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Introduction 
• We now know how to build digital circuits 

– How can we build better circuits? 
• Let’s consider two important design criteria 

– Delay – the time from inputs changing to new correct stable output 
– Size – the number of transistors 
– For quick estimation, assume  

• Every gate has delay of “1 gate-delay” 
• Every gate input requires 2 transistors 
• Ignore inverters 

6.1 

16 transistors 
2 gate-delays 
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Note: Slides with animation are denoted with a small red "a" near the animated items 
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Introduction 
• Tradeoff 

– Improves some, but worsens other, criteria of interest 

z e 

Transforming G1 to G2 
represents a tradeoff: Some 
criteria better, others worse. 
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2 gate-delays 
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Introduction 

• We obviously prefer optimizations, but often must accept 
tradeoffs 
– You can’t build a car that is the most comfortable, and has the best 

fuel efficiency, and is the fastest – you have to give up something to 
gain other things.  

si 
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si 

del a y 

z e si 

del a y 
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Optimizations 
Tradeoffs 

All criteria of interest 
are improved (or at 
least kept the same) 

Some criteria of interest 
are improved, while 
others are worsened si

ze
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Combinational Logic Optimization and Tradeoffs 
• Two-level size optimization using 

algebraic methods 
– Goal: circuit with only two levels (ORed 

AND gates), with minimum transistors 
• Though transistors getting cheaper 

(Moore’s Law), they still cost something 

• Define problem algebraically 
– Sum-of-products yields two levels 

• F = abc + abc’ is sum-of-products; G = 
w(xy + z) is not.  

– Transform sum-of-products equation to 
have fewest literals and terms 

• Each literal and term translates to a 
gate input, each of which translates to 
about 2 transistors (see Ch. 2) 

• Ignore inverters for simplicity 

6.2 

F = xyz + xyz’ + x’y’z’ + x’y’z 

F = xy(z + z’) + x’y’(z + z’) 

F = xy*1 + x’y’*1 

F = xy + x’y’ 

0 
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4 literals + 2 
terms = 6 
gate inputs 

6 gate inputs = 
12 transistors 

Note: Assuming 4-transistor 2-input AND/OR circuits; 
in reality, only NAND/NOR are so efficient. 

Example 



Digital Design 
Copyright © 2006  
Frank Vahid 

6 

Algebraic Two-Level Size Minimization 
• Previous example showed common 

algebraic minimization method 
– (Multiply out to sum-of-products, then) 
– Apply following as much possible 

• ab + ab’ = a(b + b’) = a*1 = a 
• “Combining terms to eliminate a variable” 

– (Formally called the “Uniting theorem”) 

– Duplicating a term sometimes helps 
• Note that doesn’t change function 

– c + d = c + d + d = c + d + d + d + d ... 

– Sometimes after combining terms, can 
combine resulting terms 
 

F = xyz + xyz’ + x’y’z’ + x’y’z 
F = xy(z + z’) + x’y’(z + z’) 
F = xy*1 + x’y’*1 
F = xy + x’y’ 

F = x’y’z’ + x’y’z + x’yz 
F = x’y’z’ + x’y’z + x’y’z + x’yz 
F = x’y’(z+z’) + x’z(y’+y) 
F = x’y’ + x’z 

G = xy’z’ + xy’z + xyz + xyz’ 
G = xy’(z’+z) + xy(z+z’) 
G = xy’ + xy     (now do again) 
G = x(y’+y) 
G = x 

a 

a 

a 
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Karnaugh Maps for Two-Level Size Minimization 
• Easy to miss “seeing” possible opportunities 

to combine terms 
• Karnaugh Maps (K-maps) 

– Graphical method to help us find 
opportunities to combine terms 

– Minterms differing in one variable are adjacent 
in the map 

– Can clearly see opportunities to combine 
terms – look for adjacent 1s 

• For F, clearly two opportunities 
• Top left circle is shorthand for x’y’z’+x’y’z = 

x’y’(z’+z) = x’y’(1) = x’y’ 
• Draw circle, write term that has all the literals 

except the one that changes in the circle 
– Circle xy, x=1 & y=1 in both cells of the circle, 

but z changes (z=1 in one cell, 0 in the other) 
• Minimized function: OR the final terms 

 
 

 

F = x’y’z + xyz + xyz’ + x’y’z’ 

0 0 

0 0 

00 01 11 10 

0 

1 

F yz 
x 

1 

x ’ y ’ 

1 1 0 0 

00 01 11 10 

0 0 

0 

1 1 1 

F yz 

x 

x y 

x’y’z’ 

00 01 11 10 

0 

1 

x’y’z x’yz x’yz’ 

xy’z’ xy’z xyz xyz’ 

F yz 
x 

1 

Notice not in binary order 

Treat left & right as adjacent too 

1 1 

F = x’y’ + xy 

Easier than all that algebra: 

F = xyz + xyz’ + x’y’z’ + x’y’z 
F = xy(z + z’) + x’y’(z + z’) 
F = xy*1 + x’y’*1 
F = xy + x’y’ 

K-map 

a 

a 

a 
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K-maps 
• Four adjacent 1s means 

two variables can be 
eliminated 
– Makes intuitive sense – those 

two variables appear in all 
combinations, so one must be 
true  

– Draw one big circle – 
shorthand for the algebraic 
transformations above 

G = xy’z’ + xy’z + xyz + xyz’ 
G = x(y’z’+ y’z + yz + yz’) (must be true) 
G = x(y’(z’+z) + y(z+z’)) 
G = x(y’+y) 
G = x 

0 0 0 0

00 01 11 10

1 1

0

1 1 1

G yz
x

x

0 0 0 0

00 01 11 10

1 1

0

1 1 1

G yz
x

xyxy’

Draw the biggest 
circle possible, or 
you’ll have more terms 
than really needed 
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K-maps 
• Four adjacent cells can be in 

shape of a square 
• OK to cover a 1 twice 

– Just like duplicating a term 
• Remember, c + d = c + d + d 

• No need to cover 1s more than 
once 
– Yields extra terms – not minimized 

0 1 1 0

00 01 11 10

0 1

0

1 1 0

H yz
x

z

H = x’y’z + x’yz + xy’z + xyz 
     (xy appears in all combinations) 

0 1 0 0 

00 01 11 10 

1 1 

0 

1 1 1 

I yz 
x 

x 

y ’ z 

The two circles are shorthand for: 
I = x’y’z + xy’z’ + xy’z + xyz + xyz’ 
I = x’y’z + xy’z + xy’z’ + xy’z + xyz + xyz’ 
I = (x’y’z + xy’z) + (xy’z’ + xy’z + xyz + xyz’) 
I = (y’z) + (x) 

1 1 0 0

00 01 11 10

0 1

0

1 1 0

J yz
x

xz

y’zx’y’

a 

a 

a 
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K-maps 
• Circles can cross left/right sides 

– Remember, edges are adjacent 
• Minterms differ in one variable only 

• Circles must have 1, 2, 4, or 8 
cells – 3, 5, or 7 not allowed 
– 3/5/7 doesn’t correspond to 

algebraic transformations that 
combine terms to eliminate a 
variable 

• Circling all the cells is OK 
– Function just equals 1  

0 1 0 0

00 01 11 10

1 0

0

1 0 1

K yz
x

xz’

x’y’z

0 0 0 0

00 01 11 10

1 1

0

1 1 0

L yz
x

1 1 1 1
1

00 01 11 10

1 1

0

1 1 1

E yz
x
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K-maps for Four Variables 
• Four-variable K-map follows 

same principle 
– Adjacent cells differ in one 

variable 
– Left/right adjacent 
– Top/bottom also adjacent 

• 5 and 6 variable maps exist 
– But hard to use  

• Two-variable maps exist 
– But not very useful – easy to do 

algebraically by hand 

0 0 1 0

00 01 11 10

1 1

00

01 1 0

0 0 1 0

0 0

11

10 1 0

F yz
wx

yz

w
’x

y’

0 1 1 0

00 01 11 10

0 1

00

01 1 0

0 1 1 0

0 1

11

10 1 0

G yz
wx

z

0 1 

0 

1 

F z 

y 

G=z 

F=w’xy’+yz 
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Two-Level Size Minimization Using K-maps 
General K-map method 

1. Convert the function’s equation into 
sum-of-products form 

2. Place 1s in the appropriate K-map 
cells for each term 

3. Cover all 1s by drawing the fewest 
largest circles, with every 1 
included at least once; write the 
corresponding term for each circle 

4. OR all the resulting terms to create 
the minimized function. 

Example: Minimize: 
     G = a + a’b’c’ + b*(c’ + bc’) 

1. Convert to sum-of-products 
     G = a + a’b’c’ + bc’ + bc’ 

2. Place 1s in appropriate cells 
 

0 0 

00 01 11 10 

0 

1 

G bc 
a 

1 

bc’ 

1 a’b’c’ 
1 1 1 1 

a 

a 

3. Cover 1s 
 

1 0 0 1 

00 01 11 10 

1 1 

0 

1 1 1 

G bc 
a 

a 

c ’ 

4. OR terms: G = a + c’ 
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• Minimize: 
– H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ 

+ a’bd + a’bcd’ 

1. Convert to sum-of-products: 
– H = a’b’cd’ + a’b’c’d’ + ab’c’d’ + 

ab’cd’ + a’bd + a’bcd’ 

