
Digital Design
Copyright © 2006
Frank Vahid

1

Digital Design
Chapter 3:

Sequential Logic Design -- Controllers

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

http://www.ddvahid.com/

Digital Design
Copyright © 2006
Frank Vahid

2

Introduction
• Sequential circuit

– Output depends not just on present inputs (as in
combinational circuit), but on past sequence of inputs

• Stores bits, also known as having “state”
– Simple example: a circuit that counts up in binary

• In this chapter, we will:
– Design a new building block, a flip-flop, that stores

one bit
– Combine that block to build multi-bit storage – a

register
– Describe the sequential behavior using a finite state

machine
– Convert a finite state machine to a controller – a

sequential circuit having a register and combinational
logic

3.1

Combinational
digital circuit

1
a

b

1
F 0

1
a

b
? F 0

Must know
sequence of

past inputs to
know output

Sequential
digital circuit

Note: Slides with animation are denoted with a small red "a" near the animated items

Digital Design
Copyright © 2006
Frank Vahid

3

Example Needing Bit Storage

• Flight attendant call button
– Press call: light turns on

• Stays on after button released
– Press cancel: light turns off
– Logic gate circuit to implement this?

Q Call
Cancel

Doesn’t work. Q=1 when Call=1, but
doesn’t stay 1 when Call returns to 0

Need some form of “feedback” in the circuit

a

3.2

Bit
Storage

Blue light Call
button

Cancel
button

1. Call button pressed – light turns on

Bit
Storage

Blue light Call
button

Cancel
button

2. Call button released – light stays on

Bit
Storage

Blue light Call
button

Cancel
button

3. Cancel button pressed – light turns off

Digital Design
Copyright © 2006
Frank Vahid

4

First attempt at Bit Storage

• We need some sort of feedback
– Does circuit on the right do what we want?

• No: Once Q becomes 1 (when S=1), Q stays 1
forever – no value of S can bring Q back to 0

Q S

t

0
t

0 QS
0

1
0

1
0

1
0 Q

t

S

0
t

1 Q S
0 0

t

1 Q S
1

1
t

1 Q S
1

1
t

0 Q S
1

Digital Design
Copyright © 2006
Frank Vahid

5

0

0

1

R=1

S=0 t

Q

1
0
1
0

R

S

1
0

t

1
0

Q

Bit Storage Using an SR Latch

Q

S (set) SR latch

R (reset)

• Does the circuit to the right, with cross-coupled
NOR gates, do what we want?
– Yes! How did someone come up with that circuit?

Maybe just trial and error, a bit of insight...

1

0 0

1 0

1

t

Q

S=0

R=0

t

Q

S=1

R=0

0

1

1

t

Q

R=0

S=0

1

0 1

0

0
0

1

1
X

0

Recall…

Digital Design
Copyright © 2006
Frank Vahid

6

Example Using SR Latch for Bit Storage
• SR latch can serve as bit

storage in previous example
of flight-attendant call button
– Call=1 : sets Q to 1

• Q stays 1 even after Call=0
– Cancel=1 : resets Q to 0

• But, there’s a problem...

R

S

Q

C all
but t on

Blue lig h t

C an c el
but t on

Bit
S t o r age

Blue lig h t C all
but t on

C an c el
but t on

Digital Design
Copyright © 2006
Frank Vahid

7

Problem with SR Latch
• Problem

– If S=1 and R=1 simultaneously, we don’t know what value Q will take

R=1

S=1

0

0

0

0

t

Q

R=0

S=0

0

0

1

1

t

Q

R=0

S=0

1

1

0

0

t

Q

0

1

0

1

0

1

0

1

S

R

Q

t

1
t

0
1

Q
0

Q may oscillate. Then, because one path will be
slightly longer than the other, Q will eventually
settle to 1 or 0 – but we don’t know which.

Digital Design
Copyright © 2006
Frank Vahid

8

Problem with SR Latch
• Problem not just one of a user pressing two buttons at

same time
• Can also occur even if SR inputs come from a circuit that

supposedly never sets S=1 and R=1 at same time
– But does, due to different delays of different paths

1

0

1

0

1

0

1

0

X

Y

S

R

SR = 11
The longer path from X to R than to S causes SR=11 for
short time – could be long enough to cause oscillation

R Y

X S SR latch

Q

A r bit r a r y
circuit

Digital Design
Copyright © 2006
Frank Vahid

9

Solution: Level-Sensitive SR Latch
• Add enable input “C” as shown

– Only let S and R change when C=0
• Enure circuit in front of SR never sets

SR=11, except briefly due to path delays
– Change C to 1 only after sufficient time for S

and R to be stable
– When C becomes 1, the stable S and R

value passes through the two AND gates to
the SR latch’s S1 R1 inputs.

