
The World Leader in High Performance Signal Processing Solutions

Core Architecture Overview

Presented by:
George Kadziolka

President
Kaztek Systems

Core Architecture Overview2

About This Module
This module introduces the Blackfin® family and provides
an overview of the Blackfin processor architecture.

Core Architecture Overview3

Module Outline
Blackfin Family Overview
The Blackfin Core

• Arithmetic operations
• Data fetching
• Sequencing

The Blackfin Bus Architecture and Memory
• Modified Harvard architecture
• Hierarchical memory structure
• Flexible memory management

Additional Blackfin Core Features
• DMA
• Dynamic power management
• On-chip debug support

Summary

Core Architecture Overview4

Blackfin Family Overview
The Blackfin family consists of:

• A broad range of Blackfin processors
• Software development tools
• Hardware evaluation and debug tools

Extensive third-party support
• Development tools
• Operating systems
• TCP/IP stacks
• Hardware building blocks
• Software solutions

Core Architecture Overview5

Blackfin Processors
All Blackfin processors combine extensive DSP capability with
high end MCU functions on the same core.

• Creates a highly efficient and cost-effective solution.
• A single software development tool chain

All Blackfin processors are based on the same core architecture.
• Once you understand one Blackfin processor, you can easily migrate

from one family member to another.
• Code compatible across family members.

Processors vary in clock speed, amount of on-chip memory,
peripheral suite, package types and sizes, power, and price.

• Large selection lets you optimize your choice of a Blackfin processor
for your application.

Core Architecture Overview6

Blackfin Family Peripherals
The Blackfin family supports a wide variety of I/O:

• EBIU (External Bus Interface Unit)
• Parallel peripheral interface (PPI)
• Serial ports (SPORTS)
• GPIO
• Timers
• UARTS
• SPI®

• Ethernet
• USB
• CAN®

• Two Wire Interface (TWI)
• Pixel compositor
• Lockbox™ secure technology
• Host DMA
• ATAPI
• SDIO

See the Blackfin selection guide for complete details

Core Architecture Overview7

Blackfin Processors Perform
Signal Processing and Microcontroller Functions

ASIC
• Interfaces to sensors

• Broad peripheral mix

• Memory

New Model
Blackfin core can
perform all of these
functions

MCU ASIC

Signal Processing

Signal Processing

Signal Processing

Traditional Model

MCU
• Control

• Networking

• RTC

• Watchdog

• RTOS

• MMU

• Byte addressable

Core Architecture Overview8

Blackfin Architecture
What does it mean for the developer?
Combining controller and DSP capabilities into a single core, along
with rich I/O, enables development of efficient, low cost embedded
media applications.

• For example, multimedia over IP, digital cameras, telematics,
software radio

From a development perspective, a single core means there
is only one tool chain.

• An embedded application consisting of both control and signal
processing modules is built using the same compiler.

• The result is dense control code and high performance DSP code.

Core Architecture Overview9

Features
Controller

•L1 memory space for stack and heap
•Dedicated stack and frame pointers
•Byte addressability
•Simple bit-level manipulation

DSP
• Fast, flexible arithmetic computational units
• Unconstrained data flow to/from computational units
• Extended precision and dynamic range
• Efficient sequencing
• Efficient I/O processing
• The DSP aspect of the Blackfin core is optimized to perform FFTs and
convolutions

∑ −

=
∗−=

1

0
][][][N

k
khknxny

Core Architecture Overview10

Blackfin Core (e.g., ADSP-BF54x)

Core Architecture Overview11

The Blackfin Core

Core Architecture Overview12

The Blackfin Core
The core consists of:
Arithmetic unit

• Supports SIMD operation
• Load/store architecture

Addressing unit
• Supports dual data fetch

Sequencer
• Efficient program flow control

Register files
• Data
• Addressing

Core Architecture Overview13

The Arithmetic Unit
Performs arithmetic operations
Dual 40-bit ALU (Arithmetic/
Logic Unit)

• Performs 16-/32-/40-bit
arithmetic and logical
operations

Dual 16 x 16 multiplier
• Performs dual MACs
(multiply-accumulates) when
used with ALUs

Barrel shifter
• Performs shifts, rotates, bit
operations

Core Architecture Overview14

Data Registers
There are 8x 32-bit registers in the data register file.

