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Introduction 
• Sequential circuit 

– Output depends not just on present inputs (as in 
combinational circuit), but on past sequence of inputs 

• Stores bits, also known as having “state” 
– Simple example: a circuit that counts up in binary 

• In this chapter, we will: 
– Design a new building block, a flip-flop, that stores 

one bit 
– Combine that block to build multi-bit storage – a 

register 
– Describe the sequential behavior using a finite state 

machine 
– Convert a finite state machine to a controller – a 

sequential circuit having a register and combinational 
logic 

3.1 

Combinational 
digital circuit 

1 
a 

b 

1 
F 0 

1 
a 

b 
? F 0 

Must know 
sequence of 

past inputs to 
know output 

Sequential 
digital circuit 

Note: Slides with animation are denoted with a small red "a" near the animated items 
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Example Needing Bit Storage 

• Flight attendant call button 
– Press call: light turns on 

• Stays on after button released 
– Press cancel: light turns off 
– Logic gate circuit to implement this? 

Q Call 
Cancel 

Doesn’t work. Q=1 when Call=1, but 
doesn’t stay 1 when Call returns to 0 

Need some form of “feedback” in the circuit 

a 

3.2 

Bit 
Storage 

Blue light Call 
button 

Cancel 
button 

1. Call button pressed – light turns on 

Bit 
Storage 

Blue light Call 
button 

Cancel 
button 

2. Call button released – light stays on 

Bit 
Storage 

Blue light Call 
button 

Cancel 
button 

3. Cancel button pressed – light turns off 
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First attempt at Bit Storage 

• We need some sort of feedback 
– Does circuit on the right do what we want? 

• No: Once Q becomes 1 (when S=1), Q stays 1 
forever – no value of S can bring Q back to 0 
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Q 

Bit Storage Using an SR Latch 

Q 

S (set) SR latch 

R (reset) 

• Does the circuit to the right, with cross-coupled 
NOR gates, do what we want? 
– Yes! How did someone come up with that circuit? 

Maybe just trial and error, a bit of insight... 
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Example Using SR Latch for Bit Storage 
• SR latch can serve as bit 

storage in previous example 
of flight-attendant call button 
– Call=1 : sets Q to 1 

• Q stays 1 even after Call=0 
– Cancel=1 : resets Q to 0 

 
• But, there’s a problem... 

R 

S 

Q 

C all 
but t on 

Blue lig h t 

C an c el 
but t on 

Bit 
S t o r age 

Blue lig h t C all 
but t on 

C an c el 
but t on 
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Problem with SR Latch 
• Problem 

– If S=1 and R=1 simultaneously, we don’t know what value Q will take 

R=1

S=1

0

0

0

0

t

Q

R=0

S=0

0

0

1

1

t

Q

R=0

S=0

1

1

0

0

t

Q

0

1

0

1

0

1

0

1

S

R

Q
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1
t
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Q
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Q may oscillate. Then, because one path will be 
slightly longer than the other, Q will eventually 
settle to 1 or 0 – but we don’t know which. 
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Problem with SR Latch 
• Problem not just one of a user pressing two buttons at 

same time 
• Can also occur even if SR inputs come from a circuit that 

supposedly never sets S=1 and R=1 at same time 
– But does, due to different delays of different paths 

1

0

1

0

1

0

1

0

X

Y

S

R

SR = 11
The longer path from X to R than to S causes SR=11 for 
short time – could be long enough to cause oscillation 

R Y 

X S SR latch 

Q 

A r bit r a r y 
circuit 
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Solution: Level-Sensitive SR Latch 
• Add enable input “C” as shown 

– Only let S and R change when C=0 
• Enure circuit in front of SR never sets 

SR=11, except briefly due to path delays 
– Change C to 1 only after sufficient time for S 

and R to be stable 
– When C becomes 1, the stable S and R 

value passes through the two AND gates to 
the SR latch’s S1 R1 inputs.  

R1 

S1 S 

C 

R 

Level-sensitive SR latch 

Q 

Though SR=11 briefly... 