2. Place 1s in K-map cells 
3. Cover 1s 
4. OR resulting terms 

Two-Level Size Minimization Using K-maps  
– Four Variable Example 

1 1 

00 01 11 10 

00 

01 1 1 1 

1 

11 

10 

0 0 

0 

0 0 0 0 

0 0 1 

H c d 
ab 

a 

a ’ bd 

a ’ bc 

b ’ d ’ 

Funny-looking circle, but 
remember that left/right 
adjacent, and top/bottom 
adjacent 

a’b’c’d’ 
ab’c’d’ a’bd 

a’b’cd’ 

ab’cd’ 
a’bcd’ 

H = b’d’ + a’bc + a’bd 
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Don’t Care Input Combinations 
• What if particular input combinations 

can never occur? 
– e.g., Minimize F = xy’z’, given that 

x’y’z’ (xyz=000) can never be true, 
and that xy’z (xyz=101) can never be 
true 

– So it doesn’t matter what F outputs 
when x’y’z’ or xy’z is true, because 
those cases will never occur 

– Thus, make F be 1 or 0 for those 
cases in a way that best minimizes 
the equation 

• On K-map 
– Draw Xs for don’t care combinations 

• Include X in circle ONLY if minimizes 
equation 

• Don’t include other Xs 

 

X 0 0 0

00 01 11 10

1 X

0

1 0 0

F yz y’z’
x

X 0 0 0

00 01 11 10

1 X

0

1 0 0

F yz y’z’ unneeded

xy’

x

Good use of don’t cares 

Unnecessary use of don’t 
cares; results in extra term 
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Minimizization Example using Don’t Cares 
• Minimize: 

– F = a’bc’ + abc’ + a’b’c 
– Given don’t cares: a’bc, abc 

 
 

• Note: Use don’t cares with 
caution 
– Must be sure that we really don’t 

care what the function outputs for 
that input combination 

– If we do care, even the slightest, 
then it’s probably safer to set the 
output to 0 

00 01 11 10 

0 

0 0 

0 

1 

F bc 
a 

’ c a b 

a 

1 1 

1 

X 

X 

F = a’c + b 
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Minimization with Don’t Cares Example:  
Sliding Switch 

• Switch with 5 positions 
– 3-bit value gives position in 

binary 

• Want circuit that  
– Outputs 1 when switch is in 

position 2, 3, or 4 
– Outputs 0 when switch is in 

position 1 or 5 
– Note that the 3-bit input can 

never output binary 0, 6, or 7 
• Treat as don’t care input 

combinations 
 

2,3,4, 
detector 

x 

y 

z 

1 2 3 4 5 

G 

0 0 1 1

00 01 11 10

1 0

0

1 0 0

G yz
x x’y

xy’z’

Withou
t don’t 
cares:  
F = x’y 
+ xy’z’ 

X 0 1 1

00 01 11 10

1 0

0

1 X X

G yz
x

y

z’

With don’t 
cares:  

F = y + z’ 

a 

a 
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Automating Two-Level Logic Size Minimization 
• Minimizing by hand  

– Is hard for functions with 5 or 
more variables 

– May not yield minimum cover 
depending on order we choose 

– Is error prone  

• Minimization thus typically 
done by automated tools 
– Exact algorithm: finds optimal 

solution 
– Heuristic: finds good solution, 

but not necessarily optimal 

1 1 1 0 

00 01 11 10 

1 0 

0 

1 1 1 

I yz 
x 

y ’ z ’ x ’ y ’ yz 

( a ) 

( b ) 
1 1 1 0 

00 01 11 10 

1 0 

0 

1 1 1 

I yz 
x 

y ’ z ’ x ’ z 

x y 
4 terms 

x y 
Only 3 terms 

a 

a 
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Basic Concepts Underlying Automated Two-Level 
Logic Minimization 

• Definitions 
– On-set: All minterms that define 

when F=1 
– Off-set: All minterms that define 

when F=0  
– Implicant: Any product term 

(minterm or other) that when 1 
causes F=1 

• On K-map, any legal (but not 
necessarily largest) circle 

• Cover: Implicant xy covers 
minterms xyz and xyz’ 

– Expanding a term: removing a 
variable  (like larger K-map circle) 

• xyz  xy is an expansion of xyz 

0 1 0 0 

00 01 11 10 

0 0 

0 

1 1 1 

F yz 
x 

x y 
x yz ’ 
x yz 

x ’ y ’ z 

4 implicants of F 
Note: We use K-maps here just for 
intuitive illustration of concepts; 
automated tools do not use K-maps. 

• Prime implicant: Maximally 
expanded implicant – any 
expansion would cover 1s not in 
on-set 
• x’y’z, and xy, above 
• But not xyz or xyz’ – they can 

be expanded 
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Basic Concepts Underlying Automated Two-Level 
Logic Minimization 

• Definitions (cont) 
– Essential prime implicant: The 

only prime implicant that covers a 
particular minterm in a function’s 
on-set 

• Importance: We must include all 
essential PIs in a function’s cover 

• In contrast, some, but not all, non-
essential PIs will be included  

 

1 1 0 

0 

0 

00 01 11 10 

1 

0 

1 1 1 

G yz 
x 

not essential 

not essential 
y ’ z 

x ’ y ’ 
xz x y essential 

1 

essential 

1 
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Automated Two-Level Logic Minimization Method 

• Steps 1 and 2 are exact 
• Step 3: Hard. Checking all possibilities: exact, but computationally 

expensive. Checking some but not all: heuristic.  
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Example of Automated Two-Level Minimization 
• 1. Determine all 

prime implicants 
• 2. Add essential PIs 

to cover 
– Italicized 1s are thus 

already covered 
– Only one uncovered 

1 remains 

• 3. Cover remaining 
minterms with non-
essential PIs 
– Pick among the two 

possible PIs 
1 1 1 0 

00 01 11 10 

1 0 

0 

1 0 1 

I yz 
x 

y ’ z ’ 

x ’ z 

xz ’ 

( c ) 

1 1 0 

00 01 11 10 

1 0 

0 

1 0 1 

I yz 
x 

1 1 1 0 

00 01 11 10 

1 0 

0 

1 0 1 

I yz 
x 

x ’ y ’ y ’ z ’ 

x ’ z 

xz ’ 

( b ) 

x ’ y ’ y ’ z ’ 

x ’ z 

xz ’ 

( a ) 
1 

1 

1 
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Problem with Methods that Enumerate all Minterms or 
Compute all Prime Implicants 

• Too many minterms for functions with many variables 
– Function with 32 variables: 

• 232 = 4 billion possible minterms.  
• Too much compute time/memory 

• Too many computations to generate all prime implicants 
– Comparing every minterm with every other minterm, for 32 

variables, is (4 billion)2 = 1 quadrillion computations 
– Functions with many variables could requires days, months, years, 

or more of computation – unreasonable 
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Solution to Computation Problem 
• Solution 

– Don’t generate all minterms or prime implicants 
– Instead, just take input equation, and try to “iteratively” improve it 
– Ex: F = abcdefgh + abcdefgh’+ jklmnop 

• Note: 15 variables, may have thousands of minterms 
• But can minimize just by combining first two terms: 

– F = abcdefg(h+h’) + jklmnop  =  abcdefg + jklmnop 
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Two-Level Minimization using Iterative Method 
• Method: Randomly apply “expand” 

operations, see if helps 
– Expand: remove a variable from a 

term 
• Like expanding circle size on K-map 

– e.g., Expanding x’z to z legal, but 
expanding x’z to z’ not legal, in shown 
function 

– After expand, remove other terms 
covered by newly expanded term 

– Keep trying (iterate) until doesn’t help 
 

Ex: 
   F = abcdefgh + abcdefgh’+ jklmnop 
   F = abcdefg + abcdefgh’ + jklmnop 
   F = abcdefg + jklmnop 

0 1 1 0 

00 01 11 10 

0 1 

0 

1 1 0 

I yz 
x 

0 1 1 0 

00 01 11 10 

0 1 

0 

1 1 0 

I yz 
x 

xy’z 

x’z 

xyz 

z (a) 

(b) 

xyz xy’z 

x’z 

x ’ 
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Multi-Level Logic Optimization – Performance/Size 
Tradeoffs 

• We don’t always need the speed of two level logic 
– Multiple levels may yield fewer gates 
– Example 

• F1 = ab + acd + ace        F2 = ab + ac(d + e) = a(b + c(d + e)) 
• General technique: Factor out literals – xy + xz = x(y+z) 

 

a 
c 
e 

c 
a 

a 
b 

d 

4 
F1 

F2 

F1 = ab + acd + ace 
(a) 

F2 = a(b+c(d+e)) 
(b) (c) 

22 transistors 
2 gate delays 

16 transistors 
4 gate-delays 

a 

b 

c 

d 

e 

F1 

F2 
20 

15 

10 

5 si z e 

(t r ansis 
t ors 
) 

1 2 3 4 
delay (gate-delays) 

4 

4 

4 

4 

4 

6 

6 

6 

si
ze

 
(tr
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si

st
or

s)
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Multi-Level Example 
• Q: Use multiple levels to reduce number of transistors for 

– F1 = abcd + abcef 

a 

• A: abcd + abcef = abc(d + ef) 
• Has fewer gate inputs, thus fewer transistors 

a 
b 
c 
e 
f 

b 
c 

a 

d 
F1 

F2 

F1 = abcd + abcef F2 = abc(d + ef) 
(a) (b) (c) 

22 transistors 
2 gate delays 

18 transistors 
3 gate delays 

a 
b 
c 

d 

e 

f 

F1 
F2 

20 

15 

10 

5 

) 

1 2 3 4 
delay (gate-delays) 

