
BME-MIT
FPGA labor

Digital Design (VIMIAA01)
Introduction to the Verilog HDL

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS

DEPARTMENT OF MEASUREMENT AND INFORMATION SYSTEMS

Tamás Raikovich
BUTE DMIS

BME-MIT
FPGA labor

Hardware Description Languages

• Hardware description languages have been developed
for modeling and simulating hardware functions

• Only a part of the language elements can be used for
design implementation

• Difference between standard programming languages
and hardware description languages:
– Standard programming languages: sequential
– HDLs: describe parallel and concurrent behavior

• Two important HDLs:
– Verilog
– VHDL

1

BME-MIT
FPGA labor

Verilog HDL

• The Verilog HDL is similar to the C/C++ programming
languages in many ways, for example:
– Distinguishes the small and capital letters
– Single-line comment: //
– Block comment: /* ……. */
– Most of the operators are the same

• But the Verilog source code is not a software!
• Hereafter, only those language constructs will be

introduced which can be used for implementing
hardware designs
– There are special language constructs for verification

and simulation only

2

BME-MIT
FPGA labor

Verilog HDL - Modules
• Verilog language uses a hierarchical, functional unit based

design approach:
– The whole design consists of several smaller modules
– The complexity of the modules is decided by the designer

• Verilog module:
– Definition of the input and output ports, through which

the module is connected to the ”outside world”
– Definition of the logical relationship between the input

and output ports

ADD

SUB

MUL

DIV

MUX

OPERATION
OPERAND1

OPERAND2
RESULT

ALU

3

BME-MIT
FPGA labor

Verilog HDL – Modules
(Port declaration)

• The ports of the top-level module are connected to
the I/O pins of the used hardware device

• Common syntax of the module declaration:

module SomeFunction(
input wire [7:0] op1,
input wire [7:0] op2,
output wire [7:0] result

);

assign result = op1 + op2;

endmodule

Module name

Port declaration in the
port list of the module

Description of the
functionality

4

BME-MIT
FPGA labor

Verilog HDL – Modules
(Port declaration)

• Port declaration syntax:
<direction> <data_type> <size> <port_name>;

• Direction:
– Input port: input
– Output port: output
– Bi-directional: inout

• Data type: wire is the default data type when omitted
– wire: behaves as its name says
– reg: not always becomes a real register (data storage element)

• Only output ports and internal signals can be reg type
• Signed type:

– The signed keyword indicates that the signal represents a two’s
complement signed value

• Size: [j : i] → The size of the port is |j – i| + 1 bits
– The rightmost bit is the j-th bit (j ≤ i is also allowed)
– The leftmost bit is the i-th bit
– Swapping the indices doesn’t affect the bit order

5

BME-MIT
FPGA labor

Verilog HDL – Modules
(Port declaration)

• Examples:
– 1-bit input port: input wire sel;
– 16-bit output register: output reg [15:0] result;

• Older syntax of the port declaration:

module SomeFunction(op1, op2, result);

input wire [7:0] op1;
input wire [7:0] op2;
output wire [7:0] result;

assign result = op1 + op2;

endmodule

Module name Port list

Port declaration

Description of the
functionality

Optional

6

BME-MIT
FPGA labor

Verilog HDL – Modules
(Module instantiation)

• Module to be instantiated:
module SomeFunction(input A, input B, output C);

endmodule

• This can be instantiated (i.e. can be used) in other
modules by the following way:
wire d, e, f;
SomeFunction Func1(.A(f), .B(e), .C(d));

• More instances can be created from a module, but
every instance name must be different

Module to instantiate Instance
name

The signal f is connected to the port A

Associating signals with ports

7

BME-MIT
FPGA labor

Verilog HDL – Modules
(Module instantiation – Example)

• Problem: create a 4-bit binary adder by cascading 4
single-bit full adders (FADD)

• The header of the single-bit full adder (FADD)
module
module FADD(

input wire a, // ”a” operand
input wire b, // ”b” operand
input wire ci, // Input carry
output wire s, // Sum output
output wire co // Output carry

);

• 4 FADD adders have to be instantiated in the
module which implements the 4-bit adder

8

BME-MIT
FPGA labor

Verilog HDL – Modules
(Module instantiation – Example)

module ADDER4(
input wire [3:0] a, // 4-bit A operand input
input wire [3:0] b, // 4-bit B operand input
input wire ci, // Input carry
output wire [3:0] s, // 4-bit sum output
output wire co // Output carry

);

wire [4:0] c; // The full internal carry chain

assign c[0] = ci; // The 0th bit of the carry chain is the input carry

// 4 FADD modules are built in, their names are ADD0, ADD1, ADD2, ADD3
// Connecting the interfaces is obvious, carry is used for cascading
FADD ADD0(.a(a[0]), .b(b[0]), .ci(c[0]), .s(s[0]), .co(c[1]));
FADD ADD1(.a(a[1]), .b(b[1]), .ci(c[1]), .s(s[1]), .co(c[2]));
FADD ADD2(.a(a[2]), .b(b[2]), .ci(c[2]), .s(s[2]), .co(c[3]));
FADD ADD3(.a(a[3]), .b(b[3]), .ci(c[3]), .s(s[3]), .co(c[4]));

assign co = c[4]; // The output carry is the 4th bit of the carry chain

endmodule

9

BME-MIT
FPGA labor

Verilog HDL – Modules
(Internal signal declaration)