R1

S1 S

C

R

Level-sensitive SR latch

Q

Though SR=11 briefly...

...S1R1 never = 11

S

C
Q ’

Q
R

Level-sensitive
SR latch symbol

R1

S1
S

X

Y

C
Clk

R

Level-sensitive SR latch

Q

0
1

0
1

0
1

0
1

0 S

R

C

S1

R1

1

Digital Design
Copyright © 2006
Frank Vahid

10

Clock Signals for a Latch

• How do we know when it’s safe to set C=1?
– Most common solution –make C pulse up/down

• C=0: Safe to change X, Y
• C=1: Must not change X, Y
• We’ll see how to ensure that later

– Clock signal -- Pulsing signal used to enable
latches

• Because it ticks like a clock
– Sequential circuit whose storage components all

use clock signals: synchronous circuit
• Most common type
• Asynchronous circuits – important topic, but left for

advanced course

R1

S1
S

X

Y

C
Clk

R
Q

Level-sensitive SR latch

Digital Design
Copyright © 2006
Frank Vahid

11

Clocks

• Clock period: time interval between pulses
– Above signal: period = 20 ns

• Clock cycle: one such time interval
– Above signal shows 3.5 clock cycles

• Clock frequency: 1/period
– Above signal: frequency = 1 / 20 ns = 50 MHz

• 1 Hz = 1/s

100 GHz
10 GHz
1 GHz

100 MHz
10 MHz

0.01 ns
0.1 ns

1 ns
10 ns

100 ns

Period Freq

Digital Design
Copyright © 2006
Frank Vahid

12

Level-Sensitive D Latch
• SR latch requires careful design to

ensure SR=11 never occurs
• D latch relieves designer of that

burden
– Inserted inverter ensures R always

opposite of S
R

S
D

C

D latch

Q

1

0
D

C

S

R

Q

1

0

1

0

1

0

1

0

D Q ’

Q C

D latch symbol

Digital Design
Copyright © 2006
Frank Vahid

13

Problem with Level-Sensitive D Latch
• D latch still has problem (as does SR latch)

– When C=1, through how many latches will a signal travel?
– Depends on for how long C=1

• Clk_A -- signal may travel through multiple latches
• Clk_B -- signal may travel through fewer latches

– Hard to pick C that is just the right length
• Can we design bit storage that only stores a value on the rising edge of

a clock signal?

D1 Q1 D2 Q2 D3 Q3 D4

C4C3C2C1

Q4Y

Clk

Clk_A Clk_B

Clk

rising edges

Digital Design
Copyright © 2006
Frank Vahid

14

D Flip-Flop
• Flip-flop: Bit storage that stores on clock edge, not level
• One design -- master-servant

– Two latches, output of first goes to input of second, master
latch has inverted clock signal

– So master loaded when C=0, then servant when C=1
– When C changes from 0 to 1, master disabled, servant

loaded with value that was at D just before C changed -- i.e.,
value at D during rising edge of C

 Clk

D/Dm

Qm/Ds

Cm

Cs

Qs

Clk

rising edges

Note:
Hundreds of
different flip-
flop designs
exist

D latch

master

D latch

servant

D Dm Ds

Cs

Qm Q s ’

Qs Q

Q ’

C m

Clk

D flip-flop

Digital Design
Copyright © 2006
Frank Vahid

15

D Flip-Flop

D Q ’

Q

Q ’ D

Q

Symbol for rising-edge
triggered D flip-flop

Symbol for falling-edge
triggered D flip-flop

Clk

rising edges

Clk

falling edges

Internal design: Just
invert servant clock
rather than master

The triangle
means clock
input, edge
triggered

Digital Design
Copyright © 2006
Frank Vahid

16

D Flip-Flop
• Solves problem of not knowing through how many latches a signal

travels when C=1
– In figure below, signal travels through exactly one flip-flop, for Clk_A or

Clk_B
– Why? Because on rising edge of Clk, all four flip-flops are loaded

simultaneously -- then all four no longer pay attention to their input, until the
next rising edge. Doesn’t matter how long Clk is 1.

Two latches inside
each flip-flop

D1 Q1 D2 Q2 D3 Q3 D4 Q4 Y

Clk

Clk_A Clk_B

Digital Design
Copyright © 2006
Frank Vahid

17

D Latch vs. D Flip-Flop
• Latch is level-sensitive: Stores D when C=1
• Flip-flop is edge triggered: Stores D when C changes from

0 to 1
– Saying “level-sensitive latch,” or “edge-triggered flip-flop,” is

redundant
– Two types of flip-flops -- rising or falling edge triggered.

