
Digital Design
Copyright © 2006
Frank Vahid

1

Digital Design
Chapter 5:

Register-Transfer Level
(RTL) Design

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

http://www.ddvahid.com/

Digital Design
Copyright © 2006
Frank Vahid

2

Introduction
• Chapter 3: Controllers

– Control input/output: single bit (or just a
few) representing event or state

– Finite-state machine describes
behavior; implemented as state register
and combinational logic

• Chapter 4: Datapath components
– Data input/output: Multiple bits

collectively representing single entity
– Datapath components included

registers, adders, ALU, comparators,
register files, etc.

• This chapter: custom processors
– Processor: Controller and datapath

components working together to
implement an algorithm

5.1

si

z e

ansis

Combinational
logic

n0
s1 s0

n1

bo bi

clk State register

FS
M

in

pu
ts

FS
M

ou

tp
ut

s

ALU

Comparator

Register file

Register

Combinational
logic

n0
s1 s0

n1

bo bi

State register

Register file

ALU

Datapath
Controller

Note: Slides with animation are denoted with a small red "a" near the animated items

Digital Design
Copyright © 2006
Frank Vahid

3

RTL Design: Capture Behavior, Convert to Circuit
• Recall

– Chapter 2: Combinational Logic Design
• First step: Capture behavior (using equation

or truth table)
• Remaining steps: Convert to circuit

– Chapter 3: Sequential Logic Design
• First step: Capture behavior (using FSM)
• Remaining steps: Convert to circuit

• RTL Design (the method for creating
custom processors)
– First step: Capture behavior (using high-

level state machine, to be introduced)
– Remaining steps: Convert to circuit

Capture behavior

Convert to circuit

Digital Design
Copyright © 2006
Frank Vahid

4

RTL Design Method
5.2

Digital Design
Copyright © 2006
Frank Vahid

5

RTL Design Method: “Preview” Example
• Soda dispenser

– c: bit input, 1 when coin
deposited

– a: 8-bit input having value of
deposited coin

– s: 8-bit input having cost of a
soda

– d: bit output, processor sets to
1 when total value of
deposited coins equals or
exceeds cost of a soda

a s

c
d

Soda
dispenser
processor

25

1 0
25

1

1

50 0

0

0

0
tot:
25
tot:
50

How can we precisely describe this
processor’s behavior?

a

a s

c
d

Soda
dispenser
processor

Digital Design
Copyright © 2006
Frank Vahid

6

Preview Example: Step 1 --
Capture High-Level State Machine

• Declare local register tot
• Init state: Set d=0, tot=0
• Wait state: wait for coin

– If see coin, go to Add state
• Add state: Update total value:

tot = tot + a
– Remember, a is present coin’s

value
– Go back to Wait state

• In Wait state, if tot >= s, go to
Disp(ense) state

• Disp state: Set d=1 (dispense
soda)
– Return to Init state

Inputs: c (bit), a (8 bits), s (8 bits)
Outputs: d (bit)
Local registers: tot (8 bits)

Wait

Add

Disp

I nit

d=0
tot=0

c’*(tot<s)

d=1

c

tot=tot+a

8 8
a s

c
d

Soda
dispenser
processor

c’*(tot<s)’

Digital Design
Copyright © 2006
Frank Vahid

7

Preview Example:
Step 2 -- Create Datapath

• Need tot register
• Need 8-bit comparator

to compare s and tot
• Need 8-bit adder to

perform tot = tot + a
• Wire the components

as needed for above
• Create control

input/outputs, give
them names

ld
clr

tot

8-bit
<

8-bit
adder

8

8

8
8

s a

Datapath

tot_ld
tot_clr

tot_lt_s

I nputs : c (bit), a(8 bits) , s (8 bits)
O utputs : d (bit)
L ocal r e g is t ers : t ot (8 bits)

W ait

A dd

Disp

I nit

d=0
t ot=0

c ‘ (t ot<s) ‘
c ‘ ∗ (t ot<s)

d=1

c

t ot= t ot+a

Digital Design
Copyright © 2006
Frank Vahid

8

Preview Example: Step 3 –
Connect Datapath to a Controller

• Controller’s inputs
– External input c

(coin detected)
– Input from datapath

comparator’s output,
which we named
tot_lt_s

• Controller’s outputs
– External output d

(dispense soda)
– Outputs to datapath

to load and clear the
tot register

tot_lt_s

tot_clr

tot_ld

Controller Datapath

s

c

d

a
8 8

ld
clr

t ot

8-bit
<

8-bit
adder

8

8

8
8

s a

D a tap a th

t ot_ld
t ot_clr

t ot_lt_s

Digital Design
Copyright © 2006
Frank Vahid

9

Preview Example: Step 4 – Derive the Controller’s
FSM

• Same states
and arcs as
high-level
state machine

• But set/read
datapath
control
signals for all
datapath
operations
and
conditions

tot_lt_s

tot_clr

tot_ld

C
on

tro
lle

r

D
at

ap
at

h

s

c

d

a
8 8

ld
clr tpt

8-bit
<

8-bit
adder

8

8

8
8

s a

Datapath

tot_ld
tot_clr

tot_lt_s

Inputs: : c , tot_lt_s (bit)
Outputs: d , tot_ld , tot_clr (bit)

W ait

Disp

I nit

d=0
tot_clr=1

c ’ * tot_lt_s

d=1

c

tot_ld=1

c

d

tot_ld

tot_clr

tot_lt_s

Controller

Add

Digital Design
Copyright © 2006
Frank Vahid

10

Preview Example: Completing the Design
• Implement the FSM as

a state register and
logic
– As in Ch3
– Table shown on right

d
0
0
0
0
0
0
0
0
0

1

0
0
0
0
0
0
0
0
1

0

1
1
1
1
0
0
0
0
0

0

n0
1
1
1
1
1
1
0
0
1

0

n1
0
0
0
0
1
0
1
1
0

0

0
1
0
1
0
1
0
1
0

0

c
0
0
1
1
0
0
1
1
0

0

s1
0
0
0
0
0
0
0
0
1

1

s0
0
0
0
0
1
1
1
1
0

1

tot_lt_s

tot_ld

tot_clr

In
it

W
ai

t
Ad

d
Di

sp

Inputs: : c , tot_lt_s (bit)
Outputs: d , tot_ld , tot_clr (bit)

W ait

Disp

I nit

d=0
tot_clr=1

c ’ * tot_lt_s

d=1

c

tot_ld=1

c

d

tot_ld

tot_clr

tot_lt_s

Controller

Add

Digital Design
Copyright © 2006
Frank Vahid

11

Step 1: Create a High-Level State Machine
• Let’s consider each step of the

RTL design process in more
detail

• Step 1
– Soda dispenser example
– Not an FSM because:

• Multi-bit (data) inputs a and s
• Local register tot
• Data operations tot=0, tot<s,

tot=tot+a.
– Useful high-level state machine:

• Data types beyond just bits
• Local registers
• Arithmetic equations/expressions

I nputs : c (bit), a (8 bits) , s (8 bits)
O utputs : d (bit)
L ocal r e g is t ers : t ot (8 bits)

W ait

Disp

I nit

d=0
t ot=0

c’ (t ot<s)

d=1

c

t ot= t ot+a

c’ (t ot<s)’

Digital Design
Copyright © 2006
Frank Vahid

12

Step 1 Example: Laser-Based Distance Measurer

• Example of how to create a high-level state machine to
describe desired processor behavior

• Laser-based distance measurement – pulse laser,
measure time T to sense reflection
– Laser light travels at speed of light, 3*108 m/sec
– Distance is thus D = T sec * 3*108 m/sec / 2

Object of
interest

D

2D = T sec * 3*108 m/sec

sensor

laser

T (in seconds)

Digital Design
Copyright © 2006
Frank Vahid

13

Step 1 Example: Laser-Based Distance Measurer

• Inputs/outputs
– B: bit input, from button to begin measurement
– L: bit output, activates laser
– S: bit input, senses laser reflection
– D: 16-bit output, displays computed distance

sensor

laser

T (in seconds)

Laser-based
distance
measurer 16

from button

to display
S

L

D

B
to laser

from sensor

Digital Design
Copyright © 2006
Frank Vahid

14

Step 1 Example: Laser-Based Distance Measurer

• Step 1: Create high-level state machine
• Begin by declaring inputs and outputs
• Create initial state, name it S0

– Initialize laser to off (L=0)
– Initialize displayed distance to 0 (D=0)

Laser-
based

distance
measurer 16

from button

to display
S

L

D

B
to laser

from sensor

Inputs: B , S (1 bit each)
Outputs: L (bit), D (16 bits)

S0 ?