...S1R1 never = 11 

S 

C 
Q ’ 

Q 
R 

Level-sensitive 
SR latch symbol 

R1 

S1 
S 

X 

Y 

C 
Clk 

R 

Level-sensitive SR latch 
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Clock Signals for a Latch 

• How do we know when it’s safe to set C=1? 
– Most common solution –make C pulse up/down 

• C=0: Safe to change X, Y 
• C=1: Must not change X, Y 
• We’ll see how to ensure that later 

– Clock signal -- Pulsing signal used to enable 
latches  

• Because it ticks like a clock 
– Sequential circuit whose storage components all 

use clock signals: synchronous circuit 
• Most common type 
• Asynchronous circuits – important topic, but left for 

advanced course 

R1 

S1 
S 

X 

Y 

C 
Clk 

R 
Q 

Level-sensitive SR latch 
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Clocks 

• Clock period: time interval between pulses  
– Above signal: period = 20 ns 

• Clock cycle: one such time interval 
– Above signal shows 3.5 clock cycles 

• Clock frequency: 1/period 
– Above signal: frequency = 1 / 20 ns = 50 MHz 

• 1 Hz = 1/s 

100 GHz 
10 GHz 
1 GHz 

100 MHz 
10 MHz 

0.01 ns 
0.1 ns 

1 ns 
10 ns 

100 ns 

Period Freq 
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Level-Sensitive D Latch 
• SR latch requires careful design to 

ensure SR=11 never occurs 
• D latch relieves designer of that 

burden 
– Inserted inverter ensures R always 

opposite of S 
R 

S 
D 

C 

D latch 

Q 

1

0
D

C

S

R

Q
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0

1

0

D Q ’ 

Q C 

D latch symbol 



Digital Design 
Copyright © 2006  
Frank Vahid 

13 

Problem with Level-Sensitive D Latch 
• D latch still has problem (as does SR latch) 

– When C=1, through how many latches will a signal travel? 
– Depends on for how long C=1 

• Clk_A -- signal may travel through multiple latches 
• Clk_B -- signal may travel through fewer latches 

– Hard to pick C that is just the right length 
• Can we design bit storage that only stores a value on the rising edge of 

a clock signal? 

D1 Q1 D2 Q2 D3 Q3 D4

C4C3C2C1

Q4Y

Clk

Clk_A Clk_B

Clk 

rising edges 
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D Flip-Flop 
• Flip-flop: Bit storage that stores on clock edge, not level  
• One design  -- master-servant 

– Two latches, output of first goes to input of second, master 
latch has inverted clock signal 

– So master loaded when C=0, then servant when C=1 
– When C changes from 0 to 1, master disabled, servant 

loaded with value that was at D just before C changed -- i.e., 
value at D during rising edge of C 

 Clk

D/Dm

Qm/Ds

Cm

Cs

Qs

Clk 

rising edges 

Note: 
Hundreds of 
different flip-
flop designs 
exist 

D latch 

master 

D latch 

servant 

D Dm Ds 

Cs 

Qm Q s ’ 

Qs Q 

Q ’ 

C m 

Clk 

D flip-flop 
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D Flip-Flop 
 

D Q ’ 

Q 

Q ’ D 

Q 

Symbol for rising-edge 
triggered D flip-flop 

Symbol for falling-edge 
triggered D flip-flop 

Clk 

rising edges 

Clk 

falling edges 

Internal design: Just 
invert servant clock 
rather than master 

The triangle 
means clock 
input, edge 
triggered 
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D Flip-Flop 
• Solves problem of not knowing through how many latches a signal 

travels when C=1  
– In figure below, signal travels through exactly one flip-flop, for Clk_A or 

Clk_B 
– Why? Because on rising edge of Clk, all four flip-flops are loaded 

simultaneously -- then all four no longer pay attention to their input, until the 
next rising edge. Doesn’t matter how long Clk is 1.  

Two latches inside 
each flip-flop 

D1 Q1 D2 Q2 D3 Q3 D4 Q4 Y 

Clk 

Clk_A Clk_B 
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D Latch vs. D Flip-Flop 
• Latch is level-sensitive: Stores D when C=1 
• Flip-flop is edge triggered: Stores D when C changes from 

0 to 1 
– Saying “level-sensitive latch,” or “edge-triggered flip-flop,” is 

redundant 
– Two types of flip-flops -- rising or falling edge triggered. 