• Comparing behavior of latch and flip-flop:

Clk

D

Q (D latch)

Q (D flip-flop) 10

87

654

9

3

1 2

Digital Design
Copyright © 2006
Frank Vahid

18

Flight-Attendant Call Button Using D Flip-Flop
• D flip-flop will store bit
• Inputs are Call, Cancel, and present value

of D flip-flop, Q
• Truth table shown below

Preserve value: if
Q=0, make D=0; if
Q=1, make D=1

Cancel -- make
D=0

Call -- make D=1

Let’s give priority
to Call -- make
D=1

Circuit derived from truth table,
using Chapter 2 combinational

logic design process

C all
but t on

C an c el
but t on

Flight
attendant
call-button

system

Blue
light

D Q’

Q Clk

C all
but t on

C an c el
but t on

Blue
light

Call
Cancel

Q

Digital Design
Copyright © 2006
Frank Vahid

19

Bit Storage Summary

• We considered increasingly better bit storage until we
arrived at the robust D flip-flop bit storage

D flip-flop

D latch

master

D latch

servant

Dm Qm

C m

Ds D

Clk

Qs’

Cs Qs

Q ’

Q

S

R

D

Q

C

D latch

Feature: Only loads D value
present at rising clock edge, so
values can’t propagate to other
flip-flops during same clock
cycle. Tradeoff: uses more
gates internally than D latch,
and requires more external
gates than SR – but gate count
is less of an issue today.

Feature: SR can’t be 11 if
D is stable before and
while C=1, and will be 11
for only a brief glitch even
if D changes while C=1.
Problem: C=1 too long
propagates new values
through too many latches:
too short may not enable a
store.

S1

R1

S

Q

C

R

Level-sensitive SR latch

Feature: S and R only
have effect when C=1.
We can design outside
circuit so SR=11 never
happens when C=1.
Problem: avoiding SR=11
can be a burden.

R (reset)

S (set)

Q

SR latch

Feature: S=1 sets
Q to 1, R=1 resets
Q to 0. Problem:
SR=11 yield
undefined Q.

Digital Design
Copyright © 2006
Frank Vahid

20

Basic Register
• Typically, we store multi-bit items

– e.g., storing a 4-bit binary number
• Register: multiple flip-flops sharing clock signal

– From this point, we’ll use registers for bit storage
• No need to think of latches or flip-flops
• But now you know what’s inside a register

D
Q

D
Q

D
Q

D
Q

I2I3

Q2Q3 Q1 Q0

I1 I0

clk

4-bit register

I3 I2 I1 I0

Q3 Q2 Q1 Q0
reg(4)

Digital Design
Copyright © 2006
Frank Vahid

21

Example Using Registers: Temperature Display
• Temperature history display

– Sensor outputs temperature as 5-bit binary number
– Timer pulses C every hour
– Record temperature on each pulse, display last three recorded values

a4 x4
x3
x2
x1
x0

C

a3 a2 a1 a0 tem
perature

sensor

timer

Display

Present

b4 b3 b2 b1 b0

Display

TemperatureHistoryStorage

1 hour ago

c4 c3 c2 c1 c0

Display

2 hours ago

(In practice, we would actually avoid connecting the timer output
C to a clock input, instead only connecting an oscillator output to a clock input.)

Digital Design
Copyright © 2006
Frank Vahid

22

Example Using Registers: Temperature Display
• Use three 5-bit registers

15 18 20

0

0

0

18

0

0

21

18

0

24

21

18

25

24

21

26

25

24

27

26

25

21 21 22 24 24 24 25 25 26 26 26 27 27 27 27 x4...x0

C

R a

R b

R c

Q4

C

x4
x3
x2
x1
x0

Q3
Q2
Q1
Q0

R a R b

I 4
I 3
I 2
I 1
I 0

Q4

a4 a3 a2 a1 a0

Q3
Q2
Q1
Q0

I 4
I 3
I 2
I 1
I 0

R c

Q4

b4 b3 b2 b1 b0

Q3
Q2
Q1
Q0

I 4
I 3
I 2
I 1
I 0

c4 c3 c2 c1 c0

TemperatureHistoryStorage

Digital Design
Copyright © 2006
Frank Vahid

23

Finite-State Machines (FSMs) and Controllers
• Want sequential circuit with

particular behavior over time
• Example: Laser timer

– Push button: x=1 for 3 clock cycles
– How? Let’s try three flip-flops

• b=1 gets stored in first D flip-flop
• Then 2nd flip-flop on next cycle,

then 3rd flip-flop on next
• OR the three flip-flop outputs, so x

should be 1 for three cycles

3.3

Controller
x

b

clk

laser

 patient

D Q D Q D Q

clk

b

x

Digital Design
Copyright © 2006
Frank Vahid

24

Need a Better Way to Design Sequential Circuits
• Trial and error is not a good design method

– Will we be able to “guess” a circuit that works for other desired
behavior?
• How about counting up from 1 to 9? Pulsing an output for 1 cycle

every 10 cycles? Detecting the sequence 1 3 5 in binary on a 3-bit
input?