L = 0 (laser off)
D = 0 (distance = 0)

a

Digital Design
Copyright © 2006
Frank Vahid

15

Step 1 Example: Laser-Based Distance Measurer

• Add another state, call S1, that waits for a button press
– B’ – stay in S1, keep waiting
– B – go to a new state S2

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits)

S0

L = 0
D = 0

S1 ?

B’ (button not pressed)

B
(button
pressed)

S0

Q: What should S2 do? A: Turn on the laser
a

a

Laser-
based

distance
measurer 16

from button

to display
S

L

D

B
to laser

from sensor

Digital Design
Copyright © 2006
Frank Vahid

16

Step 1 Example: Laser-Based Distance Measurer

• Add a state S2 that turns on the laser (L=1)
• Then turn off laser (L=0) in a state S3

S0 S1 S2

L = 0
D = 0

L = 1
(laser on)

S3

L = 0
(laser off)

B’

B
a

Q: What do next? A: Start timer, wait to sense reflection
a

Laser-
based

distance
measurer 16

from button

to display
S

L

D

B
to laser

from sensor

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits)

Digital Design
Copyright © 2006
Frank Vahid

17

Step 1 Example: Laser-Based Distance Measurer

• Stay in S3 until sense reflection (S)
• To measure time, count cycles for which we are in S3

– To count, declare local register Dctr
– Increment Dctr each cycle in S3
– Initialize Dctr to 0 in S1. S2 would have been O.K. too

Lase r -based
distan c e
measu r er 16

f r om but t on

t o displ a y
S

L

D

B
t o laser

f r om sensor
Local Registers: Dctr (16 bits)

S0 S1 S2 S3

L = 0
D = 0

L = 1 L = 0
Dctr = Dctr + 1
(count cycles)

Dctr = 0
(reset cycle

count)

B’

B

S’ (no reflection)

S (reflection)
?

a

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits)

Digital Design
Copyright © 2006
Frank Vahid

18

Step 1 Example: Laser-Based Distance Measurer

• Once reflection detected (S), go to new state S4
– Calculate distance
– Assuming clock frequency is 3x108, Dctr holds number of meters, so

D=Dctr/2

• After S4, go back to S1 to wait for button again

Lase r -based
distan c e
measu r er 16

f r om but t on

t o displ a y
S

L

D

B
t o laser

f r om sensor

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B’ S’

B S
D = Dctr / 2

(calculate D)

S4
a

Local Registers: Dctr (16 bits)
Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits)

Digital Design
Copyright © 2006
Frank Vahid

19

Step 2: Create a Datapath
• Datapath must

– Implement data storage
– Implement data computations

• Look at high-level state machine, do
three substeps
– (a) Make data inputs/outputs be datapath

inputs/outputs
– (b) Instantiate declared registers into the

datapath (also instantiate a register for each
data output)

– (c) Examine every state and transition, and
instantiate datapath components and
connections to implement any data
computations

Instantiate: to
introduce a new
component into a
design.

Digital Design
Copyright © 2006
Frank Vahid

20

Step 2 Example: Laser-Based Distance Measurer
(a) Make data

inputs/outputs be
datapath
inputs/outputs

(b) Instantiate declared
registers into the
datapath (also
instantiate a
register for each
data output)

(c) Examine every
state and
transition, and
instantiate
datapath
components and
connections to
implement any
data computations

D a tap a th
D r eg_clr

D c tr_clr
D c tr_c n t

D r eg_ld

Local Registers: Dctr (16 bits)

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B ‘ S ‘

B S
D = Dctr / 2

(calculate D)

S4

load
Q

I
D r eg: 16-bit

r e g is t er
Q

D c t r : 16-bit
u p - c ou n t er

16

D

clear clear
c ou n t

a

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits)

Digital Design
Copyright © 2006
Frank Vahid

21

Step 2 Example: Laser-Based Distance Measurer
(c) (continued)

Examine every
state and
transition, and
instantiate
datapath
components and
connections to
implement any
data computations

clear
c ou n t

clear
load

Q Q

I
D c t r : 16-bit
u p - c ou n t er

D r eg: 16-bit
r e g is t er

16

D

D a tap a th

D r eg_clr

D c tr_clr
D c tr_c n t

D r eg_ld 16

16

>>1

a

Local Registers: Dctr (16 bits)

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B ‘ S ‘

B S
D = Dctr / 2

(calculate D)

S4

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits)

Digital Design
Copyright © 2006
Frank Vahid

22

Step 2 Example Showing Mux Use

• Introduce mux when one component input can come from
more than one source

T0

T1

R = E + F

R = R + G

E , F , G, R (16 bits)
L ocal r e g is t ers :

(a)

E F G

A B +

R

add_A_s0
add_B_s0

2 ⋅ 1 2 ⋅ 1

(d)

× ×

a

E F G

A B +

R

(b)

E F G

A B +

R

(c)

Digital Design
Copyright © 2006
Frank Vahid

23

Step 3: Connecting the Datapath to a Controller

• Laser-based distance
measurer example

• Easy – just connect all
control signals
between controller and
datapath 300 M H z Clock

D

B L

S

16
to display

from button
Controller

to laser
from sensor

Datapath

Dreg_clr

Dreg_ld

Dctr_clr

Dctr_cnt

clear
c ou n t

clear
load

Q Q

I
D c t r : 16-bit
u p - c ou n t er

D r eg: 16-bit
r e g is t er

16
D

D a tap a th

D r eg_clr

D c tr_clr
D c tr_c n t

D r eg_ld 16

16

>>1

Digital Design
Copyright © 2006
Frank Vahid

24

Step 4: Deriving the Controller’s FSM

• FSM has same
structure as high-
level state machine
– Inputs/outputs all

bits now
– Replace data

operations by bit
operations using
datapath

300 M H z Clock

D

B
L

S

16

t o displ a y

f r om but t on
C o n t r oller

t o laser

f r om sensor

D a tap a th

D r eg_clr

D r eg_ld

D c tr_clr

D c tr_c n t

Inputs: B, S
Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_cnt

S0 S1 S2 S3

L = 0 L = 1 L = 0 L = 0

B’ S’

B S
S4

L = 0

Inputs: B, S (1 bit each) Outputs: L (bit), D (16 bits)
Local Registers: Dctr (16 bits)

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B’ S’

B S
D = Dctr / 2

(calculate D)

S4

a

Dreg_clr = 1
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 0
(laser off)
(clear D reg)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 1
Dctr_cnt = 0
(clear count)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 0
(laser on)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 1
(laser off)
(count up)

Dreg_clr = 0
Dreg_ld = 1
Dctr_clr = 0
Dctr_cnt = 0
(load D reg with Dctr/2)
(stop counting)

Digital Design
Copyright © 2006
Frank Vahid

25

Step 4: Deriving the Controller’s FSM

• Using
shorthand of
outputs not
assigned
implicitly
assigned 0

a

S0 S1 S2 S3

L = 0 L = 1 L = 0 L = 0

B’ S’

B S
S4

L = 0
Dreg_clr = 1
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 0
(laser off)
(clear D reg)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 1
Dctr_cnt = 0
(clear count)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 0
(laser on)

Dreg_clr = 0
Dreg_ld = 0
Dctr_clr = 0
Dctr_cnt = 1
(laser off)
(count up)

Dreg_clr = 0
Dreg_ld = 1
Dctr_clr = 0
Dctr_cnt = 0
(load D reg with Dctr/2)
(stop counting)

S0 S1 S2 S3

L = 0 L = 1 L = 0

B’ S’

B S

(laser on)

S4

Inputs: B, S Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_cnt

Dreg_clr = 1
(laser off)
(clear D reg)

Dctr_clr = 1
(clear count) Dctr_cnt = 1

(laser off)
(count up)