4 
6 

4 

4 

8 

10 

4 

si
ze

 
(tr
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si
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or

s)
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Multi-Level Example: Non-Critical Path 
• Critical path: longest delay path to output 
• Optimization: reduce size of logic on non-critical paths by using multiple 

levels 

g
f

e
d

c

a
b

F1

F1 = (a+b)c + dfg + efg
(a) (c)

26 transistor s
3 gate-del ays

F1
F220

25

15

10
5

si
ze

(tr
an

sis
to

rs
)

1 2 3 4
delay (gate-del ays)

6

4

6

6

4

c

a
b

F2

F2 = (a+b)c + (d+e)fg
(b)

22 transistor s
3 gate-del ays

4

4

4

a
b
f
g

4

6
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Automated Multi-Level Methods 
• Main techniques use heuristic iterative methods 

– Define various operations 
• “Factor out”: xy + xz = x(y+z) 
• Expand, and others 

– Randomly apply, see if improves 
• May even accept changes that worsen, in hopes eventually leads to 

even better equation 
• Keep trying until can’t find further improvement 

– Not guaranteed to find best circuit, but rather a good one 
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State Reduction (State Minimization) 
6.3 

x y 

if x = 1,1,0,0 
then y = 0,1,1,0,0 

• Goal: Reduce number of states in FSM without changing 
behavior 
– Fewer states potentially reduces size of state register 

• Consider the two FSMs below with x=1, then 1, then 0, 0 
 

x 
state 

y 
x 

state 

y 

S0 S0 S1 S1 S1 S1 S2 S0 S2 S0 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 

y=0 y=1 

x’ x 

x 

x’ 

For the same sequence of inputs, 
the output of the two FSMs is the same 

a 
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State Reduction: Equivalent States 
Two states are equivalent if: 
1. They assign the same values to 

outputs 
– e.g. S0 and S2 both assign y to 0, 
– S1 and S3 both assign y to 1 

2. AND, for all possible sequences of 
inputs, the FSM outputs will be the 
same starting from either state 
– e.g. say x=1,1,0,0,… 

• starting from S1, y=1,1,0,0,… 
• starting from S3, y=1,1,0,0,… 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

States S0 and S2 equivalent 
States S1 and S3 equivalent 

S0, 
S2 

S1, 
S3 

y=0 y=1 

x’ x 

x 

x’ 

a 
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State Reduction: Example with no Equivalencies 
• Another example… 
• State S0 is not equivalent with any 

other state since its output (y=0) 
differs from other states’ output 
 

S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x x 

x x 

x’ 

x’ 

x’ 

x’ 

Inputs: x; Outputs: y 

S0 

• Consider state S1 and S3 

S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x x 

x x 

x’ 

x’ 

x’ 

x’ 

S0 

Start from S1, x=0 

S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x x 

x x 

x’ 

x’ 

x’ 

x’ 

S0 

Start from S3, x=0 

– Outputs are initially the same (y=1) 
– From S1, when x=0, go to S2 where y=1 
– From S3, when x=0, go to S0 where y=0 
– Outputs differ, so S1 and S3 are not 

equivalent. 

a 
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• State reduction through visual inspection (what we did in 
the last few slides) isn’t reliable and cannot be automated – 
a more methodical approach is needed: implication tables 

• Example: 
 

 

State Reduction with Implication Tables 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 
Redundant 

Diagonal 

S0 

S0 S1 S2 S3 

S1 

S2 

S3 

– To compare every pair of states, construct a 
table of state pairs (above right) 

– Remove redundant state pairs, and state pairs 
along the diagonal since a state is equivalent 
to itself (right) 

S0 

S0 S1 S2 S3 

S1 

S2 

S3 

S0 S1 S2 

S1 

S2 

S3 
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• Mark (with an X) state pairs with different 
outputs as non-equivalent: 

State Reduction with Implication Tables 

S0 S1 S2 

S1 

S2 

S3 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

– (S1,S0): At S1, y=1 and at S0, y=0. So S1 
and S0 are non-equivalent.  

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

– (S2, S0): At S2, y=0 and at S0, y=0. So we 
don’t mark S2 and S0 now. 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

– (S2, S1): Non-equivalent 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

– (S3, S0): Non-equivalent 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

– (S3, S1): Don’t mark 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

– (S3, S2): Non-equivalent 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

• We can see that S2 & S0 might be 
equivalent and S3 & S1 might be 
equivalent, but only if their next states are 
equivalent (remember the example from 
two slides ago) 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

a 
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State Reduction with Implication Tables 
• We need to check each unmarked state 

pair’s next states 
• We can start by listing what each 

unmarked state pair’s next states are for 
every combination of inputs 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 S2 

S1 

S2 

S3 

– (S2, S0) 
• From S2, when x=1 go to S3 
 From S0, when x=1 go to S1 (S3, S1) 

 So we add (S3, S1) as a next state pair 
• From S2, when x=0 go to S2 
 From S0, when x=0 go to S0 

(S2, S0) 

 So we add (S2, S0) as a next state pair 
– (S3, S1) 

S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 
(S2, S0) 

• By a similar process, we add the next state 
pairs (S3, S1) and (S0, S2) 

(S3, S1) 
(S0, S2) 

S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 
(S2, S0) 

(S3, S1) 
(S0, S2) 

a 
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S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 
(S2, S0) 

(S3, S1) 
(S0, S2) 

State Reduction with Implication Tables 
• Next we check every unmarked 

state pair’s next state pairs 
• We mark the state pair if one of its 

next state pairs is marked 
S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 
(S2, S0) 

(S3, S1) 
(S0, S2) 

– (S2, S0) 

• So we do nothing and move on 

• Next state pair (S3, S1) is not marked 

S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 
(S2, S0) 

(S3, S1) 
(S0, S2) 

• Next state pair (S2, S0) is not marked 

S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 
(S2, S0) 

(S3, S1) 
(S0, S2) – (S3, S1) 

S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 
(S2, S0) 

(S3, S1) 
(S0, S2) 

• Next state pair (S3, S1) is not marked 
S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 
(S2, S0) 

(S3, S1) 
(S0, S2) 

• Next state pair (S0, S2) is not marked S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 
(S2, S0) 

(S3, S1) 
(S0, S2) 

• So we do nothing and move on 
S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 
(S2, S0) 

(S3, S1) 
(S0, S2) 
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State Reduction with Implication Tables 
• We just made a pass through the 

implication table 
– Make additional passes until no 

change occurs 

• Then merge the unmarked state 
pairs – they are equivalent 

 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 
(S2, S0) 

(S3, S1) 
(S0, S2) 

S0,S2 S1,S3 

y=0 y=1 

x’ x 

x 

x’ 
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State Reduction with Implication Tables 
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S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 S2 

S1 

S2 

S3 

State Reduction Example 
• Given FSM on the right 

– Step 1: Mark state pairs having 
different outputs as nonequivalent  

S0 S1 S2 

S1 

S2 

S3 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 S2 

S1 

S2 

S3 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 S2 

S1 

S2 

S3 

S0 S1 S2 

S1 

S2 

S3 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 S2 

S1 

S2 

S3 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 S2 

S1 

S2 

S3 

S0 S1 S2 

S1 

S2 

S3 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

a 
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S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0 S1 S2 

S1 

S2 

S3 

State Reduction Example 
• Given FSM on the right 

– Step 1: Mark state pairs having 
different outputs as nonequivalent  

– Step 2: For each unmarked state 
pair, write the next state pairs for the 
same input values 

S0 S1 S2 

S1 

S2 

S3 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

x=0 
(S2, S2) 

x’ 

x’ 

x=1 (S2, S2) 

S0 S1 S2 

S1 

S2 

S3 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

x 

x 

(S3, S1) 

x=0 
(S2, S2) 

S0 S1 S2 

S1 

S2 

S3 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

(S3, S1) 

x’ 

x’ 

(S0, S2) 

x=1 

S0 S1 S2 

S1 

S2 

S3 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

(S0, S2) 

x x 

(S3, S1) 

x=0 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

(S2, S2) 

S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 

(S0, S2) 
(S3, S1) 

x’ x’ 

(S0, S2) 

x=1 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

(S2, S2) 

S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 

(S0, S2) 
(S3, S1) 

(S0, S2) 

x 

x 

(S3, S3) 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

(S2, S2) 

S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 

(S0, S2) 
(S3, S1) 

(S0, S2) 
(S3, S3) 

a 
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State Reduction Example 
• Given FSM on the right 

– Step 1: Mark state pairs having 
different outputs as nonequivalent  

– Step 2: For each unmarked state 
pair, write the next state pairs for the 
same input values 

– Step 3: For each unmarked state 
pair, mark state pairs having 
nonequivalent next state pairs as 
nonequivalent. 

• Repeat this step until no change 
occurs, or until all states are marked. 

– Step 4: Merge remaining state pairs 
All state pairs are marked –  

there are no equivalent 
state pairs to merge 

(S2, S2) 

S0 S1 S2 

S1 

S2 

S3 

(S3, S1) 

(S0, S2) 
(S3, S1) 

(S0, S2) 
(S3, S3) 

S0 S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

a 
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A Larger State Reduction Example 

– Step 1: Mark state pairs having different outputs as 
nonequivalent  

– Step 2: For each unmarked state pair, write the next state 
pairs for the same input values 

– Step 3: For each unmarked state pair, mark state pairs 
having nonequivalent next state pairs as nonequivalent. 

• Repeat this step until no change occurs, or until all states 
are marked. 