– And, a circuit built by guessing may have undesired behavior
• Laser timer: What if press button again while x=1? x then stays one

another 3 cycles. Is that what we want?

• Combinational circuit design process had two important
things
1. A formal way to describe desired circuit behavior

• Boolean equation, or truth table
2. A well-defined process to convert that behavior to a circuit

• We need those things for sequence circuit design

Digital Design
Copyright © 2006
Frank Vahid

25

Describing Behavior of Sequential Circuit: FSM
• Finite-State Machine (FSM)

– A way to describe desired
behavior of sequential circuit

• Akin to Boolean equations for
combinational behavior

– List states, and transitions
among states

• Example: Make x change
toggle (0 to 1, or 1 to 0) every
clock cycle

• Two states: “Off” (x=0), and
“On” (x=1)

• Transition from Off to On, or
On to Off, on rising clock edge

• Arrow with no starting state
points to initial state (when
circuit first starts)

Outputs: x

On O ff

x=0 x=1

clk ̂

clk ̂

Off On Off On Off On Off On

cycle 1

Off OffOn On

cycle 2 cycle 3 cycle 4
clk

state

x

Outputs:

Digital Design
Copyright © 2006
Frank Vahid

26

FSM Example: 0,1,1,1,repeat
• Want 0, 1, 1, 1, 0, 1, 1, 1, ...

– Each value for one clock cycle

• Can describe as FSM
– Four states
– Transition on rising clock

edge to next state

O ff O ff On1 On1 On2 On2 On3 On3 O ff

clk

x

State

Outputs:

Outputs: x

On1 O ff On2 On3

clk ̂

clk ̂

clk ̂ x=1 x=1 x=0 x=1 clk ̂

Digital Design
Copyright © 2006
Frank Vahid

27

Extend FSM to Three-Cycles High Laser Timer
• Four states
• Wait in “Off” state while b is

0 (b’)
• When b is 1 (and rising

clock edge), transition to
On1
– Sets x=1
– On next two clock edges,

transition to On2, then On3,
which also set x=1

• So x=1 for three cycles after
button pressed

Off OffOn1Off Off Off On2 On3Off

clk

State

Outputs:

Inputs:

x

b

On2 On1 On3

O ff

clk ̂

clk ̂

x=1 x=1 x=1

x=0

clk ̂

b ’*clk ̂

b*clk ̂

Inputs: b; Outputs: x

Digital Design
Copyright © 2006
Frank Vahid

28

FSM Simplification: Rising Clock Edges Implicit
• Showing rising clock on every

transition: cluttered
– Make implicit -- assume every

edge has rising clock, even if not
shown

– What if we wanted a transition
without a rising edge

• We don’t consider such
asynchronous FSMs -- less
common, and advanced topic

• Only consider synchronous
FSMs -- rising edge on every
transition

Note: Transition with no associated condition thus
transistions to next state on next clock cycle

On2 On1 On3

Off

x=1 x=1 x=1

x=0

b ’

b

Inputs: b; Outputs: x

On2 On1 On3

O ff

x=1 x=1 x=1

x=0

b’

clk ̂

clk ̂

^ clk

 *clk ̂

*clk ̂ b

Inputs: b; Outputs: x

Digital Design
Copyright © 2006
Frank Vahid

29

FSM Definition
• FSM consists of

– Set of states
• Ex: {Off, On1, On2, On3}

– Set of inputs, set of outputs
• Ex: Inputs: {x}, Outputs: {b}

– Initial state
• Ex: “Off”

– Set of transitions
• Describes next states
• Ex: Has 5 transitions

– Set of actions
• Sets outputs while in states
• Ex: x=0, x=1, x=1, and x=1

Inputs: b; Outputs: x

On2 On1 On3

Off

x=1 x=1 x=1

x=0

b ’

b

We often draw FSM graphically,
known as state diagram

Can also use table (state table), or
textual languages

Digital Design
Copyright © 2006
Frank Vahid

30

FSM Example: Secure Car Key
• Many new car keys include

tiny computer chip
– When car starts, car’s

computer (under engine hood)
requests identifier from key

– Key transmits identifier
• If not, computer shuts off car

• FSM
– Wait until computer requests

ID (a=1)
– Transmit ID (in this case,

1101)

K1 K2 K3 K4

r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a ’ a

Digital Design
Copyright © 2006
Frank Vahid

31

FSM Example: Secure Car Key (cont.)
• Nice feature of FSM

– Can evaluate output behavior
for different input sequence

– Timing diagrams show states
and output values for different
input waveforms

K1 K2 K3 K4

r=1 r=1 r=0 r=1

W ait
r=0

I nputs: a ; O utputs: r

a ’ a

W ait W ait K1 K2 K3 K4 W ait W ait

clk

I nputs

O utputs

S t a t e

a

r

clk
I nputs

a

K1 W ait W ait K1 K2 K3 K4 W ait

Output

State

r

Q: Determine states and r value for
given input waveform:

Digital Design
Copyright © 2006
Frank Vahid

32

FSM Example: Code Detector
• Unlock door (u=1) only when

buttons pressed in sequence:
– start, then red, blue, green, red

• Input from each button: s, r, g, b
– Also, output a indicates that

some colored button pressed
• FSM

– Wait for start (s=1) in “Wait”
– Once started (“Start”)

• If see red, go to “Red1”
• Then, if see blue, go to “Blue”
• Then, if see green, go to

“Green”
• Then, if see red, go to “Red2”

– In that state, open the door
(u=1)

• Wrong button at any step, return
to “Wait”, without opening door

Start

Red
Green

Blue

s

r
g
b
a

Door
lock

u

Code
detector

Q: Can you trick this FSM to open the door,
without knowing the code?

A: Yes, hold all buttons simultaneously a

a

Wait

Start

Red1 R ed2 Green Blue

s ’

a ’

a r ’ a b ’ a g ’ a r ’

a ’

ab ag ar

a ’ a ’
u=0

u=0 ar

u=0 s

u=0 u=0 u=1

Inputs: s,r,g,b,a;
Outputs: u

Digital Design
Copyright © 2006
Frank Vahid

33

Improve FSM for Code Detector

• New transition conditions detect if wrong button pressed, returns to “Wait”
• FSM provides formal, concrete means to accurately define desired behavior

Note: small problem still
remains; we’ll discuss later

Wait

Start

Red1 Red2 Green Blue

s’

a ’

a ’

ab ag ar

a ’ a ’
u=0

u=0 ar

u=0 s

u=0 u=0 u=1

ar’ ab’ ag’ ar’

Inputs: s,r,g,b,a;
Outputs: u

Digital Design
Copyright © 2006
Frank Vahid

34

Standard Controller Architecture
• How implement FSM as sequential

circuit?
– Use standard architecture

• State register -- to store the present
state

• Combinational logic -- to compute
outputs, and next state

• For laser timer FSM
– 2-bit state register, can represent four

states
– Input b, output x

– Known as controller

On2 On1 On3

Off

x=1 x=1 x=1

x=0

b ’

b

Inputs: b; Outputs: x

Combinational
logic

State register

s1 s0

n1

n0

x b

clk
FS

M

in
pu

ts

FS
M

ou

tp
ut

s

General version

Combinational
logic
S

m
m

N

O I

clk m-bit
state register

FS
M

ou

tp
ut

s

FS
M

in

pu
ts

Digital Design
Copyright © 2006
Frank Vahid

35

Controller Design
• Five step controller design process

3.4

Digital Design
Copyright © 2006
Frank Vahid

36

Controller Design: Laser Timer Example
• Step 1: Capture the FSM

– Already done

• Step 2: Create architecture
– 2-bit state register (for 4 states)
– Input b, output x
– Next state signals n1, n0

• Step 3: Encode the states
– Any encoding with each state

unique will work

x=1 x=1 x=1

x=0

b

b ’

01

00

10 11 On2 On1

O ff

On3

Inputs: b; Outputs: x

Combinational
logic

State register

s1 s0

n1

n0

x b

clk
FS

M

in
pu

ts

FS
M

ou

tp
ut

s

Digital Design
Copyright © 2006
Frank Vahid

37

Controller Design: Laser Timer Example (cont)
• Step 4: Create state table

x=1 x=1 x=1

x=0

b

b ’

01

00

10 11 On2 On1

O ff

On3

Inputs: b; Outputs: x

Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs

Digital Design
Copyright © 2006
Frank Vahid

38

Controller Design: Laser Timer Example (cont)
• Step 5: Implement

combinational logic Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs

x = s1 + s0 (note from the table that x=1 if s1 = 1 or s0
= 1)

n1 = s1’s0b’ + s1’s0b + s1s0’b’ + s1s0’b
n1 = s1’s0 + s1s0’

n0 = s1’s0’b + s1s0’b’ + s1s0’b
n0 = s1’s0’b + s1s0’

Digital Design
Copyright © 2006
Frank Vahid

39

Controller Design: Laser Timer Example (cont)
• Step 5: Implement

combinational logic (cont.)

x = s1 + s0
n1 = s1’s0 + s1s0’
n0 = s1’s0’b + s1s0’

Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs

n1

n0

s0 s1

clk

Combinational Logic

State register

b FSM
outputs FSM

inputs

x

Digital Design
Copyright © 2006
Frank Vahid

40

Understanding the Controller’s Behavior

s0 s1

b x

n1

n0

x=1 x=1 x=1
b

01 10 11 On2 On1

O ff

On3

00

0 0

0

0
0

0

b ’