Dreg_ld = 1
Dctr_cnt = 0
(load D reg with Dctr/2)
(stop counting)

Digital Design
Copyright © 2006
Frank Vahid

26

Step 4

• Implement
FSM as state
register and
logic (Ch3) to
complete the
design

300 MHz Clock

D

B L

S

16
to display

from button

C
on

tro
lle

r to laser
from sensor

D
at

ap
at

h

Dreg_clr

S0 S1 S2 S3

L = 0 L = 1 L = 0

B’ S’

B S

(laser on)

S4

Inputs: B, S Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_cnt

Dreg_clr = 1
(laser off)
(clear D reg)

Dctr_clr = 1
(clear count) Dctr_cnt = 1

(laser off)
(count up)

Dreg_ld = 1
Dctr_cnt = 0
(load D reg with Dctr/2)
(stop counting)

Dreg_ld

Dctr_clr

Dctr_cnt
clear
c ou n t

clear
load

Q Q

I
D c t r : 16-bit
u p - c ou n t er

D r eg: 16-bit
r e g is t er

16
D

D a tap a th

D r eg_clr

D c tr_clr
D c tr_c n t

D r eg_ld 16

16

>>1

Digital Design
Copyright © 2006
Frank Vahid

27

RTL Design Examples and Issues
• We’ll use several more

examples to illustrate RTL
design

• Example: Bus interface
– Master processor can read

register from any peripheral
• Each register has unique 4-bit

address
• Assume 1 register/periph.

– Sets rd=1, A=address
– Appropriate peripheral places

register data on 32-bit D lines
• Periph’s address provided on

Faddr inputs (maybe from DIP
switches, or another register)

5.3

32

4 A

r d
D

Per0 Per1 Per15

Master
processor

Faddr

4

A D r d

Bus interface

Main part

Peripheral

Q
32

to/from processor bus

32 4

Digital Design
Copyright © 2006
Frank Vahid

28

RTL Example: Bus Interface

• Step 1: Create high-level state machine
– State WaitMyAddress

• Output “nothing” (“Z”) on D, store peripheral’s register value Q into local
register Q1

• Wait until this peripheral’s address is seen (A=Faddr) and rd=1
– State SendData

• Output Q1 onto D, wait for rd=0 (meaning main processor is done
reading the D lines)

WaitMyAddress

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits)
Outputs: D (32 bits)
Local register: Q1 (32 bits)

rd’ rd

SendData

D = “Z”
Q1 = Q

(A = Faddr)
and rd

((A = Faddr)
and rd’)

D = Q1

Digital Design
Copyright © 2006
Frank Vahid

29

RTL Example: Bus Interface

W W

ZD Z ZQ1 Q1

W W WSD SD SD

clk
Inputs

State
Outputs

rd

WaitMyAddress

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits)
Outputs: D (32 bits)
Local register: Q1 (32 bits)

rd’ rd

SendData

D = “Z”
Q1 = Q

(A = Faddr)
and rd

((A = Faddr)
and rd’)

D = Q1

Digital Design
Copyright © 2006
Frank Vahid

30

RTL Example: Bus Interface

WaitMyAddress

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits)
Outputs: D (32 bits)
Local register: Q1 (32 bits)

rd’ rd

SendData

D = “Z”
Q1 = Q

(A = Faddr)
and rd

((A = Faddr)
and rd)’

D = Q1

• Step 2: Create a datapath
(a) Datapath inputs/outputs
(b) Instantiate declared registers
(c) Instantiate datapath components and

connections

Datapath
Bus interface

Q1_ld
ld Q1

F Q addr

4 4 32

A

D_en

A_eq_ F addr
= (4-bit) 32

32

D

a

Digital Design
Copyright © 2006
Frank Vahid

31

RTL Example: Bus Interface

• Step 3: Connect datapath to controller
• Step 4: Derive controller’s FSM

a

WaitMyAddress

Inputs: rd (bit); Q (32 bits); A, Faddr (4 bits)
Outputs: D (32 bits)
Local register: Q1 (32 bits)

rd’ rd

SendData

D = “Z”
Q1 = Q

(A = Faddr)
and rd

((A = Faddr)
and rd)’

D = Q1
rd

Inputs: rd, A_eq_Faddr (bit)
Outputs: Q1_ld, D_en (bit)

W ait M y A dd r ess

r d ‘ r d

S endD a ta

D_en = 0
Q1_ld = 1

D_en = 1
Q1_ld = 0

A_eq_ F addr
and r d

(A_eq_ F addr
and r d) ‘

Datapath
Bus interface

Q1_ld
ld Q1

Faddr Q

4 4 32

A

D_en

A_eq_Faddr
= (4-bit) 32

32

D

Digital Design
Copyright © 2006
Frank Vahid

32

RTL Example: Video Compression – Sum of Absolute
Differences

• Video is a series of frames (e.g., 30 per second)
• Most frames similar to previous frame

– Compression idea: just send difference from previous frame

Digitized
frame 2

1 Mbyte

Frame 2

Digitized
frame 1

Frame 1

1 Mbyte
(a)

Digitized
frame 1

Frame 1

1 Mbyte
(b)

Only difference: ball moving

a Difference of
2 from 1

0.01 Mbyte

Frame 2

Just send
difference

Digital Design
Copyright © 2006
Frank Vahid

33

RTL Example: Video Compression – Sum of Absolute
Differences

• Need to quickly determine whether two frames are similar
enough to just send difference for second frame
– Compare corresponding 16x16 “blocks”

• Treat 16x16 block as 256-byte array
– Compute the absolute value of the difference of each array item
– Sum those differences – if above a threshold, send complete frame

for second frame; if below, can use difference method (using
another technique, not described)

Frame 2 Frame 1
compare Each is a pixel, assume

represented as 1 byte
(actually, a color picture
might have 3 bytes per
pixel, for intensity of
red, green, and blue
components of pixel)

Digital Design
Copyright © 2006
Frank Vahid

34

RTL Example: Video Compression – Sum of Absolute
Differences

• Want fast sum-of-absolute-differences (SAD) component
– When go=1, sums the differences of element pairs in arrays A and

B, outputs that sum

!(i<256)

B

A

go

SAD

sad

256-byte array

256-byte array
integer

Digital Design
Copyright © 2006
Frank Vahid

35

RTL Example: Video Compression – Sum of Absolute
Differences

• S0: wait for go
• S1: initialize sum and index
• S2: check if done (i>=256)
• S3: add difference to sum,

increment index
• S4: done, write to output

sad_reg

!(i<256)

B

A

go

SAD

sad

Inputs: A, B (256 byte memory); go (bit)
Outputs: sad (32 bits)
Local registers: sum, sad_reg (32 bits); i (9 bits)

!go S0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_ r eg = sum

S2

i<256

(i<256)’

a

Digital Design
Copyright © 2006
Frank Vahid

36

RTL Example: Video Compression – Sum of Absolute
Differences

• Step 2: Create datapath

!(i<256)

!(i<256) (i_lt_256)

i_lt_256

i_inc

i_clr

sum_ld

sum_clr

sad_reg_ld

Datapath

sum

sad_reg

sad

AB_addr A_data B_data

<256
9

32

8

8

8 8

32 32

32

i –

+

abs

Inputs: A, B (256 byte memory); go (bit)
Outputs: sad (32 bits)
Local registers: sum, sad_reg (32 bits); i (9 bits)

!go S0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_ reg=sum

S2

i<256

(i<256)’

a

Digital Design
Copyright © 2006
Frank Vahid

37

RTL Example: Video Compression – Sum of Absolute
Differences

• Step 3: Connect to controller
• Step 4: Replace high-level state machine by FSM

!(i<256)

!(i<256) (i_lt_256)

S0

S1

S2

S3

S4

go’
go

go AB_ r d

sum=0
i=0

i<256

!(i<256) (i_lt_256)

