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Introduction 
• Chapter 3: Controllers 

– Control input/output: single bit (or just a 
few) representing event or state 

– Finite-state machine describes 
behavior; implemented as state register 
and combinational logic 

• Chapter 4: Datapath components 
– Data input/output: Multiple bits 

collectively representing single entity 
– Datapath components included 

registers, adders, ALU, comparators, 
register files, etc.  

• This chapter: custom processors 
– Processor: Controller and datapath 

components working together to 
implement an algorithm 
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RTL Design: Capture Behavior, Convert to Circuit 
• Recall 

– Chapter 2: Combinational Logic Design 
• First step: Capture behavior (using equation 

or truth table) 
• Remaining steps: Convert to circuit 

– Chapter 3: Sequential Logic Design 
• First step: Capture behavior (using FSM) 
• Remaining steps: Convert to circuit 

• RTL Design (the method for creating 
custom processors) 
– First step: Capture behavior (using high-

level state machine, to be introduced)  
– Remaining steps: Convert to circuit 

Capture behavior 

Convert to circuit 
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RTL Design Method 
5.2 
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RTL Design Method: “Preview” Example 
• Soda dispenser 

– c: bit input, 1 when coin 
deposited 

– a: 8-bit input having value of 
deposited coin 

– s: 8-bit input having cost of a 
soda 

– d: bit output, processor sets to 
1 when total value of 
deposited coins equals or 
exceeds cost of a soda 

a s 

c 
d 

Soda 
dispenser 
processor 

25 

1 0 
25 

1 

1 

50 0 

0 

0 

0 
tot:  
25 
tot:  
50 

How can we precisely describe this 
processor’s behavior? 

a 

a s 

c 
d 

Soda 
dispenser 
processor 



Digital Design 
Copyright © 2006  
Frank Vahid 

6 

Preview Example: Step 1 -- 
Capture High-Level State Machine 

• Declare local register tot 
• Init state: Set d=0, tot=0 
• Wait state: wait for coin 

– If see coin, go to Add state 
• Add state: Update total value:  

tot = tot + a 
– Remember, a is present coin’s 

value 
– Go back to Wait state 

• In Wait state, if tot >= s, go to 
Disp(ense) state 

• Disp state: Set d=1 (dispense 
soda) 
– Return to Init state 

Inputs: c (bit), a (8 bits), s (8 bits) 
Outputs: d (bit) 
Local registers: tot (8 bits) 

Wait 

Add 

Disp 

I nit 

d=0 
tot=0 

c’*(tot<s) 

d=1 

c 

tot=tot+a 

8 8 
a s 

c 
d 

Soda 
dispenser 
processor 

c’*(tot<s)’ 
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Preview Example:  
Step 2 -- Create Datapath 

• Need tot register 
• Need 8-bit comparator 

to compare s and tot 
• Need 8-bit adder to 

perform tot = tot + a 
• Wire the components 

as needed for above 
• Create control 

input/outputs, give 
them names 

ld 
clr 

tot 

8-bit 
< 

8-bit 
adder 

8 

8 

8 
8 

s a 

Datapath 

tot_ld 
tot_clr 

tot_lt_s 

I nputs : c (bit), a(8 bits) , s (8 bits) 
O utputs : d (bit) 
L ocal r e g is t ers : t ot (8 bits) 

W ait 

A dd 

Disp 

I nit 

d=0 
t ot=0 

c ‘ ( t ot<s) ‘ 
c ‘ ∗ ( t ot<s) 

d=1 

c 

t ot= t ot+a 
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Preview Example:  Step 3 –  
Connect Datapath to a Controller 

• Controller’s inputs 
– External input c 

(coin detected) 
– Input from datapath 

comparator’s output, 
which we named 
tot_lt_s 

• Controller’s outputs 
– External output d 

(dispense soda) 
– Outputs to datapath 

to load and clear the 
tot register 

tot_lt_s 

tot_clr 

tot_ld 

Controller Datapath 

s 

c 

d 

a 
8 8 

ld 
clr 

t ot 

8-bit 
< 

8-bit 
adder 

8 

8 

8 
8 

s a 

D a tap a th 

t ot_ld 
t ot_clr 

t ot_lt_s 
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Preview Example: Step 4 – Derive the Controller’s 
FSM 

• Same states 
and arcs as 
high-level 
state machine 

• But set/read 
datapath 
control 
signals for all 
datapath 
operations 
and 
conditions 

tot_lt_s 
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D
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8-bit 
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8 

8 

8 
8 
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Datapath 

tot_ld 
tot_clr 

tot_lt_s 

Inputs: : c , tot_lt_s  (bit) 
Outputs: d , tot_ld , tot_clr  (bit) 

W ait 

Disp 

I nit 

d=0 
tot_clr=1 

c ’ * tot_lt_s 

d=1 

c 

tot_ld=1 

c 

d 

tot_ld 

tot_clr 

tot_lt_s 

Controller 

Add 
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Preview Example: Completing the Design 
• Implement the FSM as 

a state register and 
logic 
– As in Ch3 
– Table shown on right 
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Step 1: Create a High-Level State Machine 
• Let’s consider each step of the 

RTL design process in more 
detail 

• Step 1 
– Soda dispenser example 
– Not an FSM because: 

• Multi-bit (data) inputs a and s 
• Local register tot 
• Data operations tot=0, tot<s, 

tot=tot+a. 
– Useful high-level state machine: 

• Data types beyond just bits 
• Local registers 
• Arithmetic equations/expressions 

 

I nputs : c (bit), a (8 bits) ,  s (8 bits) 
O utputs : d (bit) 
L ocal r e g is t ers : t ot (8 bits) 

W ait 

Disp 

I nit 

d=0 
t ot=0 

c’ ( t ot<s ) 

d=1 

c 

t ot= t ot+a 

c’ ( t ot<s )’ 
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Step 1 Example: Laser-Based Distance Measurer 

• Example of how to create a high-level state machine to 
describe desired processor behavior 

• Laser-based distance measurement – pulse laser, 
measure time T to sense reflection 
– Laser light travels at speed of light, 3*108 m/sec  
– Distance is thus D = T sec * 3*108 m/sec  / 2 

Object of 
interest 

D 

2D = T sec * 3*108 m/sec 

sensor 

laser 

T (in seconds) 
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Step 1 Example: Laser-Based Distance Measurer 

• Inputs/outputs 
– B: bit input, from button to begin measurement 
– L: bit output, activates laser 
– S: bit input, senses laser reflection 
– D: 16-bit output, displays computed distance  

sensor 

laser 

T (in seconds) 

Laser-based 
distance 
measurer 16 

from button 

to display 
S 

L 

D 

B 
to laser 

from sensor 
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Step 1 Example: Laser-Based Distance Measurer 

• Step 1: Create high-level state machine 
• Begin by declaring inputs and outputs 
• Create initial state, name it S0 

– Initialize laser to off (L=0) 
– Initialize displayed distance to 0 (D=0) 

Laser- 
based 

distance 
measurer 16 

from button 

to display 
S 

L 

D 

B 
to laser 

from sensor 

Inputs: B , S (1 bit each) 
Outputs: L (bit), D (16 bits) 

S0 ? 