0

0

0

0 0

x=0

0 0
0

clk

clk

I nputs:

O utputs:

1

0

1 0

b

1

0

1
0

0

s0 s1

b x

n1

n0

x=1 x=1 x=1

b ’

01 10 11 On2 On1

O ff

On3

clk

b

x

00

0 0

x=0

0 0
0

st a t e=00 st a t e=00

s0 s1

b x

n1

n0

x=1 x=1 x=1

x=0

b

b ’

01

00

10 11 On2 On1

O ff

On3

1

0

1

1

0

0
0

1
1
0

clk 0 1
0 1

st a t e=01

Digital Design
Copyright © 2006
Frank Vahid

41

Controller Example:
Button Press Synchronizer

• Want simple sequential circuit that converts button press to
single cycle duration, regardless of length of time that
button actually pressed
– We assumed such an ideal button press signal in earlier example,

like the button in the laser timer controller

cycle1 cycle2 cycle3 cycle4clk
Inputs:

Outputs:

bi

bo

Button press
synchronizer

controller

bi bo

Digital Design
Copyright © 2006
Frank Vahid

42

Controller Example:
Button Press Synchronizer (cont)

A

B

C

s1
0
0
0
0
1
1
1
1

s0
0
0
1
1
0
0
1
1

bi
0
1
0
1
0
1
0
1

Inputs
n1
0
0
0
1
0
1
0
0

n0
0
1
0
0
0
0
0
0

bo
0
0
1
1
0
0
0
0

Outputs
Combinational logic

unused

Step 4: State table

Step 1: FSM

A B C

bo=1 bo=0 bo=0
bi

bi b i ’
bi ’

bi ’
bi

FSM inputs: bi; FSM outputs: bo

Step 3: Encode states

00 01 10

bo=1 bo=0 bo=0
bi

bi
bi ’

bi ’

bi ’
bi

FSM inputs: bi; FSM outputs: bo

Step 5: Create combinational circuit

FSM
outputs

Step 5: Create
combinational circuit

clk
State register

bo

bi

s1 s0

n1

n0

Combinational logic

n1 = s1’s0bi + s1s0bi
n0 = s1’s0’bi
bo = s1’s0bi’ + s1’s0bi = s1s0

Step 2: Create architecture
Combinational

logic

n0
s1 s0

n1

bo bi

clk State register

FS
M

in

pu
ts

FS
M

ou

tp
ut

s

Digital Design
Copyright © 2006
Frank Vahid

43

Controller Example: Sequence Generator
• Want generate sequence 0001, 0011, 1100, 1000, (repeat)

– Each value for one clock cycle
– Common, e.g., to create pattern in 4 lights, or control magnets of a “stepper motor”

00

01 10

11 A

B

D

wxyz=0001 wxyz=1000

wxyz=0011 wxyz=1100

C

Inputs: none; Outputs: w,x,y,z

Step 3: Encode states

Step 4: Create state table
clk State register

w
x

y
z

FSM
outputs

n0 s0 s1 n1

Step 5: Create combinational circuit

w = s1
x = s1s0’
y = s1’s0
z = s1’
n1 = s1 xor s0
n0 = s0’

Step 1: Create FSM

A

B

D

wxyz=0001 wxyz=1000

wxyz=0011 wxyz=1100

C

Inputs: none; Outputs: w,x,y,z

Step 2: Create architecture

Combinational
logic

n0
s1 s0

n1

clk State register

w
x
y
z

Digital Design
Copyright © 2006
Frank Vahid

44

Controller Example: Secure Car Key
• (from earlier example)

K1 K2 K3 K4

r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a ’ a

S
te

p
1

FSM
outputs

Combinational
logic

s2 s1 s0

n2

r a

n1
n0

clk State register

FSM
inputs

S
te

p
2

a ’
a

r=0

r=1 r=1 r=0 r=1

000

001 010 011 100

I nputs: a ; O utputs: r

S
te

p
3

Step 4 We’ll omit Step 5

Digital Design
Copyright © 2006
Frank Vahid

45

Example: Seq. Circuit to FSM (Reverse Engineering)

clk
State register

y

z

FS
M

 outputs

FSM
inputs

n0

n1

s0 s1

x

What does this
circuit do?

Work backwards

y=s1’
z = s1s0’
n1=(s1 xor s0)x
n0=(s1’*s0’)x

Pick any state names you want

A

D

B

C

states

Outputs:y, z

A

D

B

yz=01yz=00

yz=10yz=10

C

states
with
outputs

A

D

B

yz=00

yz=01

yz=10

yz=10

C

Inputs: x; Outputs:y, z

x’

x’
x’

x

x

x
states with
outputs and
transitions

Digital Design
Copyright © 2006
Frank Vahid

46

Common Pitfalls Regarding Transition Properties

• Only one condition should
be true
– For all transitions leaving a

state
– Else, which one?