• Comparing behavior of latch and flip-flop:  
 

Clk

D

Q (D latch)

Q (D flip-flop) 10

87

654

9

3

1 2
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Flight-Attendant Call Button Using D Flip-Flop 
• D flip-flop will store bit 
• Inputs are Call, Cancel, and present value 

of D flip-flop, Q 
• Truth table shown below 

Preserve value: if 
Q=0, make D=0; if 
Q=1, make D=1 

Cancel -- make 
D=0 

Call -- make D=1 

Let’s give priority 
to Call -- make 
D=1 

Circuit derived from truth table, 
using Chapter 2 combinational 

logic design process 

C all 
but t on 

C an c el 
but t on 

Flight 
attendant 
call-button 

system 

Blue 
light 

D Q’ 

Q Clk 

C all 
but t on 

C an c el 
but t on 

Blue 
light 

Call 
Cancel 

Q 
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Bit Storage Summary 

• We considered increasingly better bit storage until we 
arrived at the robust D flip-flop bit storage 
 

D flip-flop 

D latch 

master 

D latch 

servant 

Dm Qm 

C m 

Ds D 

Clk 

Qs’ 

Cs Qs 

Q ’ 

Q 

S 

R 

D 

Q 

C 

D latch 

Feature: Only loads D value 
present at rising clock edge, so 
values can’t propagate to other 
flip-flops during same clock 
cycle. Tradeoff: uses more 
gates internally than D latch, 
and requires more external 
gates than SR – but gate count 
is less of an issue today. 

Feature: SR can’t be 11 if 
D is stable before and 
while C=1, and will be 11 
for only a brief glitch even 
if D changes while C=1. 
Problem: C=1 too long 
propagates new values 
through too many latches: 
too short may not enable a 
store. 

S1 

R1 

S 

Q 

C 

R 

Level-sensitive SR latch 

Feature: S and R only 
have effect when C=1. 
We can design outside 
circuit so SR=11 never 
happens when C=1. 
Problem: avoiding SR=11 
can be a burden. 

R (reset) 

S (set) 

Q 

SR latch 

Feature: S=1 sets 
Q to 1, R=1 resets 
Q to 0. Problem: 
SR=11 yield 
undefined Q. 
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Basic Register 
• Typically, we store multi-bit items 

– e.g., storing a 4-bit binary number 
• Register: multiple flip-flops sharing clock signal 

– From this point, we’ll use registers for bit storage 
• No need to think of latches or flip-flops 
• But now you know what’s inside a register 

 

D
Q

D
Q

D
Q

D
Q

I2I3

Q2Q3 Q1 Q0

I1 I0

clk

4-bit register

I3 I2 I1 I0

Q3 Q2 Q1 Q0
reg(4)
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Example Using Registers: Temperature Display 
• Temperature history display 

– Sensor outputs temperature as 5-bit binary number 
– Timer pulses C every hour 
– Record temperature on each pulse, display last three recorded values  

a4 x4 
x3 
x2 
x1 
x0 

C 

a3 a2 a1 a0 tem
perature 

sensor 

timer 

Display 

Present 

b4 b3 b2 b1 b0 

Display 

TemperatureHistoryStorage 

1 hour ago 

c4 c3 c2 c1 c0 

Display 

2 hours ago 

(In practice, we would actually avoid connecting the timer output 
C to a clock input, instead only connecting an oscillator output to a clock input.) 
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Example Using Registers: Temperature Display 
• Use three 5-bit registers 

15 18 20 

0 

0 

0 

18 

0 

0 

21 

18 

0 

24 

21 

18 

25 

24 

21 

26 

25 

24 

27 

26 

25 

21 21 22 24 24 24 25 25 26 26 26 27 27 27 27 x4...x0 

C 

R a 

R b 

R c 

Q4 

C 

x4 
x3 
x2 
x1 
x0 

Q3 
Q2 
Q1 
Q0 

R a R b 

I 4 
I 3 
I 2 
I 1 
I 0 

Q4 

a4 a3 a2 a1 a0 

Q3 
Q2 
Q1 
Q0 

I 4 
I 3 
I 2 
I 1 
I 0 

R c 

Q4 

b4 b3 b2 b1 b0 

Q3 
Q2 
Q1 
Q0 

I 4 
I 3 
I 2 
I 1 
I 0 

c4 c3 c2 c1 c0 

TemperatureHistoryStorage 
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Finite-State Machines (FSMs) and Controllers 
• Want sequential circuit with 

particular behavior over time 
• Example: Laser timer 

– Push button: x=1 for 3 clock cycles 
– How? Let’s try three flip-flops 

• b=1 gets stored in first D flip-flop 
• Then 2nd flip-flop on next cycle, 

then 3rd flip-flop on next 
• OR the three flip-flop outputs, so x 

should be 1 for three cycles 

3.3 

Controller 
x 

b 

clk 

laser 

  patient 

D Q D Q D Q

clk

b

x
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Need a Better Way to Design Sequential Circuits 
• Trial and error is not a good design method 

– Will we be able to “guess” a circuit that works for other desired 
behavior? 
• How about counting up from 1 to 9? Pulsing an output for 1 cycle 

every 10 cycles? Detecting the sequence 1 3 5 in binary on a 3-bit 
input? 

