
Application of Partial Reconfiguration of FPGAs in 
Image Processing 

 

Tamás Raikovich, Béla Fehér 
Department of Measurement and Information Systems 

Budapest University of Technology and Economics 
Budapest, Hungary 

{rtamas, feher}@mit.bme.hu 
 
 

Abstract—FPGA based hardware accelerators have been more 
and more widely used in different kind of applications. As 
compared to other solutions and the direct hardware 
implementation, the advantage of the FPGA devices is their 
flexibility that arises from their programmable nature. In 
addition to this, some FPGA devices also support partial dynamic 
reconfiguration. When general purpose processors and 
reconfigurable computational structures are used together, the 
most advantageous properties of both components can be 
utilized. Algorithms (searching, sorting, signal and image 
processing, etc.) that are implemented such way have achieved 
100 times or 1000 times better performance. This paper 
introduces a Xilinx Virtex-5 FPGA based reconfigurable 
hardware accelerator system, which has been created mainly for 
image processing purposes. By using the partial reconfiguration 
capability of the FPGA, the execution units in the system can be 
quickly reconfigured. 

Keywords-FPGA; partial reconfiguration; image processing; 
hardware accelerator 

I.  INTRODUCTION 
Algorithms that require executing relatively simple 

operations on large amount of data usually can be efficiently 
accelerated with FPGAs. Many image processing algorithms 
belong to this group. Biological and biomedical experiments 
such as microarray experiments [1], high-content screening or 
cellular microscopy [2] often results in large amount of image 
data that have to be processed in order to evaluate the 
experiment. 

The idea of the reconfigurable image processing solution is 
based on this demand for high performance batch like image 
processing of biological samples. The processing of the large 
input data set would require human intelligence to qualitatively 
analyze the content and needs automated steps, for quantitative 
analysis of the images. Our prototype tool is the open-source 
CellProfiler [3] image analysis software, which is a collection 
of Matlab based library of image processing modules, which 
can be used to built up different image processing pipelines. 
These image processing pipelines are created and tuned by the 
biologists, using an interactive process where the necessary 
modules, the optimal parameters and the classification 
criteria’s are determined based on some representative sample 
images. The so called assays then applied on the thousand of 

images, already without direct human intervention. Our goal is 
to accelerate this second phase, implementing the basic 
CellProfiler modules in a reconfigurable FPGA fabric, and 
built up the processing pipeline from reconfigurable modules. 

A Virtex-5 FPGA based reconfigurable test system has 
been created, which consists of pipelines and each pipeline 
consists of several reconfigurable execution units. By using the 
partial reconfiguration capability of the FPGA, the pipeline 
stages can be quickly reconfigured with the required 
algorithms. The test system is implemented on the Xilinx 
ML506 board, which utilizes an XC5VSX50T FPGA 
optimized for memory-intensive and DSP applications. 

II. PARTIAL DYNAMIC RECONFIGURATION 
FPGA devices provide a number of serial and parallel 

configuration interfaces that can be used to download the 
configuration data to the device. During the normal 
configuration process, the operation of the FPGA is suspended. 
There are FPGA devices that support partial dynamic 
reconfiguration [4]. During the partial dynamic reconfiguration 
process, the device remains fully functional while a given part 
of the FPGA is reprogrammed without compromising the 
integrity of the running application. This capability allows 
using the FPGA hardware resources in a time-multiplexed way 
and smaller FPGAs can be used to implement the same design, 
which results in the reduction of costs and/or power 
consumption. 

Partial reconfiguration is an important feature in case of 
reconfigurable computing. Unfortunately, very few devices on 
the market have the capability to be partially reconfigured. 
Currently, only the members of the Xilinx Virtex FPGA family 
support this feature. The Xilinx Virtex FPGAs have a special 
configuration interface called ICAP (Internal Configuration 
Access Port). Using this internal hardware module, the running 
application itself can reconfigure a part of the FPGA device. 

III. IMAGE PROCESSING FUNCTIONS 
The basic image processing modules of the CellProfiler are 

relatively simple, like Align, Apply Threshold, Average, etc. 
and some of the Object Processing and Measurement modules 
are also similar in complexity, so they can be good candidates 
to hardware implementation. In order to determine the resource 



requirements and the size of the reconfigurable regions, several 
image processing functions have to be examined as a reference. 
In the test system, the cell recognition algorithm has been 
chosen to implement. This algorithm determines the borders of 
the cells on the cellular microscopy images and executes the 
following image processing tasks on the input data: 

• Noise removal (2D median filtering) 
• Histogram computation 
• Threshold value computation 
• Image binarization 
• Edge detection (2D FIR filtering) 

The current implementation of these functions can process 
8-bit grayscale images of 2048 x 2048 pixels maximum size. 