• Internal signal declaration syntax:
<data_type> <size> <signal_name>;

• Same as the port declaration, but there is no
direction specification and the data type cannot
be omitted

• Examples:
– 1-bit wire: wire counter_enable;
– 16-bit register: reg [15:0] counter;

10

BME-MIT
FPGA labor

Verilog HDL – Constants
(Possible signal values)

• In the Verilog language, signals can have four values
– 0: logic low level
– 1: logic high level
– z: high-impedance state
– x: unknown, cannot be determined, don’t care

• In case of the modern hardware system design, the z
value (high-impedance state) is used only for
implementing I/O interfaces

• In case of hardware implementation, the x value (don’t
care) can be used only to simplify the description (casex
instruction)

11

BME-MIT
FPGA labor

Verilog HDL – Constants
(Numeric constants)

• Numeric constant definition syntax:
<–><bit_number> ’<s><number_system><numeric_constant>

• The signed constants are two’s complement codes
• Minus sign: generates the two’s complement of the constant
• Bit number: size of the constant in bits

– The default size is 32 bits if omitted
• Signed constant: indicated by the s character

– The constant is unsigned if omitted
– The sign bit has to be interpreted according to the bit number
– The sign extension is automatic in case of the signed constants

• Number system: decimal is the default if omitted
– Binary: b, octal: o, decimal: d, hexadecimal: h

• The ’_’ character can be used for separating the digits
– This produces a more readable and cleaner code

12

BME-MIT
FPGA labor

Verilog HDL – Constants
(Numeric constants – Examples)

Examples:
• 8’b0000_0100: 8-bit binary constant, its decimal value is 4
• 6’h1f: 6-bit hexadecimal constant, its decimal value is 31

– In binary: 6’b01_1111
• 128: 32-bit decimal constant

– In binary: 32’b00000000_00000000_00000000_10000000
• – 4’sd15: 4-bit decimal constant, its value is 1

– The 4’sd15 itself in binary is 4’sb1111, i.e. –1 (signed!)
– The minus sign generates the 2’s complement → 4’sb0001

Examples for the sign extension (repeating the original MSb bit):
wire [7:0] a = 4’d9; //a=6’b0000_1001 (9)
wire [7:0] b = 4’sd5; //b=6’b0000_0101 (5)
wire [7:0] c = 4’sd9; //c=6’b1111_1001 (-7)
wire [7:0] d = -4’d6; //d=6’b1111_1010 (-6)

13

BME-MIT
FPGA labor

Verilog HDL – Konstansok
(String constants)

• String (text) constant declaration syntax:
”characters_of_the_string”

• Very useful for simulating controllers: can be used to
display the states as text

• The characters of the strings are mapped to their 8-bit
ASCII codes, therefore the bit number of the string
constant is 8 times the number of characters

• The upper 8 bits have the value of the first character
• Example:

wire [23:0] str = ”HDL”;
//str[7:0] = 8’b0100_1100 (’L’)
//str[15:8] = 8’b0100_0100 (’D’)
//str[23:16] = 8’b0100_1000 (’H’)

14

BME-MIT
FPGA labor

Verilog HDL – Parameters
(Parameter declaration)

• Parameter definition syntax:
parameter <name> = <constant>;
localparam <name> = <constant>;

• The parameter name can be used as a constant in the
module where the parameter is declared

• Normal parameters: their default value can be changed
when the module is instantiated

• Local parameters: their value cannot be changed
• Example:

parameter WIDTH = 8;

wire [WIDTH-1:0] data;

15

BME-MIT
FPGA labor

Verilog HDL – Parameters
(Parameter declaration)

• Alternative module definition syntax: normal parameters
can be declared in the module header

module SomeFunction #(
parameter WIDTH = 8,
parameter OTHER_PARAM = 2

) (
input wire [WIDTH-1:0] op1,
input wire [WIDTH-1:0] op2,
output wire [WIDTH-1:0] result

);

assign result = op1 + op2;

endmodule

Module name

Port declaration in the
port list

Description of the
functionality

Parameter declaration in
the module header

16

BME-MIT
FPGA labor

Verilog HDL – Parameters
(Instantiating module with parameters)

• Module with parameters:
module SomeFunction(input A, input B, output C);
paramerer P1 = 8;
parameter P2 = 16;

endmodule

• Instantiating this module:
wire d, e, f;
SomeFunction #(

.P1(3), .P2(20)
) Func2 (

.A(f), .B(e), .C(d)
);

Giving new values to the
parameters (optional)

Associating signals with ports

17

BME-MIT
FPGA labor

Verilog HDL - Operators
• The Verilog operators can have 1, 2 or 3 operands
• On the right side of the expressions, wire type, reg type and

constant operands can appear
• If an operation requires same operand size, the smaller

operand usually zero-extended to the size of the larger
operand

• The expression evaluation is done by the normal precedence
rules (the precedence can be controlled using brackets)

Operator Precedence

Unary +, -, !, ~ 1. (highest)

*, /, % 2.