?
sum=sum+abs(A[i]-B[i])

i=i+1
sad_reg=sum

Controller

i_lt_256

i_inc

i_clr

sum_ld

sum_clr

sad_reg_ld

sum

sad_reg

sad

AB_addr A_data B_data

<256
9

32

8

8

8 8

32 32

32

i –

+

abs

a

sum_ld=1; AB_rd=1

sad_reg_ld=1

i_inc=1

i_lt_256

i_clr=1
sum_clr=1

Digital Design
Copyright © 2006
Frank Vahid

38

RTL Example: Video Compression – Sum of Absolute
Differences

• Comparing software and custom
circuit SAD
– Circuit: Two states (S2 & S3) for

each i, 256 i’s 512 clock cycles
– Software: Loop (for i = 1 to 256), but

for each i, must move memory to
local registers, subtract, compute
absolute value, add to sum,
increment i – say about 6 cycles per
array item  256*6 = 1536 cycles

– Circuit is about 3 times (300%)
faster

– Later, we’ll see how to build SAD
circuit that is even faster

!(i<256)

!(i<256) (i_lt_256)

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S2

i<256

(i<256)’

Digital Design
Copyright © 2006
Frank Vahid

39

RTL Design Pitfalls and Good Practice
• Common pitfall: Assuming

register is update in the
state it’s written
– Final value of Q?
– Final state?
– Answers may surprise you

• Value of Q unknown
• Final state is C, not D

– Why?
• State A: R=99 and Q=R

happen simultaneously
• State B: R not updated with

R+1 until next clock cycle,
simultaneously with state
register being updated

A B

C

D

R>=100

R<100

R=R+1R=99
Q=R

?

?

99
A

99

?

100
B

100

?

C
R<100

clk

R

Q

(a)

(b)

Local registers: R, Q (8 bits)

Digital Design
Copyright © 2006
Frank Vahid

40

RTL Design Pitfalls and Good Practice
• Solutions

– Read register in
following state (Q=R)

– Insert extra state so that
conditions use updated
value

– Other solutions are
possible, depends on
the example

BA B2

C

D

R>=100

R<100

R=R+1
Q=R

R=99
Q=R

?

?

99
A

99

?

100
B

100 100

99 99

B2 D
R<100 R>=100

clk

R

Q

(a)

(b)

Local registers: R, Q (8 bits)

Digital Design
Copyright © 2006
Frank Vahid

41

RTL Design Pitfalls and Good Practice
• Common pitfall:

Reading outputs
– Outputs can only be

written
– Solution: Introduce

additional register,
which can be written
and read

T S

P=P+B P=A

(a)

Inputs: A, B (8 bits)
Outputs: P (8 bits)

Inputs: A, B (8 bits)
Outputs: P (8 bits)
Local register: R (8 bits)

T S

P=R+B R=A
P=A

(b)

Digital Design
Copyright © 2006
Frank Vahid

42

RTL Design Pitfalls and Good Practice
• Good practice: Register

all data outputs
– In fig (a), output P would

show spurious values as
addition computes

• Furthermore, longest
register-to-register path,
which determines clock
period, is not known until
that output is connected
to another component

– In fig (b), spurious outputs
reduced, and longest
register-to-register path is
clear

+

R
B

P
(a)

+

R

Preg

B

P
(b)

Digital Design
Copyright © 2006
Frank Vahid

43

Control vs. Data Dominated RTL Design
• Designs often categorized as control-dominated or data-

dominated
– Control-dominated design – Controller contains most of the

complexity
– Data-dominated design – Datapath contains most of the complexity
– General, descriptive terms – no hard rule that separates the two

types of designs
– Laser-based distance measurer – control dominated
– Bus interface, SAD circuit – mix of control and data
– Now let’s do a data dominated design

Digital Design
Copyright © 2006
Frank Vahid

44

Data Dominated RTL Design Example: FIR Filter
• Filter concept

– Suppose X is data from a
temperature sensor, and
particular input sequence is
180, 180, 181, 240, 180, 181
(one per clock cycle)

– That 240 is probably wrong!
• Could be electrical noise

– Filter should remove such
noise in its output Y

– Simple filter: Output average
of last N values

• Small N: less filtering
• Large N: more filtering, but

less sharp output

12 12

Y

clk

X

digital filter

Digital Design
Copyright © 2006
Frank Vahid

45

Data Dominated RTL Design Example: FIR Filter
• FIR filter

– “Finite Impulse Response”
– Simply a configurable weighted

sum of past input values
– y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

• Above known as “3 tap”
• Tens of taps more common
• Very general filter – User sets the

constants (c0, c1, c2) to define
specific filter

– RTL design
• Step 1: Create high-level state

machine
– But there really is none! Data

dominated indeed.
• Go straight to step 2

12 12

Y

clk

X

digital filter

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

Digital Design
Copyright © 2006
Frank Vahid

46

Data Dominated RTL Design Example: FIR Filter
• Step 2: Create datapath

– Begin by creating chain
of xt registers to hold past
values of X

12 12
Y

clk

X
digital filter

xt0 xt1 xt2

12 12 12 12

x(t-2)x(t-1)x(t)
3-tap FIR filter

X Y

clk

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

180 180 181 180 181 240

Suppose sequence is: 180, 181, 240

a

Digital Design
Copyright © 2006
Frank Vahid

47

Data Dominated RTL Design Example: FIR Filter
• Step 2: Create datapath

(cont.)
– Instantiate registers for

c0, c1, c2
– Instantiate multipliers to

compute c*x values

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

x t0 x t1 x t2

x(t -2) x(t -1) x(t)
3-tap FIR filter

X

Y

clk

c1 c0 c2

∗ ∗ ∗

a

12 12
Y

clk

X
digital filter

Digital Design
Copyright © 2006
Frank Vahid

48

Data Dominated RTL Design Example: FIR Filter
• Step 2: Create datapath

(cont.)
– Instantiate adders

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

a

x t0 x t1 x t2

x(t -2) x(t -1) x(t)

3-tap FIR filter

X

Y

clk

c0 c1 c2

∗ ∗ ∗

+ +

12 12
Y

clk

X
digital filter

Digital Design
Copyright © 2006
Frank Vahid

49

Data Dominated RTL Design Example: FIR Filter
• Step 2: Create datapath (cont.)

– Add circuitry to allow loading of
particular c register

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

a

12 12
Y

clk

X
digital filter

xt0 xt1 xt2

x(t-2) x(t-1) x(t)

3-tap FIR filter

X

Y

clk

c0 c1 c2

* *

+

*

+

3
2
1
0

2x4

yreg

e
Ca1

CL

C

Ca0

Digital Design
Copyright © 2006
Frank Vahid

50

Data Dominated RTL Design Example: FIR Filter
• Step 3 & 4: Connect to controller, Create FSM

– No controller needed
– Extreme data-dominated example
– (Example of an extreme control-dominated design – an FSM, with no

datapath)
• Comparing the FIR circuit to a software implementation

– Circuit
• Assume adder has 2-gate delay, multiplier has 20-gate delay
• Longest past goes through one multiplier and two adders

– 20 + 2 + 2 = 24-gate delay
• 100-tap filter, following design on previous slide, would have about a 34-gate

delay: 1 multiplier and 7 adders on longest path
– Software

• 100-tap filter: 100 multiplications, 100 additions. Say 2 instructions per
multiplication, 2 per addition. Say 10-gate delay per instruction.

• (100*2 + 100*2)*10 = 4000 gate delays
– Circuit is more than 100 times faster (10,000% faster). Wow.

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

Digital Design
Copyright © 2006
Frank Vahid

51

Determining Clock Frequency
• Designers of digital circuits

often want fastest
performance
– Means want high clock

frequency
• Frequency limited by longest

register-to-register delay
– Known as critical path
– If clock is any faster, incorrect

data may be stored into register
– Longest path on right is 2 ns

• Ignoring wire delays, and
register setup and hold times,
for simplicity

5.4

a

+

b

c

2 ns
del a y

clk

Digital Design
Copyright © 2006
Frank Vahid

52

Critical Path
• Example shows four paths

– a to c through +: 2 ns
– a to d through + and *: 7 ns
– b to d through + and *: 7 ns
– b to d through *: 5 ns

• Longest path is thus 7 ns
• Fastest frequency

– 1 / 7 ns = 142 MHz

+ *

c d

7 ns 7 ns

5 ns
delay

2 ns
delay

Max
(2,7,7,5)
= 7 ns

a b

5
ns

7
ns

7

ns

2
ns

Digital Design
Copyright © 2006
Frank Vahid

53

Critical Path Considering Wire Delays
• Real wires have delay too

– Must include in critical path
• Example shows two paths

– Each is 0.5 + 2 + 0.5 = 3 ns
• Trend

– 1980s/1990s: Wire delays were tiny
compared to logic delays

– But wire delays not shrinking as fast as
logic delays

• Wire delays may even be greater than
logic delays!