L = 0 (laser off) 
D = 0 (distance = 0) 

a 
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Step 1 Example: Laser-Based Distance Measurer 

• Add another state, call S1, that waits for a button press 
– B’ – stay in S1, keep waiting 
– B – go to a new state S2 

Inputs: B, S (1 bit each) 
Outputs: L (bit), D (16 bits) 

S0 

L = 0 
D = 0 

S1 ? 

B’ (button not pressed) 

B 
(button 
pressed) 

S0 

Q: What should S2 do? A: Turn on the laser 
a 

a 

Laser- 
based 

distance 
measurer 16 

from button 

to display 
S 

L 

D 

B 
to laser 

from sensor 
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Step 1 Example: Laser-Based Distance Measurer 

• Add a state S2 that turns on the laser (L=1) 
• Then turn off laser (L=0) in a state S3 

S0 S1 S2 

L = 0 
D = 0 

L = 1 
(laser on) 

S3 

L = 0 
(laser off) 

B’ 

B 
a 

Q: What do next? A: Start timer, wait to sense reflection 
a 

Laser- 
based 

distance 
measurer 16 

from button 

to display 
S 

L 

D 

B 
to laser 

from sensor 

Inputs: B, S (1 bit each) 
Outputs: L (bit), D (16 bits) 
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Step 1 Example: Laser-Based Distance Measurer 

• Stay in S3 until sense reflection (S) 
• To measure time, count cycles for which we are in S3 

– To count, declare local register Dctr 
– Increment Dctr each cycle in S3 
– Initialize Dctr to 0 in S1. S2 would have been O.K. too 

Lase r -based 
distan c e 
measu r er 16 

f r om but t on 

t o displ a y 
S 

L 

D 

B 
t o laser 

f r om sensor 
Local Registers: Dctr (16 bits) 

S0 S1 S2 S3 

L = 0 
D = 0 

L = 1 L = 0 
Dctr = Dctr + 1 
(count cycles) 

Dctr = 0 
(reset cycle 

count) 

B’ 

B 

S’ (no reflection) 

S (reflection) 
? 

a 

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits) 



Digital Design 
Copyright © 2006  
Frank Vahid 

18 

Step 1 Example: Laser-Based Distance Measurer 

• Once reflection detected (S), go to new state S4 
– Calculate distance  
– Assuming clock frequency is 3x108, Dctr holds number of meters, so 

D=Dctr/2 

• After S4, go back to S1 to wait for button again 

Lase r -based 
distan c e 
measu r er 16 

f r om but t on 

t o displ a y 
S 

L 

D 

B 
t o laser 

f r om sensor 

S0 S1 S2 S3 

L = 0 
D = 0 

L = 1 L=0 
Dctr = Dctr + 1 

Dctr = 0 

B’ S’ 

B S 
D = Dctr / 2 

(calculate D) 

S4 
a 

Local Registers: Dctr (16 bits) 
Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits) 
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Step 2: Create a Datapath 
• Datapath must 

– Implement data storage 
– Implement data computations 

• Look at high-level state machine, do 
three substeps 
– (a) Make data inputs/outputs be datapath 

inputs/outputs 
– (b) Instantiate declared registers into the 

datapath (also instantiate a register for each 
data output) 

– (c) Examine every state and transition, and 
instantiate datapath components and 
connections to implement any data 
computations 
 

Instantiate: to 
introduce a new 
component into a 
design. 
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Step 2 Example: Laser-Based Distance Measurer 
(a) Make data 

inputs/outputs be 
datapath 
inputs/outputs 

(b) Instantiate declared 
registers into the 
datapath (also 
instantiate a 
register for each 
data output) 

(c) Examine every 
state and 
transition, and 
instantiate 
datapath 
components and 
connections to 
implement any 
data computations 

 

D a tap a th 
D r eg_clr 

D c tr_clr 
D c tr_c n t 

D r eg_ld 

Local Registers: Dctr (16 bits) 

S0 S1 S2 S3 

L = 0 
D = 0 

L = 1 L=0 
Dctr = Dctr + 1 

Dctr = 0 

B ‘ S ‘ 

B S 
D = Dctr / 2 

(calculate D) 

S4 

load 
Q 

I 
D r eg: 16-bit 

r e g is t er 
Q 

D c t r : 16-bit 
u p - c ou n t er 

16 

D 

clear clear 
c ou n t 

a 

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits) 



Digital Design 
Copyright © 2006  
Frank Vahid 

21 

Step 2 Example: Laser-Based Distance Measurer 
(c) (continued) 

Examine every 
state and 
transition, and 
instantiate 
datapath 
components and 
connections to 
implement any 
data computations 

 

clear 
c ou n t 

clear 
load 

Q Q 

I 
D c t r : 16-bit 
u p - c ou n t er 

D r eg: 16-bit 
r e g is t er 

16 

D 

D a tap a th 

D r eg_clr 

D c tr_clr 
D c tr_c n t 

D r eg_ld 16 

16 

>>1 

a 

Local Registers: Dctr (16 bits) 

S0 S1 S2 S3 

L = 0 
D = 0 

L = 1 L=0 
Dctr = Dctr + 1 

Dctr = 0 

B ‘ S ‘ 

B S 
D = Dctr / 2 

(calculate D) 

S4 

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits) 
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Step 2 Example Showing Mux Use 

• Introduce mux when one component input can come from 
more than one source 

T0 

T1 

R = E + F 

R = R + G 

E , F , G, R (16 bits) 
L ocal r e g is t ers : 

( a ) 

E F G 

A B + 

R 

add_A_s0 
add_B_s0 

2 ⋅ 1 2 ⋅ 1 

( d ) 

× × 

a 

E F G 

A B + 

R 

( b ) 

E F G 

A B + 

R 

( c ) 
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Step 3: Connecting the Datapath to a Controller 

• Laser-based distance 
measurer example 

• Easy – just connect all 
control signals 
between controller and 
datapath 300 M H z Clock 

D 

B L 

S 

16 
to display 

from button 
Controller 

to laser 
from sensor 

Datapath 

Dreg_clr 

Dreg_ld 

Dctr_clr 

Dctr_cnt 

clear 
c ou n t 

clear 
load 

Q Q 

I 
D c t r : 16-bit 
u p - c ou n t er 

D r eg: 16-bit 
r e g is t er 

16 
D 

D a tap a th 

D r eg_clr 

D c tr_clr 
D c tr_c n t 

D r eg_ld 16 

16 

>>1 
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Step 4: Deriving the Controller’s FSM 