– Step 4: Merge remaining state pairs 
 

S3 S0 

y=0 y=0 

y=1 y=1 

S1 S2 

S4 x 

x’ x’ 

x’ x’ x’ x 

x x 

Inputs: x; Outputs: y 

S2 

S1 

S3 

S4 

S0 S1 S2 S3 

(S4,S2) 
(S0,S1) 

(S3,S2) 
(S0,S1) 

(S3,S4) 
(S2,S1) 

(S4,S3) 
(S0,S0) 

y=0 

a 
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S2 

S1 

S3 

S4 

S0 S1 S2 S3 

(S4,S2) 
(S0,S1) 

(S3,S2) 
(S0,S1) 

(S3,S4) 
(S2,S1) 

(S4,S3) 
(S0,S0) 

A Larger State Reduction Example 

– Step 1: Mark state pairs having different outputs as 
nonequivalent  

– Step 2: For each unmarked state pair, write the next state 
pairs for the same input values 

– Step 3: For each unmarked state pair, mark state pairs 
having nonequivalent next state pairs as nonequivalent. 

• Repeat this step until no change occurs, or until all states 
are marked. 

– Step 4: Merge remaining state pairs 
 

S3 S0 

y=0 y=0 

y=1 y=1 

S1 S2 

S4 x 

x’ x’ 

x’ x’ x’ x 

x x 

Inputs: x; Outputs: y 

y=0 

y=0 

y=0 

y=1 

S0 S1,S2 

S3,S4 

x 

x 

x x’ 

x’ 

x’ 

Inputs: x; Outputs: y a 
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Need for Automation 

x’ 
x’ 

x’ 

x’ 
x’ 

x’ 

x’ 

x' x’ 
x’ 

x’ 

x’ 

x’ 

x’ 

x’ 

x 

x 
x 

x x 

x 

x 
x 

x 

x 
x 

x 

x 
x 

x 
SO 

SM 

SI 

SN SL 

SJ 

SK 

SG 

SH 
SB 

z=0 

z=0 

z=0 

z=1 

z=1 

z=1 

z=1 

z=1 

z=0 

z=0 

z=0 z=0 
z=1 

z=0 

z=1 

SA 

SD SC 

SE 

SF 

Inputs: x; Outputs: z • Automation needed 
– Table for large FSM too big for 

humans to work with 
• n inputs: each state pair can have 2n

 
next state pairs.  

• 4 inputs  24=16 next state pairs 

– 100 states would have table with 100*100=100,000 state pairs cells 
– State reduction typically automated 

• Often using heuristics to reduce compute time 
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State Encoding 
• Encoding: Assigning a unique 

bit representation to each state 
• Different encodings may 

optimize size, or tradeoff size 
and performance 

• Consider 3-Cycle Laser Timer… 
– Example 3.7’s encoding: 15 

gate inputs 
– Try alternative encoding 

• x = s1 + s0 
• n1 = s0 
• n0 = s1’b + s1’s0 
• Only 8 gate inputs 

 

11 10 

00 

01 10 11 

b’ 

b 

x=0 

x=1 x=1 x=1 

Inputs: b; Outputs: x 

On1 On2 On3 

Off 

1 
1 

0 
0 

1 
1 

0 
0 

a 
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State Encoding: One-Hot Encoding 
• One-hot encoding 

– One bit per state – a bit being ‘1’ 
corresponds to a particular state 

– Alternative to minimum bit-width 
encoding in previous example 

– For A, B, C, D: A: 0001, B: 0010, C: 
0100, D: 1000 

• Example: FSM that outputs 0, 1, 1, 1 
– Equations if one-hot encoding: 

• n3 = s2;  n2 = s1;  n1 = s0;  x = s3 + 
s2 + s1 

– Fewer gates and only one level of 
logic – less delay than two levels, so 
faster clock frequency 

00 

01 

Inputs: none; Outputs: x 
x=0 

x=1 

A 

B 

11 

10 

D 

C 

x=1 

x=1 

1000 

0100 

0001 

0010 

clk 

s1 

n1 

x 

s0 
n0 

State register 
clk 

n0 

s3 s2 s1 s0 

n1 
n2 

n3 

State register 

x 

8 
6 
4 
2 

2 3 4 1 
delay (gate-delays) 

one-hot 

binary 

a 
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One-Hot Encoding Example:  
Three-Cycles-High Laser Timer 

• Four states – Use four-bit one-hot 
encoding 
– State table leads to equations: 

• x = s3 + s2 + s1 
• n3 = s2 
• n2 = s1 
• n1 = s0*b 
• n0 = s0*b’ + s3 

– Smaller 
• 3+0+0+2+(2+2) = 9 gate inputs 
• Earlier binary encoding (Ch 3): 

15 gate inputs 
– Faster  

• Critical path: n0 = s0*b’ + s3 
• Previously: n0 = s1’s0’b + s1s0’ 
• 2-input AND slightly faster than 

3-input AND 

0001 

0010 0100 1000 

b’ 

b 

x=0 

x=1 x=1 x=1 

Inputs: b; Outputs: x 

On1 On2 On3 

Off 

a 
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Output Encoding 
• Output encoding: Encoding 

method where the state 
encoding is same as the 
output values 
– Possible if enough outputs, all 

states with unique output values 
 

00 

01 

Inputs: none; Outputs: x,y 
x y=00 

x y=11 

A 

B 

11 

10 

D 

C 

x y=01 

x y=10 

Use the output values 
as the state encoding 

a 
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Output Encoding Example: Sequence Generator 

• Generate sequence 0001, 0011, 1110, 
1000, repeat 
– FSM shown 

• Use output values as state encoding 
• Create state table 
• Derive equations for next state 

– n3 = s1 + s2; n2 = s1; n1 = s1’s0; n0 = s1’s0 
+ s3s2’ 

Inputs: none; Outputs: w, x, y, z 
wxyz=0001 

wxyz=0011 

A 

B 

D 

C 

wxyz=1000 

wxyz=1100 

clk 

n0 

s3 s2 s1 s0 

n1 n2 n3 

State register 

w 
x 
y 
z 
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Moore vs. Mealy FSMs 

• FSM implementation architecture 
– State register and logic 
– More detailed view 

• Next state logic – function of present state and FSM 
inputs 

• Output logic 
– If function of present state only – Moore FSM 
– If function of present state and FSM inputs – Mealy FSM 

clk 

I O 

State register 

Combinational 
logic 

S 

N clk

I

O

State register

Next-state
logic

Output
logic

FSM
outputs

FS
M

in
pu

ts

N

S

(a)

clk

I

O

State register

Next-state
logic

Output
logic

FSM
outputs

FS
M

in
pu

ts

N

S

(b)

Mealy FSM a dds thi s

Moore Mealy 

/x=0 

b/x=1 
b’/x=0 

Inputs: b; Outputs: x 

S1 S0 

Graphically: show outputs with 
arcs, not with states 

a 
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Mealy FSMs May Have Fewer States 

• Soda dispenser example: Initialize, wait until enough, dispense 
– Moore: 3 states;   Mealy: 2 states 

Moore Mealy 

Inputs: enough (bit) 
Outputs: d, clear (bit) 

Wait 

Disp 

Init 
enough’ 

enough d=0 
clear=1 

d=1 

Inputs: enough (bit) 
Outputs: d, clear (bit) 

Wait Init 

enough’ 

enough/d=1 

clk 

Inputs: enough 
State: 

Outputs: clear 
d 

I I W W D 

(a) 

clk 

Inputs: enough 
State: 

Outputs: clear 
d 

I I W W 

(b) 

/d=0, clear=1 
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Mealy vs. Moore 
• Q: Which is Moore, 

and which is Mealy? 

Inputs: b; Outputs: s1, s0, p 

Time 

Alarm 

Date 

Stpwch 

b’/s1s0=00, p=0 

b/s1s0=00, p=1 

b/s1s0=01, p=1 

b/s1s0=10, p=1 

b/s1s0=11, p=1 

b’/s1s0=01, p=0 

b’/s1s0=10, p=0 

b’/s1s0=11, p=0 

Inputs: b; Outputs: s1, s0, p 

Time 

S2 

Alarm 

b 

b 

b 

b 

b 

b 

b 

s1s0=00, p=0 

s1s0=00, p=1 

s1s0=01, p=0 

s1s0=01, p=1 

s1s0=10, p=0 

s1s0=10, p=1 

s1s0=11, p=0 

s1s0=11, p=1 

S4 

Date 

S6 

Stpwch 

S8 

b’ 

b’ 

b’ 

b’ 

Mealy 

Moore 

• A:  Mealy on left, 
Moore on right 
– Mealy outputs on 

arcs, meaning 
outputs are function 
of state AND INPUTS 

– Moore outputs in 
states, meaning 
outputs are function 
of state only  
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Mealy vs. Moore Example: Beeping Wristwatch 
• Button b  

– Sequences mux select lines 
s1s0 through 00, 01, 10, and 
11 

• Each value displays different 
internal register 

– Each unique button press 
should cause 1-cycle beep, 
with p=1 being beep 

• Must wait for button to be 
released (b’) and pushed 
again (b) before sequencing 

• Note that Moore requires 
unique state to pulse p, while 
Mealy pulses p on arc 

