The Semantic Web Rule
Language

Talk Outline

 Rules and the Semantic Web
 Basic SWRL Rules
« SWRL’s Semantics

« SWRLTab: a Protege-OWL
development environment for SWRL

« SQWRL: a SWRL-based OWL query
langauge

Semantic Web Stack

[F

Proof

Unifying Logic

Rules

OWL

Crypto

RDF-S

URI

Rule-based Systems are common
IN many domains

Engineering: Diagnosis rules
Commerce: Business rules
Law: Legal reasoning

Medicine: Eligibility, Compliance
Internet: Access authentication

Rule Markup (RuleML) Initiative

Effort to standardize inference rules.

RuleML is a markup language for publishing
and sharing rule bases on the World Wide
Web.

Focus is on rule interoperation between
industry standards.

RuleML builds a hierarchy of rule
sublanguages upon XML, RDF, and OWL,
e.g., SWRL

What is SWRL?

SWRL is an acronym for Semantic Web Rule
Language.

SWRL is intended to be the rule language of the
Semantic Web.

SWRL includes a high-level abstract syntax for
Horn-like rules.

All rules are expressed in terms of OWL
concepts (classes, properties, individuals).

Language FAQ:

— http://protege.cim3.net/cgi-bin/wiki.pl ?SWRLLanguageFAQ

SWRL Characteristics

W3C Submission in 2004
http://www.w3.orq/Submission/SWRL/

Rules saved as part of ontology

Increasing tool support: Bossam, R2ML,
Hoolet, Pellet, KAON2, RacerPro,
SWRLTab

Can work with reasoners

Example SWRL Rule:
Reclassification

Man(?m) — Person(?m)

Possible in OWL - some rules are OWL syntactic sugar

Example SWRL Rule: property
value assignment

Person(?p) * hasSibling(?p,?s) » Man(?s)
— hasBrother(?p,?s)

Example SWRL Rule: property
value assignment

hasParent(?x, ?y) ™ hasBrother(?y, ?z)
— hasUncle(?x, ?z)

Not possible in OWL 1.0 - some rules are not OWL syntactic
sugar

10

Example SWRL Rule with
Named Individuals: Has brother

Person(Fred) * hasSibling(Fred, ?s) * Man(?s)
— hasBrother(Fred, ?s)

Example SWRL Rule with Literals
and Built-ins: is adult?

Person(”?p) * hasAge(”?p,?age) *
swrlb:greaterThan(?age,17)

— Adult(?p)

Built-ins dramatically increase expressivity - most rules are not
OWL syntactic sugar

Example SWRL Rule with String
Built-ins

Person(?p) » hasNumber(?p, ?number)
A swrlb:startsWith(?number, "+") —
hasinternationalNumber(?p, true)

Example SWRL Rule with Built-in
Argument Binding

Person(”?p) * hasSalarylnPounds(?p, ?pounds) #
swrlb:multiply(?dollars, ?pounds, 2.0) —
hasSalarylnDollars(?p, ?dollars)

Example SWRL Rule with Built-in
Argument Binding ||

Person(”?p) * hasSalarylnPounds(?p, ?pounds) #
swrlb:multiply(2.0, ?pounds, ?dollars) ->
hasSalarylnDollars(?p, ?dollars)

Arguments can bind in any position - though generally an
implementation will support binding of only the first argument

Can define new Built-in Libraries

 Temporal built-ins:

— temporal:before("1999-11-01T10:00", "2000-02-01T11:12:12.000")
— temporal:duration(2, "1999-11-01", "2001-02-01", temporal:Years)

 TBox built-Ins:

— tbox:isDatatypeProperty(?p)
— tbox:isDirectSubPropertyOf(?sp, ?p)

 Mathematical built-ins:

— swrlm:eval(?circumference, "2 * pi * r", ?r)

SWRLTab Built-in Libraries

©) protegeWiki: SWRLTab Built In Libraries - Mozilla Firefox

File Edit View

©® -c

18] Most Yisited

History — Bookmarks Tools Help

tat 'I_ d http: fiprotege. cim3. netfogi-bingwiki, pl? SWRLT abBuil InLibr aries
Google | sur '~ [Glsearch - g ks - RS -

-.l Mozilla Firefox Start Page

& - 9 Bookmarks- "& Check = % Autolink (|‘_| | sendtor A sl

I_] ProtegeWiki: SWRLTab Built In Li... a

SWRLTabBuiltInLibraries

WikiHomePage | RecentChanges | Page Index

s
O Settings~

<€protégé

MartinOConnar (preferences | logout)

here.
» ABox Built-Ins Library Defines built-ins that can be used to query an ABox. It is documented here.
» TBox Built-Ins Library Defines built-ins that can be used to query a TBox. It is documented here.
« Mathematical Expressions Built-Ins Library Defines built-ins that can be used to evaluate complex mathematical

L]
X
=
-
o2}
=
"l"_
—
=
w
i~
j=n
I

3
o
m
-
J
[
wm
[on
=
=
L
3
w
—
[y
i
=
%]
fui}
3
(o
m
C
o
m
[oN
-+
o}
o
[
m
=
~
s
=
-
o
[}
o]
C
3
m
3
=
(8
—
=
o
o
o}
o]
C
3
m
3
=
m
[oN
[y
m
=
0

Extensions Built-ins Library Defines some experimental built-ins that can be used to increase the expressivity of SWRL. It
is documented here.

MNew SWRL built-in libraries can be defined by developers using the SWRLBUIltINBridge.