A. 2D Filters 
The 2D median and FIR filtering algorithms are called local 

image processing algorithms, because they depend on data 
from a relatively small neighborhood compared to the image 
size. These algorithms use a sliding window and execute 
different operations on the pixels found in the window. The 
sliding window image buffer can be easily implemented in 
hardware as shown in Fig. 1. Registers store the pixels in the 3 
x 3 window, the remaining pixels (image width – 3) of the 
rows are stored in a dual-port Block-RAM. When a new data is 
written into the buffer, the window is shifted right one position.  

 

Figure 1.  Block diagram of the filters. 

As the window moves through the image, its center covers 
a smaller area than the original image, which results a smaller 
filtered image size. This problem can be solved in different 
ways. In this design, the filters process an expanded image, 
which contains the original image and its edges are the copy of 
the edges of the original image. This expanded image can be 
easily created in hardware by adding a multiplexer to the image 
buffer input, which can select different write operations. 

1) Median filter 
Median filtering can efficiently reduce or remove impulse 

like noise from the images. Its edge-preserving nature makes it 
useful in cases when edge blurring is undesirable. Median 
filters sort the pixels in the window by intensity and the center 
element of the window is selected as the output. 

In this design, the median element is determined by the 
following way. At first, each row of the window is sorted 
(stage A). In the next step, each column of the window is 
sorted (stage B). At last, the elements in the secondary diagonal 
are sorted (stage C). The median element in the secondary 

diagonal will be the median element of the original inputs. The 
fully parallel and pipelined sorting network is shown in Fig. 2. 

Figure 2.  Network that determines the median element. 

2) FIR filter 
The operation executed by the FIR filters is convolution, 

which is defined in (1). The output of the filter is the weighted 
sum of the elements in the window. 

  (1) ( ) (∑∑
−= −=

++⋅=
1

1

1

1
, ,,

i j
ji jyiximageWyxf )

By selecting the appropriate weights, convolution can 
implement low-pass, high-pass and band-pass frequency 
domain filters. Low-pass filters use positive weights and are 
used for image smoothing. High-pass filters use a positive 
center weight and negative outer weights and are used to 
enhance high frequency components in an image such as edges 
and fine detail. All of the filter coefficients (Wi,j weights) are 
adjustable. 

The parallel implementation of a 3 x 3 FIR filter requires 
nine multipliers and eight adders, both are registered at the 
outputs. The adders are organized in tree form to reduce the 
pipeline stages. The last pipeline stage is the saturation unit, 
which saturates the output when overflow occurs. Negative 
output values are possible when there are negative Wi,j weights. 
These output values are meaningless and are replaced with 
zeroes. 

B. Histogram Computation 
This stage determines the distribution of the pixel intensity 

values of the median filtered image. In case of the specified 
maximum image size, the histogram computation requires a 
256 x 23 bit RAM. At first, the memory is filled with zeroes, 
then the value addressed by the input pixel data is incremented 
in every step. After processing the last pixel, the RAM will 
contain the histogram. 

C. Threshold Value Computation 
The histogram-based Otsu method [5] is used to determine 

the threshold value for image binarization. This algorithm 
divides the pixels into two classes (foreground and 
background) then calculates the optimum threshold by 
separating the two classes so that their   between-class variance 
(2) is maximal. 

 ( ) ( ) ( ) ( ) ( )[ 22 tttPtPt FGBGFGBGBetween μμσ −= ]  (2) 

IN REG REG REG 

REG REG 

REG REG 

REG 

REG 

RAM A

BA 

B 

OPERATION OUT

CONTROLLER 

Memory

Function

M
m

REG
M
m

REG M
m

REG

M
m

REG
M
m

REG M
m

REG

M
m

REG
M
m

REG M
m

REG

M
m

REG
M 
m REG 

M
m

REG
M 
m 

REG M 
m 

REG 

M
m

REG M 
m 

REG 

M 
m M

m

REG M
m

 
D
A
T
A
 
I
N

MEDIAN
OUT 

A C B 

REG 

1
0 REG

X > Y

0
REG1

X 

Y 

Max{X,Y}

min{X,Y}

REG
Z Z



In the beginning, every pixel belongs to the foreground 
class. After computing the initial values, the class probabilities 
(PBG, PFG) and the class means (μBG, μFG) can be updated 
recursively using (3), (4), (5) and (6) as each threshold value t 
is tested. The P(t) probability is the value in the histogram 
memory at address t. 