• Tradeoff: Mealy’s pulse on p 
may not last one full cycle 

Mealy 

Moore 

Inputs: b; Outputs: s1, s0, p 

Time 

Alarm 

Date 

Stpwch 

b’/s1s0=00, p=0 

b/s1s0=00, p=1 

b/s1s0=01, p=1 

b/s1s0=10, p=1 

b/s1s0=11, p=1 

b’/s1s0=01, p=0 

b’/s1s0=10, p=0 

b’/s1s0=11, p=0 

Inputs: b; Outputs: s1, s0, p 

Time 

S2 

Alarm 

b 

b 

b 

b 

b 

b 

b 

s1s0=00, p=0 

s1s0=00, p=1 

s1s0=01, p=0 

s1s0=01, p=1 

s1s0=10, p=0 

s1s0=10, p=1 

s1s0=11, p=0 

s1s0=11, p=1 

S4 

Date 

S6 

Stpwch 

S8 

b’ 

b’ 

b’ 

b’ 
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Mealy vs. Moore Tradeoff 
• Mealy outputs change mid-cycle if input changes 

– Note earlier soda dispenser example 
• Mealy had fewer states, but output d not 1 for full cycle 

– Represents a type of tradeoff 

Moore Mealy 

Inputs: enough (bit) 
Outputs: d, clear (bit) 

Wait 

Disp 

Init 
enough’ 

enough d=0 
clear=1 

d=1 

Inputs: enough (bit) 
Outputs: d, clear (bit) 

Wait Init 

enough’ 

enough/d=1 

clk 

Inputs: enough 
State: 

Outputs: clear 
d 

I I W W D 

(a) 

clk 

Inputs: enough 
State: 

Outputs: clear 
d 

I I W W 

(b) 

/d=0, clear=1 
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Implementing a Mealy FSM 
• Straightforward 

– Convert to state table 
– Derive equations for each 

output 
– Key difference from 

Moore: External outputs 
(d, clear) may have 
different value in same 
state, depending on input 
values  

Inputs: enough (bit) 
Outputs: d, clear (bit) 

Wait Init 

enough’/d=0 

enough/d=1 

/ d=0, clear=1 
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Mealy and Moore can be Combined 
• Final note on Mealy/Moore 

– May be combined in same FSM 

Inputs: b; Outputs: s1, s0, p 

Time 

Alarm 

Date 

Stpwch 

b’/p=0 

b/p=1 
s1s0=00 

s1s0=01 
b/p=1 

b/p=1 
s1s0=10 

b/p=1 
s1s0=11 

b’/p=0 

b’/p=0 

b’/p=0 

Combined 
Moore/Mealy 

FSM for beeping 
wristwatch 
example 
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Datapath Component Tradeoffs 
• Can make some components faster (but bigger), or smaller (but 

slower), than the straightforward components we built in Ch 4 
• We’ll build 

– A faster (but bigger) adder than the carry-ripple adder 
– A smaller (but slower) multiplier than the array-based multiplier 

• Could also do for the other Ch 4 components 

6.4 
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Faster Adder 
• Built carry-ripple adder in Ch 4 

– Similar to adding by hand, column by column 
– Con: Slow 

• Output is not correct until the carries have 
rippled to the left 

• 4-bit carry-ripple adder has 4*2 = 8 gate delays 
– Pro: Small  

• 4-bit carry-ripple adder has just 4*5 = 20 gates 

F A 

a3 

c o s3 

b3 

F A 

a0 b0 ci 

F A 

a2 

s2 s1 s0 

b2 

F A 

a1 b1 

c3 ca rr ies: 

b3 

a3 

s3 

c2 

b2 

a2 

s2 

c1 

b1 

a1 

s1 

cin 

b0 

a0 

s0 

+ 

cout 

A: 

B: 

a3 b3 a2 b2 a1 b1 a0 b0 cin 

s3 s2 s1 s0 c out 
4-bit adder 

a 

a 
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Faster Adder 
• Faster adder – Use two-level 

combinational logic design process 
– Recall that 4-bit two-level adder was big 
– Pro: Fast  

• 2 gate delays 
– Con: Large 

• Truth table would have 2(4+4) =256 rows 
• Plot shows 4-bit adder would use about 

500 gates 

• Is there a compromise design? 
– Between 2 and 8 gate delays 
– Between 20 and 500 gates 

 
 

10000 

8000 
6000 
4000 

2000 

0 1 2 3 4 5 
N 

6 7 8 

T r ansis 
t ors 

a3 

c o s3 

b3 a0 b0 ci a2 

s2 s1 s0 

b2 a1 b1 

Two-level: AND level 
followed by ORs 
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F A 

a3 

c o s3 

b3 

F A 

a0 b0 ci 

F A 

a2 

s2 s1 s0 

b2 

F A 

a1 b1 

a 

Faster Adder – (Bad) Attempt at “Lookahead” 
• Idea 

– Modify carry-ripple adder – For a stage’s carry-in, don’t wait for carry 
to ripple, but rather directly compute from inputs of earlier stages 

• Called “lookahead” because current stage “looks ahead” at previous 
stages rather than waiting for carry to ripple to current stage 
 

 

 

F A 

c4 

c3 c2 

s3 s2 
stage 3 stage 2 

c1 

s1 
stage 1 

c0 

s0 

c0 b0 b1 b2 b3 a0 a1 a2 a3 

stage 0 
c out 

look 
ahead 

look 
ahead 

look 
ahead 

Notice – no rippling of carry 
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F A 

a3 

c o s3 

b3 

F A 

a0 b0 c0 

F A 

a2 

s2 s1 s0 

b2 

F A 

a1 b1 

a 

Faster Adder – (Bad) Attempt at “Lookahead” 

Stage 0: Carry-in is already an 
external input: c0 

co0 

c1 

Stage 1: c1=co0 
co0= b0c0 + a0c0 + a0b0 

c1 = b0c0 + a0c0 + a0b0  

co1 

c2 

Stage 2: c2=co1 
co1 = b1c1 + a1c1 + a1b1 

c2 = b1c1 + a1c1 + a1b1 

•  Recall full-adder equations:  
– s = a xor b 
– c = bc + ac + ab 

•  Want each stage’s carry-in bit to be function of external inputs only (a’s, b’s, or c0) 

c2 = b1(b0c0 + a0c0 + a0b0) + a1(b0c0 + a0c0 + a0b0) +a1b1 
c2 = b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1  

F A 

c4 

c3 c2 

s3 s2 

stage 3 stage 2 

c1 

s1 

stage 1 

c0 

s0 

c0 b0 b1 b2 b3 a0 a1 a2 a3 

stage 0 

look 
ahead 

look 
ahead 

look 
ahead 

c out 

Continue for c3 

c3 

co2 
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Faster Adder – (Bad) Attempt at “Lookahead” 

c1 = b0c0 + a0c0 + a0b0  

• Carry lookahead logic 
function of external inputs 
– No waiting for ripple 

• Problem 
– Equations get too big 
– Not efficient 
– Need a better form of 

lookahead 

c2 = b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1  

F A 

c4 

c3 c2 

s3 s2 
stage 3 stage 2 

c1 

s1 
stage 1 

c0 

s0 

c0 b0 b1 b2 b3 a0 a1 a2 a3 

stage 0 

look 
ahead 

look 
ahead 

look 
ahead 

c out 

c3 = b2b1b0c0 + b2b1a0c0 + b2b1a0b0 + b2a1b0c0 + b2a1a0c0 + b2a1a0b0 + b2a1b1 + 
a2b1b0c0 + a2b1a0c0 + a2b1a0b0 + a2a1b0c0 + a2a1a0c0 + a2a1a0b0 + a2a1b1 + a2b2 
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Better Form of Lookahead 
• Have each stage compute two terms 

– Propagate: P = a xor b 
– Generate: G = ab 

• Compute lookahead from P and G terms, not from external inputs 
– Why P & G? Because the logic comes out much simpler 

• Very clever finding; not particularly obvious though 
• Why those names? 

– G: If a and b are 1, carry-out will be 1 – “generate”  a carry-out of 1 in this case 
– P: If only one of a or b is 1, then carry-out will equal the carry-in – propagate the 

carry-in to the carry-out in this case 

( a ) 

b3 
a3 
s3 

b2 
a2 
s2 

b1 
a1 
s1 

b0 
a0 
s0 

1 
1 
0 

0 1 carries: c4   c3   c2   c1   c0 
B: 
A: + + 
c out 

cin 

1 
1 
1 

1 1 

+ 
0 
1 
0 

1 1 

+ 
1 
0 
0 

1 1 

+ 

c1 
c0 
b0 
a0 

if a0 x or b0 = 1 
then c1 = 1 if c0 = 1 

(call this P: Propagate) 

if a0b0 = 1 
then c1 = 1 

(call this G:Generate) 
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“Bad” lookahead 

F A 

c4 

c3 c2 

s3 s2 
stage 3 stage 2 

c1 

s1 
stage 1 

c0 

s0 

c0 b0 b1 b2 b3 a0 a1 a2 a3 

stage 0 

look 
ahead 

look 
ahead 

look 
ahead 

c out 

Better Form of Lookahead 

• With P & G, the carry lookahead 
equations are much simpler 
– Equations before plugging in 

• c1 = G0 + P0c0 
• c2 = G1 + P1c1 
• c3 = G2 + P2c2 
• cout = G3 + P3c3 

After plugging in: 

c1 = G0 + P0c0 

c2 = G1 + P1c1 = G1 + P1(G0 + P0c0) 
c2 = G1 + P1G0 + P1P0c0 

c3 = G2 + P2c2 = G2 + P2(G1 + P1G0 + P1P0c0) 
c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0 

cout = G3 + P3G2 + P3P2G1 + P3P2P1G0 + 
P3P2P1P0c0 

Much simpler than the “bad” lookahead 

a 

a 

C a r r y -loo k ahead lo g ic 
G3 

a3 b3 

P3 c3 

c out s3 

G2 

a2 b2 

P2 c2 

s2 

G1 

a1 b1 

P1 c1 

s1 

G0 

a0 b0 cin 

P0 c0 

s0 ( b ) 