• Used to hold 32-bit vales or packed 16-bit

There are also 2x 40-bit accumulators.
• Typically used for MAC operations

R0

R1

R2

R3

R4

R5

R6

R7

R0.LR0.H

R1.LR1.H

R4.LR4.H

R7.LR7.H

1531

A1.H A1.L

A0.H A0.L

A1.X

A0.X

Data Registers

1531

0

0

39

Core Architecture Overview15

16-Bit ALU Operations—Examples

R6.H = R3.H + R2.L (s);

The Algebraic Assembly syntax is intuitive and makes it easy to
understand what the instruction is doing.

R6 = R2 + | - R3;

R2
R3

R6

+ -

31 16 0

R2
R3

R6

+

31 16 0

R3 = R0 - | - R1, R2 = R0 + | + R1;

-
R2

R0
R1

31 16 0

- +
R3

R0
R1

31 16 0

+

Quad 16-bit operationSingle 16-bit operation Dual 16-bit operation

These operations effectively execute in a single cycle.

Core Architecture Overview16

32-Bit ALU Operations—Examples

R6 = R2 + R3;

R2

R3

R6

31 0

+

R3 = R1 - R2, R4 = R1 + R2;

R1

R2

R4

31 0

-

R1

R2

R3

31 0

+

Single 32-bit addition Dual 32-bit operation

These operations effectively execute in a single cycle.

Core Architecture Overview17

Dual MAC Operations—Example
Both MACs can be used at the same time to double the MAC throughput. The
same two 32-bit input registers must be used (R2 and R3 in this example).

A1 -= R2.H * R3.H, A0 += R2.L * R3.L;

R2
R3

x
- +

x

A0

A1

These operations effectively execute in a single cycle.
NOTE: This can happen in parallel with a dual data fetch.

Dual MAC operation

Core Architecture Overview18

Barrel Shifter
Enable shifting or rotating any number of bits within a 16-/32-/40-bit
register in a single cycle
Perform individual bit operations on 32-bit data register contents

• BITSET, BITCLR, BITTGL, BITTST

Field Extract and Deposit instructions
• Extract or insert a field of bits out of or into a 32-bit data register

Core Architecture Overview19

8-Bit Video ALUs

Four Video ALUs

Core Architecture Overview20

8-Bit ALU Operations
Four 8-bit ALUs provide parallel computational power targeted mainly
for video operations.

• Quad 8-bit add/subtract
• Quad 8-bit average
• SAA (Subtract-Absolute-Accumulate) instruction

A quad 8-bit ALU instruction takes one cycle to complete.

Four 8-Bit Video ALUs

64-Bit/8-Byte Field
R3 R2

64-Bit/8-Byte Field
R1 R0

4 Bytes 4 Bytes

Data Register File

32-Bits

Core Architecture Overview21

Additional Arithmetic Instructions
There are a number of specialized instructions that are used
to speed up the inner loop on various algorithms.
Bitwise XOR

• Enable creating LFSR (Linear Feedback Shift Registers) for use in CRC
calculations or the generation of PRN sequences

Bit stream multiplexing, add on sign, compare select
• Convolutional encoder and Viterbi decoder support

Add/Subtract with prescale up/down
• IEEE 1180–compliant 2D 8 x 8 DCTs (Discrete Cosine Transforms)

Vector search
• Enable search a vector a pair at a time for greatest or least value

Core Architecture Overview22

The Addressing Unit

The addressing unit generates
addresses for data fetches.

•Two DAG (Data Address
Generator) arithmetic units
enable generation of
independent 32-bit wide
addresses that can reach
anywhere within the Blackfin
memory space.

•Up to two fetches can occur
at the same time.

Core Architecture Overview23

Address Registers
There are 6x general-purpose Pointer
Registers.

• Used for GP 8-/16-/32-bit fetches
from memory

There are four sets of registers used
for DSP-style data accesses.

• Used for 16-/32-bit DSP data fetches
such as dual data fetch, circular buffer
addressing, and bit reversal

There are also dedicated stack (SP)
and frame (FP) pointers.

• These are used for 32-bit accesses to
stack frames. I0

I1

I2

I3

L0

L1

L2

L3

B0

B1

B2

B3

M0

M1

M2

M3

31 0 31 0 31 0 31 0

P0

P1

P2

P3

P4

P5

31 0

FP

SP

USP

Address
Registers

Index Registers:
I0-I3 are referred to
as “ireg.”

Pointer Registers:
P0-P5 are referred to
as “preg.”