– And, a circuit built by guessing may have undesired behavior 
• Laser timer: What if press button again while x=1? x then stays one 

another 3 cycles. Is that what we want? 

• Combinational circuit design process had two important 
things 
1. A formal way to describe desired circuit behavior 

• Boolean equation, or truth table 
2. A well-defined process to convert that behavior to a circuit 

• We need those things for sequence circuit design 
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Describing Behavior of Sequential Circuit: FSM 
• Finite-State Machine (FSM) 

– A way to describe desired 
behavior of sequential circuit 

• Akin to Boolean equations for 
combinational behavior 

– List states, and transitions 
among states 

• Example: Make x change 
toggle (0 to 1, or 1 to 0) every 
clock cycle 

• Two states: “Off” (x=0), and 
“On” (x=1) 

• Transition from Off to On, or 
On to Off, on rising clock edge 

• Arrow with no starting state 
points to initial state (when 
circuit first starts) 

 
 

Outputs: x 

On O ff 

x=0 x=1 

clk ̂  

clk ̂  

Off On Off On Off On Off On

cycle 1

Off OffOn On

cycle 2 cycle 3 cycle 4
clk

state

x

Outputs:
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FSM Example: 0,1,1,1,repeat 
• Want 0, 1, 1, 1, 0, 1, 1, 1, ... 

– Each value for one clock cycle 

• Can describe as FSM 
– Four states 
– Transition on rising clock 

edge to next state 

O ff O ff On1 On1 On2 On2 On3 On3 O ff 

clk 

x 

State 

Outputs: 

Outputs: x 

On1 O ff On2 On3 

clk ̂  

clk ̂  

clk ̂  x=1 x=1 x=0 x=1 clk ̂  
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Extend FSM to Three-Cycles High Laser Timer 
• Four states 
• Wait in “Off” state while b is 

0 (b’)  
• When b is 1 (and rising 

clock edge), transition to 
On1 
– Sets x=1 
– On next two clock edges, 

transition to On2, then On3, 
which also set x=1 

• So x=1 for three cycles after 
button pressed 
 

Off OffOn1Off Off Off On2 On3Off

clk

State

Outputs:

Inputs:

x

b

On2 On1 On3 

O ff 

clk ̂  

clk ̂  

x=1 x=1 x=1 

x=0 

clk ̂  

b ’*clk ̂  

b*clk ̂  

Inputs: b; Outputs: x 
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FSM Simplification: Rising Clock Edges Implicit 
• Showing rising clock on every 

transition: cluttered 
– Make implicit -- assume every 

edge has rising clock, even if not 
shown 

– What if we wanted a transition 
without a rising edge 

• We don’t consider such 
asynchronous FSMs -- less 
common, and advanced topic 

• Only consider synchronous 
FSMs -- rising edge on every 
transition 

 
Note: Transition with no associated condition thus 
transistions to next state on next clock cycle 

On2 On1 On3 

Off 

x=1 x=1 x=1 

x=0 

b ’ 

b 

Inputs: b; Outputs: x 

On2 On1 On3 

O ff 

x=1 x=1 x=1 

x=0 

b’ 

clk ̂  

clk ̂  

^ clk 

 *clk ̂  

*clk ̂  b 

Inputs: b; Outputs: x 
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FSM Definition 
• FSM consists of 

– Set of states 
• Ex: {Off, On1, On2, On3} 

– Set of inputs, set of outputs 
• Ex: Inputs: {x}, Outputs: {b} 

– Initial state 
• Ex: “Off” 

– Set of transitions 
• Describes next states 
• Ex: Has 5 transitions 

– Set of actions 
• Sets outputs while in states 
• Ex: x=0, x=1, x=1, and x=1 

 

Inputs: b; Outputs: x 

On2 On1 On3 

Off 

x=1 x=1 x=1 

x=0 

b ’ 

b 

We often draw FSM graphically, 
known as state diagram 

Can also use table (state table), or 
textual languages 
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FSM Example: Secure Car Key 
• Many new car keys include 

tiny computer chip 
– When car starts, car’s 

computer (under engine hood) 
requests identifier from key 

– Key transmits identifier 
• If not, computer shuts off car 

• FSM 
– Wait until computer requests 

ID (a=1) 
– Transmit ID (in this case, 

1101) 