Half-adder Half-adder Half-adder Half-adder 
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Better Form of Lookahead 

 

C a r r y -loo k ahead lo g ic G3 

a3 b3 

P3 c3 

c out s3 

G2 

a2 b2 

P2 c2 

s2 

G1 

a1 b1 

P1 c1 

s1 

G0 

a0 b0 cin 

P0 c0 

s0 ( b ) 

Half-adder Half-adder Half-adder Half-adder 

c1 = G0 + P0c0 
c2 = G1 + P1G0 + P1P0c0 

c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0 
c out = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0c0 

( c ) 

SPG 
block 

C
al

l t
hi

s 
su

m
/p

ro
pa

ga
te

/g
en

er
at

e 
(S

P
G

) b
lo

ck
 

G3 P3 G2 P2 G1 G0 c0 P1 P0 
C a r r y -loo k ahead lo g ic 

S tage 4 S tage 3 S tage 2 S tage 1 

a 

a 
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Carry-Lookahead Adder -- High-Level View 

• Fast -- only 4 gate delays 
– Each stage has SPG block with 2 gate levels 
– Carry-lookahead logic quickly computes the 

carry from the propagate and generate bits 
using  2 gate levels inside 

• Reasonable number of gates -- 4-bit adder 
has only 26 gates 

 

a3 b3 

a b 

P G 

cout 

cout 

G3 P3 

cin 

a2 b2 

a b 

P G 

G2 P2 c3 

cin 
SPG block SPG block 

a1 b1 

a b 

P G 

G1 P1 c2 c1 

cin 
SPG block 

a0 b0 c0 

a b 

P G 

G0 P0 

cin 
SPG block 

4-bit carry-lookahead logic 

s3 s2 s1 s0 

• 4-bit adder comparison 
(gate delays, gates) 
– Carry-ripple: (8, 20) 
– Two-level: (2, 500) 
– CLA: (4, 26) 

o Nice compromise 
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Carry-Lookahead Adder – 32-bit? 
• Problem: Gates get bigger in each stage 

– 4th stage has 5-input gates 
– 32nd stage would have 33-input gates 

• Too many inputs for one gate 
• Would require building from smaller gates, 

meaning more levels (slower), more gates 
(bigger) 

• One solution: Connect 4-bit CLA adders in 
ripple manner 
– But slow (4 + 4 + 4 + 4 gate delays) 

 

Stage 4

Gates get bigger
in each stage

a3 a2 a1 a0 b3 

s3 s2 s1 s0 c out 

c out 

cin 
b2 b1 b0 

4-bit adder 
a3 a2 a1 a0 b3 

s3 s2 s1 s0 

s11-s8 s15-s12 

a15-a12 b15-b12 a11-a8 b11-b8 

c out 
cin 

b2 b1 b0 
4-bit adder 

a3 a2 a1 a0 b3 

s3 s2 s1 s0 c out 

s7 s6 s5 s4 

cin 
b2 b1 b0 

a7 a6 a5 a4 b7 b6 b5 b4 

4-bit adder 
a3 a2 a1 a0 b3 

s3 s2 s1 s0 

s3 s2 s1 s0 

c out 
cin 

b2 b1 b0 

a3 a2 a1 a0 b3 b2 b1 b0 

4-bit adder 
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Hierarchical Carry-Lookahead Adders 
• Better solution -- Rather than rippling the carries, just repeat the carry-

lookahead concept 
– Requires minor modification of 4-bit CLA adder to output P and G 

a3 a2 a1 a0 b3 

s3 s2 s1 s0 

cout 

cout 
cin 

b2 b1 b0 
4-bit adder 

a3 a2 a1 a0 b3 

a15-a12 b15-b12 a11-a8 b11-b8 

cin 
b2 b1 b0 

4-bit adder 

4-bit carry-lookahead logic 

a3 a2 a1 a0 b3 

s3 s2 s1 s0 
cin 

b2 b1 b0 

a7 a6 a5 a4 b7 b6 b5 b4 

4-bit adder 
a3 a2 a1 a0 b3 

s3 s2 s1 s0 
cin 

b2 b1 b0 

a3 a2 a1 a0 b3 b2 b1 b0 

4-bit adder 
s3 s2 s1 s0 P G 

P G 

P3 G3 

cout P G 

P2 c3 G2 

cout P G 

P1 c2 G1 

cout P G 

P0 c1 G0 

s15-s12 s11-s18 s7-s4 s3-s0 

These use carry-lookahead internally 

Second level of carry-lookahead 

a 

G3 P3 G2 P2 G1 G0 c0 P1 P0 
Carry lookahead logic 

Stage 4 Stage 3 Stage 2 Stage 1 

Same lookahead logic as 
inside the 4-bit adders 

cout c3 c2 c1 
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Hierarchial Carry-Lookahead Adders 
• Hierarchical CLA concept can be applied for larger adders 
• 32-bit hierarchical CLA 

– Only about 8 gate delays (2 for SPG block, then 2 per CLA level) 
– Only about 14 gates in each 4-bit CLA logic block 

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

2-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

P G c
SPG block

P

P P

P P P P P P P
G

G G

G G G G G G G
c

c c

c c c c c c c

Q: How many gate 
delays for 64-bit 
hierarchical CLA, 
using 4-bit CLA logic? 

A: 16 CLA-logic blocks 
in 1st level, 4 in 2nd, 1 
in 3rd -- so still just 8 
gate delays (2 for 
SPG, and 2+2+2 for 
CLA logic). CLA is a 
very efficient method. 

a 
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Carry Select Adder 
• Another way to compose adders 

– High-order stage -- Compute result for carry in of 1 and of 0 
• Select based on carry-out of low-order stage 
• Faster than pure rippling 

a3 a2 a1 a0

a7 a6 a5a4 b7b6b5b4

b3

s3 s2 s1 s0co
ciHI4_1 HI4_0

b2b1b0
4-bit adder

a3 a2 a1 a0 b3

s3 s2 s1 s0co

co s7 s6

Q

s5 s4

cin LO4
b2b1b0

4-bit adder
a3 a2 a1 a0 b3

s3 s2 s1 s0co

s3 s2 s1 s0

ci
b2b1b0

a3 a2 a1 a0 b3b2b1b0

4-bit adder1 0 ci

I1 I0
5-bit wide 2×1 mux S

Operate in parallel 

suppose =1 
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Adder Tradeoffs 

• Designer picks the adder that satisfies particular delay and 
size requirements 
– May use different adder types in different parts of same design 

• Faster adders on critical path, smaller adders on non-critical path 

delay 

carry-select 
carry- 
ripple 

carry-lookahead 

multilevel 
carry-lookahead 

si
ze

 



Digital Design 
Copyright © 2006  
Frank Vahid 

72 

Smaller Multiplier 

+ (5-bit) 

+ (6-bit) 

+ (7-bit) 

0 0 

0 0 0 

0 

a0 a1 a2 a3 

b0 

b1 

b2 

b3 

0 

p7..p0 

pp
1 

pp
2 

pp
3 

pp
4 

32-bit adder would have 1024 gates here ... 

... and 31 adders 
here (big ones, too) 

• Multiplier in Ch 4 was array style 
– Fast, reasonable size for 4-bit: 4*4 = 16 partial product AND terms, 3 adders 
– Rather big for 32-bit: 32*32 = 1024 AND terms, and 31 adders 

a 

a 
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Smaller Multiplier -- Sequential (Add-and-Shift) Style 

• Smaller multiplier: Basic idea 
– Don’t compute all partial products simultaneously 
– Rather, compute one at a time (similar to by hand), maintain 

running sum 

0 1 1 0 
0 0 1 1 

0 0 0 0 

+ 

Step 1 

0 1 1 0 
0 1 0 0 1 0 
+ 

0 1 1 0 
0 0 1  1 

0 0 1 1 0 

+ 

Step 2 

0 0 0 0 
0 0 1 0 0 1 0 
+ 

0 1 1 0 
0 0  1 1 

0 1 0 0 1 0 

+ 

Step 3 

0 0 0 0 
0 0 0 1 0 0 1 0 
+ 

0 1 1 0 
0  0 1 1 

0 0 1 0 0 1 0 

+ 

Step 4 

0 1 1 0 + (partial product) 
0 0 1 1 0 (new running sum) 

(running sum) 

a 
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Smaller Multiplier -- Sequential (Add-and-Shift) Style 

• Design circuit that 
computes one partial 
product at a time, adds to 
running sum 
– Note that shifting 

running sum right 
(relative to partial 
product) after each step 
ensures partial product 
added to correct running 
sum bits 

 
0 1 1 0 
0 0 1 1 
0 0 0 0 

+ 

Step 1 

0 1 1 0 
0 1 0 0 1 0 
+ 

0 1 1 0 
0 0 1  1 

0 0 1 1 0 

+ 

Step 2 

0 0 0 0 
0 0 1 0 0 1 0 
+ 

0 1 1 0 
0 0  1 1 

0 1 0 0 1 0 

+ 

Step 3 

0 0 0 0 
0 0 0 1 0 0 1 0 
+ 

0 1 1 0 
0  0 1 1 

0 0 1 0 0 1 0 

+ 

Step 4 

0 1 1 0 + (partial product) 
0 0 1 1 0 (new running sum) 