 ( ) ( ) (tPtPtP BGBG +=+ 1

( )
)  (3) 

 ( ) (tPtPtP −=+ 1 )FGFG  (4) 

 ( ) ( ) ( ) ( )
( )1

1
+

+
=+

tP
ttPtPt

t
BG

BGBG
BG

μ
μ  (5) 

 ( ) ( ) ( ) ( )
( )1

1
+

−
=+

tP
ttPtPt

t
FG

FGFG
FG

μ
μ  (6) 

The disadvantage of this algorithm is that it requires 
division, which cannot be as efficiently implemented in FPGAs 
as the multiplication. The length of the class means is 16 bits (8 
integer bits and 8 fractional bits) so the standard restoring 
division algorithm, which is used in the current design, requires 
16 clock cycles to complete. 

D. Image Binarization 
After computing the threshold value, each pixel of the 

median filtered image is tested. If the pixel intensity is lower 
than the threshold, it results a black binary image pixel (0). 
Otherwise the binary image pixel will be white (255). 

IV. RECONFIGURABLE REGIONS 

A. Size 
Table I shows the resource requirement of each image 

processing function. Because of the simplicity of the histogram 
computation and the image binarization, these are merged with 
the subsequent functions. 

TABLE I.  RESOURCE REQUIREMENTS AND UTILIZATION 

Image 
processing 
function 

FPGA resource requirements and utilization 

LUT Flip-flop RAMB36 DSP48E 

Median 
filter 

664 / 960 
(70 %) 

600 / 960 
(63 %) 

1 / 4 
(25 %) 

0 / 16 
(0 %) 

Otsu 
threshold 

542 / 960 
(56 %) 

530 / 960 
(55 %) 

1 / 4 
(25 %) 

12 / 16 
(75 %) 

Binarization, 
FIR filter 

406 / 960 
(43 %) 

402 / 960 
(42 %) 

1 / 4 
(25 %) 

9 / 16 
(57 %) 

 

The height of the reconfigurable regions is determined by 
the smallest addressable configuration memory segment of 
Virtex-5 FPGAs, which is a 20-CLB-height frame [6]. The 
XC5VSX50T device has only 6 frames in a column therefore 
the height of each PR region should be 1 frame. PR regions 
with different sizes have been tried. The result of the 
experiments was that the place and route operation failed when 
more than the 75% of the logic resources were utilized within a 
PR region. As a consequence, an optimal reconfigurable region 
contains 120 CLBs (960 LUTs and FFs), 4 Block-RAMs and 
16 DSP48E slices. The complexity of the XC5VSX50T device 
allows placing eight reconfigurable regions into a design. The 

remaining FPGA hardware resources are required for the static 
part of the system. 

B. Interfaces and Connections 
Fig. 3 shows the I/O interface of a reconfigurable region. 

Because the I/O signals routed into the reconfigurable modules 
through LUTs, their number should be minimized. Therefore, 
the PR modules have a simple data interface that consists of an 
8-bit data bus and two control/status signals. The data ready 
signal is active when there is valid data on the data bus and the 
data acknowledge signal is active when the module is able to 
receive the next input. Every module requires a read 
(DATA_IN) and a write (DATA_OUT) data interface to 
communicate with the adjacent modules. Some functions (such 
as the image binarization) also require direct memory access, 
which is provided through the memory read (MEM_IN) and 
write (MEM_OUT) interfaces. The internal parameter registers 
can be written using the PRM_IN serial input line. The 
processing of the input data can be started by strobing the 
START input, the DONE output signals when the operation 
has been finished. 

 

Figure 3.  I/O interface of the reconfigurabl modules. 

PR module 
DATA_IN[7:0]  DATA_OUT[7:0] 
DATA_IN_RDY   DATA_OUT_RDY 
DATA_IN_ACK   DATA_OUT_ACK 
 
MEM_IN[7:0]    MEM_OUT[7:0] 
MEM_IN_RDY     MEM_OUT_RDY 
MEM_IN_ACK     MEM_OUT_ACK 
 
PRM_IN                START 
CLK                   DONE 
RST 

The connection of the reconfigurable regions can be seen in 
Fig. 4. In this design, the eight reconfigurable regions are 
arranged as two 4-stage pipelines. The adjacent pipeline stages 
are connected together through a FIFO, which helps to balance 
the variation of the execution speeds. 

 

Figure 4.  Connection of the reconfigurable regions. 