Binary +, - 3.

<<, >>, <<<, >>> 4.

<, <=, >, >= 5.

==, !=, ===, !== 6.

Operator Precedence

&, ~& 7.

^, ~^ 8.

|, ~| 9.

&& 10.

|| 11.

? : (conditional op.) 12. (lowest)

18

BME-MIT
FPGA labor

Verilog HDL – Operators
(Arithmetic operators)

Arithmetic operators: + (addition), - (subtraction), * (multiplication),
/ (division), % (modulus)
• Number of operands: 2
• If the FPGA doesn’t contain multipliers, the multiplication operator

can be synthesized only if one of the operands is a power of 2 value
• The division and the modulus operators can be synthesized only if

the right side operand is a power of 2 value
• In case of addition, subtraction and multiplication, the smaller

size signed operand is sign-extended to the size of the larger
operand

• Carry bit usability in case of addition and subtraction in the Xilinx
FPGA devices:

Adder Subtractor Adder/subtractor

Input carry bit (Cin) Available Available Not available

Output carry bit (Cout) Available Not available Not available

19

BME-MIT
FPGA labor

Verilog HDL – Operators
(Concatenation operator)

• Concatenation operator: { }
– Appending multiple operands
{5’b10110, 2’b10, 1’b0, 1’b1} = 9’b1_0110_1001

– The same operand can be concatenated multiple times
{4{3’b101}} = 12’b101_101_101_101

• Important use cases:
– Sign extension: the sign bit must be copied to the upper bits
wire [3:0] s_4bit; //4-bit signed
wire [7:0] s_8bit; //8-bit signed
assign s_8bit = {{4{s_4bit[3]}}, s_4bit};

– Masking a vector with a single bit: without concatenation, the smaller
single-bit operand would be zero-extended to the size of the larger
operand
wire [3:0] data;
wire [3:0] mdata;
wire enable;
assign mdata = data & enable; //Wrong!!!
assign mdata = data & {4{enable}}; //Correct

20

BME-MIT
FPGA labor

Verilog HDL – Operators
(Conditional and indexer operators)

• Conditional operator: ? :
<conditional_expression> ? <expression1> : <expression2>

– This is the only operator with 3 operands
– First, the conditional_expression is evaluated

• If the result is not 0: expression1 is evaluated
• If the result is 0: expression2 is evaluated

• Selecting a part of a vector:
vector_name[i], vector_name[j:i]
– [i] selects the i-th bit of the vector
– [j:i] selects the part of the vector between the j-th

and the i-th bits (including the boundaries)

21

BME-MIT
FPGA labor

Verilog HDL – Operators
(Bitwise and logical operators)

• Bitwise operators: ~ (NOT), & (AND), | (OR), ^ (XOR)
– Number of operands: NOT: 1 / AND, OR, XOR: 2
– If the operands are vectors, the operation is executed bitwise
– If one operand is shorter than the other, the shorter operand

is bit-extended with zeroes to match size
• If this is not desired, use the concatenation operator to match size

– Examples:
• 4’b0100 | 4’b1001 = 4’b1101
• ~8’b0110_1100 = 8’b1001_0011

• Logical operators: ! (NOT), && (AND), || (OR)
– Number of operands: NOT: 1 / AND, OR: 2
– Always yield a single-bit value: 0 or 1
– Examples:

• 4’b0000 || 4’b0111 = 0 || 1 = 1
• 4’b0000 && 4’b0111 = 0 && 1 = 0
• !4’b0000 = !0 = 1

22

BME-MIT
FPGA labor

Verilog HDL – Operators
(Bit reduction operators)

• Bit reduction operators:
& (AND), ~& (NAND), | (OR), ~| (NOR), ^ (XOR), ~^ (NXOR)
– Number of operands: 1
– Perform a bitwise operation on a single vector
– Yield a 1-bit result: 0 or 1
– Examples:

• &4’b0101 = 0 & 1 & 0 & 1 = 0
• |4’b0101 = 0 | 1 | 0 | 1 = 1

• Important use cases:
– Testing for 0 value: NOR connection of the bits

wire [11:0] data;
wire all_zeros = ~|data;

– Testing for 2N-1 value (all 1s): AND connection of the bits
wire all_ones = &data;

– Indicating the final state (terminal count) of the counter:
wire tc = (dir) ? (&cnt) : (~|cnt);

23

BME-MIT
FPGA labor

Verilog HDL – Operators
(Shift operators)

• Logical shift operators: << (left), >> (right)
– Number of operands: 2
– Examples:

• 8’b0011_1100 >> 2 = 8’b0000_1111
• 8’b0011_1100 << 2 = 8’b1111_0000

• Arithmetic shift operators: <<< (left), >>> (right)
– Number of operands: 2
– The arithmetic left shift is the same as the logical left shift
– In case of unsigned operands, the arithmetic right shift is the

same as the logical right shift
– In case of signed operand, the arithmetic right shift replicates

the sign bit to fill in the vacant positions (sign extension)
– Examples:

• 8’b1001_1100 >>> 2 = 8’b0010_0111
• 8’sb1001_1100 >>> 2 = 8’b1110_0111

24

BME-MIT
FPGA labor

Verilog HDL – Operators
(Relational operators)

• Relational operators:
== (equality), != (inequality), < (less than), > (greater than),
<= (less than or equal), >= (greater than or equal)
– Number of operands: 2
– The result is always a single-bit value: 0 or 1
– The equality and inequality relations are mapped to

gate based logic and usually, the less than and greater
than relations are mapped to an arithmetic function

– The smaller signed operand is sign extended to the
larger operand to match the size

– Example:
• (4’b1011 < 4’b0111) = 0
• (4’b1011 != 4’b0111) = 1

25

BME-MIT
FPGA labor

Verilog HDL - Assignments

• Specifying the logic connection in case of wire signals:
assign <wire_signal> = <expression>;
– The value of the left wire_signal is determined in every

moment by the right expression (combinational logic)
– Example:

wire [15:0] a, b, c;
assign c = a & b;

– The logic connection can be specified at the declaration:
wire [15:0] a, b;
wire [15:0] c = a & b;

• Assigning a value to a reg type signal can be done in the
always blocks using the blocking (=) or non-blocking (<=)
assignment operators

26

BME-MIT
FPGA labor

Verilog HDL – Assignments
(Interpretation of the always block by the simulator/verilog parser)

• Always block:
always @(sensitivity list)

assignments
– The sensitivity list determines the events when the

assignments are evaluated:
• always @(a, b, c): the assignments are evaluated

when the value of the a, b or c input signals is changed
• always @(*): the assignments are evaluated when one

of the always block input signals is changed
• always @(posedge clk): the assignments are

evaluated at the rising edge of the clk signal and the output
is changed only this time

• always @(negedge clk, posedge rst):
the assignments are evaluated at the falling edge of clk or
when the rst signal is set to 1

27

BME-MIT
FPGA labor

Verilog HDL – Assignments
(Interpretation of the always block by the synthesis tool)

• Always block:
always @(sensitivity list)

assignments
– The sensitivity list determines what kind of logic element is

used for implementing the behavioral description:
• always @(a, b, c): the combinational function of the a, b

and c input signals is specified
• always @(*): like the previous one, the vaue of the output is

changed when an input is changed (combinational logic)
• always @(posedge clk): we want to use a rising clock edge

sensitive flip-flop or register elements, the inputs are sampled and
the outputs are changed only this time

• always @(negedge clk, posedge rst):like the previous
one, the operation is controlled by the falling edge of the clk but
there is also a rst signal which becomes effective if it is set to 1

28

BME-MIT
FPGA labor

Verilog HDL – Assignments
(Using the always block for synthesis)

• Always block:
– In case of synthesis, value can be assigned to a reg type

signal only one place in only one always block
– The if…else, the case and the for instructions can be used

only in always blocks
– Multiple statements inside the always block must be

grouped using begin and end keywords
– Example:

wire a;
reg b, c, d;

//Prohibited 2nd assignment
always @(a, b) always @(*)
begin begin

c <= a & b; c <= b ^ d;
d <= a | b; end

end
//C is an AND gate //Here, C is an XOR gate
//Peer descriptions. Which one takes effect?

29

BME-MIT
FPGA labor

Verilog HDL – Assignments
(Always block – Non-blocking assignment)

Interpreting the non-blocking assignment
• Until the next blocking assignment, the non-blocking assignments

that belong to the same event evaluate their right side in paralell,
then these values are assigned to the left side at the same time

• This is the operation modell of the clock edge controlled storage
elements, therefore a storage element is built into the sequential
circuit for every non-blocking assignment

• If it is possible, always use non-blocking assignments because it is
closer to the hardware view and it can cause less errors

module M(clk, a, b, c, y);

input wire clk, a, b, c;
output reg y;

reg x;

always @(posedge clk)
begin

x <= a | b;
y <= x & c;

end

endmodule

30

BME-MIT
FPGA labor

Verilog HDL – Assignments
(Always block – Blocking assignment)

Interpreting the blocking assignment
• The blocking assignment operator (=) is the usual assignment, they are

executed sequentially in order they are written and the new value of the
left side variable is used for evaluating the next expressions

• Therefore, if the result of a blocking assignment is used in the same
always block (in the same clock cycle) later, no storage element is built
into the sequential circuit for the later assignment (see the signal x in the
example)

module M(clk, a, b, c, y);

input wire clk, a, b, c;
output reg y;

reg x;

always @(posedge clk)
begin

x = a | b;
y = x & c;

end

endmodule

No register for
the signal x

31

BME-MIT
FPGA labor

Verilog HDL – Assignments
(Example)