• FSM has same 
structure as high-
level state machine 
– Inputs/outputs all 

bits now 
– Replace data 

operations by bit 
operations using 
datapath 

300 M H z Clock 

D 

B 
L 

S 

16 

t o displ a y 

f r om but t on 
C o n t r oller 

t o laser 

f r om sensor 

D a tap a th 

D r eg_clr 

D r eg_ld 

D c tr_clr 

D c tr_c n t 

Inputs: B, S 
Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_cnt 

S0 S1 S2 S3 

L = 0 L = 1 L = 0 L = 0 

B’ S’ 

B S 
S4 

L = 0 

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits) 
Local Registers: Dctr (16 bits) 

S0 S1 S2 S3 

L = 0 
D = 0 

L = 1 L=0 
Dctr = Dctr + 1 

Dctr = 0 

B’ S’ 

B S 
D = Dctr / 2 

(calculate D) 

S4 

a 

Dreg_clr = 1 
Dreg_ld = 0 
Dctr_clr = 0 
Dctr_cnt = 0 
(laser off) 
(clear D reg) 

Dreg_clr = 0 
Dreg_ld = 0 
Dctr_clr = 1 
Dctr_cnt = 0 
(clear count) 

Dreg_clr = 0 
Dreg_ld = 0 
Dctr_clr = 0 
Dctr_cnt = 0 
(laser on) 

Dreg_clr = 0 
Dreg_ld = 0 
Dctr_clr = 0 
Dctr_cnt = 1 
(laser off) 
(count up) 

Dreg_clr = 0 
Dreg_ld = 1 
Dctr_clr = 0 
Dctr_cnt = 0 
(load D reg with Dctr/2) 
(stop counting) 
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Step 4: Deriving the Controller’s FSM 

• Using 
shorthand of 
outputs not 
assigned 
implicitly 
assigned 0 

a 

S0 S1 S2 S3 

L = 0 L = 1 L = 0 L = 0 

B’ S’ 

B S 
S4 

L = 0 
Dreg_clr = 1 
Dreg_ld = 0 
Dctr_clr = 0 
Dctr_cnt = 0 
(laser off) 
(clear D reg) 

Dreg_clr = 0 
Dreg_ld = 0 
Dctr_clr = 1 
Dctr_cnt = 0 
(clear count) 

Dreg_clr = 0 
Dreg_ld = 0 
Dctr_clr = 0 
Dctr_cnt = 0 
(laser on) 

Dreg_clr = 0 
Dreg_ld = 0 
Dctr_clr = 0 
Dctr_cnt = 1 
(laser off) 
(count up) 

Dreg_clr = 0 
Dreg_ld = 1 
Dctr_clr = 0 
Dctr_cnt = 0 
(load D reg with Dctr/2) 
(stop counting) 

S0 S1 S2 S3 

L = 0 L = 1 L = 0 

B’ S’ 

B S 

(laser on) 

S4 

Inputs: B, S Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_cnt 

Dreg_clr = 1 
(laser off) 
(clear D reg) 

Dctr_clr = 1 
(clear count) Dctr_cnt = 1 

(laser off) 
(count up) 

Dreg_ld = 1 
Dctr_cnt = 0 
(load D reg with Dctr/2) 
(stop counting) 
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Step 4 

• Implement 
FSM as state 
register and 
logic (Ch3) to 
complete the 
design 

300 MHz Clock 

D 

B L 

S 

16 
to display 

from button 

C
on

tro
lle

r to laser 
from sensor 

D
at

ap
at

h 

Dreg_clr 

S0 S1 S2 S3 

L = 0 L = 1 L = 0 

B’ S’ 

B S 

(laser on) 

S4 

Inputs: B, S Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_cnt 

Dreg_clr = 1 
(laser off) 
(clear D reg) 

Dctr_clr = 1 
(clear count) Dctr_cnt = 1 

(laser off) 
(count up) 

Dreg_ld = 1 
Dctr_cnt = 0 
(load D reg with Dctr/2) 
(stop counting) 

Dreg_ld 

Dctr_clr 

Dctr_cnt 
clear 
c ou n t 

clear 
load 

Q Q 

I 
D c t r : 16-bit 
u p - c ou n t er 

D r eg: 16-bit 
r e g is t er 

16 
D 

D a tap a th 

D r eg_clr 

D c tr_clr 
D c tr_c n t 

D r eg_ld 16 

16 

>>1 
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RTL Design Examples and Issues 
• We’ll use several more 

examples to illustrate RTL 
design 

• Example: Bus interface 
– Master processor can read 

register from any peripheral 
• Each register has unique 4-bit 

address  
• Assume 1 register/periph. 

– Sets rd=1, A=address 
– Appropriate peripheral places 

register data on 32-bit D lines 
• Periph’s address provided on 

Faddr inputs (maybe from DIP 
switches, or another register) 

5.3 

32 

4 A 

r d 
D 

Per0 Per1 Per15 

Master 
processor 

Faddr 

4 

A D r d 

Bus interface 

Main part 

Peripheral 

Q 
32 

to/from processor bus 

32 4 
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RTL Example: Bus Interface 

• Step 1: Create high-level state machine 
– State WaitMyAddress 

• Output “nothing” (“Z”) on D, store peripheral’s register value Q into local 
register Q1 

• Wait until this peripheral’s address is seen (A=Faddr) and rd=1  
– State SendData 

• Output Q1 onto D, wait for rd=0 (meaning main processor is done 
reading the D lines) 

WaitMyAddress 

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits) 
Outputs: D (32 bits) 
Local register: Q1 (32 bits) 

rd’ rd 

SendData 

D =  “Z” 
Q1 = Q 

(A = Faddr) 
and rd 

((A = Faddr) 
and rd’) 

D = Q1 
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RTL Example: Bus Interface 

 

W W

ZD Z ZQ1 Q1

W W WSD SD SD

clk
Inputs

State
Outputs

rd

WaitMyAddress 

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits) 
Outputs: D (32 bits) 
Local register: Q1 (32 bits) 

rd’ rd 

SendData 

D =  “Z” 
Q1 = Q 

(A = Faddr) 
and rd 

((A = Faddr) 
and rd’) 

D = Q1 
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RTL Example: Bus Interface 

WaitMyAddress 

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits) 
Outputs: D (32 bits) 
Local register: Q1 (32 bits) 

rd’ rd 

SendData 

D =  “Z” 
Q1 = Q 

(A = Faddr) 
and rd 

((A = Faddr) 
and rd)’ 

D = Q1 

• Step 2: Create a datapath 
(a) Datapath inputs/outputs 
(b) Instantiate declared registers 
(c) Instantiate datapath components and 

connections 
 

 

Datapath 
Bus interface 

Q1_ld 
ld Q1 

F Q addr 

4 4 32 

A 

D_en 

A_eq_ F addr 
= (4-bit) 32 

32 

D 

a 
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RTL Example: Bus Interface 

• Step 3: Connect datapath to controller 
• Step 4: Derive controller’s FSM 

 

a 

WaitMyAddress 

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits) 
Outputs: D (32 bits) 
Local register: Q1 (32 bits) 

rd’ rd 

SendData 

D =  “Z” 
Q1 = Q 

(A = Faddr) 
and rd 

((A = Faddr) 
and rd)’ 