• Must also consider register setup and
hold times, also add to path

• Then add some time to the computed
path, just to be safe
– e.g., if path is 3 ns, say 4 ns instead

a

+

b

c

2 ns

3 ns 3
ns

0.5 ns
0.5 ns

0.5 ns

clk

3
ns

Digital Design
Copyright © 2006
Frank Vahid

54

A Circuit May Have Numerous Paths
• Paths can exist

– In the datapath
– In the controller
– Between the

controller and
datapath

– May be
hundreds or
thousands of
paths

• Timing analysis
tools that evaluate
all possible paths
automatically very
helpful

Combinational logic

c

tot_lt_s

clk

n1

d

tot_ld

tot_lt_s

t ot_clr

s0 s1

n0

State register

s

8 8

8

8

a

ld

clr
tot

Datapath

8-bit
<

8-bit
adder

(c)

(b) (a)

Digital Design
Copyright © 2006
Frank Vahid

55

Behavioral Level Design: C to Gates

• Earlier sum-of-absolute-differences example
– Started with high-level state machine
– C code is an even better starting point -- easier to understand

5.5

!go S0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_ r eg = sum

S2

i<256

(i<256)’

a

i n t SAD (byte A[256], byte B[256]) // not quite C syntax
{
 uint sum; short uint I;
 sum = 0;
 i = 0;
 while (i < 256) {
 sum = sum + abs(A[i] – B[i]);
 i = i + 1;
 }

return sum;
}

C code

Digital Design
Copyright © 2006
Frank Vahid

56

Behavioral-Level Design: Start with C (or Similar
Language)

• Replace first step of RTL design method by two steps
– Capture in C, then convert C to high-level state machine
– How convert from C to high-level state machine?

Step 1A: Capture in C

Step 1B: Convert to high-level state machine
a

Digital Design
Copyright © 2006
Frank Vahid

57

Converting from C to High-Level State Machine
• Convert each C construct to

equivalent states and
transitions

• Assignment statement
– Becomes one state with

assignment

• If-then statement
– Becomes state with condition

check, transitioning to “then”
statements if condition true,
otherwise to ending state

• “then” statements would also
be converted to states

target = expression; target=
expression

(then stmts)
if (cond) {
 // then stmts
}

!cond

cond

(end)

a

a

Digital Design
Copyright © 2006
Frank Vahid

58

Converting from C to High-Level State Machine
• If-then-else

– Becomes state with condition
check, transitioning to “then”
statements if condition true, or
to “else” statements if condition
false

• While loop statement
– Becomes state with condition

check, transitioning to while
loop’s statements if true, then
transitioning back to condition
check

if (cond) {
 // then stmts
}
else {
 // else stmts
}

!cond

cond

(end)

(then stmts) (else stmts)

while (cond) {
 // while stmts
}

!cond

cond

(while stmts)

(end)

a

a

Digital Design
Copyright © 2006
Frank Vahid

59

Simple Example of Converting from C to High-
Level State Machine

• Simple example: Computing the maximum of two numbers
– Convert if-then-else statement to states (b)
– Then convert assignment statements to states (c)

(end)

(c)

X>Y

!(X>Y)

(end)

(then stmts) (else stmts)

(b)

X>Y

!(X>Y)

Max=X Max=Y

(a)

Inputs: uint X, Y
Outputs: uint Max

if (X > Y) {

}
else {

}

Max = X;

Max = Y;

a a

Digital Design
Copyright © 2006
Frank Vahid

60

Example: Converting Sum-of-Absolute-Differences C
code to High-Level State Machine

• Convert each construct to
states
– Simplify when possible,

e.g., merge states
• From high-level state

machine, follow RTL design
method to create circuit

• Thus, can convert C to
gates using straightforward
automatable process
– Not all C constructs can be

efficiently converted
– Use C subset if intended

for circuit
– Can use languages other

than C, of course

 sum = sum + abs(A[i] - B[i]);

(a)

Inputs: byte A[256, B[256]
bit go;

Output: int sad
main()
{
 uint sum; short uint I;
 while (1) {

sum = 0;
i = 0;

while (!go);

while (i < 256) {

 i = i + 1;
}
sad = sum; }

}

(d)

!go go

sum=0
i=0

(g)

!go go

sum=0
i=0

!(i<256)

i<256

sad =
sum

sum=sum
 + abs
i = i + 1

sum=0

i=0

(b)

!(!go)

!go

(c)

!go go

(e)

!go go

sum=0
i=0

while stmts

!(i<256)

i<256

sad =
sum

(f)

!go go

sum=0
i=0

!(i<256)

i<256

sum=sum
 + abs
i = i + 1

a

Digital Design
Copyright © 2006
Frank Vahid

61

Memory Components
• Register-transfer level

design instantiates datapath
components to create
datapath, controlled by a
controller
– A few more components are

often used outside the
controller and datapath

• MxN memory
– M words, N bits wide each

• Several varieties of memory,
which we now introduce

5.6

N-bits
wide each

M × N memo r y

M
 w

or
ds

Digital Design
Copyright © 2006
Frank Vahid

62

Random Access Memory (RAM)
• RAM – Readable and writable memory

– “Random access memory”
• Strange name – Created several decades ago to

contrast with sequentially-accessed storage like
tape drives

– Logically same as register file – Memory with
address inputs, data inputs/outputs, and control

• RAM usually just one port; register file usually two
or more

– RAM vs. register file
• RAM typically larger than roughly 512 or 1024

words
• RAM typically stores bits using a bit storage

approach that is more efficient than a flip flop
• RAM typically implemented on a chip in a square

rather than rectangular shape – keeps longest
wires (hence delay) short

32

10
data

addr

r w

en

1024 × 32
R A M

32

4

32

4
W_data

W_addr

W_en

R_data

R_addr

R_en
16 × 32

register file

Register file from Chpt. 4

RAM block symbol

Digital Design
Copyright © 2006
Frank Vahid

63

RAM Internal Structure

• Similar internal structure as register file
– Decoder enables appropriate word based on address

inputs
– rw controls whether cell is written or read
– Let’s see what’s inside each RAM cell

32

10
data

addr

r w

en

1024x32
RAM

addr0
addr1

addr(A-1)

clk
en
r w

addr

Let A = log2M

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka “cell”)

w o r d

word

RAM cell

word
enable

word
enable

r w

data cell

data

a0
a1

d0

d1

d(M-1)

a(A-1)

e

AxM
decoder

enable

Digital Design
Copyright © 2006
Frank Vahid

64

Static RAM (SRAM)

• “Static” RAM cell
– 6 transistors (recall inverter is 2 transistors)

– Writing this cell
• word enable input comes from decoder
• When 0, value d loops around inverters

– That loop is where a bit stays stored
• When 1, the data bit value enters the loop

– data is the bit to be stored in this cell
– data’ enters on other side
– Example shows a “1” being written into cell

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A× M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell)

word

,,,,

cell

word
enable

word
enable

rw

data

data

a

SRAM cell
data data’

d’ d
cell

0 word
enable

1

1

1

0

0

32

10
data

addr

r w

en

1024x32
RAM

SRAM cell
data data’

d

word
enable

data data’

d’ d cell

0 word
enable

1 0

a

a

Digital Design
Copyright © 2006
Frank Vahid

65

Static RAM (SRAM)

• “Static” RAM cell
– Reading this cell

• Somewhat trickier
• When rw set to read, the RAM logic sets

both data and data’ to 1
• The stored bit d will pull either the left line or

the right bit down slightly below 1
• “Sense amplifiers” detect which side is

slightly pulled down
– The electrical description of SRAM is really

beyond our scope – just general idea here,
mainly to contrast with DRAM...