FIFO

PRR 
1

PRR 
2

PRR 
3

PRR 
4

PRR 
5 

PRR 
6 

PRR 
7 

PRR 
8 

MEMORY WRITE INTERFACE

FIFO

FIFO FIFO 

FIFO 

FIFO 

MEMORY READ INTERFACE



Comparing the hardware and software filtering times, the 
FPGA design performs better: the median filtering is 70 times 
faster and the FIR filtering is 30 times faster. In case of the 
threshold computation, there is no speed-up. Despite of this, it 
is more efficient when the threshold computation is 
implemented in hardware, because it is an integral part of the 
image processing flow. Comparing the reconfiguration and the 
filtering times, about 10 reconfigurations can be done while an 
image of size 512 x 512 pixels is processed. 

V. MEMORY INTERFACE 
The memory interface greatly affects the performance of 

the system. Because of the limited number of the fast internal 
Block-RAMs, external memory is necessary for storing the 
large amount of image and configuration data. The ML506 
board contains a 32M x 64 bit (256 MB) DDR2 SDRAM 
memory module, which is connected to the system through a 
multi-port memory controller. Assuming 125 MHz system 
clock frequency, the theoretical peak bandwidth of the DDR2 
SDRAM is 2000 MB/s. The following peripherals of the 
system can directly access the external memory through the 
memory controller: 

Fig. 5 shows the results of the steps of the cell recognition 
algorithm. At first, the noisy input image (Fig. 5a) is median 
filtered (Fig. 5b). In the next step, the threshold value is 
calculated and applied to the median filtered image (Fig. 5c). In 
the last step, the binary image is FIR filtered (Fig. 5d) using the 
Laplace operator matrix as the filter mask.    

• Communication interface, which can be used to access 
the external memory and to control the system from 
the PC 

• ICAP peripheral, which is required for the partial 
reconfiguration of the FPGA 

 
(a) Input image.  

 
(b) Median filtered image. 

 
(c) Binary image. 

 
(d) Final result. 

Figure 5.  The input image and the steps of the cell recognition algorithm. 

• Memory read and write interfaces for the 
reconfigurable regions (Fig. 4) 

The reconfigurable modules have simple 8-bit data 
interfaces, whose theoretical peak bandwidth is 125 MB/s. 
Comparing the bandwidth values, it can be seen that it is not 
worth using more than sixteen data interfaces at the same time, 
because memory interface would saturate. 

In this design, the memory interface unit provides eight 8-
bit read and eight 8-bit write ports for the reconfigurable 
modules. The transfers are scheduled using round-robin 
scheduling. Two read and write ports are connected to the first 
and the last stages of the pipelines. The remaining ports can be 
connected to the other stages in each pipeline, which allows 
dividing the 4-stage pipeline into smaller parts. 

VII. CONCLUSION 
VI. RESULTS The high-performance FPGA devices offer a flexible and 

customizable solution for efficiently implementing wide range 
of applications. The partial reconfiguration capability of these 
devices allows utilizing them in a more efficient way. It is also 
an important feature in reconfigurable computing as it allows 
quickly swapping modules into and out of the devices without 
having to reset the complete device for a total reconfiguration. 

Table II shows the reconfiguration and the filtering times of 
the filter modules. As for the “theoretical” columns of the 
table, it is assumed that every input data can be processed in 
one clock cycle. The “theoretical” and the “actual” values are 
almost the same because the redesigned memory interface can 
provide the required bandwidth. 

REFERENCES TABLE II.  RECONFIGURATION AND PROCESSING TIMES 
[1] E. Wit, J. McClure, Statistics for Microarrays, Wiley, 2004. 

PR module Reconfiguration time 
@ 100 MHz 

Processing time 
(512 x 512 image size) 

FPGA @ 125 MHz PC @ 2,8 
GHz Theoretical Actual Theoretical Actual 

Median 
filter 0.178 ms 0.18 ms 2.097 ms 2.1 ms ~150 ms 

Otsu 
threshold 0.178 ms 0.18 ms 2.138 ms 2.15 ms ~2 ms 

Binarization, 
FIR filter 0.178 ms 0.18 ms 2.097 ms 2.1 ms ~60 ms 

[2] Q. Wu, F. A. Merchant, K. R. Castleman, Microscope Image Processing, 
Elsevier, 2008. 

[3] CellProfiler cell image analysis software manual 
http://www.cellprofiler.org 

[4] Xilinx Partial Reconfiguration User Guide Release 11.3 
[5] N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," 

IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, 
1979, pp. 62-66. 

[6] Xilinx UG191: Virtex-5 FPGA Configuration User Guide 
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf 

 