Example: 3-bit shift register
• Look at the difference between the two solution
• Only using the non-blocking assignments results in the correct circuit

module shr_3bit(clk, si, q0, q1, q2);

input wire clk, si;
output reg q0, q1, q2;

always @(posedge clk)
begin

q0 <= si; // new q0 ← actual si
q1 <= q0; // new q1 ← actual q0
q2 <= q1; // new q2 ← actual q1

end // and updates

endmodule

module shr_3bit(clk, si, q0, q1, q2);

input wire clk, si;
output reg q0, q1, q2;

always @(posedge clk)
begin

q0 = si; // q0 ← si
q1 = q0; // q1 ← q0 ← si
q2 = q1; // q0 ← q1 ← q0 ← si

end // Three same bit

endmodule

32

BME-MIT
FPGA labor

Verilog HDL – IF instruction

• Syntax of the if instruction:
if (expression) instruction1; [else instruction2;]

– First, the given expression is evaluated:
• If its value is not 0: instruction1 is executed
• If its value is 0: instruction2 is executed

– The else path is optional, it can be omitted
– Multiple statements inside the if instruction must

be grouped using begin and end keywords
– The nested if instructions result in hierarchical,

sequential evaluation → PRIORITY!!!!
• This is the typical implementation of the control signals

of the functional elements

33

BME-MIT
FPGA labor

Verilog HDL – CASE instruction
• Syntax of the case instruction:

case (expression)
alternative1: instruction1;
alternative2: instruction2;

[default : default_instruction;]
endcase

– The value of the expression is compared with the alternatives
in order they are listed (their order may mean priority!)

– The instruction belonging to the first matching alternative is
executed

– If there is no matching alternative, the default_instruction is
executed written after the default keyword (optional)

– Multiple instructions must be grouped using begin and end
keywords

– In case of the casex instruction, the alternatives can contain x
(don’t care) value also, this may result in simpler description

34

BME-MIT
FPGA labor

Verilog HDL – FOR instruction
• Syntax of the for instruction:

for ([initialization]; [condition]; [operation])
instruction;

• The operation of the for loop:
1. The initialization part sets the initial value of the loop variable
2. The condition is evaluated: if it is false, the loop is terminated
3. The given instruction is executed
4. The given operation is executed, then go to step 2

• Multiple instructions must be grouped using begin and end
keywords and the begin keyword must be labelled with an unique
label (begin: label)

• In vace of hardware implementation, the for structure inside the
always block can be used in a static way only, for simplifying the
description (for example: indexing or value checking)
– The general for loop used in the programming languages can be

replaced with controller and datapath in the hardware
• The loop variable should be declared as integer type

35

BME-MIT
FPGA labor

Verilog HDL – FOR instruction

module RegFile(clk,addr,we,din,r0,r1,r2,r3);

input wire clk, we;
input wire [1:0] addr;
input wire [7:0] din;
output wire [7:0] r0, r1, r2, r3;

reg [7:0] r [3:0]; //4 x 8 bit reg. file
integer i; //Loop variable

always @(posedge clk)
for (i=0; i<4; i=i+1)

if (we && (addr == i))
r[i] <= din;

assign {r3,r2,r1,r0} = {r[3],r[2],r[1],r[0]};

endmodule

module BitReverse(din, dout);

input wire [31:0] din;
output reg [31:0] dout;

integer i; //Loop variable

always @(*)
for (i=0; i<32; i=i+1)
begin: reverse_loop

dout[i] <= din[31-i];
end

endmodule

• First example: reversing the bit order
– The for loop is used for indexing
– Without the loop, 32 assignments would be required

• Second example: 4 x 8 bit register file
– The for loop is used for indexing and checking equality
– Without the loop, 4 conditional assignments would be required

36

BME-MIT
FPGA labor

Verilog HDL - Examples

• Example: 1-bit 2-to-1 multiplexer
– Selects one from several inputs and

its value is routed to the output
– Ports:

• Data inputs: IN0, IN1
• Input select signal: SEL
• Data output: OUT

– Operation:
• If SEL=0: IN0 is routed to the output
• If SEL=1: IN1 is routed to the output

– The multiplexer is a combinational logic
wire in0, in1, sel, out;
assign out = (in0 & ~sel) | (in1 & sel);

MUX

IN0

IN1

SEL

OUT

OUT

IN0

IN1

SEL

37

BME-MIT
FPGA labor

Verilog HDL - Examples

• Example: 8-bit 2-to-1 multiplexer
– 1st solution: using the bitwise logic operators
– In this case, using the bitwise logic operators is not

the best solution, because the described function
cannot be determined easily from the source code!

module Mux_2to1_8bit(
input wire [7:0] in0,
input wire [7:0] in1,
input wire sel,
output wire [7:0] out

