

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK

Digitális technika (VIMIAA02) 1. laboratórium

Raikovich Tamás BME MIT

1. feladat: HW "Hello World!"

8 db LED vezérlése a 8 bites DIP kapcsolóval a LOGSYS Spartan-3E FPGA kártyán

- DIP kapcsoló → FPGA bemenet: kék huzalozás
- FPGA kimenet → LED: piros huzalozás
- Mi legyen megvalósítva az FPGA logikában?

1. feladat: HW "Hello World!"

Az elvi kapcsolási rajz a szükséges paraméterekkel (nem tananyag, csak érdeklődőknek !)

1. feladat – Szükséges Verilog ismeretek

- FPGA (Field Programmable Gate Array)
 - A programozható logikai áramkörök egyik típusa
 - Digitális rendszerek megvalósítására használható
- A megvalósítandó rendszer viselkedését a legtöbb esetben hardver leíró nyelvvel (HDL) adjuk meg
 - Mi a Verilog nyelvet fogjuk használni
- Az 1. feladathoz szükséges Verilog ismeretek
 - A Verilog modul felépítése, részei

- A modul portjainak megadása (irány, típus, méret)
- Folytonos értékadás az assign utasítással
- A szimulációs tesztkörnyezet létrehozása

1. feladat – A projekt létrehozása

- A Xilinx ISE Design Suite 14.6 fejlesztői környezetet használjuk az FPGA fejlesztéshez
- Új projekt létrehozása
 - A projekt nevének és elérési útjának megadása
 - A használt FPGA eszköz típusának megadása
 Family: Spartan3E
 Package: TQ144
 Device: XC3S250E
 Speed: -4
- Új forrásfájl hozzáadása az üres projekthez
 - Típus: Verilog modul

BME-MI

- A fájl nevének és elérési útjának megadása
- A modul portjainak megadása (opcionális)
- Egészítsük ki a generált modul vázat

A LED port legyen Id, a kapcsoló port legyen sw

1. feladat – Tesztelés, szimuláció

A szimulátor segítségével ellenőrizhető az elkészült rendszer egészének vagy egy részének megfelelő működése a hardver nélkül is

- Bemeneti adatok: a tesztelendő modul bemenetei
 - A tesztkörnyezetben adjuk meg, hogy egymás után milyen értékek kerüljenek a bemenetekre
- Eredmény: idődiagram formájában

BME-MIT

 A tesztkörnyezetben (és kiegészítéssel az almodulokban) lévő belső jelek időbeli változását mutatja grafikusan

Name	Value	0 ns	200 ns	1	400 ns		600 ns		800 ns		1,000 ns		1
🕨 🍯 i[31:0]	1		1	χ_2	3	4	5	<u>(</u> 6)	7	8	9	10	K
🕨 📷 sw[7:0]	1	0	1	2	3	4	5	6	7	8	9	10	C
🕨 📲 Id[7:0]	1	0	1	2	3	4	5	6	7	8	9	10	C

1. feladat – Tesztelés, szimuláció

- A szimuláció nagyon fontos, de mi idő hiányában többször is el fogunk tekinteni ettől
- Váltsunk át implementációs nézetről szimulációsra
- Új forrásfájl hozzáadása a projekthez

- Típus: Verilog test fixture (tesztkörnyezet)
- A forrásfájl nevének és elérési útjának megadása
- A tesztelni kívánt modul kiválasztása

1. feladat – Tesztelés, szimuláció

- Nézzük meg a generált tesztkörnyezet vázat
- Egészítsük ki a tesztkörnyezetet a bemeneti adatokkal (tesztvektorok)
 - Megadunk néhány tesztvektort manuálisan
 - Használhatjuk a *for* utasítást a 256 lehetséges bemeneti kombináció előállításához
- Indítsuk el a szimulációt a tesztkörnyezetre

- Ellenőrizzük a szimulátorban a megfelelő működést
- Ha mindent rendben találunk, akkor kipróbálhatjuk a rendszert a hardveren is

- Váltsunk vissza szimulációs nézetről implementációsra
- Vajon minden szükséges információ megtalálható a projektben a hardveren történő kipróbáláshoz?
 – Segítség: nézzük meg az első két diát
- Ha nem, akkor mi szükséges még?

BME-MI

- Nincs még megadva, hogy az egyes port bitek mely FPGA lábra csatlakozzanak (külvilággal való kapcsolat)
- Új forrásfájl hozzáadása a projekthez
 - Típus: Implementation constraints file (UCF fájl)
 - A forrásfájl nevének és elérési útjának megadása
- Társítsunk minden port bithez egy FPGA lábat
 - A kapcsoló bitek az UCF fájlban: sw<0> ... sw<7>
 - A LED bitek az UCF fájlban: Id<0> … Id<7>

NET "port bit" LOC="FPGA láb";

LED	LD7	LD6	LD5	LD4	LD3	LD2	LD1	LD0
FPGA láb	P43	P50	P51	P52	P53	P54	P58	P59
Kapcsoló	7	6	5	4	3	2	1	0
FPGA láb	P47	P48	P69	P78	P84	P89	P95	P101

BME-MIT

FPGA labor

- A fejlesztői környezetben generáljuk az FPGA konfigurációs fájlt (BIT fájl)
- A Logsys GUI-val programozzuk fel az FPGA-t
 - 1. Az 5 V-os tápfeszültség bekapcsolása
 - 2. A JTAG funkció megnyitása

- 3. Az eszközök felderítése a kártyán
- 4. A BIT fájl letöltése az eszközre
- Próbáljuk ki a működést a hardveren is

Logsys Control Panel		· [з ×	<
<u>File View Window</u>	<u>H</u> elp			
DC023	ά×	Download (DC023)	• x	
Info LOGSYS development cable	Configuration	JTAG JTAG 4		JTAG de
Control	Communication BitBang I/O UART	Query JTAG chain XC3S250E (Xilinx) Configure the selected devic	e	evice databa
10 Hz Set		Clear Log		Ise
Power Voltage +5V On Measurement +5Vout: 4,94 V Maximum I/Oref: 3,31 V Critical V JTAGref: 2,51 V Samples,	Value: 450 ∨ mA file n Value: 500 ↓ mA /alue: 90 ↓ % /Second: 10 ↓	Found 1 device(s) in the JTAG chain.	~	
045,00	0 500,00		~	

FPGA labor

2. feladat – Kettes komplemens képzés

- Módosítsuk úgy az előző feladat forrásfájlját úgy, hogy a LED-eken a kapcsolón beállított érték kettes komplemense jelenjen meg
- Milyen lehetőségek vannak a kettes komplemens képzésére?
- A 2. feladathoz szükséges új Verilog ismeretek
 - Bitenkénti negálás operátor

- Összeadás és kivonás operátorok
- Konstansok megadása (bitszám, számrendszer)
- Keressük meg azt a két értéket, melynek kettes komplemense önmaga!

3. feladat – Összeadó (opcionális)

- Készítsünk egy egyszerű összeadó kalkulátort
 - A bemeneti adatokat a kapcsoló alsó és felső 4 bitjén adjuk meg
 - Az eredményt 5 biten (4 bites összeg és a kimenő átvitel bit) jelenítsük meg a LED-eken
 - A felső 3 LED legyen kikapcsolva

- A 3. feladathoz szükséges új Verilog ismeretek
 - Belső jelek megadása (típus, méret)
 - Indexelő operátor (bit, bittartomány kiválasztása)
- Próbáljuk ki az összeadót az FPGA kártyán előjel nélküli és kettes komplemens kódolású adatokkal is