage error and to summation errors, 

if it is provided that the input signal is coherently sampled. Furthermore, its performance over the Least Squares 

estimator was demonstrated.  

Finally, all the investigated estimators were shown to have similar sensitivity to the inaccurate knowledge of the 

ratio of the frequency of the sinewave and the sampling frequency.  

Source files of the described algorithms in MATLAB are available at [26]. 
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