Core Architecture Overview24

Addressing
Addressing Unit supports:

• Addressing only
• With specified Pointer or Index Register

• Provide address and post modify
• Add an offset after the fetch is done
• Circular buffering supported with this method

• Provide address with an offset
• Add an offset before the fetch, but no pointer update

• Update address only
• Modify address with reverse carry add

All addressing is Register Indirect.
• Index Registers I0-I3 (32-/16-bit accesses)
• Pointer Registers P0–P5 (32-/16-/8-bit accesses)
• Stack and Frame Pointer Registers (32-bit accesses)

All addresses are Byte addresses.
• Ordering is Little Endian.
• Addresses must be aligned for the word size being fetched.

• i.e., 32-bit fetches from addresses that are a multiple of four

Core Architecture Overview25

Circular Buffer Example

• The Addressing Unit supports Circular Buffer pointer addressing.
• The process of boundary checking and pointer wrapping to stay in bounds happens

in hardware with no overhead.
• Buffers can be placed anywhere in memory without restriction due to the Base

address registers.

0x00000001

0x00000002

0x00000003

0x00000004

0x00000005

0x0000000B

0x00000006

0x00000007

0x00000008

0x00000009

0x0000000A

0x00000001

0x00000002

0x00000003

0x00000004

0x00000005

0x0000000B

0x00000006

0x00000007

0x00000008

0x00000009

0x0000000A

Address

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

0x20

0x24

0x28

Example

Base address (B) and
Starting address (I) = 0

Buffer length
L = 44
(There are 11 data elements
and each data element is
4-bytes)

Modify value M = 16
(4 elements *
4-bytes/element)

Example memory access:

R1 = [I0 ++ M2];

1st Access

2nd Access

3rd Access

5th Access

4th Access

Core Architecture Overview26

The Sequencer
The sequencer’s function is to
generate addresses for fetching
instructions.

• Uses a variety of registers to select
the next address

Aligns instructions as they
are fetched

• Always reads 64 bits from memory
• Realigns what is fetched into

individual 16-/32-/64-bit opcodes
before sending to the execution
pipeline

Handles events
• Interrupts and exceptions

Conditional execution

Core Architecture Overview27

Program Flow

Core Architecture Overview28

Sequencer Registers
These are registers that are used in the control of program flow.
Arithmetic Status (ASTAT) tracks status bits for core operations.

• Used in conditional execution of instructions.
Return address registers.

• Hold the 32-bit return address for program flow interruptions.
Two sets of hardware loop management registers.

• They manage up to two nested levels of zero overhead looping.
• There are no core cycles spent managing the loop.
• Looped code runs as efficiently as straight line code.

LT0
LB0

Loop Counter
Loop Top
Loop Bottom

ASTAT

RETS

RETI

RETX

RETN

RETE

Arithmetic Status

Subroutine Return

Interrupt Return

Exception Return

NMI Return

Emulation Return

LT1
LB1

System Config

Sequencer Status

SYSCFG

SEQSTAT

LC0

LC1

Core Architecture Overview29

Instruction Pipeline

The pipeline is fully interlocked. In the event of a data hazard,
the sequencer automatically inserts stall cycles.

Pipeline Stage Description

Instruction Fetch 1 (IF1) Issue instruction address to IAB bus, start compare
tag of instruction cache

Instruction Fetch 2 (IF2) Wait for instruction data
Instruction Fetch 3 (IF3) Read from IDB bus and align instruction

Instruction Decode (DEC) Decode instructions

Address Calculation (AC) Calculation of data addresses and branch target
address

Data Fetch 1 (DF1) Issue data address to DA0 and DA1 bus, start
compare tag of data cache

Data Fetch 2 (DF2) Read register files

Execute 1 (EX1)
Read data from LD0 and LD1 bus, start multiply and
video instructions

Execute 2 (EX2) Execute/Complete instructions (shift, add, logic, etc.)

Write Back (WB) Writes back to register files, SD bus, and pointer
updates (also referred to as the “commit” stage)

Core Architecture Overview30

Instruction Pipeline

Once the pipe is filled (e.g., at cycle N+9 in this case), one instruction will exit
the pipeline on each core clock tick.