D = Q1 
rd 

Inputs: rd, A_eq_Faddr (bit) 
Outputs: Q1_ld, D_en (bit) 

W ait M y A dd r ess 

r d ‘ r d 

S endD a ta 

D_en = 0 
Q1_ld = 1 

D_en = 1 
Q1_ld = 0 

A_eq_ F addr 
and r d 

( A_eq_ F addr 
and r d) ‘ 

Datapath 
Bus interface 

Q1_ld 
ld Q1 

Faddr Q 

4 4 32 

A 

D_en 

A_eq_Faddr 
= (4-bit) 32 

32 

D 
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RTL Example: Video Compression – Sum of Absolute 
Differences 

• Video is a series of frames (e.g., 30 per second) 
• Most frames similar to previous frame 

– Compression idea: just send difference from previous frame 

Digitized 
frame 2 

1 Mbyte 

Frame 2 

Digitized 
frame 1 

Frame 1 

1 Mbyte 
( a ) 

Digitized 
frame 1 

Frame 1 

1 Mbyte 
( b ) 

Only difference: ball moving 

a Difference of 
2 from 1 

0.01 Mbyte 

Frame 2 

Just send 
difference 
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RTL Example: Video Compression – Sum of Absolute 
Differences 

• Need to quickly determine whether two frames are similar 
enough to just send difference for second frame 
– Compare corresponding 16x16 “blocks” 

• Treat 16x16 block as 256-byte array 
– Compute the absolute value of the difference of each array item 
– Sum those differences – if above a threshold, send complete frame 

for second frame; if below, can use difference method (using 
another technique, not described) 

Frame 2 Frame 1 
compare Each is a pixel, assume 

represented as 1 byte 
(actually, a color picture 
might have 3 bytes per 
pixel, for intensity of 
red, green, and blue 
components of pixel) 
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RTL Example: Video Compression – Sum of Absolute 
Differences 

• Want fast sum-of-absolute-differences (SAD) component 
– When go=1, sums the differences of element pairs in arrays A and 

B, outputs that sum 

!(i<256) 

B 

A 

go 

SAD 

sad 

256-byte array 

256-byte array 
integer 
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RTL Example: Video Compression – Sum of Absolute 
Differences 

• S0: wait for go 
• S1: initialize sum and index  
• S2: check if done (i>=256) 
• S3: add difference to sum, 

increment index 
• S4: done, write to output 

sad_reg 

!(i<256) 

B 

A 

go 

SAD 

sad 

Inputs: A, B (256 byte memory); go (bit) 
Outputs: sad (32 bits) 
Local registers: sum, sad_reg (32 bits); i (9 bits) 

!go S0 
go 

S1 sum = 0 
i = 0 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S4 sad_ r eg = sum 

S2 

i<256 

(i<256)’ 

a 
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RTL Example: Video Compression – Sum of Absolute 
Differences 

• Step 2: Create datapath 

!(i<256) 

!(i<256) (i_lt_256) 

i_lt_256 

i_inc 

i_clr 

sum_ld 

sum_clr 

sad_reg_ld 

Datapath 

sum 

sad_reg 

sad 

AB_addr A_data B_data 

<256 
9 

32 

8 

8 

8 8 

32 32 

32 

i – 

+ 

abs 

Inputs: A, B (256 byte memory); go (bit) 
Outputs: sad (32 bits) 
Local registers: sum, sad_reg (32 bits); i (9 bits) 

!go S0 
go 

S1 sum = 0 
i = 0 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S4 sad_ reg=sum 

S2 

i<256 

(i<256)’ 

a 



Digital Design 
Copyright © 2006  
Frank Vahid 

37 

RTL Example: Video Compression – Sum of Absolute 
Differences 

• Step 3: Connect to controller 
• Step 4: Replace high-level state machine by FSM 

!(i<256) 

!(i<256) (i_lt_256) 

S0 

S1 

S2 

S3 

S4 

go’ 
go 

go AB_ r d 

sum=0 
i=0 

i<256 

!(i<256) (i_lt_256) 

? 
sum=sum+abs(A[i]-B[i]) 

i=i+1 
sad_reg=sum 

Controller 

i_lt_256 

i_inc 

i_clr 

sum_ld 

sum_clr 

sad_reg_ld 

sum 

sad_reg 

sad 

AB_addr A_data B_data 

<256 
9 

32 

8 

8 

8 8 

32 32 

32 

i – 

+ 

abs 

a 

sum_ld=1; AB_rd=1 

sad_reg_ld=1 

i_inc=1 

i_lt_256 

i_clr=1 
sum_clr=1 
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RTL Example: Video Compression – Sum of Absolute 
Differences 

• Comparing software and custom 
circuit SAD  
– Circuit: Two states (S2 & S3) for 

each i, 256 i’s 512 clock cycles 
– Software: Loop (for i = 1 to 256), but 

for each i, must move memory to 
local registers, subtract, compute 
absolute value, add to sum, 
increment i – say about 6 cycles per 
array item  256*6 = 1536 cycles 

– Circuit is about 3 times (300%) 
faster 

– Later, we’ll see how to build SAD 
circuit that is even faster 

!(i<256) 

!(i<256) (i_lt_256) 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S2 

i<256 

(i<256)’ 
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RTL Design Pitfalls and Good Practice 
• Common pitfall: Assuming 

register is update in the 
state it’s written 
– Final value of Q? 
– Final state? 
– Answers may surprise you 

• Value of Q unknown 
• Final state is C, not D 

– Why? 
• State A: R=99 and Q=R 

happen simultaneously 
• State B: R not updated with 

R+1 until next clock cycle, 
simultaneously with state 
register being updated 

 

A B

C

D

R>=100

R<100

R=R+1R=99
Q=R

?

?

99
A

99

?

100
B

100

?

C
R<100

clk

R

Q

(a)

(b)

Local registers: R, Q (8 bits)
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RTL Design Pitfalls and Good Practice 
• Solutions 

– Read register in 
following state (Q=R) 

– Insert extra state so that 
conditions use updated 
value 

– Other solutions are 
possible, depends on 
the example 

BA B2

C

D

R>=100

R<100

R=R+1
Q=R

R=99
Q=R

?

?

99
A

99

?