• One condition must be true
– For all transitions leaving a

state
– Else, where go?

a

b
ab=11 –

next state?

a

a’b

a

what if
ab=00?

a

a’b

a’b’

a’b

Digital Design
Copyright © 2006
Frank Vahid

47

Verifying Correct Transition Properties
• Can verify using Boolean algebra

– Only one condition true: AND of each condition pair (for
transitions leaving a state) should equal 0 proves pair
can never simultaneously be true

– One condition true: OR of all conditions of transitions
leaving a state) should equal 1 proves at least one
condition must be true

– Example
a

a’b

a + a’b
= a*(1+b) + a’b
= a + ab + a’b
= a + (a+a’)b
= a + b
Fails! Might not
be 1 (i.e., a=0,
b=0)

Q: For shown transitions, prove whether:
 * Only one condition true (AND of each pair is always 0)
 * One condition true (OR of all transitions is always 1)

a * a’b
= (a * a’) * b
= 0 * b
= 0
OK!

Answer:

Digital Design
Copyright © 2006
Frank Vahid

48

Evidence that Pitfall is Common
• Recall code detector FSM

– We “fixed” a problem with the
transition conditions

– Do the transitions obey the two
required transition properties?

• Consider transitions of state
Start, and the “only one true”
property

Wait

Start

Red1 Red2 Green Blue

s ’

a ’

a ’
ab ag ar

a ’ a ’ u=0

u=0 ar

u=0 s

u=0 u=0 u=1
ar * a’ a’ * a(r’+b+g) ar * a(r’+b+g)
= (a*a’)r = 0*r = (a’*a)*(r’+b+g) = 0*(r’+b+g)
 = (a*a)*r*(r’+b+g) = a*r*(r’+b+g)
= 0 = 0 = arr’+arb+arg
 = 0 + arb+arg
 = arb + arg
 = ar(b+g)

Fails! Means that two of Start’s
transitions could be true

Intuitively: press red and blue
buttons at same time: conditions
ar, and a(r’+b+g) will both be
true. Which one should be
taken?

Q: How to solve?

A: ar should be arb’g’
(likewise for ab, ag, ar)

Note: As evidence the pitfall is common,
we admit the mistake was not intentional.
A reviewer of the book caught it.

Digital Design
Copyright © 2006
Frank Vahid

49

Simplifying Notations

• FSMs
– Assume unassigned output

implicitly assigned 0

• Sequential circuits
– Assume unconnected clock

inputs connected to same
external clock

a=0
b=1
c=0

a=0
b=0
c=1

b=1 c=1

clk a

a

Digital Design
Copyright © 2006
Frank Vahid

50

More on Flip-Flops and Controllers
• Other flip-flop types

– SR flip-flop: like SR latch, but edge triggered
– JK flip-flop: like SR (SJ, RK)

• But when JK=11, toggles
• 10, 01

– T flip-flop: JK with inputs tied together
• Toggles on every rising clock edge

– Previously utilized to minimize logic outside flip-flop
• Today, minimizing logic to such extent is not as important
• D flip-flops are thus by far the most common

3.5

Digital Design
Copyright © 2006
Frank Vahid

51

Non-Ideal Flip-Flop Behavior
• Can’t change flip-flop input too close to clock

edge
– Setup time: time that D must be stable before edge

• Else, stable value not present at internal latch
– Hold time: time that D must be held stable after

edge
• Else, new value doesn’t have time to loop around

and stabilize in internal latch

clk

D

clk

D

setup time

hold time

R

S
D

C

u

D latch

Q

Q’
1

2

3 4

5 6

7

C

D

S

u

R

Q’

Q

Setup time violation

Leads to oscillation!

Digital Design
Copyright © 2006
Frank Vahid

52

Metastability
• Violating setup/hold time can lead to bad

situation known as metastable state
– Metastable state: Any flip-flop state other

than stable 1 or 0
• Eventually settles to one or other, but we

don’t know which
– For internal circuits, we can make sure

observe setup time
– But what if input comes from external

(asynchronous) source, e.g., button
press?

• Partial solution
– Insert synchronizer flip-flop for

asynchronous input
• Special flip-flop with very small setup/hold

time
– Doesn’t completely prevent metastability

clk

D

Q

setup time
violation

metastable
state

ai

ai

synchronizer

a

Digital Design
Copyright © 2006
Frank Vahid

53

Metastability
• One flip-flop doesn’t completely solve problem
• How about adding more synchronizer flip-flops?

– Helps, but just decreases probability of metastability
• So how solve completely?