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A× M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell)

word

,,,,

cell

word
enable

word
enable

rw

data

data

SRAM cell

32

10
data

addr

r w

en

1024x32
RAM

data data’

d

1

1 1

word
enable

To sense amplifiers

1 0

1 <1
a

Digital Design
Copyright © 2006
Frank Vahid

66

Dynamic RAM (DRAM)

• “Dynamic” RAM cell
– 1 transistor (rather than 6)
– Relies on large capacitor to store bit

• Write: Transistor conducts, data voltage
level gets stored on top plate of capacitor

• Read: Just look at value of d
• Problem: Capacitor discharges over time

– Must “refresh” regularly, by reading d and
then writing it right back

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A× M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell)

word

,,,,

cell

word
enable

word
enable

rw

data

data DRAM cell

32

10
data

addr

r w

en

1024x32
RAM

word
enable

data

c ell

(a)

(b)

data

enable

d discharges

d
capacitor

 slowly
 discharging

Digital Design
Copyright © 2006
Frank Vahid

67

Comparing Memory Types
• Register file

– Fastest
– But biggest size

• SRAM
– Fast
– More compact than register file

• DRAM
– Slowest

• And refreshing takes time
– But very compact

• Use register file for small items,
SRAM for large items, and DRAM
for huge items
– Note: DRAM’s big capacitor requires

a special chip design process, so
DRAM is often a separate chip

MxN Memory
implemented as a:

register
file

SRAM

DRAM

Size comparison for same
number of bits (not to scale)

Digital Design
Copyright © 2006
Frank Vahid

68

Reading and Writing a RAM

• Writing
– Put address on addr lines, data on data lines, set rw=1, en=1

• Reading
– Set addr and en lines, but put nothing (Z) on data lines, set rw=0
– Data will appear on data lines

• Don’t forget to obey setup and hold times
– In short – keep inputs stable before and after a clock edge

clk

addr

data

r w

en

1 2

9 9 13

999 Z 500 500

3

1 means write

RAM[9]
now equals 500

RAM[13]
now equals 999

(b)

valid

valid

Z 500

access
time

setup
time

hold
time

setup
time

clk

addr

data

r w

Digital Design
Copyright © 2006
Frank Vahid

69

RAM Example: Digital Sound Recorder

• Behavior
– Record: Digitize sound, store as series of 4096 12-bit digital values in RAM

• We’ll use a 4096x16 RAM (12-bit wide RAM not common)
– Play back later
– Common behavior in telephone answering machine, toys, voice recorders

• To record, processor should read a-to-d, store read values into
successive RAM words
– To play, processor should read successive RAM words and enable d-to-a

wire

speaker

microphone

wire
analog-to-

digital
converter

digital-to-
analog

converter
ad_ld da_ld

Rrw RenRa
12

16

processor

ad_buf

da
ta

ad
dr

rw en

4096×16
RAM

Digital Design
Copyright © 2006
Frank Vahid

70

RAM Example: Digital Sound Recorder
• RTL design of processor

– Create high-level state
machine

– Begin with the record behavior
– Keep local register a

• Stores current address,
ranges from 0 to 4095 (thus
need 12 bits)

– Create state machine that
counts from 0 to 4095 using a

• For each a
– Read analog-to-digital conv.

» ad_ld=1, ad_buf=1
– Write to RAM at address a

» Ra=a, Rrw=1, Ren=1

ad_ld=1
ad_buf=1
Ra=a
Rrw=1
Ren=1

S

a=0

a=a+1

a=4095

a<4095
T

U

Local register: a (12 bits)

analog-to-
digital

converter

digital-to-
analog

converter
ad_ld da_ld

Rw Ren Ra 12

16

processor

ad_buf

4096x16
RAM

a

Record behavior

Digital Design
Copyright © 2006
Frank Vahid

71

RAM Example: Digital Sound Recorder
– Now create play behavior
– Use local register a again,

create state machine that
counts from 0 to 4095 again

• For each a
– Read RAM
– Write to digital-to-analog conv.

• Note: Must write d-to-a one
cycle after reading RAM, when
the read data is available on
the data bus

– The record and play state
machines would be parts of a
larger state machine controlled
by signals that determine when
to record or play

a

da_ld=1

ad_buf=0
Ra=a
Rrw=0
Ren=1

V

a=0

a=a+1

a=4095

a<4095
W

X

Local register: a (12 bits)

Play behavior

data bus

analog-to-
digital

converter

digital-to-
analog

converter
ad_ld da_ld

Rw Ren Ra 12

16

processor

ad_buf

4096x16
RAM

Digital Design
Copyright © 2006
Frank Vahid

72

Read-Only Memory – ROM
• Memory that can only be read from, not

written to
– Data lines are output only
– No need for rw input

• Advantages over RAM
– Compact: May be smaller
– Nonvolatile: Saves bits even if power supply

is turned off
– Speed: May be faster (especially than

DRAM)
– Low power: Doesn’t need power supply to

save bits, so can extend battery life
• Choose ROM over RAM if stored data won’t

change (or won’t change often)
– For example, a table of Celsius to Fahrenheit

conversions in a digital thermometer

32

10
data

addr

r w

en

1024 × 32
R A M

RAM block symbol

32

10
data

addr

en

1024x32
ROM

ROM block symbol

Digital Design
Copyright © 2006
Frank Vahid

73

Read-Only Memory – ROM

• Internal logical structure similar to RAM, without the data
input lines

32

10
data

addr

en

1024x32
ROM

ROM block symbol

ROM cell

addr0
addr1

addr(A-1)

clk
en

addr

Let A = log2M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

AxM
decoder

word
enable

rdata(N-1) rdata(N-2) rdata0

bit storage
block
(aka “cell”)

w o r d

word
enable

word
enable

data

data

Digital Design
Copyright © 2006
Frank Vahid

74

ROM Types
• If a ROM can only be read, how

are the stored bits stored in the
first place?
– Storing bits in a ROM known as

programming
– Several methods

• Mask-programmed ROM
– Bits are hardwired as 0s or 1s

during chip manufacturing
• 2-bit word on right stores “10”
• word enable (from decoder) simply

passes the hardwired value
through transistor

– Notice how compact, and fast, this
memory would be

cell cell

word
enable

data line data line 0 1

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A× M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell)

word

,,,,

cell
word

enable
word

enable

data

data

Digital Design
Copyright © 2006
Frank Vahid

75

ROM Types
• Fuse-Based Programmable

ROM
– Each cell has a fuse
– A special device, known as a

programmer, blows certain fuses
(using higher-than-normal voltage)

• Those cells will be read as 0s
(involving some special electronics)

• Cells with unblown fuses will be read
as 1s

• 2-bit word on right stores “10”
– Also known as One-Time

Programmable (OTP) ROM

cell cell

word
enable

data line data line 1 1

blown fuse fuse

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A× M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell)

word

,,,,

cell
word

enable
word

enable

data

data

a

Digital Design
Copyright © 2006
Frank Vahid

76

ROM Types
• Erasable Programmable ROM

(EPROM)
– Uses “floating-gate transistor” in each cell
– Special programmer device uses higher-

than-normal voltage to cause electrons to
tunnel into the gate

• Electrons become trapped in the gate
• Only done for cells that should store 0
• Other cells (without electrons trapped in

gate) will be 1
– 2-bit word on right stores “10”

• Details beyond our scope – just general
idea is necessary here

– To erase, shine ultraviolet light onto chip
• Gives trapped electrons energy to escape
• Requires chip package to have window

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A× M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell)

word

,,,,

cell
word

enable
word

enable

data

data

c ell c ell

word
enable

data line data line

e Ð e Ð

a ting

g a t e t r
t or

trapped electrons

0 1

flo
at

in
g-

ga
te

tra

ns
is

to
r

Digital Design
Copyright © 2006
Frank Vahid

77

ROM Types
• Electronically-Erasable Programmable ROM

(EEPROM)
– Similar to EPROM

• Uses floating-gate transistor, electronic programming to
trap electrons in certain cells

– But erasing done electronically, not using UV light
– Erasing done one word at a time

• Flash memory
– Like EEPROM, but all words (or large blocks of

words) can be erased simultaneously
– Become common relatively recently (late 1990s)

• Both types are in-system programmable
– Can be programmed with new stored bits while in the

system in which the ROM operates
• Requires bi-directional data lines, and write control input
• Also need busy output to indicate that erasing is in

progress – erasing takes some time

a ting

g a t e t r
t or 32

10
data

addr

en

write

busy

1024x32
EEPROM

Digital Design
Copyright © 2006
Frank Vahid

78

ROM Example: Talking Doll

• Doll plays prerecorded message, trigger by vibration
– Message must be stored without power supply  Use a ROM, not a RAM,

because ROM is nonvolatile
• And because message will never change, use a mask-programmed ROM or

OTP ROM
– Processor should wait for vibration (v=1), then read words 0 to 4095 from

the ROM, writing each to the d-to-a

4096x16 ROM

processor

d a

Ra

16

Ren

da_ld

digital-to-
analog

converter

v

speaker

vibration
sensor

“Hello there!”