Your Visited Pages

SWRLTabBuiltInLibraries
SWRLLanguageFAD

SWRLTab
SWRLTabMathernaticalBuiltIns
SWRLTabRMLBUIltIns
SWRLTEoxBuiltIng
SWRLABoxBuUiltIng
SWRLTermporalBuiltIns

View Backlinks

Search

Edit text of this page | View other revisions
Last edited October 26, 2007 17:20 (diff)

* Find: | class de ‘ Mext @ Previous & Highlight all] Match case

Done

RS5

-

Example SWRL Rule with OWL
Class Expressions

(hasChild >= 1)(?x) — Parent(?x)

This does not say: all individuals with a child are parents

It says: all individuals that are members of an OWL class with the
associated restriction that its hasChild property has a minimum
cardinality of one

Example SWRL Rule with Inferred
OWL Class Expressions

Parent(?x) — (hasChild >= 1)(?x)

Arbitrary OWL class expressions are allowed

Expression syntax may very, though Manchester Syntax common

SWRL Semantics

Based on OWL-DL
Has a formal semantics

Complements OWL and fully semantically
compatible

More expressive yet at expense of
decidability

Use OWL if extra expressiveness not
required (possible exception: querying)

OWL Class Expressions and the
Open World Assumption

(hasChild >= 1)(?x) — Parent(?x)

This does not say: all individuals with a child are parents

It says: all individuals that are members of the OWL class with the
associated restriction that its hasChild property has a minimum
cardinality of one

Individuals with no known children may be classified as parents

SWRL and Open World Semantics:
sameAs, differentFrom

Publication(?p) * hasAuthor(?p, ?y) A
hasAuthor(?p, ?z) * differentFrom(?y, ?z)

— cooperatedWith(?y, ?z)

Like OWL, SWRL does not adopt the unique name assumption

Individuals must also be explicitly stated to be different (using, for
example, owl:allDifferents restriction)

SWRL is Monotonic: does not
Support Negated Atoms

Person(?p) * not hasCar(?p, ?c) —
CarlessPerson(?p)

Not possible - language does not support negation here

Potential invalidation - what if a person later gets a car?

SWRL is Monotonic: retraction (or
modification) not supported

Person(?p) * hasAge(?p,7age) *
swrlb:add(?newage, ?age,1)

— hasAge(?p, ?newage)

Incorrect - will run forever and attempt to assign an infinite
number of values to hasAge property

Potential invalidation - essentially attempted retraction

SWRL is Monotonic: counting not
supported

Publication(?p) * hasAuthor(?p,?a) *

<has exactly one hasAuthor value In
current ontology>

— SingleAuthorPublication(?p)

Not expressible - open world applies

Potential invalidation - what if author is added later?

SWRL is Monotonic: counting not
supported |

Publication(?p) * (hasAuthor = 1)(?p)
— SingleAuthorPublication(?p)

Closure - though best expressed in OWL in this case

SWRLTab

A Protege-OWL development environment
for working with SWRL rules

Supports editing and execution of rules

Extension mechanisms to work with third-
party rule engines

Mechanisms for users to define built-in
method libraries

Supports querying of ontologies

SWRLTab Wiki : http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab

) ProtegeWiki: SWRL Tab - Mozilla Firefox

File Edit View History Bookmarks Tools Help
@ - c {ai | l_[.http:;’,l'protege.cim3.net,l’cgi-bin,iwiki.pI?SWRLTab AR '. P,
|8 Most Visited
C{}uSk! i _V“ (G Search - ! e 559 - RS - @ - €2 Bookmarks~ A? Check - % Autolink 'T_| | o Sendta- S0 B swrl 'O Settings~
| |_| ProtegeWiki: SWRLTab a -“l Mozilla Firefox Start Page -"l Mozilla Firefox Start Page -.' Mozilla Firefox Stark Page -.'l Mozilla Firefiosx Stark Page -
-~
<@ protégé
SWRLTab
WikiHomePage | RecentChanges | Page Index MartinOConnor {preferences | logout)
The SWRLTab is a development environment for working with SWRL rules in Protege-OwWL. It supports the editing and execution of SWRL rules, Yourizited Ragas
It provides a set of libraries that can be used in rules, including libraries to interoperate with XML documents, and spreadsheets, and libraries gl
with mathematical, string, RDFS, and temporal operators. 4 SWRL-based QWL guery language called SOWRL Is also provided, SR
SWRLTabsMLEBuUiltIn:
& introduction to the SWRL languace can be found here. &n introduction SQWRL can be found here. e e
SWRLEditorFAG
The SWRLTab has several software components: SR s
« SWRL Editor The editor supports editing and saving of SWRL rules in an OWL ontology. See the SWRL Editor FAD for more details. ey ek TR
e SWRL Built-in Libraries & number of built-in libraries are provided by the SWRLTab, These include an implementation of the core SWRL
built-ins defined in the $ 1 and built-ins for querying OWL ontologies. The libraries are documented here. e
« SOWRL Query Tab The query tab provides a graphical interface to display the results of SQWRL queries, It is documented here.
¢ SQWRL Query API This API provides a JDBC-like Java interface to retrieve the result of SQWRL queries. It is documented here.
* SWRL Built-in Bridge SWRL built-ins are user-defined predicates that can be used in SWRL rules. The SWRLTab has a subcomponent called
the built-in bridge that provides a mechanism to define Java implementations of SWRL built-ins. These implementations can then be
dynamically loaded by the bridge and invoked from a rule engine.
e SWRL Bridge The bridge provides the infrastructure necessary to incorporate rule engines into Protege-OWL to execute SWRL rules, See
the SWRL Rule Engine Bridge FAQ for more detalls, The hope Is that bridges for other rule engines will be developed by the Protege-OWwWL
community and than an array of inference mechanism will become available for executing SWRL rules,
e SWRL Jess Bridge & bridge for the Jess rule engine is provided in the Protege-OWL distribution. & user interface called the SWRIJessTab is
also provided to interact with this bridge.
e SWRL Factory The factory provides high-level Java APIs that support the creation and modification of SWRL rules in an OWL ontology. This
4PI can be used by developers who wish to work with SWRL rules in their applications. See the SWRL Factory FAQ for more details.
The SWRLTab is designed to work in Protege-OWL only. However, partial interoperation with Jena is also supported. See here for details. Work
has proceeded to port it to Protege 4.
v
-Done =

What is the SWRL Editor?

« The SWRL Editor is an extension to

Protegée-OWL that permits the interactive
editing of SWRL rules.

 The editor can be used to create SWRL
rules, edit existing SWRL rules, and read
and write SWRL rules.

* It is accessible as a tab within Protége-
OWL.

