

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS
DEPARTMENT OF MEASUREMENT AND INFORMATION SYSTEMS

Integer number representation

Tamás Raikovich BUTE DMIS

BME-MIT /

FPGA labor

Contents

- 1. Unsigned integer numbers
- 2. Signed integer numbers
 - Signed magnitude
 - Offset binary
 - One's complement
 - Two's complement

Unsigned integer numbers

- Representing unsigned integer numbers is simple in binary number system
- The decimal value is the weighted sum of the binary digits (d_i=0,1), the weights (w_i) are the values of the binary places (2ⁱ): $\sum_{i=0}^{N-1} w_i \cdot d_i = \sum_{i=0}^{N-1} 2^i \cdot d_i$

Bit position	N-1 (MSb)	N-2	 3	2	1	0 (LSb)
Weight (w _i)	2 ^{N-1}	2 ^{N-2}	 2³=8	2 ² =4	2 ¹ =2	2 ⁰ =1

- Decimal to binary conversion → Textbook Chapter 1
- Range when N bits are used: 0...(2^N-1)

BME-MIT

FPGA labor

Signed integer numbers

- In case of signed integer number representation, the sign information (+ or -) has to be encoded into the binary code
- There are several methods for this:
 - Signed magnitude coding
 - Offset binary coding
 - One's complement (1's complement) coding
 - Two's complement (2's complement) coding

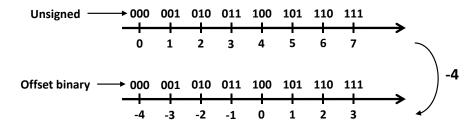
Signed integer numbers

(Signed magnitude coding)

- When N-bit signed magnitude coding is used:
 - The most significant bit (MSb) determines the sign (0: positive, 1: negative)
 - The lower bits represent the absolute value

N-1 (MSb)	N-2	••••	4	3	2	1	0 (LSb)
Sign bit	absolute value of the number						

- Range: -(2^{N-1}-1)...+(2^{N-1}-1)
- Zero has two representations
 - +0: 00...00000 and -0: 10...00000


BME-MIT

FPGA labor

Signed integer numbers

(Offset binary coding)

• The N-bit offset binary codes can be get by subtracting half of the range (2^{N-1}) from the decimal values of the N-bit unsigned binary numbers

- The MSb is the sign bit: 1 → positive, 0 → negative
- Range: -(2^{N-1})...+(2^{N-1}-1)
- Zero has only one representation: 10...000000

Signed integer numbers

(One's complement coding)

 When N-bit one's complement coding is used, the -X is represented with the one's complement of X

-
$$X_{(2)}$$
 + (1's complement of $X)_{(2)}$ = $(2^{N}-1)_{(2)}$ = $\underbrace{1 ... 111}_{N "1" \ bits}$

- Therefore: (1's complement of X)₍₂₎ = $\overline{X_{(2)}}$
- The MSb is the sign bit: 0 → positive, 1 → negative
- To get the decimal value, the weights are

$$- w_{N-1} = -2^{N-1}+1$$
 (weight of the MSb) and $w_i = 2^i$ (i < N-1)

- Range: -(2^{N-1}-1)...+(2^{N-1}-1)
- Zero has two representations
 - +0: **00...00000** and -0: **11...11111**

BME-MIT

FPGA labor

Signed integer numbers

(Two's complement coding)

 When N-bit two's complement coding is used, the -X is represented with the two's complement of X

-
$$X_{(2)}$$
 + (2's complement of X)₍₂₎ = $2^{N}_{(2)}$ = $\underbrace{10 ... 0000}_{"1" and N"0"}$

- Therefore: (2's complement of X)₍₂₎ = $\overline{X_{(2)}}$ + 1
- The MSb is the sign bit: 0 → positive, 1 → negative
- To get the decimal value, the weights are
 - $w_{N-1} = -2^{N-1}$ (weight of the MSb) and $w_i = 2^i$ (i < N-1)
- Range: -(2^{N-1})...+(2^{N-1}-1)
- Zero has only one representation: 00...000000
- Two's complement ↔ offset binary conversion
 - Inverting the sign bit (MSb)

Signed integer numbers

(Example)

Converting the +41 and the -41 decimal values to 8-bit binary numbers in different coding systems

Coding system	41	-41	
signed magnitude	00101001	10101001	
offset binary	10101001	01010111	
one's complement	00101001	11010110	
two's complement	00101001	11010111	

BME-MIT

FPGA labor