“Hello there!” audio
divided into 4096
samples, stored
in ROM

“H
ello there!”

a

Digital Design
Copyright © 2006
Frank Vahid

79

ROM Example: Talking Doll

• High-level state machine
– Create state machine that waits for v=1, and then counts from 0 to

4095 using a local register a
– For each a, read ROM, write to digital-to-analog converter

d a

4096x16 ROM

processor

Ra

16

Ren

da_ld

digital-to-
analog

converter

v

S a=0

da_ld=1
a=a+1 a=4095

a<4095

T

U

R a=a
R en=1

Local register: a (12 bits)

v

v’
a

Digital Design
Copyright © 2006
Frank Vahid

80

ROM Example: Digital Telephone Answering Machine
Using a Flash Memory

• Want to record the outgoing
announcement

– When rec=1, record digitized
sound in locations 0 to 4095

– When play=1, play those
stored sounds to digital-to-
analog converter

• What type of memory?
– Should store without power

supply – ROM, not RAM
– Should be in-system

programmable – EEPROM
or Flash, not EPROM, OTP
ROM, or mask-programmed
ROM

– Will always erase entire
memory when
reprogramming – Flash
better than EEPROM

analog-to-
digital

converter
digital-to-

analog
converter ad_ld

da_ld

Rrw Ren er bu Ra
12

16

processor

ad_buf

busy

4096x16 Flash

rec
play record

microphone speaker

“We’re not home.”

Digital Design
Copyright © 2006
Frank Vahid

81

ROM Example: Digital Telephone Answering Machine
Using a Flash Memory

• High-level state machine
– Once rec=1, begin

erasing flash by setting
er=1

– Wait for flash to finish
erasing by waiting for
bu=0

– Execute loop that sets
local register a from 0 to
4095, reading analog-to-
digital converter and
writing to flash for each a

d a r w en analog-to-
digital

converter
digital-to-

analog
converter ad_ld

da_ld

Rrw Ren er bu Ra
12

16

processor

ad_buf

4096x16 Flash

rec
play record

microphone speaker

T

er=0

bu

bu’

er=1
r ec

S

Local register: a (13 bits)

a=4096

a<4096
U

V

ad_ld=1
ad_buf=1
Ra=a
Rrw=1
Ren=1
a=a+1

a=0

a

Digital Design
Copyright © 2006
Frank Vahid

82

Blurring of Distinction Between ROM and RAM
• We said that

– RAM is readable and writable
– ROM is read-only

• But some ROMs act almost like RAMs
– EEPROM and Flash are in-system programmable

• Essentially means that writes are slow
– Also, number of writes may be limited (perhaps a few million times)

• And, some RAMs act almost like ROMs
– Non-volatile RAMs: Can save their data without the power supply

• One type: Built-in battery, may work for up to 10 years
• Another type: Includes ROM backup for RAM – controller writes RAM contents to

ROM before turning off
• New memory technologies evolving that merge RAM and ROM benefits

– e.g., MRAM
• Bottom line

– Lot of choices available to designer, must find best fit with design goals

EEPROM
ROM Flash

NVRAM

RAM
a

Digital Design
Copyright © 2006
Frank Vahid

83

Queues
• A queue is another component

sometimes used during RTL
design

• Queue: A list written to at the
back, from read from the front
– Like a list of waiting restaurant

customers
• Writing called a push, reading

called a pop
• Because first item written into a

queue will be the first item read
out, also called a FIFO (first-in-
first-out)

5.7

front back

write items
to the back
of the queue

read (and
remove) items
from front of
the queue

Digital Design
Copyright © 2006
Frank Vahid

84

Queues
• Queue has addresses, and two

pointers: rear and front
– Initially both point to 0

• Push (write)
– Item written to address pointed to

by rear
– rear incremented

• Pop (read)
– Item read from address pointed

to by front
– front incremented

• If front or rear reaches 7, next
(incremented) value should be 0
(for a queue with addresses 0 to
7)

r f

0 1 2 3 4 5 6 7

f r

0

A

1 2 3 4 5 6 7

A

f r

0

A B

1 2 3 4 5 6 7

B

f r

0

B

1 2 3 4 5 6 7

A

a

a

a

Digital Design
Copyright © 2006
Frank Vahid

85

Queues
• Treat memory as a circle

– If front or rear reaches 7, next (incremented)
value should be 0 rather than 8 (for a queue
with addresses 0 to 7)

• Two conditions of interest
– Full queue – no room for more items

• In 8-entry queue, means 8 items present
• No further pushes allowed until a pop occurs
• Causes front=rear

– Empty queue – no items
• No pops allowed until a push occurs
• Causes front=rear

– Both conditions have front=rear
• To detect whether front=rear means full or

empty, need state machine that detects if
previous operation was push or pop, sets full
or empty output signal (respectively)

f r

0

B

1 2 3 4 5 6 7

A

B

1 7

2 6

3 5

4

0

f
r r

a

Digital Design
Copyright © 2006
Frank Vahid

86

Queue Implementation
• Can use register file for

item storage
• Implement rear and front

using up counters
– rear used as register file’s

write address, front as read
address

• Simple controller would
set control lines for
pushes and pops, and
also detect full and empty
situations
– FSM for controller not

shown

8×16 register file

clr

3-bit
up counter

3-bit
up counter

inc
clr

inc

rear front

=

wr

rd

reset

wdata rdata16 16

33

wdata

waddr
wr

rdata

raddr

rd

eq

Co
nt

ro
lle

r

full

empty
8-word 16-bit queue

Digital Design
Copyright © 2006
Frank Vahid

87

Common Uses of a Queue
• Computer keyboard

– Pushes pressed keys onto queue, meanwhile pops and sends to
computer

• Digital video recorder
– Pushes captured frames, meanwhile pops frames, compresses

them, and stores them

• Computer network routers
– Pushes incoming packets onto queue, meanwhile pops packets,

processes destination information, and forwards each packet out
over appropriate port

Digital Design
Copyright © 2006
Frank Vahid

88

Queue Usage Example
• Example series of pushes

and pops
– Note how rear and front

pointers move
– Note that popping doesn’t

really remove the data from the
queue, but that data is no
longer accessible

– Note how rear (and front)
wraps around from address 7
to 0

• Note: pushing a full queue is
an error
– As is popping an empty queue

r f

01234567

fr

0123456

9585723

7

fr

01234567

f r

01234567

9585723

95857236

r f

01234567

data:
9

full35857236

ERROR! Pushing a full queue
results in unknown state

Initially empty
queue

1. After pushing
9, 5, 8, 5, 7, 2, 3

2. After popping

3. After pushing 6

4. After pushing 3

5. After pushing 4

Digital Design
Copyright © 2006
Frank Vahid

89

Hierarchy – A Key Design Concept

• Hierarchy
– An organization with a few items at the

top, with each item decomposed into other
items

– Common example: A country
• 1 item at the top (the country)
• Country item decomposed into

state/province items
• Each state/province item decomposed into

city items
• Hierarchy helps us manage complexity

– To go from transistors to gates, muxes,
decoders, registers, ALUs, controllers,
datapaths, memories, queues, etc.