);

assign out = (in0 & {8{~sel}}) | (in1 & {8{sel}});

endmodule

38

BME-MIT
FPGA labor

Verilog HDL - Examples

• Example: 8-bit 2-to-1 multiplexer
– 2nd solution:using the conditional operator

module Mux_2to1_8bit(
input wire [7:0] in0,
input wire [7:0] in1,
input wire sel,
output wire [7:0] out

);

assign out = (sel) ? in1 : in0;

endmodule

39

BME-MIT
FPGA labor

Verilog HDL - Examples

• Example: 8-bit 2-to-1 multiplexer
– 3rd solution: using the IF instruction

module Mux_2to1_8bit(
input wire [7:0] in0,
input wire [7:0] in1,
input wire sel,
output reg [7:0] out

);

always @(*) //or always @(in0, in1, sel)
if (sel == 0)

out <= in0;
else

out <= in1;

endmodule

40

BME-MIT
FPGA labor

Verilog HDL - Examples

• Example: 8-bit 2-to-1 multiplexer
– 4th solution: using the CASE instruction

module Mux_2to1_8bit(
input wire [7:0] in0,
input wire [7:0] in1,
input wire sel,
output reg [7:0] out

);

always @(*) //or always @(in0, in1, sel)
case (sel)

1’b0: out <= in0;
1’b1: out <= in1;

endcase

endmodule

41

BME-MIT
FPGA labor

Verilog HDL - Examples

• Example: 8-bit 4-to-1 multiplexer
module Mux_4to1_8bit(in0, in1, in2, in3, sel, out);

input wire [7:0] in0, in1, in2, in3;
input wire [1:0] sel;
output reg [7:0] out;

always @(*) //or always @(in0, in1, in2, in3, sel)
case (sel)

2’b00: out <= in0;
2’b01: out <= in1;
2’b10: out <= in2;
2’b11: out <= in3;

endcase

endmodule

42

BME-MIT
FPGA labor

Implementing combinational logic

• Wire type signals can implement combinational
logic only

• Reg type signals can implement both combinational
and sequential logic

• When combinational logic is implemented using reg
type signals:
– The assignment(s) must be evaluated when at

least one input signal is changed:
• The sensitivity list of the always block has to contain all

input signals of the combinational logic or a * character
• negedge or posedge must not be in the sensitivity list

BME-MIT
FPGA labor

Implementing combinational logic

• When combinational logic is implemented using reg
type signals:
– The always blocks must contain only fully specified if

and case instructions
– If the if and case instructions are not fully specified,

latches will be inserted (asynchronous flip-flop)
• The state of the reg type signal is preserved by the latch

when no assignment is made for the given condition(s)

reg reg_signal;

always @(*)
if (sel)

reg_signal <= in0;

BME-MIT
FPGA labor

Implementing combinational logic

• Latches are undesired, they implement asynchronous
sequential logic and not combinational logic

• When the if and case instructions are fully specified
(if: all else paths are present, case: all possible
alternatives are listed or the default keyword is used):
– The result will be combinational logic (example: MUX)

reg reg_signal;

always @(*)
if (sel)

reg_signal <= in1;
else

reg_signal <= in0;

BME-MIT
FPGA labor

Implementing sequential logic

• Only reg type signals can implement sequential logic:
– Asynchronous: latches (must be avoided!)
– Synchronous: flip-flops, registers

• Registers change their state at the rising or falling edge
of the clock signal
– The sensitivity list of the always block must contain

the clock signal preceded by the posedge (rising edge)
or the negedge (falling edge) keyword

– The clock cannot be used explicitly in the assignment
expressions inside the always block

• The if and case instructions can be not fully specified
– If so, the clock enable input of the flip-flops is used to

prevent the state change when there is no assignment

BME-MIT
FPGA labor

Implementing sequential logic

reg reg_signal;

always @(posedge clk)
if (rst)

reg_signal <= 1’b0;
else

if (reg_load)
reg_signal <= in0;

clock

reset

clock enable

BME-MIT
FPGA labor

Synchronous/asynchronous control signals

• Synchronous control signals:
– Have effect only at the rising or falling clock edge
– The sensitivity list doesn’t contain the synchronous control signals

//Active-high synchronous reset //Active-low synchronous reset
always @(posedge clk) always @(posedge clk)

if (rst) if (rst == 0)
some_reg <= 1’b0; some_reg <= 1’b0;

else else
some_reg <= data_in; some_reg <= data_in

• Asynchronous control signals
– Have immediate effect
– The sensitivity list must contain the asynchronous control signals

preceded with the posedge or the negedge keyword
//Active-high asynchronous reset //Active-low asynchronous reset
always @(posedge clk, posedge rst) always @(posedge clk, negedge rst)

if (rst) if (rst == 0)
some_reg <= 1’b0; some_reg <= 1’b0;

else else
some_reg <= data_in; some_reg <= data_in

BME-MIT
FPGA labor

Finite state machines (FSMs)
• Local parameters can be used to define the states
• A register is required to store the current state
• The case instruction can be used to select the current state

– In each alternative, the if or case instructions can be used to check the
value of the inputs and execute the proper state transition