– Can’t! May be unsettling to new designers. But we just can’t guarantee a
design that won’t ever be metastable. We can just minimize the mean time
between failure (MTBF) -- a number often given along with a circuit

ai

synchronizers

l o w
very
low

very
very
low

incredibly
l o w

Probability of flip-flop being metastable is…

Digital Design
Copyright © 2006
Frank Vahid

54

Flip-Flop Set and Reset Inputs
• Some flip-flops have

additional inputs
– Synchronous reset: clears Q to 0

on next clock edge
– Synchronous set: sets Q to 1 on

next clock edge
– Asynchronous reset: clear Q to 0

immediately (not dependent on
clock edge)

• Example timing diagram shown
– Asynchronous set: set Q to 1

immediately

D Q’

Q
R

Q’

AR

D

Q

Q’

AS

AR
D

Q

cycle 1 cycle 2 cycle 3 cycle 4
clk

D

AR

Q

Digital Design
Copyright © 2006
Frank Vahid

55

Initial State of a Controller
• All our FSMs had initial state

– But our sequential circuit designs
did not

– Can accomplish using flip-flops
with reset/set inputs

• Shown circuit initializes flip-flops to
01

– Designer must ensure reset input
is 1 during power up of circuit

• By electronic circuit design

Inputs: x; Outputs: b

On2 On1 On3

Off

x=1 x=1 x=1

x=0

b ’

b

D Q ’ Q ’

Q
R S

D

Q

State register
clk

reset

s1 s0
n0

n1

b x
Combinational

logic

Digital Design
Copyright © 2006
Frank Vahid

56

Glitching
• Glitch: Temporary values on outputs that appear soon after

input changes, before stable new output values
• Designer must determine whether glitching outputs may

pose a problem
– If so, may consider adding flip-flops to outputs

• Delays output by one clock cycle, but may be OK

Digital Design
Copyright © 2006
Frank Vahid

57

Active Low Inputs

• We’ve assumed input action
occur when input is 1
– Some inputs are instead active

when input is 0 -- “active low”
– Shown with inversion bubble
– So to reset the shown flip-flop,

set R=0. Else, keep R=1.

D Q’

Q
R

Digital Design
Copyright © 2006
Frank Vahid

58

Chapter Summary
• Sequential circuits

– Have state

• Created robust bit-storage device: D flip-flop
– Put several together to build register, which we used to hold state

• Defined FSM formal model to describe sequential behavior
– Using solid mathematical models -- Boolean equations for

combinational circuit, and FSMs for sequential circuits -- is very
important.

• Defined 5-step process to convert FSM to sequential circuit
– Controller

• So now we know how to build the class of sequential
circuits known as controllers

	Digital Design
	Introduction
	Example Needing Bit Storage
	First attempt at Bit Storage
	Bit Storage Using an SR Latch
	Example Using SR Latch for Bit Storage
	Problem with SR Latch
	Problem with SR Latch
	Solution: Level-Sensitive SR Latch
	Clock Signals for a Latch
	Clocks
	Level-Sensitive D Latch
	Problem with Level-Sensitive D Latch
	D Flip-Flop
	D Flip-Flop
	D Flip-Flop
	D Latch vs. D Flip-Flop
	Flight-Attendant Call Button Using D Flip-Flop
	Bit Storage Summary
	Basic Register
	Example Using Registers: Temperature Display
	Example Using Registers: Temperature Display
	Finite-State Machines (FSMs) and Controllers
	Need a Better Way to Design Sequential Circuits
	Describing Behavior of Sequential Circuit: FSM
	FSM Example: 0,1,1,1,repeat
	Extend FSM to Three-Cycles High Laser Timer
	FSM Simplification: Rising Clock Edges Implicit
	FSM Definition
	FSM Example: Secure Car Key
	FSM Example: Secure Car Key (cont.)
	FSM Example: Code Detector
	Improve FSM for Code Detector
	Standard Controller Architecture
	Controller Design
	Controller Design: Laser Timer Example
	Controller Design: Laser Timer Example (cont)
	Controller Design: Laser Timer Example (cont)
	Controller Design: Laser Timer Example (cont)
	Understanding the Controller’s Behavior
	Controller Example: �Button Press Synchronizer
	Controller Example: �Button Press Synchronizer (cont)
	Controller Example: Sequence Generator
	Controller Example: Secure Car Key
	Example: Seq. Circuit to FSM (Reverse Engineering)
	Common Pitfalls Regarding Transition Properties
	Verifying Correct Transition Properties
	Evidence that Pitfall is Common
	Simplifying Notations
	More on Flip-Flops and Controllers
	Non-Ideal Flip-Flop Behavior
	Metastability
	Metastability
	Flip-Flop Set and Reset Inputs
	Initial State of a Controller
	Glitching
	Active Low Inputs
	Chapter Summary