100
B

100 100

99 99

B2 D
R<100 R>=100

clk

R

Q

(a)

(b)

Local registers: R, Q (8 bits)
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RTL Design Pitfalls and Good Practice 
• Common pitfall: 

Reading outputs 
– Outputs can only be 

written 
– Solution: Introduce 

additional register, 
which can be written 
and read 

T S 

P=P+B P=A 

( a ) 

Inputs: A, B (8 bits) 
Outputs: P (8 bits) 

Inputs: A, B (8 bits) 
Outputs: P (8 bits) 
Local register: R (8 bits) 

T S 

P=R+B R=A 
P=A 

( b ) 
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RTL Design Pitfalls and Good Practice 
• Good practice: Register 

all data outputs 
– In fig (a), output P would 

show spurious values as 
addition computes 

• Furthermore, longest 
register-to-register path, 
which determines clock 
period, is not known until 
that output is connected 
to another component 

– In fig (b), spurious outputs 
reduced, and longest 
register-to-register path is 
clear 
 

+ 

R 
B 

P 
(a) 

+ 

R 

Preg 

B 

P 
(b) 
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Control vs. Data Dominated RTL Design 
• Designs often categorized as control-dominated or data-

dominated 
– Control-dominated design – Controller contains most of the 

complexity 
– Data-dominated design – Datapath contains most of the complexity 
– General, descriptive terms – no hard rule that separates the two 

types of designs 
– Laser-based distance measurer – control dominated 
– Bus interface, SAD circuit – mix of control and data 
– Now let’s do a data dominated design 
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Data Dominated RTL Design Example: FIR Filter 
• Filter concept 

– Suppose X is data from a 
temperature sensor, and 
particular input sequence is 
180, 180, 181, 240, 180, 181 
(one per clock cycle) 

– That 240 is probably wrong! 
• Could be electrical noise 

– Filter should remove such 
noise in its output Y 

– Simple filter: Output average 
of last N values 

• Small N: less filtering 
• Large N: more filtering, but 

less sharp output 
 
 

12 12 

Y 

clk 

X 

digital filter 



Digital Design 
Copyright © 2006  
Frank Vahid 

45 

Data Dominated RTL Design Example: FIR Filter 
• FIR filter 

– “Finite Impulse Response” 
– Simply a configurable weighted 

sum of past input values 
– y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)  

• Above known as “3 tap” 
• Tens of taps more common 
• Very general filter – User sets the 

constants (c0, c1, c2) to define 
specific filter 

– RTL design 
• Step 1: Create high-level state 

machine 
– But there really is none!  Data 

dominated indeed. 
• Go straight to step 2 

 
 

12 12 

Y 

clk 

X 

digital filter 

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2) 
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Data Dominated RTL Design Example: FIR Filter 
• Step 2: Create datapath 

– Begin by creating chain 
of xt registers to hold past 
values of X 

12 12 
Y 

clk 

X 
digital filter 

xt0 xt1 xt2

12 12 12 12

x(t-2)x(t-1)x(t)
3-tap FIR filter

X Y

clk

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2) 

180 180 181 180 181 240 

Suppose sequence is: 180, 181, 240 

a 
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Data Dominated RTL Design Example: FIR Filter 
• Step 2: Create datapath 

(cont.) 
– Instantiate registers for 

c0, c1, c2 
– Instantiate multipliers to 

compute c*x values 

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2) 

x t0 x t1 x t2 

x( t -2) x( t -1) x(t) 
3-tap FIR filter 

X 

Y 

clk 

c1 c0 c2 

∗ ∗ ∗ 

a 

12 12 
Y 

clk 

X 
digital filter 
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Data Dominated RTL Design Example: FIR Filter 
• Step 2: Create datapath 

(cont.) 
– Instantiate adders 

 
 

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2) 

a 

x t0 x t1 x t2 

x( t -2) x( t -1) x(t) 

3-tap FIR filter 

X 

Y 

clk 

c0 c1 c2 

∗ ∗ ∗ 

+ + 

12 12 
Y 

clk 

X 
digital filter 
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Data Dominated RTL Design Example: FIR Filter 
• Step 2: Create datapath (cont.) 

– Add circuitry to allow loading of 
particular c register 
 
 

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2) 

a 

12 12 
Y 

clk 

X 
digital filter 

xt0 xt1 xt2 

x(t-2) x(t-1) x(t) 

3-tap FIR filter 

X 

Y 

clk 

c0 c1 c2 

* * 

+ 

* 

+ 

3 
2 
1 
0 

2x4 

yreg 

e 
Ca1 

CL 

C 

Ca0 
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Data Dominated RTL Design Example: FIR Filter 
• Step 3 & 4: Connect to controller, Create FSM 

– No controller needed 
– Extreme data-dominated example 
– (Example of an extreme control-dominated design – an FSM, with no 

datapath) 
• Comparing the FIR circuit to a software implementation 

– Circuit 
• Assume adder has 2-gate delay, multiplier has 20-gate delay 
• Longest past goes through one multiplier and two adders 

– 20 + 2 + 2 = 24-gate delay 
• 100-tap filter, following design on previous slide, would have about a 34-gate 

delay: 1 multiplier and 7 adders on longest path 
– Software 

• 100-tap filter: 100 multiplications, 100 additions. Say 2 instructions per 
multiplication, 2 per addition. Say 10-gate delay per instruction.  

• (100*2 + 100*2)*10 = 4000 gate delays 
– Circuit is more than 100 times faster (10,000% faster). Wow.  

 
 
 
 

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2) 
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Determining Clock Frequency 
• Designers of digital circuits 

often want fastest 
performance 
– Means want high clock 

frequency 
• Frequency limited by longest 

register-to-register delay 
– Known as critical path 
– If clock is any faster, incorrect 

data may be stored into register 
– Longest path on right is 2 ns 

• Ignoring wire delays, and 
register setup and hold times, 
for simplicity 
 

5.4 

a 

+ 

b 

c 

2 ns 
del a y 

clk 
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Critical Path 
• Example shows four paths 

– a to c through +: 2 ns 
– a to d through + and *: 7 ns 
– b to d through + and *: 7 ns 
– b to d through *: 5 ns 

• Longest path is thus 7 ns 
• Fastest frequency 

– 1 / 7 ns = 142 MHz 

+ * 

c d 

7 ns 7 ns 

5 ns 
delay 

2 ns 
delay 

Max 
(2,7,7,5) 
= 7 ns 

a b 

5 
ns

 

7 
ns

 
7 

ns
 

2 
ns
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Critical Path Considering Wire Delays 
• Real wires have delay too 

– Must include in critical path 
• Example shows two paths 

– Each is 0.5 + 2 + 0.5 = 3 ns 
• Trend 

– 1980s/1990s: Wire delays were tiny 
compared to logic delays 

– But wire delays not shrinking as fast as 
logic delays 

• Wire delays may even be greater than 
logic delays! 