K family.swrl Protégé 3.3 beta (file:\C:\Development\SWRL \kbs\family.swrL pprj, OWL 7 ... [= |[B](X]
File Edit Project OWL Code Toolz Window Help

NeE tBE wd ¢ W% a» <€pmt§gé

|/ & Metadata (ontology)) |/ '.' O Classes |/ M Propetties |/ Q Individualz |/ = Forms |/ — SWEL Rules |

SWHL Rules n ¥ Q- & @

Expression
Def-hasAurt —* hasParent(Yx, ?y) ~ hasSister{?y, Y2) = hasdunt{?x, 7z)
Def-hasBrother —* hasSiblingl?x, 7y A Man(?y) = hasBrother{7x, 7v)
Def-hasDaughter —* hasChild{?x, ?y) » Woman(?y) = hasDaughter(?x, 7v)
Def-hasFather —* hasParent(Yx, ?y) ~ Man{?y) = hasFather(?x, 7v)
Def-hasMaother —* hasParent(Yx, ?y) ~ Woman(?y) — hasMother({7?x, ?v)
Def-hasMephew —* hasSibling(Yx, 7y A hasSon(?y, 72) =+ hasMephew({7x, 72)
Def-hasMiece —* hasSiblingi?x, v A hasDaughter(?y, 7Z) -+ hasMiece(7?x, 7z}
Def-hasParent —* hasConsort(?y, ¥2) A hasParent{?x, ?y) —= hasParent(7x, 72)
Def-hasSikling —* hasChildi?y, 7x) A hasChild{?y, ¥2) » differentFrom({?x, 7z) = hasSikling{?x, ?2)
Def-hasSister —* hasSiblingl?x, 7y A Woman(?y) — hasSister{7x, 7v)
Def-hasSon —* hasChild{?x, ?y) A Man(?y) = hasSon(7x,)

Def-haslncle —* hasParent(?x, ?v) ~ hasBrother(?y, 7z) = hasUncle(?x, ?2)

family.swrl

File Edit Proj

O & [E

Edit SWRL Rule

Mame |
v

rdfs:comment ﬁl;l

| H

| @ Metadsta (of

SWEL Rules

Def-hasAurt
Def-hasBrother
Def-hasDaughter
Def-hasFather
Def-hasMaother
Def-hasMephew
Def-hasMiece
Def-hasParent
Def-hasSikling
Def-hasSister
Def-hasSon
Def-haslncle

hasChild{x, ‘M) A
YWoman(™y
= hasDaughter{7?x, ?y)

Cancel

Edit SWRL Rule

family.swrl Name |
File Edt Projf [Det-hasbaughter |G

D [E? |r{|fs.co-mmelrt Select a class

owl: Thing

|/ & Metadata (o b O rdfiList

| swrl Atom

swilBuitin

SWEL Rules

. swrlimp
Def-hasAunt haSChlldg?K- ?'3"']' swrlVariakle
Def-hasBrother WWomnan(?y) © Gencer

- hasDaughter(] |» © Person

Def-hasDaughter
Def-hasFather
Def-hasMaother
Def-hasMephew
Def-hasMiece
Def-hasParent
Def-hasSikling
Def-hasSister
Def-hasSon
Def-haslincle e | | Cancel

| S o | | Cancel

Edit SWRL Rule

. I
famﬂy.swrl P ane | _
tef-hasDaughter | (4

rdfs:comment ﬁl;l

O = 5 -4 | =

File Edit Proje

| @ Metadsta (ontof

SWEL Rules

hasChild{?x, M) A

Def-hasAunt Waman(My

Def-hasBrother — hasDaughter(?x, 2y} Aswilb]
Def-hasDaughter
Def-hasFather
Def-hasMaother
Def-hasMephew

swrib:abs
swrib:add
swrikaddDay TimeDurations
swrikaddDayTimeDurationToDate
swrikaddDayTimeDurationToDateTime
. swrikaddDayTimeDurationToTime
Bl Tl swrikb:addYearMonthDurations
Def-hasParent swrlkaddYearMonthDurationToDate
Def-hasSikling flingi?x, ?2)
Def-hasSister
Def-hasSon

Def-haslncle

(o o R Y Ml s o Rl

| ok | | Cancel

Executing SWRL Rules

SWRL is a language specification
Well-defined semantics
Developers must implement engine
Or map to existing rule engines
Hence, a bridge...

SWRL Rule Engine Bridge

OWL
KB

SWRL

-

1

-~

\

SWRL Rule
Engine Bridge

~

J

€&--=> Rule Engine

Data &-=-=->

Knowledge «<——

SWRL Rule Engine Bridge

Given an OWL knowledge base it will
extract SWRL rules and relevant OWL
knowledge.

Also provides an APl to assert inferred
knowledge.

Knowledge (and rules) are described in non
Protege-OWL API-specific way.

These can then be mapped to a rule-engine
specific rule and knowledge format.

This mapping is developer’s responsibility.

We used the SWRL Bridge to
Integrate Jess Rule Engine with
Protege-OWL

» Jess is a Java-based rule engine.

« Jess system consists of a rule base,
fact base, and an execution engine.

* Available free to academic users, for a
small fee to non-academic users

* Has been used in Protege-based
tools, e.g., JessTab.

family.swrl Protégé 3.3 beta [file:YC:\DevelopmentASWRI Ycbs\family.swrl. pprj, OWL / RDF Files)

- BX
File Edit Project OWL Code Tools 'Window Help

OEE tEB B el 4% 4 p <@pmt.«\;‘gé

r & Metadsta (ortology) |/ . oy Clazses |/ 0 Properties |/ ‘ Inclividuals |/ = Forms |/ — SWWEL Rules

SWRL Rules e} ¥ =l [(

Mame | Expression
Def-hasAunt =+ hasParent(7x, Ty) ~ hasSister(?y, 7z) —+ hasfunt(7x, 7z)
Def-hasBrother —* hasSibling(?x, 7y) A Man(?y) - hasBrother({?x, 7y)
Def-hasDaughter —* hasChilel{?x, ?y) » Woman(?y) - hasDaughter(?x, 7y)
Def-hasFather = hasParent(?x, ?¥) ~ Man(?y) —= hasFather{?x, Ty)
Def-hashMother —* hasParent(7x, 7y) A Woman(?y) = hashother{?x, ?y)
Def-hasMephew —* hasSibling(?x, 7y) A hasSon(?y, 7z) — hasNephew(7x, 72)
Def-hashiece —* hasSiblina(7x, 7v) A~ hasDaughter(?y, 7z) — hasNiece(7x, 7z)
Def-hasParent —* hasConsort(?y, 7Z) A hasParent(7x, ?y) - hasParent(7x, 7z)
Def-hasSibling —* hasChill{?y, 7x) » hasChild(?y, ?z) s differentFrom{?x, 7z) = hasSikling(Yx, 72)
Def-hasSister =+ hasSibling(7x, 7y) A Woman(?y) —+ hasSister(7x, Ty)
Def-hasSon —* hasChilel{?x, 7y) » Man{?y) - hasSon{7?x, y)
Def-haslncle —* hasParent(7x, 7y) s hasBrother(?y, 7z) =+ hasUncle(?x, 7z)

(= Jess Control r —* Rules r —* Classes r —* Properties r = Individuals r —* Restrictions r — Aszserted Individuals r —* Asserted Properties
SWRLJessTak

See http:lprotege .cim3.net/cgi-hindwiki pI? SWELJessTab for SWELJessTab documentation.