• Example: traffic light controller
– 4 states: red, red-yellow, green, yellow
– An external timer generates the 1 clock cycle long enable signal

Traffic light
controller FSM

CLK ENABLE

Timer

CLK

CLK

r

y

g

BME-MIT
FPGA labor

Finite state machines (FSMs)
First implementation:
• The state register and the next state logic are in different always blocks
• User state encoding (the synthesis tool can optimize it)
localparam STATE_R = 2’d0;
localparam STATE_RY = 2’d1;
localparam STATE_G = 2’d2;
localparam STATE_Y = 2’d3;

reg [1:0] state;
reg [1:0] next_state;

//State register (sequential logic)
always @(posedge clk)
if (rst)

state <= STATE_R;
else

if (enable)
state <= next_state;

//Next state logic (combinational logic)
always @(*)
case (state)

STATE_R : next_state <= STATE_RY;
STATE_RY: next_state <= STATE_G;
STATE_G : next_state <= STATE_Y;
STATE_Y : next_state <= STATE_R;

endcase

//Driving the outputs (combinational logic)
assign r = (state == STATE_R) |

(state == STATE_RY);
assign y = (state == STATE_Y) |

(state == STATE_RY);
assign g = (state == STATE_G);

BME-MIT
FPGA labor

Finite state machines (FSMs)
Second implementation:
• The state register and the next state logic are in the same always block
• User state encoding (the synthesis tool can optimize it)
localparam STATE_R = 2’d0;
localparam STATE_RY = 2’d1;
localparam STATE_G = 2’d2;
localparam STATE_Y = 2’d3;

reg [1:0] state;

//State register and the next state logic
always @(posedge clk)
begin

if (rst)
state <= STATE_R;

else
case (state)
STATE_R : if (enable)

state <= STATE_RY;
else
state <= STATE_R;

STATE_RY: if (enable)
state <= STATE_G;

else
state <= STATE_RY;

STATE_G : if (enable)
state <= STATE_Y;

else
state <= STATE_G;

STATE_Y : if (enable)
state <= STATE_R;

else
state <= STATE_Y;

endcase
end

//Driving the outputs (combinational logic)
assign r = (state==STATE_R) | (state==STATE_RY);
assign y = (state==STATE_Y) | (state==STATE_RY);
assign g = (state==STATE_G);

BME-MIT
FPGA labor

Finite state machines (FSMs)
Third implementation:
• The state register and the next state logic are in different always blocks
• Output encoding: the (* fsm_encoding = ”user” *) Xilinx-specific Verilog

directive disables the state encoding optimization for the state register
localparam STATE_R = 3’b100;
localparam STATE_RY = 3’b110;
localparam STATE_G = 3’b001;
localparam STATE_Y = 3’b010;

(* fsm_encoding = ”user” *)
reg [2:0] state;
reg [2:0] next_state;

//State register (sequential logic)
always @(posedge clk)
if (rst)

state <= STATE_R;
else

if (enable)
state <= next_state;

//Next state logic (combinational logic)
always @(*)
case (state)

STATE_R : next_state <= STATE_RY;
STATE_RY: next_state <= STATE_G;
STATE_G : next_state <= STATE_Y;
STATE_Y : next_state <= STATE_R;

endcase

//Driving the outputs
assign r = state[2];
assign y = state[1];
assign g = state[0];

BME-MIT
FPGA labor

Datapath components
• Adder:

– Use the + (addidion) operator
– The result can be 1 bit wider: the MSb is the output carry

wire [15:0] a, b, sum0, sum1, sum2;
wire cin, cout;
assign sum0 = a + b; //No cin and cout
assign sum1 = a + b + cin; //Cin is used, no cout
assign {cout, sum2} = a + b + cin; //Cin and cout are used

• Subtractor:
– Use the – (subtraction) operator
– No borrow output: use 1 bit wider subtractor instead

wire [15:0] a, b, diff0, diff1;
wire cin;
assign diff0 = a – b; //No cin and cout
assign diff1 = a – b - cin; //Cin is used, no cout

• Adder/subtractor:
– No input carry and output carry signals are available

wire [15:0] a, b;
wire [15:0] result
wire sel;
assign result = (sel) ? (a – b) : (a + b);

Verilog bevezető, 2013.04.01. (v1.0) 53

BME-MIT
FPGA labor

Datapath components
• Shifter:

– Use the {} (concatenation) operator instead of the shift operators
– The size of the constants must be specified

wire [7:0] din;
wire [7:0] lshift = {din[6:0], 1’b0}; //Left shift
wire [7:0] rshift = {1’b0, din[7:1]}; //Right shift

• Comparator:
– Use the relational operators

wire [15:0] a, b;
wire a_lt_b = (a < b); //Less than comparator
wire a_eq_b = (a == b); //Equality comparator
wire a_gt_b = (a > b); //Greater than comp.