– Imagine trying to comprehend a controller
and datapath at the level of gates

5.8

P r o vin
c e 3

P r o vin
c e 2

P r o vin
c e 1

CityF

Country A

vin vin vin
P r o
c

P r o
c e 2

P r o
c e 1

Province 1

Province 2

Province 3

Province 1

Province 2

Province 3

Map showing all levels of hierarchy

Map showing just top two levels
of hierarchy

CityG
CityE

CityD CityA

CityB

CityC

Country A

Digital Design
Copyright © 2006
Frank Vahid

90

Hierarchy and Abstraction

• Abstraction
– Hierarchy often involves not just grouping

items into a new item, but also associating
higher-level behavior with the new item,
known as abstraction

• e.g., an 8-bit adder has an understandable
high-level behavior – it adds two 8-bit binary
numbers

– Frees designer from having to remember,
or even from having to understand, the
lower-level details

P r o vin
c e 3

P r o vin
c e 2

P r o vin
c e 1

vin vin vin
P r o
c e 3

P r o
c e 2

P r o
c e 1

a7.. a0 b7.. b0

s7.. s0 c o

ci 8-bit adder

Digital Design
Copyright © 2006
Frank Vahid

91

Hierarchy and Composing Larger Components
from Smaller Versions

• A common task is to compose smaller components

into a larger one
– Gates: Suppose you have plenty of 3-input AND gates,

but need a 9-input AND gate
• Can simple compose the 9-input gate from several 3-input

gates
– Muxes: Suppose you have 4x1 and 2x1 muxes, but

need an 8x1 mux
• s2 selects either top or bottom 4x1
• s1s0 select particular 4x1 input
• Implements 8x1 mux – 8 data inputs, 3 selects, one output

P r o vin
c e 3

P r o vin
c e 2

P r o vin
c e 1

vin vin vin
P r o
c e 3

P r o
c e 2

P r o
c e 1

4×1

2×1

d

d

i0
i1

i1

i0

i2
i3

i0
i1
i2
i3

i4
i5
i6
i7

s1 s0

s0
4×1

d

i0
i1
i2
i3

s1 s0

s1 s0 s2

a

Digital Design
Copyright © 2006
Frank Vahid

92

Hierarchy and Composing Larger Components
from Smaller Versions

• Composing memory very common
• Making memory words wider

– Easy – just place memories side-by-side until desired width obtained
– Share address/control lines, concatenate data lines
– Example: Compose 1024x8 ROMs into 1024x32 ROM

P r o vin
c e 3

P r o vin
c e 2

P r o vin
c e 1

vin
P r o
c e 3

P r o P r o

1024x32
ROM

1024x8
ROM

data

addr

en
data

8 8

32

8 8

10

10

en

en

addr

addr

data(31..0)

1024x8
ROM

addr

en
data

1024x8
ROM

addr

en
data

1024x8
ROM

addr

en
data

Ez a kép most nem jeleníthető meg.

Digital Design
Copyright © 2006
Frank Vahid

93

Hierarchy and Composing Larger Components
from Smaller Versions

• Creating memory with more words
– Put memories on top of one another until the

number of desired words is achieved
– Use decoder to select among the memories

• Can use highest order address input(s) as
decoder input

• Although actually, any address line could be
used

– Example: Compose 1024x8 memories into
2048x8 memory

P r o vin
c e 3

P r o vin
c e 2

P r o vin
c e 1

vin vin
P r o
c e 3

P r o
c e 2

P 1024x8
ROM

addr

en data

1024x8
ROM

addr

en data

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0

0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1

a0 a10 a9 a8

a10 just chooses
which memory
to access

To create memory with more
words and wider words, can first
compose to enough words, then
widen.

a

a

2048x8
ROM

data

8

11

11

en
addr

1024x8
ROM

addr

en data

8

1024x8
ROM

addr

en data

8

a9..a0

a10 d0

d1

en

addr 1x2
dcd i0
e

Digital Design
Copyright © 2006
Frank Vahid

94

Chapter Summary
– Modern digital design involves creating processor-level components
– Four-step RTL method can be used

• 1. High-level state machine 2. Create datapath 3. Connect datapath
to controller 4. Derive controller FSM

– Several example
• Control dominated, data dominated, and mix

– Determining fastest clock frequency
• By finding critical path

– Behavioral-level design – C to gates
• By using method to convert C (subset) to high-level state machine

– Additional RTL components
• Memory: RAM, ROM
• Queues

– Hierarchy: A key concept used throughout Chapters 2-5

	Digital Design
	Introduction
	RTL Design: Capture Behavior, Convert to Circuit
	RTL Design Method
	RTL Design Method: “Preview” Example
	Preview Example: Step 1 --�Capture High-Level State Machine
	Preview Example: �Step 2 -- Create Datapath
	Preview Example: Step 3 – �Connect Datapath to a Controller
	Preview Example: Step 4 – Derive the Controller’s FSM
	Preview Example: Completing the Design
	Step 1: Create a High-Level State Machine
	Step 1 Example: Laser-Based Distance Measurer
	Step 1 Example: Laser-Based Distance Measurer
	Step 1 Example: Laser-Based Distance Measurer
	Step 1 Example: Laser-Based Distance Measurer
	Step 1 Example: Laser-Based Distance Measurer
	Step 1 Example: Laser-Based Distance Measurer
	Step 1 Example: Laser-Based Distance Measurer
	Step 2: Create a Datapath
	Step 2 Example: Laser-Based Distance Measurer
	Step 2 Example: Laser-Based Distance Measurer
	Step 2 Example Showing Mux Use
	Step 3: Connecting the Datapath to a Controller
	Step 4: Deriving the Controller’s FSM
	Step 4: Deriving the Controller’s FSM
	Step 4
	RTL Design Examples and Issues
	RTL Example: Bus Interface
	RTL Example: Bus Interface
	RTL Example: Bus Interface
	RTL Example: Bus Interface
	RTL Example: Video Compression – Sum of Absolute Differences
	RTL Example: Video Compression – Sum of Absolute Differences
	RTL Example: Video Compression – Sum of Absolute Differences
	RTL Example: Video Compression – Sum of Absolute Differences
	RTL Example: Video Compression – Sum of Absolute Differences
	RTL Example: Video Compression – Sum of Absolute Differences
	RTL Example: Video Compression – Sum of Absolute Differences
	RTL Design Pitfalls and Good Practice
	RTL Design Pitfalls and Good Practice
	RTL Design Pitfalls and Good Practice
	RTL Design Pitfalls and Good Practice
	Control vs. Data Dominated RTL Design
	Data Dominated RTL Design Example: FIR Filter
	Data Dominated RTL Design Example: FIR Filter
	Data Dominated RTL Design Example: FIR Filter
	Data Dominated RTL Design Example: FIR Filter
	Data Dominated RTL Design Example: FIR Filter
	Data Dominated RTL Design Example: FIR Filter
	Data Dominated RTL Design Example: FIR Filter
	Determining Clock Frequency
	Critical Path
	Critical Path Considering Wire Delays
	A Circuit May Have Numerous Paths
	Behavioral Level Design: C to Gates
	Behavioral-Level Design: Start with C (or Similar Language)
	Converting from C to High-Level State Machine
	Converting from C to High-Level State Machine
	Simple Example of Converting from C to High-Level State Machine
	Example: Converting Sum-of-Absolute-Differences C code to High-Level State Machine
	Memory Components
	Random Access Memory (RAM)
	RAM Internal Structure
	Static RAM (SRAM)
	Static RAM (SRAM)
	Dynamic RAM (DRAM)
	Comparing Memory Types
	Reading and Writing a RAM
	RAM Example: Digital Sound Recorder
	RAM Example: Digital Sound Recorder
	RAM Example: Digital Sound Recorder
	Read-Only Memory – ROM
	Read-Only Memory – ROM
	ROM Types
	ROM Types
	ROM Types
	ROM Types
	ROM Example: Talking Doll
	ROM Example: Talking Doll
	ROM Example: Digital Telephone Answering Machine Using a Flash Memory
	ROM Example: Digital Telephone Answering Machine Using a Flash Memory
	Blurring of Distinction Between ROM and RAM
	Queues
	Queues
	Queues
	Queue Implementation
	Common Uses of a Queue
	Queue Usage Example
	Hierarchy – A Key Design Concept
	Hierarchy and Abstraction
	Hierarchy and Composing Larger Components from Smaller Versions
	Hierarchy and Composing Larger Components from Smaller Versions
	Hierarchy and Composing Larger Components from Smaller Versions
	Chapter Summary