Press the "OWL+SWEL-=Jess" hutton to transfer SWEL rules and relevant OWL knowledge to Jess.
Press the "Run Jess" hutton to run the Jess rule engine.
Press the "Jess-=0WL" button to transfer the inferred Jess knowledge to OWL knowlecdge.

IMPORTANT: With the exception of owl.sameAs, owl.differentFrom and owlalDifferent,
owlequivalertProperty, and owl equivalertClass, the Jess

rule engine is currently ignoring OWL restrictions. To ensure congsistency, a reasoner

should be run on an OWL knowledge base before SWEL rules and OWL knowledge are
transferred to Jess. Also, if inferred knowledge from Jess is inserted back into an OWL

knowledge base, a reasoner should again be executed to ensure that the new knowledge does not
conflict with OWL restrictions in that knowledge base.

cf. hitp:lipretege cim3.neticgi-binfwiki pl ?SWRLRUleEngineBridgeF AC#NIdECL for details.

OWL+SWRL-»Jess Run Jess Jess-=0WNL

family.swrl Protégé 3.3 beta [file:YC:\DevelopmentASWRI Ycbs\family.swrl. pprj, OWL / RDF Files)

- BX
File Edit Project OWL Code Tools 'Window Help

OEE tEB B el 4% 4 p <@pmt.«\;‘gé

r & Metadsta (ortology) |/ . oy Clazses |/ 0 Properties |/ ‘ Inclividuals |/ = Forms |/ — SWWEL Rules

SWRL Rules e} ¥ =l (@)
Mame | Expression

Def-hasAunt =+ hasParent(7x, Ty) ~ hasSister(?y, 7z) —+ hasfunt(7x, 7z)

Def-hasBrother —* hasSibling(?x, 7y) A Man(?y) - hasBrother({?x, 7y)

Def-hasDaughter —* hasChilel{?x, ?y) » Woman(?y) - hasDaughter(?x, 7y)

Def-hasFather = hasParent(?x, ?¥) ~ Man(?y) —= hasFather{?x, Ty)

Def-hashMother —* hasParent(7x, 7y) A Woman(?y) = hashother{?x, ?y)

Def-hasMephew —* hasSibling(?x, 7y) A hasSon(?y, 7z) — hasNephew(7x, 72)

Def-hashiece —* hasSiblina(7x, 7v) A~ hasDaughter(?y, 7z) — hasNiece(7x, 7z)

Def-hasParent —* hasConsort(?y, 7Z) A hasParent(7x, ?y) - hasParent(7x, 7z)

Def-hasSibling —* hasChill{?y, 7x) » hasChild(?y, ?z) s differentFrom{?x, 7z) = hasSikling(Yx, 72)

Def-hasSister =+ hasSibling(7x, 7y) A Woman(?y) —+ hasSister(7x, Ty)

Def-hasSon —* hasChilel{?x, 7y) » Man{?y) - hasSon{7?x, y)

Def-haslncle —* hasParent(7x, 7y) s hasBrother(?y, 7z) =+ hasUncle(?x, 7z)

(= Jess Control r —* Rules r —* Classes r —* Properties r = Individuals r —* Restrictions r — Aszserted Individuals r —* Asserted Properties
SWRLJessTak

See http:lprotege .cim3.net/cgi-hindwiki pI? SWELJessTab for SWELJessTab documentation.

Press the "OWL+SWEL-=Jess" hutton to transfer SWEL rules and relevant OWL knowledge to Jess.
Press the "Run Jess" hutton to run the Jess rule engine.
Press the "Jess-=0WL" button to transfer the inferred Jess knowledge to OWL knowlecdge.

IMPORTANT: With the exception of owl.sameAs, owl.differentFrom and owlalDifferent,
owlequivalertProperty, and owl equivalertClass, the Jess

rule engine is currently ignoring OWL restrictions. To ensure congsistency, a reasoner

should be run on an OWL knowledge base before SWEL rules and OWL knowledge are
transferred to Jess. Also, if inferred knowledge from Jess is inserted back into an OWL

knowledge base, a reasoner should again be executed to ensure that the new knowledge does not
conflict with OWL restrictions in that knowledge base.

cf. hitp:lipretege cim3.neticgi-binfwiki pl ?SWRLRUleEngineBridgeF AC#NIdECL for details.

OWL+SWRL-»Jess Run Jess Jess-=0WNL

family.swrl Protégé 3.3 beta [file:YC:\DevelopmentASWRI Ycbs\family.swrl. pprj, OWL / RDF Files)

File Edit Project OWL

O&EH B

Tocle ‘Window Help

g ¥ W% < B

B=)ES

| @ Metadsta (ontalogy)

SWRL Rules

|/'. O Clazses |/- Propetties r‘ Indivicuals |/ = Forms |/ = SWRL Rules

e}

Expression

Def-hasAunt
Def-hasBrother
Def-hasDaughter
Def-hasFather
Def-hashMother
Def-hashephew
Def-hashiece
Def-hasParent
Def-hasSibling
Def-hasSister

= hasParent({7x, ?y) A hasSister(?y, 7z) =+ hasfunt(?x, 72)

—* hasSibling(?x,) A Man(?y) = hasBrother(?x, 7y)

= hasChild{?x, 7y} ~ Woman(?y) = hasDaughter(?x, 7y)

= hasParent({?x, ?¥) A Man{?y) —= hasFather{?x, Ty)

—* hasParent(?x, ?y) A Woman(?y) = hasMaother(?x, 7y)