• i.e., effectively, one instruction per core clock cycle executed

IF1 IF2 IF3 DEC AC DF1 DF2 EX1 EX2 WB
Cycle

N INST #1
N+1 INST #2 INST #1
N+2 INST #3 INST #2 INST #1
N+3 INST #4 INST #3 INST #2 INST #1
N+4 INST #5 INST #4 INST #3 INST #2 INST #1
N+5 INST #6 INST #5 INST #4 INST #3 INST #2 INST #1
N+6 INST #7 INST #6 INST #5 INST #4 INST #3 INST #2 INST #1
N+7 INST #8 INST #7 INST #6 INST #5 INST #4 INST #3 INST #2 INST #1
N+8 INST #9 INST #8 INST #7 INST #6 INST #5 INST #4 INST #3 INST #2 INST #1
N+9 INST #10 INST #9 INST #8 INST #7 INST #6 INST #5 INST #4 INST #3 INST #2 INST #1
N+10 INST #11 INST #10 INST #9 INST #8 INST #7 INST #6 INST #5 INST #4 INST #3 INST #2
N+11 INST #12 INST #11 INST #10 INST #9 INST #8 INST #7 INST #6 INST #5 INST #4 INST #3
N+12 INST #13 INST #12 INST #11 INST #10 INST #9 INST #8 INST #7 INST #6 INST #5 INST #4

Core Architecture Overview31

Blackfin Event Handling
Blackfin events include:

• Interrupts
• Generated by hardware (e.g., DMA complete) or software

• Exceptions
• Error condition or service related

Handling is split between the CEC (Core Event Controller) and SIC
(System Interrupt Controller).

• CEC has 16 levels and deals with requests on a priority basis.
• The nine lowest levels are general purpose and are used for Peripheral Interrupt Requests.
• Each level has a 32-bit Interrupt Vector Register that points to the start of the ISR for

that level.
• SIC allows enabling Peripheral Interrupt Requests and mapping to specific
CEC GP levels.

• Allows setting peripheral request priorities

Core Architecture Overview32

System and Core Interrupts (ADSP-BF533 example)

Emulator 0 EMU

Reset 1 RST

Non Maskable Interrupt 2 NMI

Exceptions 3 EVSW

Reserved 4 -

Hardware Error 5 IVHW

Core Timer 6 IVTMR

General Purpose 7 7 IVG7

General Purpose 8 8 IVG8

General Purpose 9 9 IVG9

General Purpose 10 10 IVG10

General Purpose 11 11 IVG11

General Purpose 12 12 IVG12

General Purpose 13 13 IVG13

General Purpose 14 14 IVG14

General Purpose 15 15 IVG15

PLL Wakeup interrupt IVG7

DMA error (generic) IVG7

PPI error interrupt IVG7

SPORT0 error interrupt IVG7

SPORT1 error interrupt IVG7

SPI error interrupt IVG7

UART error interrupt IVG7

RTC interrupt IVG8

DMA 0 interrupt (PPI) IVG8

DMA 1 interrupt (SPORT0 RX) IVG9

DMA 2 interrupt (SPORT0 TX) IVG9

DMA 3 interrupt (SPORT1 RX) IVG9

DMA 4 interrupt (SPORT1 TX) IVG9

DMA 5 interrupt (SPI) IVG10

DMA 6 interrupt (UART RX) IVG10

DMA 7 interrupt (UART TX) IVG10

Timer0 interrupt IVG11

Timer1 interrupt IVG11

DMA 8/9 interrupt (MemDMA0) IVG13

DMA 10/11 interrupt (MemDMA1) IVG13

Timer2 interrupt IVG11

PF interrupt A IVG12

PF interrupt B IVG12

Watchdog timer interrupt IVG13

1 Note: Default IVG configuration shown.

System Interrupt Source IVG #1

Event Source IVG # Core Event
Name

Lowest

Highest

P
R
I
O
R
I
T
Y

Core Architecture Overview33

Variable Instruction Lengths
The Blackfin architecture uses three instruction opcode lengths to obtain the
best code density while maintaining high performance.
16-bit instructions

• Most control-type instructions and data fetches are 16-bits long to improve code density.

32-bit instructions
• Most control-type instructions with an immediate value in the expression and most

arithmetic instructions are 32-bits in length.

Multi-issue 64-bit instructions
• Certain 32-bit instructions can be executed in parallel with a pair of specific 16-bit

instructions and specified with one 64-bit instruction.
• Typically a 32-bit ALU/MAC instruction and one or two data fetch instructions

• The delimiter symbol to separate instructions in a multi-issue instruction is a double pipe
character “||.”