• Must also consider register setup and 
hold times, also add to path 

• Then add some time to the computed 
path, just to be safe 
– e.g., if path is 3 ns, say 4 ns instead 

 

a 

+ 

b 

c 

2 ns 

3 ns 3 
ns

 

0.5 ns 
0.5 ns 

0.5 ns 

clk 

3 
ns
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A Circuit May Have Numerous Paths 
• Paths can exist 

– In the datapath 
– In the controller 
– Between the 

controller and 
datapath 

– May be 
hundreds or 
thousands of 
paths 

• Timing analysis 
tools that evaluate 
all possible paths 
automatically very 
helpful 

Combinational logic 

c 

tot_lt_s 

clk 

n1 

d 

tot_ld 

tot_lt_s 

t ot_clr 

s0 s1 

n0 

State register 

s 

8 8 

8 

8 

a 

ld 

clr 
tot 

Datapath 

8-bit 
< 

8-bit 
adder 

( c ) 

( b ) ( a ) 
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Behavioral Level Design: C to Gates 

• Earlier sum-of-absolute-differences example 
– Started with high-level state machine 
– C code is an even better starting point -- easier to understand 

5.5 

!go S0 
go 

S1 sum = 0 
i = 0 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S4 sad_ r eg = sum 

S2 

i<256 

(i<256)’ 

a 

i n t SAD (byte A[256], byte B[256]) // not quite C syntax 
{ 
     uint sum; short uint I; 
     sum = 0; 
     i = 0; 
     while (i < 256) { 
          sum = sum + abs(A[i] – B[i]); 
          i = i + 1; 
     } 

return sum; 
} 

C code 
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Behavioral-Level Design: Start with C (or Similar 
Language) 

• Replace first step of RTL design method by two steps 
– Capture in C, then convert C to high-level state machine 
– How convert from C to high-level state machine? 

Step 1A: Capture in C 

Step 1B: Convert to high-level state machine 
a 
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Converting from C to High-Level State Machine 
• Convert each C construct to 

equivalent states and 
transitions 

• Assignment statement 
– Becomes one state with 

assignment 

• If-then statement 
– Becomes state with condition 

check, transitioning to “then” 
statements if condition true, 
otherwise to ending state 

• “then” statements would also 
be converted to states 
 

target = expression; target= 
expression 

(then stmts) 
if (cond) { 
    // then stmts 
} 

!cond 

cond 

(end) 

a 

a 
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Converting from C to High-Level State Machine 
• If-then-else 

– Becomes state with condition 
check, transitioning to “then” 
statements if condition true, or 
to “else” statements if condition 
false 
 
 

• While loop statement 
– Becomes state with condition 

check, transitioning to while 
loop’s statements if true, then 
transitioning back to condition 
check 

if (cond) { 
    // then stmts 
} 
else { 
   // else stmts 
} 

!cond 

cond 

(end) 

(then stmts) (else stmts) 

while (cond) { 
    // while stmts 
} 

!cond 

cond 

(while stmts) 

(end) 

a 

a 
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Simple Example of Converting from C to High-
Level State Machine 

• Simple example: Computing the maximum of two numbers 
– Convert if-then-else statement to states (b) 
– Then convert assignment statements to states (c) 

(end) 

(c) 

X>Y 

!(X>Y) 

(end) 

(then stmts) (else stmts) 

(b) 

X>Y 

!(X>Y) 

Max=X Max=Y 

(a) 

Inputs: uint X, Y 
Outputs: uint Max 

if (X > Y) { 

} 
else { 

} 

Max = X; 

Max = Y; 

a a 
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Example: Converting Sum-of-Absolute-Differences C 
code to High-Level State Machine 

• Convert each construct to 
states 
– Simplify when possible, 

e.g., merge states 
• From high-level state 

machine, follow RTL design 
method to create circuit 

• Thus, can convert C to 
gates using straightforward 
automatable process 
– Not all C constructs can be 

efficiently converted 
– Use C subset if intended 

for circuit 
– Can use languages other 

than C, of course 

    sum = sum + abs(A[i] - B[i]); 

(a) 

Inputs: byte A[256, B[256] 
bit go; 

Output: int sad 
main() 
{ 
   uint sum; short uint I; 
   while (1) { 

sum = 0; 
i = 0; 

while (!go); 

while (i < 256) { 

    i = i + 1; 
} 
sad = sum; } 

} 

(d) 

!go go 

sum=0 
i=0 

(g) 

!go go 

sum=0 
i=0 

!(i<256) 

i<256 

sad = 
sum 

sum=sum 
 + abs 
i = i + 1 

sum=0 

i=0 

(b) 

!(!go) 

!go 

(c) 

!go go 

(e) 

!go go 

sum=0 
i=0 

while stmts 

!(i<256) 

i<256 

sad = 
sum 

(f) 

!go go 

sum=0 
i=0 

!(i<256) 

i<256 

sum=sum 
 + abs 
i = i + 1 

a 
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Memory Components 
• Register-transfer level 

design instantiates datapath 
components to create 
datapath, controlled by a 
controller 
– A few more components are 

often used outside the 
controller and datapath 

• MxN memory 
– M words, N bits wide each 

• Several varieties of memory, 
which we now introduce 

 

5.6 

N-bits 
wide each 

M × N  memo r y 

M
 w

or
ds
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Random Access Memory (RAM) 
• RAM – Readable and writable memory 

– “Random access memory” 
• Strange name – Created several decades ago to 

contrast with sequentially-accessed storage like 
tape drives 

– Logically same as register file – Memory with 
address inputs, data inputs/outputs, and control 

• RAM usually just one port; register file usually two 
or more 

– RAM vs. register file 
• RAM typically larger than roughly 512 or 1024 

words 
• RAM typically stores bits using a bit storage 

approach that is more efficient than a flip flop 
• RAM typically implemented on a chip in a square 

rather than rectangular shape – keeps longest 
wires (hence delay) short 

32 

10 
data 

addr 

r w 

en 

1024 × 32 
R A M 

32 

4 

32 

4 
W_data 

W_addr 

W_en 

R_data 

R_addr 

R_en 
16 × 32 

register file 

Register file from Chpt. 4 

RAM block symbol 
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RAM Internal Structure 

• Similar internal structure as register file 
– Decoder enables appropriate word based on address 

inputs 
– rw controls whether cell is written or read 
– Let’s see what’s inside each RAM cell 

 

32 

10 
data 

addr 

r w 

en 

1024x32 
RAM 

addr0 
addr1 

addr(A-1) 

clk 
en 
r w 

addr 

Let A = log2M 

to all cells 

wdata(N-1) 

rdata(N-1) 

wdata(N-2) 

rdata(N-2) 

wdata0 

rdata0 

bit storage 
block 
(aka “cell”) 

w o r d 

word 

RAM cell 

word 
enable 

word 
enable 

r w 

data cell 

data 

a0 
a1 

d0 

d1 

d(M-1) 

a(A-1) 

e 

AxM 
decoder 

enable 
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Static RAM (SRAM) 

• “Static” RAM cell 
– 6 transistors (recall inverter is 2 transistors) 

– Writing this cell 
• word enable input comes from decoder 
• When 0, value d loops around inverters 

– That loop is where a bit stays stored 
• When 1, the data bit value enters the loop 

– data is the bit to be stored in this cell  
– data’ enters on other side 
– Example shows a “1” being written into cell 

 

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A× M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell  )

word

,,,,

cell

word
enable

word
enable

rw

data

data

a 

SRAM cell 
data data’ 

d’ d 
cell 

0 word 
enable 

1 

1 

1 

0 

0 

32 

10 
data 

addr 

r w 

en 

1024x32 
RAM 

SRAM cell 
data data’ 

d 

word 
enable 

data data’ 

d’ d cell 

0 word 
enable 

1 0 

a 

a 
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Static RAM (SRAM) 

• “Static” RAM cell 
– Reading this cell 

• Somewhat trickier 
• When rw set to read, the RAM logic sets 

both data and data’ to 1 
• The stored bit d will pull either the left line or 

the right bit down slightly below 1 
• “Sense amplifiers” detect which side is 

slightly pulled down 
– The electrical description of SRAM is really 

beyond our scope – just general idea here, 
mainly to contrast with DRAM... 
 