• Multiplier:
– Use the * (multiply) operator
– The product size is the sum of the operand sizes
– Can be synthesized only, if the FPGA contains multipliers
wire [15:0] a, b;
wire [31:0] prod = a * b;

Verilog bevezető, 2013.04.01. (v1.0) 54

BME-MIT
FPGA labor

Datapath components
• Shift register (example):

– Synchronous reset and load
– Bi-directional: can shift left and right

reg [7:0] shr;
wire [7:0] din;
wire rst, load, dir, serin;

always @(posedge clk)
if (rst)

shr <= 8’d0; //Reset
else

if (load)
shr <= din; //Load

else
if (dir)
shr <= {serin, shr[7:1]}; //Right shift

else
shr <= {shr[6:0], serin}; //Left shift

Verilog bevezető, 2013.04.01. (v1.0) 55

BME-MIT
FPGA labor

Datapath components
• Counter (example):

– Synchronous reset and load
– Bi-directional: can count up and down

reg [8:0] cnt;
wire [8:0] din;
wire rst, load, dir;
wire tc = (dir) ? (cnt==9’d0) : (cnt==9’d511);

always @(posedge clk)
if (rst)

cnt <= 9’d0; //Reset
else

if (load)
cnt <= din; //Load

else
if (dir)
cnt <= cnt – 9’d1; //Down count

else
cnt <= cnt + 9’d1; //Up count

Verilog bevezető, 2013.04.01. (v1.0) 56

BME-MIT
FPGA labor

Datapath components
(Priority of the control signals)

The value of the control inputs are examined in the order
they are listed inside the always blocks (nested if
instructions)
always @(posedge clk) always @(posedge clk) always @(posedge clk)

if (rst) if (rst) if (en)
cnt <= 9’d0; cnt <= 9’d0; if (clr)

else else cnt <= 9’d0;
if (load) if (en) else
cnt <= data_in; if (load) if (load)

else cnt <= data_in; cnt <= data_in;
if (en) else else
cnt <= cnt + 9’d1; cnt <= cnt + 9’d1; cnt <= cnt + 9’d1;

rst load en Operation

1 x x Reset

0 1 x Load

0 0 1 Up count

0 0 0 No change

Verilog bevezető, 2013.04.01. (v1.0) 57

rst en load Operation

1 x x Reset

0 1 1 Load

0 1 0 Up count

0 0 x No change

en clr load Operation

0 x x No change

1 1 x Clear

1 0 1 Load

1 0 0 Up count

	Digital Design (VIMIAA01)�Introduction to the Verilog HDL
	Hardware Description Languages
	Verilog HDL
	Verilog HDL - Modules
	Verilog HDL – Modules�(Port declaration)
	Verilog HDL – Modules�(Port declaration)
	Verilog HDL – Modules�(Port declaration)
	Verilog HDL – Modules�(Module instantiation)
	Verilog HDL – Modules�(Module instantiation – Example)
	Verilog HDL – Modules�(Module instantiation – Example)
	Verilog HDL – Modules�(Internal signal declaration)
	Verilog HDL – Constants�(Possible signal values)
	Verilog HDL – Constants�(Numeric constants)
	Verilog HDL – Constants�(Numeric constants – Examples)
	Verilog HDL – Konstansok�(String constants)
	Verilog HDL – Parameters�(Parameter declaration)
	Verilog HDL – Parameters�(Parameter declaration)
	Verilog HDL – Parameters�(Instantiating module with parameters)
	Verilog HDL - Operators
	Verilog HDL – Operators�(Arithmetic operators)
	Verilog HDL – Operators�(Concatenation operator)
	Verilog HDL – Operators�(Conditional and indexer operators)
	Verilog HDL – Operators�(Bitwise and logical operators)
	Verilog HDL – Operators�(Bit reduction operators)
	Verilog HDL – Operators�(Shift operators)
	Verilog HDL – Operators�(Relational operators)
	Verilog HDL - Assignments
	Verilog HDL – Assignments�(Interpretation of the always block by the simulator/verilog parser)
	Verilog HDL – Assignments�(Interpretation of the always block by the synthesis tool)
	Verilog HDL – Assignments�(Using the always block for synthesis)
	Verilog HDL – Assignments�(Always block – Non-blocking assignment)
	Verilog HDL – Assignments�(Always block – Blocking assignment)
	Verilog HDL – Assignments�(Example)
	Verilog HDL – IF instruction
	Verilog HDL – CASE instruction
	Verilog HDL – FOR instruction
	Verilog HDL – FOR instruction
	Verilog HDL - Examples
	Verilog HDL - Examples
	Verilog HDL - Examples
	Verilog HDL - Examples
	Verilog HDL - Examples
	Verilog HDL - Examples
	Implementing combinational logic
	Implementing combinational logic
	Implementing combinational logic
	Implementing sequential logic
	Implementing sequential logic
	Synchronous/asynchronous control signals
	Finite state machines (FSMs)
	Finite state machines (FSMs)
	Finite state machines (FSMs)
	Finite state machines (FSMs)
	Datapath components
	Datapath components
	Datapath components
	Datapath components
	Datapath components�(Priority of the control signals)