=+ hasSibling{7x, ?y) ~ hasSon(?y, 7z) - hashephew(7x, 7z)

= hasSibling(7x, ?¥) A hasDaughter(?y, 72) —+ hashiece(?x, 72)

— hasConsort(?y, 72) A hasParert(?x, ?y) = hasParent(?x, 72)

= hasChild{?y, 7x) » hasChild{?y, 7z) » differentFrom(?x, 7z) = hasSikling(?x, 72)
= hasSibling(?x, ?y) A Woman(?y) = hasSister(?x, 7y}

Def-hasSon —* hasChilel{?x, ?y) » Man(?y) - hasSon{7x, y)
Def-haslncle

= hasParent({?x, ?¥) ~ hasBrather(?y, 7z) -+ hasUncle(?x, 7z)

SEES |/ —* Properties |/ —* Individuals |/ —* Restrictions |/ —* Asserted Inclividuals |/ — Asserted Properties

Jess Rules

(defrule Def-haslncle (hasParew&r Py 72) == (assert (hasUncle ?x 72)) (assertOWLProperty hasUncle 7x 72))

(defrule Def-hasSon (hasChild ?x 7y) (Man (name ?y)) == (assert (hasSon 7x ?y)) (assertOWLProperty hasSon 7x 7y))

(defrule Def-hasDaughter (hasChild 7x ?y) (Woman (name ?y)) == (assert (hasDaughter ?x ?y)) (assertOWLProperty hasDaughter 2x ?y))
(defrule Def-hasMephew (hasSibling 7x ?v) (hasSon ?y 72) == (assert (hasMephew 7x 72)) (assetOWLProperty hasMephew 7x 72))
(defrule Def-hashiece (hasSibling 7x ?y) (hasDaughter 7y 7z) == (assert (hasMiece 7x 72)) (assetOWLProperty hasMiece ?x 72))
(defrule Def-hasBraother (hasSibling 7x 7y) (Man (name ?y)) == (assert (hasBrother 7x 7y)) (assetCWLProperty hasBrother 7x 7y))
(cdefrule Def-hasAunt (hasParent 7x 7y) (hasSister 7y 7z) == (assert (hashurt 7x 7z)) (assertOWLProperty hasAunt 7x 72))

(defrule Def-hashother (hasParent 7x ?y) (Woman (name 7y)) == (assert (hasMother ?x 7y)) (assertOWLProperty hasiMother ?x 7yl)
(defrule Def-hasParent (hasConsort 7y 7z) (hasParent ?x 7y) == (assert (hasParent 7x 7z)) (assertOWLProperty hasParent 7x 72))
(defrule Def-hasFather (hasParent 7x) (Man (name ?y)) == (assert (hasFather 7x 7v)) (assetOWLProperty hasFather 7x 7y))

(defrule Def-hasSister (hasSikling 7x 2y) (Woaoman (name ?y)) == (assert (hasSister 7x 7y)) (assetCWLProperty hasSister ?x 7y))
(defrule Def-hasSibling (hasChild 7y 7x) (hasChild 7y 7z) (differentFrom 7x 7z) => (assert (hasSibling 7x 7z)) (assertCWLProperty hasSibling 7x 7z))

family.swrl Protégé 3.3 beta (file:\C:\Development\SWRL\kbs\family.swrl.pprj, OWL / RDF Files)

File Edit Project OWL Code Tools ‘Window Help

OEE 4 BE uwes ¢ % < B @protégé

(& Metadsta fontology) |/'.' WL Classes |/ M Propeties r" Inclividuals r = Forms r = SWEL Rules

SWRL Rules _e! = oL @
Mame | Expression
Def-hasAunt —* hasParent(?x, 7y) » hasSister(?y, 72) = hasAunt(7x, 7z)
Def-hasBrother —* hasSibling(?x, 7y) A Man(?y) — hasBraother(?x, Ty)
Def-hasDaughter —* hasChild{7x, ?y) ~ Woman(?y) — hasDaughter(?x, 7y)
Def-hasFather —* hasParent(?x, 7y) A Man(?y) = hasFather{?x, 7y)
Def-hasiMather —* hasParent(?x, 7y) ~ Woman({?y) — hashother(?x, 7y)
Def-hasMephew —* hasSibling(?x, 7y) A hasSon(?y, 72) - hasMephew(7?x, 72)
Def-hashiece —* hasSibling(?x, 7y) A hasDaughter(?y, 7z) -+ hasNiece(7x, 7z)
Def-hasParent =+ hasConsort(?y, 7z) A hasParert(?x, 7y) — hasParent(?x, 7z)
Def-hasSibling —* hasChild{?y, 7x) » hasChild{?y, 7z) » differertFrom(?x, 7z) + hasSikling(?x, 7z)
Def-hasSister =+ hasSibling(?x, 7y) A Woman(?y) — hasSister(?x, 7y)
Def-hasSon = hasChild{7?x, 7y) ~ Man(?y) = hasSon(?x, 7y)
Def-hasUncle —* hasParent(?x, 7y) » hasBrother(?y, 7z) = hasUncle(?x, 7z)
—* Jess Control — Rules = Classes —* Phperties = Individuals r —* Restrictions |/ = Asszerted Individuals r — Asserted Properties
———

Jess Class Defintions

(deftemplate Mephew extends Relative)
(deftemplate Son extends Childd)
(deftemplate owl: Thing (slot name))
(deftemplate Relative extends Person)
(deftemplate Sikling extends Person)
(deftemplate Aunt extends Relative)
(deftemplate Person extencds owl: Thing)
(deftemplate Mother extends Parent)
(deftemplate Miece extends Relative)
(deftemplate Daugther extencds Child)
(deftemplate Father extends Parent)
(deftemplate Parent extends Person)
(deftemplate Sister extends Sikling)
(deftemplate Brother extends Sikling)
(deftemplate Child extends Person)
(deftemplate Uncle extends Relative)
(deftemplate Woman extends Person)
(deftemplate Man extends Person)

family.swrl Protégé 3.3 beta [file:YC:\DevelopmentASWRI Ycbs\family.swrl. pprj, OWL / RDF Files)

- BX
File Edit Project OWL Code Tools 'Window Help

OEE tEB B el 4% 4 p <@]p:nmr.«\;‘gé

r & Metadsta (ortology) |/ . oy Clazses |/ 0 Properties |/ ‘ Inclividuals |/ = Forms |/ — SWWEL Rules