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A× M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell  )

word

,,,,

cell

word
enable

word
enable

rw

data

data
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Dynamic RAM (DRAM) 

• “Dynamic” RAM cell 
– 1 transistor (rather than 6) 
– Relies on large capacitor to store bit 

• Write: Transistor conducts, data voltage 
level gets stored on top plate of capacitor 

• Read: Just look at value of d 
• Problem: Capacitor discharges over time 

– Must “refresh” regularly, by reading d and 
then writing it right back 
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Comparing Memory Types 
• Register file 

– Fastest 
– But biggest size 

• SRAM 
– Fast 
– More compact than register file 

• DRAM 
– Slowest 

• And refreshing takes time 
– But very compact 

• Use register file for small items, 
SRAM for large items, and DRAM 
for huge items 
– Note: DRAM’s big capacitor requires 

a special chip design process, so 
DRAM is often a separate chip 

MxN Memory 
implemented as a: 

register 
file 

SRAM 

DRAM 

Size comparison for same 
number of bits (not to scale) 
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Reading and Writing a RAM 

• Writing 
– Put address on addr lines, data on data lines, set rw=1, en=1 

• Reading 
– Set addr and en lines, but put nothing (Z) on data lines, set rw=0 
– Data will appear on data lines 

• Don’t forget to obey setup and hold times 
– In short – keep inputs stable before and after a clock edge 
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RAM Example: Digital Sound Recorder 

• Behavior 
– Record: Digitize sound, store as series of 4096 12-bit digital values in RAM 

• We’ll use a 4096x16 RAM (12-bit wide RAM not common) 
– Play back later 
– Common behavior in telephone answering machine, toys, voice recorders 

• To record, processor should read a-to-d, store read values into 
successive RAM words 
– To play, processor should read successive RAM words and enable d-to-a  

wire

speaker
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wire
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16
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RAM Example: Digital Sound Recorder 
• RTL design of processor 

– Create high-level state 
machine 

– Begin with the record behavior 
– Keep local register a 

• Stores current address, 
ranges from 0 to 4095 (thus 
need 12 bits) 

– Create state machine that 
counts from 0 to 4095 using a 

• For each a 
– Read analog-to-digital conv. 

» ad_ld=1, ad_buf=1 
– Write to RAM at address a 

» Ra=a, Rrw=1, Ren=1 
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16 
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RAM Example: Digital Sound Recorder 
– Now create play behavior 
– Use local register a again, 

create state machine that 
counts from 0 to 4095 again 

• For each a 
– Read RAM 
– Write to digital-to-analog conv. 

• Note: Must write d-to-a one 
cycle after reading RAM, when 
the read data is available on 
the data bus 

– The record and play state 
machines would be parts of a 
larger state machine controlled 
by signals that determine when 
to record or play 
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Read-Only Memory – ROM 
• Memory that can only be read from, not 

written to 
– Data lines are output only 
– No need for rw input 

• Advantages over RAM 
– Compact: May be smaller 
– Nonvolatile: Saves bits even if power supply 

is turned off 
– Speed: May be faster (especially than 

DRAM) 
– Low power: Doesn’t need power supply to 

save bits, so can extend battery life 
• Choose ROM over RAM if stored data won’t 

change (or won’t change often) 
– For example, a table of Celsius to Fahrenheit 

conversions in a digital thermometer 
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Read-Only Memory – ROM 

• Internal logical structure similar to RAM, without the data 
input lines 
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ROM Types 
• If a ROM can only be read, how 

are the stored bits stored in the 
first place? 
– Storing bits in a ROM known as 

programming 
– Several methods 

• Mask-programmed ROM 
– Bits are hardwired as 0s or 1s 

during chip manufacturing 
• 2-bit word on right stores “10” 
• word enable (from decoder) simply 

passes the hardwired value 
through transistor 

– Notice how compact, and fast, this 
memory would be 
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ROM Types 
• Fuse-Based Programmable 

ROM 
– Each cell has a fuse 
– A special device, known as a 

programmer, blows certain fuses 
(using higher-than-normal voltage) 

• Those cells will be read as 0s 
(involving some special electronics)  

• Cells with unblown fuses will be read 
as 1s 

• 2-bit word on right stores “10” 
– Also known as One-Time 

Programmable (OTP) ROM 
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ROM Types 
• Erasable Programmable ROM 

(EPROM) 
– Uses “floating-gate transistor” in each cell 
– Special programmer device uses higher-

than-normal voltage to cause electrons to 
tunnel into the gate 

• Electrons become trapped in the gate 
• Only done for cells that should store 0 
• Other cells (without electrons trapped in 

gate) will be 1 
– 2-bit word on right stores “10” 

• Details beyond our scope – just general 
idea is necessary here 

– To erase, shine ultraviolet light onto chip 
• Gives trapped electrons energy to escape 
• Requires chip package to have window  
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ROM Types 
• Electronically-Erasable Programmable ROM 

(EEPROM) 
– Similar to EPROM 

• Uses floating-gate transistor, electronic programming to 
trap electrons in certain cells 

– But erasing done electronically, not using UV light 
– Erasing done one word at a time 

• Flash memory 
– Like EEPROM, but all words (or large blocks of 

words) can be erased simultaneously 
– Become common relatively recently (late 1990s) 

• Both types are in-system programmable 
– Can be programmed with new stored bits while in the 

system in which the ROM operates 
• Requires bi-directional data lines, and write control input 
• Also need busy output to indicate that erasing is in 

progress – erasing takes some time 
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ROM Example: Talking Doll 

• Doll plays prerecorded message, trigger by vibration 
– Message must be stored without power supply  Use a ROM, not a RAM, 

because ROM is nonvolatile 
• And because message will never change, use a mask-programmed ROM or 

OTP ROM 
– Processor should wait for vibration (v=1), then read words 0 to 4095 from 

the ROM, writing each to the d-to-a 

4096x16 ROM 

processor 

d a 
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16 

Ren 

da_ld 

digital-to- 
analog 

converter 
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speaker 

vibration 
sensor 

“Hello there!” 