Example:
A1+=R0.L*R1.H, A0+=R0.L*R1.L || r0 = [i0++] || r1 = [i1++];

Core Architecture Overview34

Instruction Packing
When code is compiled and linked,
the instructions are packed into
memory as densely as possible.

• i.e., no wasted memory space

No memory alignment restrictions
for code:

• Instructions can be placed anywhere
in memory.

• The sequencer fetches 64-bits of
instruction at a time (from 8-byte
boundaries) and performs an alignment
operation to:

• Isolate shorter opcodes
• Realign larger opcodes that straddle 4-/8-byte

boundaries
• This realignment hardware is

transparent to the user.

16-bit OP
32-bit OP
64-bit Multi-OP

Instruction Formats
015

16-bit wide memory

No Memory Alignment Restrictions:
Maximum Code Density and Minimum

System Memory Cost

Core Architecture Overview35

16-bit FIR Filter Example—0.5 cycles per tap

Samples in R0 Samples in R0 Coefficients in R1Coefficients in R1

Loop: A1+=R0.H*R1.L, A0+=R0.L*R1.L || R0.L = [I0++] || nop;
Loopend: A1+=R0.L*R1.H, A0+=R0.H*R1.H || R0.H = [I0++] || R1 = [I1++];

MAC0MAC1

• Performs operations in support of two filter outputs in
each clock cycle

R0

R1

x

31 0

+
x

A0

A1

Coefficient

Input Input

+

Coefficient

39 0

x0

x1

x2

x3

Coefficients
Input data
delay line

MAC into A0

MAC into A1

MAC into A0

MAC into A1

R1L

R1H

R1L

R1H

R0L

R0H

R0L

R0H

x0

x1

x2

x3

Core Architecture Overview36

Bus and Memory Architecture

Core Architecture Overview37

Blackfin Memory Hierarchy
The Blackfin architecture uses a memory hierarchy with a primary goal
of achieving memory performance similar to that of the fastest memory
(i.e., L1) with an overall cost close to that of the least expensive
memory (i.e., L3).

• Portions of L1 can be configured as cache, which allows increased memory
performance by prefetching and storing copies of code/data from L2/L3.

L2 Memory

Internal (if present)
Larger than L1

Multicycle access

L1 Memory

Internal
Smallest capacity

Single-cycle access

CORE

(Registers)

L3 Memory

External (e.g., SDRAM)
Largest capacity
Highest latency

Core Architecture Overview38

Internal Bus Structure of the ADSP-BF533

Core Architecture Overview39

Configurable Memory
The best system performance can be achieved when executing code or
fetching data out of L1 memory.
Two methods can be used to fill the L1 memory—caching and dynamic
downloading–the Blackfin processor supports both.

• Microcontrollers have typically used the caching method, as they have
large programs often residing in external memory and determinism is not
as important.

• DSPs have typically used dynamic downloading (e.g. code overlays), as they
need direct control over which code runs in the fastest memory.

The Blackfin processor allows the programmer to choose one or both
methods to optimize system performance.

• Portions of L1 instruction and data memory can be configured to be used as
SRAM or as cache.

• Enabling these 16K Byte blocks for use as cache reduces the amount of L1 available as
SRAM. However, there is still space available for code, such as critical functions or interrupt
handlers.

Core Architecture Overview40

Cache and Memory Management
Cache allows users to take advantage of single-cycle memory without
having to specifically move instructions and or data “manually.”

• L2/L3 memory can be used to hold large programs and data sets.
• The paths to and from L1 memory are optimized to perform with
cache enabled.

Cache automatically optimizes code and data by keeping recently used
information in L1.

• LRU (Least Recently Used) algorithm is used for determining which cache line
to replace.

Cache is managed by the memory management unit though a number
of CPLBs (Cachability, Protection, and Lookaside Buffers).

• The CPLBs divide up the Blackfin memory space into pages and allow
individual page control of memory management items such as:

• User/Supervisor Access Protection
• Read/Write Access Protection
• Cacheable or Non-Cacheable

Core Architecture Overview41

Additional Blackfin Core Features

Core Architecture Overview42

Direct Memory Access (DMA)
The Blackfin processors includes a DMA (Direct Memory Access)
facility on all CPUs.

• Enable moving data between memory and a peripheral, or memory to memory
without using any core cycles

• Core only involved in setting up DMA parameters
• Core is interrupted when DMA completes, thereby improving efficiency of data
flow operations.