 

K1 K2 K3 K4 

r=1 r=1 r=0 r=1 

Wait 
r=0 

Inputs: a; Outputs: r 

a ’ a 
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FSM Example: Secure Car Key (cont.) 
• Nice feature of FSM 

– Can evaluate output behavior 
for different input sequence 

– Timing diagrams show states 
and output values for different 
input waveforms 

 

K1 K2 K3 K4 

r=1 r=1 r=0 r=1 

W ait 
r=0 

I nputs:  a ; O utputs:  r 

a ’ a 

W ait W ait K1 K2 K3 K4 W ait W ait 

clk 

I nputs 

O utputs 

S t a t e 

a 

r 

clk 
I nputs 

a 

K1 W ait W ait K1 K2 K3 K4 W ait 

Output 

State 

r 

Q: Determine states and r value for 
given input waveform: 
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FSM Example: Code Detector 
• Unlock door (u=1) only when 

buttons pressed in sequence:  
– start, then red, blue, green, red 

• Input from each button: s, r, g, b 
– Also, output a indicates that 

some colored button pressed 
• FSM 

– Wait for start (s=1) in “Wait” 
– Once started (“Start”) 

• If see red, go to “Red1” 
• Then, if see blue, go to “Blue” 
• Then, if see green, go to 

“Green” 
• Then, if see red, go to “Red2” 

– In that state, open the door 
(u=1) 

• Wrong button at any step, return 
to “Wait”, without opening door 

Start 

Red 
Green 

Blue 

s 

r 
g 
b 
a 

Door 
lock 

u 

Code 
detector 

Q: Can you trick this FSM to open the door, 
without knowing the code? 

A: Yes, hold all buttons simultaneously a 

a 

Wait 

Start 

Red1 R ed2 Green Blue 

s ’ 

a ’ 

a r ’ a b ’ a g ’ a r ’ 

a ’ 

ab ag ar 

a ’ a ’ 
u=0 

u=0 ar 

u=0 s 

u=0 u=0 u=1 

Inputs: s,r,g,b,a; 
Outputs: u 
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Improve FSM for Code Detector 

• New transition conditions detect if wrong button pressed, returns to “Wait” 
• FSM provides formal, concrete means to accurately define desired behavior 

Note: small problem still 
remains; we’ll discuss later 

Wait 

Start 

Red1 Red2 Green Blue 

s’ 

a ’ 

a ’ 

ab ag ar 

a ’ a ’ 
u=0 

u=0 ar 

u=0 s 

u=0 u=0 u=1 

ar’ ab’ ag’ ar’ 

Inputs: s,r,g,b,a; 
Outputs: u 
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Standard Controller Architecture 
• How implement FSM as sequential 

circuit? 
– Use standard architecture  

• State register -- to store the present 
state 

• Combinational logic -- to compute 
outputs, and next state 

• For laser timer FSM 
– 2-bit state register, can represent four 

states 
– Input b, output x 

– Known as controller 

On2 On1 On3 

Off 

x=1 x=1 x=1 

x=0 

b ’ 

b 

Inputs: b; Outputs: x 

Combinational 
logic 

State register 

s1 s0 

n1 

n0 

x b 

clk 
FS

M
 

in
pu

ts
 

FS
M

 
ou

tp
ut

s 

General version 

Combinational 
logic 
S 

m 
m 

N 

O I 

clk m-bit 
state register 

FS
M

 
ou

tp
ut

s 

FS
M

 
in

pu
ts
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Controller Design 
• Five step controller design process 

3.4 
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Controller Design: Laser Timer Example 
• Step 1: Capture the FSM 

– Already done 

• Step 2: Create architecture 
– 2-bit state register (for 4 states) 
– Input b, output x 
– Next state signals n1, n0 

• Step 3: Encode the states 
– Any encoding with each state  

unique will work 

x=1 x=1 x=1 

x=0 

b 

b ’ 

01 

00 

10 11 On2 On1 

O ff 

On3 

Inputs: b; Outputs: x 

Combinational 
logic 

State register 

s1 s0 

n1 

n0 

x b 

clk 
FS

M
 

in
pu

ts
 

FS
M

 
ou

tp
ut

s 
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Controller Design: Laser Timer Example (cont) 
• Step 4: Create state table 

x=1 x=1 x=1 

x=0 

b 

b ’ 