(running sum) 

mr3 

m r ld 

mdld 

mr2 
mr1 
mr0 
rsload 
rsclear 
rsshr 

start 

load 

load 
clear 
shr 

product 

running sum 
register (8) 

multiplier 
register (4) 

multiplier 

multiplicand 
register (4) 

multiplicand 

load 

c o n t r oller 
4-bit adder 

a 
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Smaller Multiplier -- Sequential Style:  Controller 

• Wait for start=1 
• Looks at multiplier one bit at a 

time 
– Adds partial product 

(multiplicand) to running sum if 
present multiplier bit is 1 

– Then shifts running sum right 
one position 
 

 

mr3

mrld

mdld

mr2
mr1
mr0
rsload
rsclear
rsshr

start

load

load
clear
shr

product

running sum
register (8)

multiplier
register (4)

multiplier

multiplicand
register (4)

multiplicand

load
co

ntr
oll

er 4-bit adder

start’ 

mr0’ 

mr0 mr1 mr2 mr3 

mr1’ mr2’ mr3’ 

start 

sta r t 

mdld = 1 
mrld = 1 
rsclear = 1 

rsshr=1 rsshr=1 rsshr=1 rsshr=1 

rsload=1 rsload=1 rsload=1 rsload=1 

controller 

mr3 

m r ld 
mdld 

mr2 
mr1 
mr0 
rsload 
rsclear 
rsshr 

Vs. array-style: 
 Pro: small 

• Just three registers, 
adder, and controller 

 Con: slow 
• 2 cycles per multiplier 
bit 
• 32-bit: 32*2=64 cycles 
(plus 1 for init.) 

a 

0110 

0011 

00000000 

a 

01100000 00110000 10010000 01001000 00100100 00010010 

Correct product 

a 
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RTL Design Optimizations and Tradeoffs 
• While creating datapath during RTL design, there are 

several optimizations and tradeoffs, involving 
– Pipelining 
– Concurrency 
– Component allocation 
– Operator binding 
– Operator scheduling 
– Moore vs. Mealy high-level state machines 

6.5 
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Pipelining 
• Intuitive example: Washing dishes 

with a friend, you wash, friend dries 
– You wash plate 1 
– Then friend dries plate 1, while you wash 

plate 2 
– Then friend dries plate 2, while you wash 

plate 3;  and so on 
– You don’t sit and watch friend dry; you 

start on the next plate 

• Pipelining: Break task into stages, 
each stage outputs data for next 
stage, all stages operate concurrently 
(if they have data) 

W1 W2 W3 D1 D2 D3 

Without pipelining: 

With pipelining: 

“Stage 1” 

“Stage 2” 

Time  

W1 

D1 

W2 

D2 

W3 

D3 

a 
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Pipelining Example 

• S = W+X+Y+Z 
• Datapath on left has critical path of 4 ns, so fastest clock period is 4 ns 

– Can read new data, add, and write result to S, every 4 ns 
• Datapath on right has critical path of only 2 ns 

– So can read new data every 2 ns – doubled performance (sort of...) 

W X Y Z 

2ns 2ns 

2ns 

+ + 

+ 

S 

clk 
2ns 2ns 

2ns 

Longest path 
is only 2 ns 

stage 2 

stage 1 

clk 

S S(0) 

So minimum clock 
period is 2ns 

S(1) 

clk 

S S(0) 

So minimum clock 
period is 4ns 

S(1) 

Longest path 
is 2+2 = 4 ns 

W X Y Z 

+ + 

+ 

S 

clk 

2ns pipeline 
registers 

S
ta

ge
 1

 
S

ta
ge

 2
 

a 
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Pipelining Example 

• Pipelining requires refined definition of performance 
– Latency: Time for new data to result in new output data (seconds) 
– Throughput: Rate at which new data can be input (items / second) 
– So pipelining above system 

• Doubled the throughput, from 1 item / 4 ns, to 1 item /  2 ns 
• Latency stayed the same: 4 ns 

W X Y Z

2n
s

2n
s

2n
s

+ +

+

S

clk

clk

S S(0)

So mininum clock
period is4 ns

S(1)

Longest path
is 2+2 = 4 ns

W X Y Z

2n
s

2n
s

2n
s

+ +

+

S

clk

clk

S S(0)

So mininum clock
period is2 ns

S(1)

Longest path
is only 2 ns
pipeline
registers

st
ag

e 
2

st
ag

e 
1

(a) (b)
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Pipeline Example: FIR Datapath 
• 100-tap FIR filter: Row of 

100 concurrent multipliers, 
followed by tree of adders 
– Assume 20 ns per multiplier 
– 14 ns for entire adder tree 
– Critical path of 20+14 = 34 ns 

• Add pipeline registers 
– Longest path now only 20 ns 
– Clock frequency can be nearly 

doubled 
• Great speedup with minimal 

extra hardware 
 

× ×

+ +

+

multipliers

adder tree

xt registers

X

yreg

Y
14

 n
s

20
 n

s

st
ag

e 
2

st
ag

e 
1

pipeline
registers
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Concurrency 
• Concurrency: Divide task into 

subparts, execute subparts 
simultaneously 
– Dishwashing example: Divide stack 

into 3 substacks, give substacks to 
3 neighbors, who work 
simultaneously -- 3 times speedup 
(ignoring time to move dishes to 
neighbors' homes) 

– Concurrency does things side-by-
side; pipelining instead uses stages 
(like a factory line) 

– Already used concurrency in FIR 
filter -- concurrent multiplications  
 * * * 

Task 

Pipelining 

Concurrency a 

Can do both, too 
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Concurrency Example: SAD Design Revisited 
• Sum-of-absolute differences video compression example (Ch 5) 

– Compute sum of absolute differences (SAD) of 256 pairs of pixels 
– Original : Main loop did 1 sum per iteration, 256 iterations, 2 cycles per iter.  

i_lt_256 

i_inc 

i_clr 

sum_ld 

sum_clr 

sad_reg_ld 

Datapath 

sum 

sad_reg 

sad 

AB_addr A_data B_data 

<256 
9 

32 

8 

8 

8 8 

32 32 

32 

i – 

+ 

abs 

!go S0 
go 

S1 sum = 0 
i = 0 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S4 sad_ reg=sum 

S2 

i<256 

(i<256)’ 

-/abs/+ done in 1 cycle, 
but done 256 times 

256 iters.*2 cycles/iter. = 512 cycles 
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Concurrency Example: SAD Design Revisited 
• More concurrent design 

– Compute SAD for 16 pairs concurrently, do 16 times to compute all 
16*16=256 SADs.   

– Main loop does 16 sums per iteration, only 16 iters., still 2 cycles per iter.  
go AB_ r d AB_addr 

AB_ r d=1 

S0 

S1 

S2 

S4 

!(i_lt_16) 

go 
!go 

sum_clr=1 
i_clr=1 

sum_ld=1 

sad_ r eg_ld=1 

i_inc=1 

i_lt_16 

C o n t r oller D a tap a th 

sad 

sad_ r eg 

sum 

i 

<16 
i_lt_16 

i_clr 

sum_ld 

sum_clr 

sad_ r eg_ld 

i_inc 

A0 B0 A1 A14 A15 B1 B14 B15 

– – – – 
16 subtractors 

abs abs abs abs 
16 absolute 

values 

+ + 

+ + 

Adder tree to 
sum 16 values 

i_
lt_

16
’ 

a 

All -/abs/+’s shown done in 1 
cycle, but done only 16  times 

O
rig

: 2
56

*2
 =

 5
12

 c
yc

le
s 

N
ew

: 1
6*

2 
= 

32
 c

yc
le

s 

a 
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Concurrency Example: SAD Design Revisited 
• Comparing the two designs 

– Original: 256 iterations * 2 cycles/iter  = 512 cycles 
– More concurrent: 16 iterations * 2 cycles/iter = 32 cycles 
– Speedup: 512/32 = 16x speedup 

• Versus software 
– Recall: Estimated about 6 microprocessor cycles per iteration 

• 256 iterations * 6 cycles per iteration  = 1536 cycles 
• Original design speedup vs. software: 1536 / 512 = 3x 

– (assuming cycle lengths are equal) 
• Concurrent design’s speedup vs. software: 1536 / 32 = 48x 

– 48x is very significant – quality of video may be much better 
!(i_lt_16) 
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Component Allocation 
• Another RTL tradeoff: Component allocation – Choosing a particular 

set of functional units to implement a set of operations 
– e.g., given two states, each with multiplication 

• Can use 2 multipliers (*) 
• OR, can instead use 1 multiplier, and 2 muxes 
• Smaller size, but slightly longer delay due to the mux delay 

 
A B 

t1 = t2*t3 t4 = t5*t6 

∗ 

t2 

t1 

t3 

∗ 

t5 

t4 

t6 

(a) 

FSM-A: (t1ld=1) B: (t4ld=1) 

∗ 

2 × 1 

t4 t1 
(b) 

2 × 1 sl 

t2 t5 t3 t6 

sr 

A: (sl=0; sr=0; t1ld=1) 
B: (sl=1; sr=1; t4ld=1) 

(c) 

2 mul 

1 mul 

delay 

a 
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Operator Binding 
• Another RTL tradeoff: Operator binding – Mapping a set of operations 

to a particular component allocation 
– Note: operator/operation mean behavior (multiplication, addition), while 

component (aka functional unit) means hardware (multiplier, adder) 
– Different bindings may yield different size or delay 

 
 

Binding 2 
si z e 

A B 

t1 = t2 * t3 t4 = t5 * t6 t7 = t8 * t3 

C A B 

t1 = t2 * t3 t4 = t5 * t6 t7 = t8 * t3 

C 

MULA MULB 

2x1 

t7 t4 

2x1 

t5 t3 t2 t8 t6 t3 

sr 

t1 

sl 2x1 

t2 t8 t3 

sl 

t6 t5 

t7 t1 t4 

MULB MULA 
2 multipliers 
allocated 

Binding 1 Binding 2 

Binding 1 

del a y 

si
ze

 

2 muxes 
vs. 