SWRL Rules e} ¥ =l (@)
Mame | Expression

Def-hasAunt =+ hasParent(7x, Ty) ~ hasSister(?y, 7z) —+ hasfunt(7x, 7z)

Def-hasBrother —* hasSibling(?x, 7y) A Man(?y) - hasBrother({?x, 7y)

Def-hasDaughter —* hasChilel{?x, ?y) » Woman(?y) - hasDaughter(?x, 7y)

Def-hasFather = hasParent(?x, ?¥) ~ Man(?y) —= hasFather{?x, Ty)

Def-hashMother —* hasParent(7x, 7y) A Woman(?y) = hashother{?x, ?y)

Def-hasMephew —* hasSibling(?x, 7y) A hasSon(?y, 7z) — hasNephew(7x, 72)

Def-hashiece —* hasSiblina(7x, 7v) A~ hasDaughter(?y, 7z) — hasNiece(7x, 7z)

Def-hasParent —* hasConsort(?y, 7Z) A hasParent(7x, ?y) - hasParent(7x, 7z)

Def-hasSibling —* hasChill{?y, 7x) » hasChild(?y, ?z) s differentFrom{?x, 7z) = hasSikling(Yx, 72)

Def-hasSister =+ hasSibling(7x, 7y) A Woman(?y) —+ hasSister(7x, Ty)

Def-hasSon —* hasChilel{?x, 7y) » Man{?y) - hasSon{7?x, y)

Def-haslncle —* hasParent(7x, 7y) s hasBrother(?y, 7z) =+ hasUncle(?x, 7z)

(= Jess Control r —* Rules r —* Classes r —* Properties r = Individuals r —* Restrictions r — Aszserted Individuals r —* Asserted Properties
SWRLJessTak

See http:lprotege .cim3.net/cgi-hindwiki pI? SWELJessTab for SWELJessTab documentation.

Press the "OWL+SWEL-=Jess" hutton to transfer SWEL rules and relevant OWL knowledge to Jess.
Press the "Run Jess" hutton to run the Jess rule engine.
Press the "Jess-=0WL" button to transfer the inferred Jess knowledge to OWL knowlecdge.

IMPORTANT: With the exception of owl.sameAs, owl.differentFrom and owlalDifferent,
owlequivalertProperty, and owl equivalertClass, the Jess

rule engine is currently ignoring OWL restrictions. To ensure congsistency, a reasoner

should be run on an OWL knowledge base before SWEL rules and OWL knowledge are
transferred to Jess. Also, if inferred knowledge from Jess is inserted back into an OWL

knowledge base, a reasoner should again be executed to ensure that the new knowledge does not
conflict with OWL restrictions in that knowledge base.

cf. hitp:lipretege cim3.neticgi-binfwiki pl ?SWRLRUleEngineBridgeF AC#NIdECL for details.

OWL+SWRL-»Jess Run Jess Jess-=0WNL

Outstanding Issues

« SWRL Bridge does not know about all
OWL restrictions:
— Contradictions with rules possible!

— Consistency must be assured by the user
incrementally running a reasoner.

— Hard problem to solve in general.

* Integrated reasoner and rule engine
would be ideal.

» Current solution with Pellet, though
only with core built-in libraries.

SWRLTab Java APls

The SWRLTab provides APIs for all
components

These APIs are accessible to all OWL
Protege-OWL developers.

Third party software can use these
APls to work directly with SWRL rules
and integrate rules into their
applications

Fully documented in SWRLTab Wiki

SWRL and Querying

SWRL is a rule language, not a query
language

However, a rule antecedent can be viewed as
a pattern matching specification, i.e., a query
With built-ins, language compliant query
extensions are possible

Hence: SQWRL (Semantic Query-Enhanced
Web Rule Language; pronounced squirrel)

Example SQWRL Query

Person(?p) * hasAge(?p,7age)
A swrlb:greaterThan(?age,17)

— sqwrl:select(?p, ?age)

Ordering Query Results

Person(?p) * hasAge(?p,7age)
A swrlb:greaterThan(?age,17)
— sqwrl:select(?p, ?age) #
sgwrl:orderBy(?age)

Counting Query Results

Person(?p) * hasCar(”?p,?car)

— sqwrl:select(”?p) *
sgwrl:count(?car)

Important: no way of asserting count in ontology!

Count all Owned Cars in Ontology

Person(?p) * hasCar(?p, 7c) —
sgwrl:count(?c)

Count all Cars in Ontology

Car(?c) — sqwrl:count(?c)

Aggregation Queries: average age of
persons in ontology

* Person(?p) » hasAge(?p, ?age) ->
sgwrl:avg(?age)

Also: sgwrl:max, sqwrl:min, sgwrl:sum

Queries and Rules Can Interact

Person(?p) * hasAge(?p,?age)
A swrlb:greaterThan(?age,17)

— Adult(?p)

Adult(?a) — sqwrl:select(?a)

Example SWRL Query with OWL
Restrictions

(hasChild >= 1)(?x) — sqwrl:select(?x)

SQWRL can act as a DL query language

All Built-ins can be used in Queries

tbox:isDirectSubClassOf(?subClass, Person)
-> sqgwrl:select(?subClass)

tbox:isSubPropertyOf(?supProperty, hasName)
-> sqgwrl:select(?subProperty)

Note: use of property and class names as built-in
arguments in not OWL DL

Important: these built-ins should be used in queries only —
inference with them would definitely not be OWL DL