01 

00 

10 11 On2 On1 

O ff 

On3 

Inputs: b; Outputs: x 

Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs
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Controller Design: Laser Timer Example (cont) 
• Step 5: Implement 

combinational logic Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs

x = s1 + s0 (note from the table that x=1 if s1 = 1 or s0 
= 1) 

n1 = s1’s0b’ + s1’s0b + s1s0’b’ + s1s0’b 
n1 = s1’s0 + s1s0’ 

n0 = s1’s0’b + s1s0’b’ + s1s0’b 
n0 = s1’s0’b + s1s0’ 
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Controller Design: Laser Timer Example (cont) 
• Step 5: Implement 

combinational logic (cont.) 

x = s1 + s0 
n1 = s1’s0 + s1s0’ 
n0 = s1’s0’b + s1s0’ 

Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs

n1 

n0 

s0 s1 

clk 

Combinational Logic 

State register 

b FSM 
outputs FSM 

inputs 

x 
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Understanding the Controller’s Behavior 

 

s0 s1 

b x 

n1 

n0 

x=1 x=1 x=1 
b 

01 10 11 On2 On1 

O ff 

On3 

00 

0 0 

0 

0 
0 

0 

b ’ 

0 

0 

0 

0 0 

x=0 

0 0 
0 

clk 

clk 

I nputs: 

O utputs: 

1 

0 

1 0 

b 

1 

0 

1 
0 

0 

s0 s1 

b x 

n1 

n0 

x=1 x=1 x=1 

b ’ 

01 10 11 On2 On1 

O ff 

On3 

clk 

b 

x 

00 

0 0 

x=0 

0 0 
0 

st a t e=00 st a t e=00 

s0 s1 

b x 

n1 

n0 

x=1 x=1 x=1 

x=0 

b 

b ’ 

01 

00 

10 11 On2 On1 

O ff 

On3 

1 

0 

1 

1 

0 

0 
0 

1 
1 
0 

clk 0 1 
0 1 

st a t e=01 
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Controller Example:  
Button Press Synchronizer 

• Want simple sequential circuit that converts button press to 
single cycle duration, regardless of length of time that 
button actually pressed 
– We assumed such an ideal button press signal in earlier example, 

like the button in the laser timer controller 

cycle1 cycle2 cycle3 cycle4clk
Inputs:

Outputs:

bi

bo

Button press  
synchronizer 

controller 

bi bo 
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Controller Example:  
Button Press Synchronizer (cont) 

A

B

C

s1
0
0
0
0
1
1
1
1

s0
0
0
1
1
0
0
1
1

bi
0
1
0
1
0
1
0
1

Inputs
n1
0
0
0
1
0
1
0
0

n0
0
1
0
0
0
0
0
0

bo
0
0
1
1
0
0
0
0

Outputs
Combinational logic

unused

Step 4: State table 

Step 1: FSM 

A B C 

bo=1 bo=0 bo=0 
bi 

bi b i ’ 
bi ’ 

bi ’ 
bi 

FSM inputs: bi; FSM outputs: bo 

Step 3: Encode states 

00 01 10 

bo=1 bo=0 bo=0 
bi 

bi 
bi ’ 

bi ’ 

bi ’ 
bi 

FSM inputs: bi; FSM outputs: bo 

Step 5: Create combinational circuit 

FSM 
outputs 

Step 5: Create 
combinational circuit 

clk 
State register 

bo 

bi 

s1 s0 

n1 

n0 

Combinational logic 

n1 = s1’s0bi + s1s0bi 
n0 = s1’s0’bi 
bo = s1’s0bi’ + s1’s0bi = s1s0 

Step 2: Create architecture 
Combinational 

logic 

n0 
s1 s0 

n1 

bo bi 

clk State register 

FS
M

 
in

pu
ts

 

FS
M

 
ou

tp
ut

s 
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Controller Example: Sequence Generator 
• Want generate sequence 0001, 0011, 1100, 1000, (repeat) 

– Each value for one clock cycle 
– Common, e.g., to create pattern in 4 lights, or control magnets of a “stepper motor” 

00 

01 10 

11 A 

B 

D 

wxyz=0001 wxyz=1000 

wxyz=0011 wxyz=1100 

C 

Inputs: none; Outputs: w,x,y,z 

Step 3: Encode states 

Step 4: Create state table 
clk State register 

w 
x 

y 
z 

FSM 
outputs 

n0 s0 s1 n1 

Step 5: Create  combinational circuit 

w = s1 
x = s1s0’ 
y = s1’s0 
z = s1’ 
n1 = s1 xor s0 
n0 = s0’ 