1 mux 

a 
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Operator Scheduling 
• Yet another RTL tradeoff: Operator scheduling – 

Introducing or merging states, and assigning operations to 
those states. 

si 
z e 

* 

t3 t2 

* 

t1 

t6 t5 

* 

t4 

B2 

(some 
operations) 

(some 
operations) 

t1 = t2 * t3 
t4 = t5 * t6 

A B C 

* t4 = t5 t6 

3-state schedule 

del a y 

si
ze

 

2x1 

t4 t1 

2x1 

t2 t5 t3 t6 

sr sl 

4-state schedule 

smaller 
(only 1 *) 

but more 
delay due to 

muxes 

a 

A B 

(some 
operations) 

(some 
operations) 

t1 = t2*t3 
t4 = t5*t6 

C 
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Operator Scheduling Example: Smaller FIR Filter 
• 3-tap FIR filter design in Ch 5: Only one state – datapath computes new 

Y every cycle 
– Used 3 multipliers and 2 adders; can we reduce the design’s size? 

xt0 xt1 xt2 

x(t-2) x(t-1) x(t) 

3-tap FIR filter 

X 

Y 

clk 

c0 c1 c2 

* * 

+ 

* 

+ 

3 
2 
1 
0 

2x4 

yreg 

e 
Ca1 

CL 

C 

Ca0 

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2) 

Inputs: X (N bits) 
Outputs: Y (N bits) 
Local registers: 

xt0, xt1, xt2 (N bits) 

S1 
xt0 = X 
xt1 = xt0 
xt2 = xt1 
Y = xt0*c0 
   + xt1*c1 
    + xt2*c2 
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Operator Scheduling Example: Smaller FIR Filter 
• Reduce the design’s size by re-scheduling the operations 

– Do only one multiplication operation per state 

a 

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2) 

Inputs: X (N bits) 
Outputs: Y (N bits) 
Local registers: 

xt0, xt1, xt2 (N bits) 

S1 

(a) 

xt0 = X 
xt1 = xt0 
xt2 = xt1 
Y = xt0*c0 
   + xt1*c1 
    + xt2*c2 

Inputs: X (N bits) 
Outputs: Y (N bits) 
Local registers: 

xt0, xt1, xt2, sum (N bits) 

S1 

S2 

S3 

S4 

S5 

sum = sum + xt0 * c0 

sum = 0 
xt0 = N 
xt1 = xt0 
xt2 = xt1 

sum = sum +xt1 * c1 

sum = sum + xt2 * c2 

Y = sum 

(b) 
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Operator Scheduling Example: Smaller FIR Filter 
• Reduce the design’s size by re-scheduling the operations 

– Do only one multiplication (*) operation per state, along with sum (+) 

a 

Inputs: X (N bits) 
Outputs: Y (N bits) 
Local registers: 

xt0, xt1, xt2, sum (N bits) 

S1 

S2 

S3 

S4 

S5 

sum = sum + xt0 * c0 

sum = 0 
xt0 = X 
xt1 = xt0 
xt2 = xt1 

sum = sum + xt1 * c1 

sum = sum + xt2 * c2 

Y = sum sum 

* 

+ 

y r eg 

c2 c1 c0 x t0 x t1 x t2 X 
clk 

x_ld 

y_ld 

Y 

mul_s0 

3 x 1 3 x 1 

mul_s1 

MAC 
Multiply-
accumulate: a 
common datapath 
component 
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Operator Scheduling Example: Smaller FIR Filter 
• Many other options exist 

between fully-concurrent and 
fully-serialized 
– e.g., for 3-tap FIR, can use 1, 2, 

or 3 multipliers 
– Can also choose fast array-style 

multipliers (which are concurrent 
internally) or slower shift-and-
add multipliers (which are 
serialized internally) 

– Each options represents 
compromises  

concurrent FIR 

compromises 

serial 
FIR 

delay 
si

ze
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More on Optimizations and Tradeoffs 
• Serial vs. concurrent computation has been a common tradeoff 

theme at all levels of design 
– Serial: Perform tasks one at a time 
– Concurrent: Perform multiple tasks simultaneously 

• Combinational logic tradeoffs 
– Concurrent: Two-level logic (fast but big) 
– Serial: Multi-level logic (smaller but slower) 

• abc + abd + ef  (ab)(c+d) + ef – essentially computes ab first (serialized) 
• Datapath component tradeoffs 

– Serial: Carry-ripple adder (small but slow) 
– Concurrent: Carry-lookahead adder (faster but bigger) 

• Computes the carry-in bits concurrently 
– Also multiplier: concurrent (array-style) vs. serial (shift-and-add) 

• RTL design tradeoffs 
– Concurrent: Schedule multiple operations in one state 
– Serial: Schedule one operation per state  

 
 

6.6 
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Higher vs. Lower Levels of Design 
• Optimizations and tradeoffs at higher levels typically have 

greater impact than those at lower levels 
– RTL decisions impact size/delay more than gate-level decisions 

delay

siz
e

(a) (b)

high-level changes

land

Spotlight analogy: The lower you 
are, the less solution landscape is 
illuminated (meaning possible) 
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Algorithm Selection 
• Chosen algorithm can have big impact 

– e.g., which filtering algorithm? 
• FIR is one type, but others require less computation at 

expense of lower-quality filtering 
• Example: Quickly find item’s address in 256-word 

memory  
– One use: data compression. Many others.  
– Algorithm 1: “Linear search” 

• Compare item with M[0], then M[1], M[2], ... 
• 256  comparisons worst case 

– Algorithm 2: “Binary search” (sort memory first) 
• Start considering entire memory range 

– If M[mid]>item, consider lower half of M 
– If M[mid]<item, consider upper half of M 
– Repeat on new smaller range 
– Dividing range by 2 each step; at most 8 such divisions 

• Only 8 comparisons in worst case 
• Choice of algorithm has tremendous impact 

– Far more impact than say choice of comparator type 
 
 
 

0x00000000 
0x00000001 
0x0000000F 2: 

96: 
128: 

255: 

3: 

1: 
0: 

0x000000FF 

0x00000F0A 
0x0000FFAA 

0xFFFF0000 

256x32 memory 

128 

96 

64 

Linear 
search 

Binary 
search 

a 
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Power Optimization 
• Until now, we’ve focused on size and delay 
• Power is another important design criteria 

– Measured in Watts (energy/second) 
• Rate at which energy is consumed 

• Increasingly important as more transistors fit on a 
chip 

– Power not scaling down at same rate as size 
• Means more heat per unit area – cooling is difficult 
• Coupled with battery’s not improving at same rate 

– Means battery can’t supply chip’s power for as long 

– CMOS technology: Switching a wire from 0 to 1 
consumes power (known as dynamic power) 

• P = k * CV2f 
– k: constant;  C: capacitance of wires;  V: voltage;  f: switching 

frequency 
• Power reduction methods 

– Reduce voltage: But slower, and there’s a limit 
– What else? 

en
er

gy
 (1

=v
al

ue
 in

 2
00

1)
 

8 
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1 

battery energy 
density 

energy 
demand 
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Power Optimization using Clock Gating 
• P = k * CV2f 
• Much of a chip’s switching f (>30%) 

due to clock signals 
– After all, clock goes to every register  
– Portion of FIR filter shown on right 

• Notice clock signals n1, n2, n3, n4 

• Solution: Disable clock switching to 
registers unused in a particular state 

– Achieve using AND gates 
– FSM only sets 2nd input to AND gate to 

1 in those states during which register 
gets loaded 

• Note: Advanced method, usually done 
by tools, not designers 

– Putting gates on clock wires creates 
variations in clock signal (clock skew); 
must be done with great care 

y r eg 

c2 c1 c0 x t0 x t1 x t2 X 

x_ld 

y_ld 

clk n2 n3 n4 n1 

y r eg 

c2 c1 c0 x t0 x t1 x t2 X 

x_ld 

y_ld 

n2 n3 n4 
n1 

clk 

clk 

n1, n2, n3 

n4 

Much 
switching 
on clock 
wires 

clk 
n1, n2, n3 

n4 

Greatly reduced 
switching – less power 

s1 

s5 

a 



Digital Design 
Copyright © 2006  
Frank Vahid 

97 

Power Optimization using Low-Power Gates on 
Non-Critical Paths 

• Another method: Use low-power gates 
– Multiple versions of gates may exist 

• Fast/high-power, and slow/low-power, versions 
– Use slow/low-power gates on non-critical paths 

• Reduces power, without increasing delay 

g
f

e
d

c

a
b

F1

26 transistors
3 ns delay
5 nanowatts power

1/1

1/1

1/1

1/1

1/1

nanowatts
nanoseconds g

f

e
d

c

a
b

F1

26 transistors
3 ns delay
4 nanowatts power

2/0.5

1/1

2/0.5

1/1

1/1

high-p o w er g a t es 

l o w -p o w er g a t es 
on nonc r itical p a th 

l o w -p o w er 
g a t es 

del a y 

p o w er 

si
ze
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