SQWRL Language FAQ

%) ProtegeWiki: SQWRL - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help
@ - c 2y |'. |_] .http:,l’,l’protege.cimS.net,l’cgi-bin,l’wiki.pl?SQWRL g @~ _,'
|48 Most Visited
CD»JS'C :sqwrl | G| search - ! &2 E% - RS - @ - €% Bookmarks- a\a};’ Check = % Autolink (|L| | = Send to~ P E sl O Settings™
l_-']ProI:ege\'J'iki: SOWRL Eﬂ -.'l Mozilla Firefox Start Page -"l Mozilla Firefox Start Page -.'l Mozilla Firefox Start Page -"l IMozilla Firefox Start Page -
~
SQWRL <¢|protége
WikiHomePage | RecentChanges | Page Index MartinOConnor {preferences | logout)
SOWRL (Semantic Query-Enhanced Web Rule Language; pronounced squirrel) is a SWRL-based query fouEyisied Bages
language that can be used to query OWL ontologies. SQWRL provides SQL-like operations to format SQWRL .
knowledge retrieved from an OWL ontology. SQWRL does not alter SWRLU's semantics and uses the et
standard SWRL presentation syntax supported by the SWRLT ab. SWRLTabBuiltInLibraries
....................................... i
SWRLTab
SQWRL is deﬂned using a ||brary of SWRL built-ins that effectively turms SWRL into a query language. SWRLTabMathermaticalBuiltin
It has the default namespace prefix sqrl. & copy of
this file can be found the standard P rep05|tor|e5 and can be imported through the 'Tmport . .
Ontology' option in the Metadata tab. pieviBarklink
This document assumes that the reader is already familiar with SWRL. An introduction can be found s
here,
Basic Queries
Assume we have a simple ontology with classes rerson, which has subclasses male and remale with
associated functional properties hasige and haswane, and a class car, that can be associated with individual
of class rersen through the hascar property.
Here, for example, is a simple SQWRL query to extract all known persons in an ontology whose age is
less than 25, together with their ages:
e Person(?p) ™ hasige(?p, ?a) ~ swrlb:lessThan(?a, 25) -= sqwrl:select(?p, 7a)
This query will return pairs of individuals and ages.
To list all the cars owned by each person, we can write:
e Person(?p) ™ hasCar(?p, 7c) -= sgwrl:select(?p, 7o)
This query will return pairs of individuals and their cars. Assuming nascar is @ non functional property,
multiple pairs would be displayed for each individual - one pair for each car that they own.
The se1ect operator accepts a variable number of arguments. Literal values can also be passed to it. 3
Done

SQWRLTab

Available as part of Protége-OWL
SWRLTab in current Protége-3.4 beta

Graphical interface to execute queries

Low-level JDBC-like APl for use in
embedded applications

Can use any existing rule engine back end

family.sqwrl Protége 3.4 [file:\C:\Development\SWRL\kbsYfamily.sqwrl pprj, OWL f RDF Files)

File Edit Project OWL Beasoning Code Toolz Window Help

NEE £LBE b &9 < > ﬁpmtégé

SWRL RBules

|/ & Metadstatontology) r O Claszes r- Properties r. Inclividuals r = Forms r — SWRL Rules
ade
S

Enzhled | Mame | Expression
Def-hasAunt =* Perzon(?x) ~ haszParert(?x T o hasSister(?y, YZ) = hassunt(?x, 7z)
Def-hasBrother —* Perzon(?x) ~ hasSikbling(?<, ™) o Man(?y) = hasBrother(?=, Ty
Def-hasDaughter =* Perzon(?x) ~ hazChild(?x, T Woman(?y) — hasDaughter(?x, Ty)
Def-hasFather —* Person(?x) ~ hasParert(?x<, ™) A Man(?y) = hasFather(?x2, 7))
Def-hashother =* Perzon(?x) ~ hazParert(?x, Tv) A Woman(?y) = hasMother(?x, 1)
Def-hashephew —* Person(?x) ~ hasSibling(?<, ™) A hasSonl?y, 7] = hasMephew(?=z, 77)
Def-hasMiece =* Perzon(?x) ~ hazSibingl?x, v o hasDaughter(?y, 72) - hashliece(?x, 7z)
Def-hasParent —* Person(?y) a hasConzort(?y, 771~ hasParent(?x, ?y) = hasParert(?=, 7z)
Def-hasSibling = Person(?y) ~ hasChild(?y,) A hasChild(?y, 7z) ~ differertFrom(?=, 7z) = hasSibling 7x, 7z)
Def-hasSister —* Perzon(?x) » hasSibling]?<, M) A Woman(™) = hasSister?x, M)
Def-has=on = Person(?x) ~ hasChild(?x,) A Man(?y) - hasSon(?x, Ty)
Def-hasUncle —+ Person(?x) ~ hasParent(?x<, ™) A hasBrather(?y, ?2) = hasUncle(?x, 72)
Cuery-1 = hasSon(7=, 7Z) = sowrl select(?x, 72)
Gery-2 = hasSon(?x, 7z) = sgwrlselect(¥x) A sgwrlcount(Yz) A soeerlorderByDescending(7z)
Quety-3 = Person(7 - sowrlselect(?p)
Guety-4 =* Man(?m) — sl zelect|?m)
Query-5 = Womani T = sower]; countl T
Guery-6 = Woman(W) o hasChild[7w, 7o) - sowerlselect{™aw) oo sowerl count{Tw)

[ol seRLaery Tab

See Hitpoiprotege cim3 neticgi-binfwyiki pl? SWRELCQuery Tab for documentation.
Executing queries in this tab does not modify the ontology.

Select & SOWWREL query from the list shove and press the 'Run' button,
If the selected query generates a result, the result will appear ina new sub tah,

Run

B family.sqwrl Proisgé 3.4

File Edit Project oWl

OeE «+ B &

Reasoning

By e

| @ Metadatatontology) | OwLClas
SWRL Rules
Enabled| Mame |

Def-hasdunt
Def-hasBrother
Def-hasDaughter
Def-hasFather
Def-haskiather
Det-hasMephew
Def-hasMiece
Def-hasParent
Def-hasSibling
Def-hasSister
Def-hasSon
Det-haslncle
Guery-1

Gluety-2
Guery-3
Guety-4
Guery-5
Guery-6

R KRR RIRIR R & & K] & & &R R

=* Pers
—* Perz
=* Pers
—* Perz
=* Pers
—* Perz
=* Pers

Code Tools Window Help

Y q >

SWRL Rule

|/Name rCDmment |

Hame

[file:AC:\Develo pment\SWRL \kbs\family.sqwrl. pprj, OWL f RDF Files)

hittp: iia comiontology#cCiuery -3

—* Perz
= Pers
—* Perz
= Pers
—* Perz
= hass
= hass
= Pers
—* Man(
= \fviom
=*\Miom

[ol seRLaery Tab

See hitpoiprotege .cim3 neticgi-binwiki ol
Executing queries inthis tab does not mo