Step 1: Create FSM 

A 

B 

D 

wxyz=0001 wxyz=1000 

wxyz=0011 wxyz=1100 

C 

Inputs: none; Outputs: w,x,y,z 

Step 2: Create architecture 

Combinational 
logic 

n0 
s1 s0 

n1 

clk State register 

w 
x 
y 
z 
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Controller Example: Secure Car Key 
• (from earlier example) 

K1 K2 K3 K4 

r=1 r=1 r=0 r=1 

Wait 
r=0 

Inputs: a; Outputs: r 

a ’ a 

S
te

p 
1 

FSM 
outputs 

Combinational 
logic 

s2 s1 s0 

n2 

r a 

n1 
n0 

clk State register 

FSM 
inputs 

S
te

p 
2 

a ’ 
a 

r=0 

r=1 r=1 r=0 r=1 

000 

001 010 011 100 

I nputs:  a ; O utputs:  r 

S
te

p 
3 

Step 4 We’ll omit Step 5 
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Example: Seq. Circuit to FSM (Reverse Engineering) 

 

clk 
State register 

y 

z 

FS
M

 outputs 

FSM 
inputs 

n0 

n1 

s0 s1 

x 

What does this  
circuit do? 

Work backwards 

y=s1’ 
z = s1s0’ 
n1=(s1 xor s0)x 
n0=(s1’*s0’)x 

Pick any state names you want 

A

D

B

C

states 

Outputs:y, z

A

D

B

yz=01yz=00

yz=10yz=10

C

states 
with 
outputs 

A

D

B

yz=00

yz=01

yz=10

yz=10

C

Inputs: x; Outputs:y, z

x’

x’
x’

x

x

x
states with 
outputs and 
transitions 
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Common Pitfalls Regarding Transition Properties 

• Only one condition should 
be true 
– For all transitions leaving a 

state 
– Else, which one? 

• One condition must be true 
– For all transitions leaving a 

state 
– Else, where go? 

a

b
ab=11 –

next state?

a

a’b

a

what if
ab=00?

a

a’b

a’b’

a’b
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Verifying Correct Transition Properties 
• Can verify using Boolean algebra 

– Only one condition true: AND of each condition pair (for 
transitions leaving a state) should equal 0  proves pair 
can never simultaneously be true 

– One condition true: OR of all conditions of transitions 
leaving a state) should equal 1  proves at least one 
condition must be true 

– Example 
a

a’b

a + a’b 
= a*(1+b) + a’b 
= a + ab + a’b 
= a + (a+a’)b 
= a + b 
Fails! Might not 
be 1 (i.e., a=0, 
b=0) 

Q: For shown transitions, prove whether: 
 * Only one condition true (AND of each pair is always 0) 
 * One condition true (OR of all transitions is always 1) 

a * a’b 
= (a * a’) * b 
= 0 * b 
= 0 
OK! 

Answer: 
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Evidence that Pitfall is Common 
• Recall code detector FSM 

– We “fixed” a problem with the 
transition conditions 

– Do the transitions obey the two 
required transition properties? 

• Consider transitions of state 
Start, and the “only one true” 
property 

Wait 

Start 

Red1 Red2 Green Blue 

s ’ 

a ’ 

a ’ 
ab ag ar 

a ’ a ’ u=0 

u=0 ar 

u=0 s 

u=0 u=0 u=1 
ar * a’  a’ * a(r’+b+g)  ar * a(r’+b+g)   
= (a*a’)r  = 0*r   = (a’*a)*(r’+b+g) = 0*(r’+b+g)  
   = (a*a)*r*(r’+b+g) = a*r*(r’+b+g)  
= 0  = 0   = arr’+arb+arg   
   = 0 + arb+arg   
   = arb + arg   
   = ar(b+g)   

Fails! Means that two of Start’s 
transitions could be true 

Intuitively: press red and blue 
buttons at same time: conditions 
ar, and a(r’+b+g) will both be 
true. Which one should be 
taken? 

Q: How to solve? 