“Hello there!” audio 
divided into 4096 
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in ROM 

“H
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ROM Example: Talking Doll 

• High-level state machine 
– Create state machine that waits for v=1, and then counts from 0 to 

4095 using a local register a 
– For each a, read ROM, write to digital-to-analog converter 

d a 

4096x16 ROM 

processor 
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digital-to- 
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ROM Example: Digital Telephone Answering Machine 
Using a Flash Memory 

• Want to record the outgoing 
announcement 

– When rec=1, record digitized 
sound in locations 0 to 4095  

– When play=1, play those 
stored sounds to digital-to-
analog converter 

• What type of memory? 
– Should store without power 

supply – ROM, not RAM 
– Should be in-system 

programmable – EEPROM 
or Flash, not EPROM, OTP 
ROM, or mask-programmed 
ROM 

– Will always erase entire 
memory when 
reprogramming – Flash 
better than EEPROM 
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ROM Example: Digital Telephone Answering Machine 
Using a Flash Memory 

• High-level state machine 
– Once rec=1, begin 

erasing flash by setting 
er=1 

– Wait for flash to finish 
erasing by waiting for 
bu=0 

– Execute loop that sets 
local register a from 0 to 
4095, reading analog-to-
digital converter and 
writing to flash for each a 
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Blurring of Distinction Between ROM and RAM 
• We said that 

– RAM is readable and writable 
– ROM is read-only 

• But some ROMs act almost like RAMs 
– EEPROM and Flash are in-system programmable 

• Essentially means that writes are slow 
– Also, number of writes may be limited (perhaps a few million times) 

• And, some RAMs act almost like ROMs 
– Non-volatile RAMs: Can save their data without the power supply 

• One type: Built-in battery, may work for up to 10 years 
• Another type: Includes ROM backup for RAM – controller writes RAM contents to 

ROM before turning off 
• New memory technologies evolving that merge RAM and ROM benefits 

– e.g., MRAM 
• Bottom line 

– Lot of choices available to designer, must find best fit with design goals 
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Queues 
• A queue is another component 

sometimes used during RTL 
design 

• Queue: A list written to at the 
back, from read from the front 
– Like a list of waiting restaurant 

customers 
• Writing called a push, reading 

called a pop 
• Because first item written into a 

queue will be the first item read 
out, also called a FIFO (first-in-
first-out) 
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front back 
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Queues 
• Queue has addresses, and two 

pointers: rear and front 
– Initially both point to 0 

• Push (write) 
– Item written to address pointed to 

by rear 
– rear incremented 

• Pop (read) 
– Item read from address pointed 

to by front 
– front incremented 

• If front or rear reaches 7, next 
(incremented) value should be 0 
(for a queue with addresses 0 to 
7) 
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Queues 
• Treat memory as a circle 

– If front or rear reaches 7, next (incremented) 
value should be 0 rather than 8 (for a queue 
with addresses 0 to 7) 

• Two conditions of interest 
– Full queue – no room for more items 

• In 8-entry queue, means 8 items present 
• No further pushes allowed until a pop occurs 
• Causes front=rear 

– Empty queue – no items 
• No pops allowed until a push occurs 
• Causes front=rear 

– Both conditions have front=rear 
• To detect whether front=rear means full or 

empty, need state machine that detects if 
previous operation was push or pop, sets full 
or empty output signal (respectively) 
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Queue Implementation 
• Can use register file for 

item storage 
• Implement rear and front 

using up counters 
– rear used as register file’s 

write address, front as read 
address 

• Simple controller would 
set control lines for 
pushes and pops, and 
also detect full and empty 
situations 
– FSM for controller not 

shown 

8×16 register file
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up counter
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rdata
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rd
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nt
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full
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Common Uses of a Queue 
• Computer keyboard 

– Pushes pressed keys onto queue, meanwhile pops and sends to 
computer 

• Digital video recorder 
– Pushes captured frames, meanwhile pops frames, compresses 

them, and stores them 

• Computer network routers 
– Pushes incoming packets onto queue, meanwhile pops packets, 

processes destination information, and forwards each packet out 
over appropriate port 



Digital Design 
Copyright © 2006  
Frank Vahid 

88 

Queue Usage Example 
• Example series of pushes 

and pops 
– Note how rear and front 

pointers move 
– Note that popping doesn’t 

really remove the data from the 
queue, but that data is no 
longer accessible 

– Note how rear (and front) 
wraps around from address 7 
to 0 

• Note: pushing a full queue is 
an error 
– As is popping an empty queue 

r f
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fr
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9585723

7

fr
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f r

01234567

9585723

95857236

r f
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data:
9

full35857236

ERROR! Pushing a full queue
results in unknown state

Initially empty
queue

1. After pushing
9, 5, 8, 5, 7, 2, 3

2. After popping

3. After pushing 6

4. After pushing 3

5. After pushing 4
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Hierarchy – A Key Design Concept 
 

• Hierarchy 
–  An organization with a few items at the 

top, with each item decomposed into other 
items 

– Common example: A country 
• 1 item at the top (the country) 
• Country item decomposed into 

state/province items 
• Each state/province item decomposed into 

city items 
• Hierarchy helps us manage complexity 

–  To go from transistors to gates, muxes, 
decoders, registers, ALUs, controllers, 
datapaths, memories, queues, etc.  

– Imagine trying to comprehend a controller 
and datapath at the level of gates 
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Hierarchy and Abstraction 
 

• Abstraction 
– Hierarchy often involves not just grouping 

items into a new item, but also associating 
higher-level behavior with the new item, 
known as abstraction 

• e.g., an 8-bit adder has an understandable 
high-level behavior – it adds two 8-bit binary 
numbers 

– Frees designer from having to remember, 
or even from having to understand, the 
lower-level details 
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Hierarchy and Composing Larger Components 
from Smaller Versions 

 
• A common task is to compose smaller components 

into a larger one 
– Gates: Suppose you have plenty of 3-input AND gates, 

but need a 9-input AND gate 
• Can simple compose the 9-input gate from several 3-input 

gates 
– Muxes: Suppose you have 4x1 and 2x1 muxes, but 

need an 8x1 mux 
• s2 selects either top or bottom 4x1 
• s1s0 select particular 4x1 input 
• Implements 8x1 mux – 8 data inputs, 3 selects, one output 
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Hierarchy and Composing Larger Components 
from Smaller Versions 

• Composing memory very common 
• Making memory words wider 

– Easy – just place memories side-by-side until desired width obtained 
– Share address/control lines, concatenate data lines 
– Example: Compose 1024x8 ROMs into 1024x32 ROM 
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Hierarchy and Composing Larger Components 
from Smaller Versions 

• Creating memory with more words  
– Put memories on top of one another until the 

number of desired words is achieved 
– Use decoder to select among the memories 

• Can use highest order address input(s) as 
decoder input 

• Although actually, any address line could be 
used 

– Example: Compose 1024x8 memories into 
2048x8 memory 
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Chapter Summary 
– Modern digital design involves creating processor-level components 
– Four-step RTL method can be used 

• 1. High-level state machine   2. Create datapath   3. Connect datapath 
to controller   4. Derive controller FSM 

– Several example 
• Control dominated, data dominated, and mix 

– Determining fastest clock frequency 
• By finding critical path 

– Behavioral-level design – C to gates 
• By using method to convert C (subset) to high-level state machine 

– Additional RTL components 
• Memory: RAM, ROM 
• Queues 

– Hierarchy: A key concept used throughout Chapters 2-5 
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