Select & SOWWRL query from the list above
If the selected query generates a result, tH

SWRL Rule

Petson(?p@)
=zl select(7R

ome ’5}’?:},]3::
A =)y [1

Run

family.sqwrl Protége 3.4 (file:VC:\DevelopmentASWRL \kbs\family.sqwrl. pprj, OWL f RDF Files)

File Edit Project OWL Ressoning Code Tools Window Help

Dl +BE mdkd &9 q B

(& Metadstaiortoloogy) r O Clazses r- Froperties r’ Inclividuals r = Forms r = SWEL Rules

SWEL Rules
Enabled | Mame | Expression
Def-hazsunt = Person(7x) A hasParert(?x,) a hasSister(?y, 7z) = hasdunt(?x, ¥z)
Def-hasBrother —* Person(?x) ~ hasSibling(?x, 71 A Man(?y) = hasBrother(?x, Tv)
Det-hasDaughter = Person(?x) ~ hasChild(?x, 7¥) ~ Woman(?y) = hasDaughter?x,)
Def-hasFather —* Person(?x] ~ hasParert(?x, ™1 » Man(™y] = hasFather(?x, Ty)
Def-hashather = Person(7x) A hasParert(?x, ™) A Woman(?y) = hashMother(7, 7))
Def-hashephes = Person(?x) A hasSibling(?x,) a hasSon(?y, 7z) = hasNephew(?x, 7z)
Def-hasMiece —* Person(?x] ~ hasSiblingvx, 71 A hasDaughter(ry, ?z) = hashMiece(?x, ¥z)
Def-hasParent = Person(?y) ~ hasConzort(?y, Y21 A hasParent(7x, 7% = hasParent(?x, 72)
Def-hasSibling = Person(?y] ~ hasChild(?y, 7x) A hasChild(?y, ?z) » differentFrom(?x, 720 = hasSibling(7x, 7]
Def-hasSister = Person(?x) A hasSibling(?x, M) A Woman(?y) - hasSister(?x, 7y
Def-hasSon = Person(7x) »~ hasChild{7x, 71 ~ Man(?y) = hasSon(?x, 7y
Def-haslincle —* Person(?x] ~ hasParert(vx, Tv1 a hasBrother(?y, 7] = hasUncle(?x,)
ey -1 —* hasSon(?x, TZ) - sqwrlzelect¥x, 7z)
Cuery-2 —* hasSon(7x, TZ) = sowrlselect(Tx] A sgwrlbcourt(?z) A sowrlorderByDescendingl Tz
Query-3 = Person(?p] = sowrlselect(7p)
Cuery-4 = Man(?m) = ol select(?m)
Cery-5 = WWnani Ty = sopwerl court; e
Guery-6 ="Woman(7w A hazChild{?we, 7c) = sowrlbselect Tw) A sower] count(e

SehRLQuery Tak = Query-3
I

P

rACE
F10
FOS
FOg
03
]
FOG
rA02
A0S
)
Fo1

FO2
FOv
L]
A0S
Fo4

IC

l

Save as CSV.. Rerun

Cloze

SWRLTab Wiki : http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab

) ProtegeWiki: SWRL Tab - Mozilla Firefox

File Edit View History Bookmarks Tools Help
@ - c {ai | l_[.http:;’,l'protege.cim3.net,l’cgi-bin,iwiki.pI?SWRLTab AR '. P,
|8 Most Visited
C{}uSk! i _V“ (G Search - ! e 559 - RS - @ - €2 Bookmarks~ A? Check - % Autolink 'T_| | o Sendta- S0 B swrl 'O Settings~
| |_| ProtegeWiki: SWRLTab a -“l Mozilla Firefox Start Page -"l Mozilla Firefox Start Page -.' Mozilla Firefox Stark Page -.'l Mozilla Firefiosx Stark Page -
-~
<@ protégé
SWRLTab
WikiHomePage | RecentChanges | Page Index MartinOConnor {preferences | logout)
The SWRLTab is a development environment for working with SWRL rules in Protege-OwWL. It supports the editing and execution of SWRL rules, Yourizited Ragas
It provides a set of libraries that can be used in rules, including libraries to interoperate with XML documents, and spreadsheets, and libraries gl
with mathematical, string, RDFS, and temporal operators. 4 SWRL-based QWL guery language called SOWRL Is also provided, SR
SWRLTabsMLEBuUiltIn:
& introduction to the SWRL languace can be found here. &n introduction SQWRL can be found here. e e
SWRLEditorFAG
The SWRLTab has several software components: SR s
« SWRL Editor The editor supports editing and saving of SWRL rules in an OWL ontology. See the SWRL Editor FAD for more details. ey ek TR
e SWRL Built-in Libraries & number of built-in libraries are provided by the SWRLTab, These include an implementation of the core SWRL
built-ins defined in the $ 1 and built-ins for querying OWL ontologies. The libraries are documented here. e
« SOWRL Query Tab The query tab provides a graphical interface to display the results of SQWRL queries, It is documented here.
¢ SQWRL Query API This API provides a JDBC-like Java interface to retrieve the result of SQWRL queries. It is documented here.
* SWRL Built-in Bridge SWRL built-ins are user-defined predicates that can be used in SWRL rules. The SWRLTab has a subcomponent called
the built-in bridge that provides a mechanism to define Java implementations of SWRL built-ins. These implementations can then be
dynamically loaded by the bridge and invoked from a rule engine.
e SWRL Bridge The bridge provides the infrastructure necessary to incorporate rule engines into Protege-OWL to execute SWRL rules, See
the SWRL Rule Engine Bridge FAQ for more detalls, The hope Is that bridges for other rule engines will be developed by the Protege-OWwWL
community and than an array of inference mechanism will become available for executing SWRL rules,
e SWRL Jess Bridge & bridge for the Jess rule engine is provided in the Protege-OWL distribution. & user interface called the SWRIJessTab is
also provided to interact with this bridge.
e SWRL Factory The factory provides high-level Java APIs that support the creation and modification of SWRL rules in an OWL ontology. This
4PI can be used by developers who wish to work with SWRL rules in their applications. See the SWRL Factory FAQ for more details.
The SWRLTab is designed to work in Protege-OWL only. However, partial interoperation with Jena is also supported. See here for details. Work
has proceeded to port it to Protege 4.
v
-Done =