A: ar should be arb’g’ 
(likewise for ab, ag, ar) 

Note: As evidence the pitfall is common, 
we admit the mistake was not intentional.  
A reviewer of the book caught it. 
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Simplifying Notations 

• FSMs 
– Assume unassigned output 

implicitly assigned 0 

• Sequential circuits 
– Assume unconnected clock 

inputs connected to same 
external clock 

a=0
b=1
c=0

a=0
b=0
c=1

b=1 c=1

clk a

a
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More on Flip-Flops and Controllers 
• Other flip-flop types 

– SR flip-flop: like SR latch, but edge triggered 
– JK flip-flop: like SR (SJ, RK) 

• But when JK=11, toggles 
• 10, 01 

– T flip-flop: JK with inputs tied together 
• Toggles on every rising clock edge 

– Previously utilized to minimize logic outside flip-flop 
• Today, minimizing logic to such extent is not as important 
• D flip-flops are thus by far the most common 

3.5 
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Non-Ideal Flip-Flop Behavior 
• Can’t change flip-flop input too close to clock 

edge 
– Setup time: time that D must be stable before edge 

• Else, stable value not present at internal latch 
– Hold time: time that D must be held stable after 

edge 
• Else, new value doesn’t have time to loop around 

and stabilize in internal latch 

clk

D

clk

D

setup time

hold time

R

S
D

C

u

D latch

Q

Q’
1

2

3 4

5 6

7

C

D

S

u

R

Q’

Q

Setup time violation 

Leads to oscillation! 
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Metastability 
• Violating setup/hold time can lead to bad 

situation known as metastable state 
– Metastable state: Any flip-flop state other 

than stable 1 or 0 
• Eventually settles to one or other, but we 

don’t know which 
– For internal circuits, we can make sure 

observe setup time 
– But what if input comes from external 

(asynchronous) source, e.g., button 
press? 

• Partial solution 
– Insert synchronizer flip-flop for 

asynchronous input 
• Special flip-flop with very small setup/hold 

time 
– Doesn’t completely prevent metastability 

 
 

clk

D

Q

setup time
violation

metastable
state

ai

ai

synchronizer

a 
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Metastability 
• One flip-flop doesn’t completely solve problem 
• How about adding more synchronizer flip-flops? 

– Helps, but just decreases probability of metastability 
• So how solve completely? 

– Can’t! May be unsettling to new designers. But we just can’t guarantee a 
design that won’t ever be metastable. We can just minimize the mean time 
between failure (MTBF) -- a number often given along with a circuit 

ai 

synchronizers 

l o w 
very 
low 

very 
very 
low 

incredibly 
l o w 

Probability of flip-flop being metastable is… 
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Flip-Flop Set and Reset Inputs 
• Some flip-flops have 

additional inputs 
– Synchronous reset: clears Q to 0 

on next clock edge 
– Synchronous set: sets Q to 1 on 

next clock edge 
– Asynchronous reset: clear Q to 0 

immediately (not dependent on 
clock edge) 

• Example timing diagram shown 
– Asynchronous set: set Q to 1 

immediately 
 

D Q’

Q
R

Q’

AR

D

Q

Q’

AS

AR
D

Q

cycle 1 cycle 2 cycle 3 cycle 4
clk

D

AR

Q
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Initial State of a Controller 
• All our FSMs had initial state 

– But our sequential circuit designs 
did not 

– Can accomplish using flip-flops 
with reset/set inputs 

• Shown circuit initializes flip-flops to 
01 

– Designer must ensure reset input 
is 1 during power up of circuit 

• By electronic circuit design 
 

Inputs: x; Outputs: b 

On2 On1 On3 

Off 

x=1 x=1 x=1 

x=0 

b ’ 

b 

D Q ’ Q ’ 

Q 
R S 

D 

Q 

State register 
clk 

reset 

s1 s0 
n0 

n1 

b x 
Combinational 

logic 
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Glitching 
• Glitch: Temporary values on outputs that appear soon after 

input changes, before stable new output values 
• Designer must determine whether glitching outputs may 

pose a problem 
– If so, may consider adding flip-flops to outputs 

• Delays output by one clock cycle, but may be OK 
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Active Low Inputs 

• We’ve assumed input action 
occur when input is 1 
– Some inputs are instead active 

when input is 0 -- “active low” 
– Shown with inversion bubble 
– So to reset the shown flip-flop, 

set R=0. Else, keep R=1.  

D Q’

Q
R
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Chapter Summary 
• Sequential circuits 

– Have state 

• Created robust bit-storage device: D flip-flop 
– Put several together to build register, which we used to hold state 

• Defined FSM formal model to describe sequential behavior 
– Using solid mathematical models -- Boolean equations for 

combinational circuit, and FSMs for sequential circuits -- is very 
important.  

• Defined 5-step process to convert FSM to sequential circuit 
– Controller 

• So now we know how to build the class of sequential 
circuits known as controllers  
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