• Alternatively, DMA status allows polling operations.
• The DMA controller has dedicated buses to connect between the DMA unit
itself and:

• Peripherals
• External memory (e.g., L3 or SDRAM)
• Core memory (e.g., L1)

Core Architecture Overview43

Power Management Options
Low active power

• Flexible power management with automatic power-down for unused
peripheral sections.

• Dynamic power management allows dynamic modification of both
frequency and voltage.

• PLL can multiply CLKIN from 1x to 64x.
• Core voltage can be optimized for the operating frequency.

Low standby power
• 5 power modes

• Full on, active, sleep, deep sleep, hibernate
• Real-time clock with alarm and wakeup features

• RTC has its own power supply and clock.
• It is unaffected by hardware or software reset.

Core Architecture Overview44

Blackfin Processors Optimize Power Consumption

Varying the voltage and frequency

Processor Operation

PLL
Settling

Regulator
Transition

1.2V, 500 MHz

0.9V, 250 MHz

Regulator
Transition

0.8V, 100 MHz
PLL

SettlingProcessor Operation

Processor Operation

Power
Consumption

Vdd

t

Just varying the frequency

Dynamic Power Management

mW

Core Architecture Overview45

Power Mode Transitions
Under software control,
the application can change
from one power state
to another.
A set of libraries (i.e.,
System Services) enable
control of clocking, core
voltage, and power states
with just a function call.

Core Architecture Overview46

Hardware Debug Support

Core Architecture Overview47

Advanced Support for Embedded Debug
The JTAG port is also used to provide in-circuit emulation capabilities.

• Nonintrusive debugging
• BTC (background telemetry channel)

Hardware breakpoints
• Six instruction and two data watchpoints

Performance monitor unit
• Counters for cycles and occurrences of specific activities

Execution trace buffer
• Stores last 16 nonincremental PC values

Core Architecture Overview48

Summary
The Blackfin core has a number of features and instructions that
support both control and DSP types of operations.
The Blackfin’s high performance memory/bus architecture supports
zero wait state instruction and dual fetches from L1 at the core clock
rate, all at the same time.

• Large applications that reside in the larger but slower external memory still
benefit from the high performance L1 memory through the use of caching
and/or dynamic downloading

The Blackfin architecture enables both efficient implementation
of media-related applications and efficient development of
those applications.

Core Architecture Overview49

Resources
For detailed information on the Blackfin architecture, please refer to the
Analog Devices website which has links to manuals, data sheets, FAQs,
Knowledge Base, sample code, development tools and much more:

• www.analog.com/blackfin

For specific questions click on the “Ask a question” button.

Kaztek Systems provides worldwide technical training on processor
architecture and systems development using Analog Devices
Processors. For more information
Visit www.kaztek.com or Email info@kaztek.com

http://www.analog.com/blackfin
http://www.kaztek.com/
mailto:info@kaztek.com

	Core Architecture Overview
	About This Module
	Module Outline
	Blackfin Family Overview
	Blackfin Processors
	Blackfin Family Peripherals
	Blackfin Processors Perform �Signal Processing and Microcontroller Functions
	Blackfin Architecture�What does it mean for the developer?
	Features
	Blackfin Core (e.g., ADSP-BF54x)
	The Blackfin Core
	The Arithmetic Unit
	Data Registers
	16-Bit ALU Operations—Examples
	32-Bit ALU Operations—Examples
	Dual MAC Operations—Example
	Barrel Shifter
	8-Bit Video ALUs
	8-Bit ALU Operations
	Additional Arithmetic Instructions
	The Addressing Unit
	Address Registers
	Addressing
	Circular Buffer Example
	The Sequencer
	Program Flow
	Sequencer Registers
	Instruction Pipeline
	Instruction Pipeline
	Blackfin Event Handling
	System and Core Interrupts (ADSP-BF533 example)�
	Variable Instruction Lengths
	Instruction Packing
	16-bit FIR Filter Example—0.5 cycles per tap
	Blackfin Memory Hierarchy
	Internal Bus Structure of the ADSP-BF533
	Configurable Memory
	Cache and Memory Management
	Direct Memory Access (DMA)
	Power Management Options
	Blackfin Processors Optimize Power Consumption
	Power Mode Transitions
	 Advanced Support for Embedded Debug
	Summary
	Resources

