Combining Ontologies with Rules

(Two Different Worlds?)

Vassilis Papataxiarhis

Pervasive Computing Research Group Communications Network Laboratory Department Informatics and Telecommunications University of Athens – Greece 2007

Definition of ontologies and rules

Integration Difficulties

Integration Approaches

Tools

What really is an ontology? (1/2)

- Q: Is ontology an hierarchical structure of concepts?
- A: Yes, but not only that.
- Ontology=

Ov (categories of being) + λόγος (treatise)

(i.e. the philosophy of being, Metaphysics, Aristotle).

But in ancient greek $\lambda \dot{o} \gamma o \varsigma = logic!$

What really is an ontology? (2/2)

Ontologies are used not only to represent a domain of interest, but also DEFINE concepts, describe relations among them and insert individuals.

Escalator

Rolling Corri

Door mildor_Segmer Turn_Point Junction End Point

Ramp_Exit

losed Area Exi

Stainway_Exit Conridor_Stainway_Exit Elevator_Exit Conridor_Door_Exit Building_Exit

Corridor_Ramp_Exi

- So, an ontology is not just a taxonomy like that
- Basic Ontology Languages:
 Ontology Web Language (OWL)
 - DAML+OIL
- Maturity

Rules

- Rules are mainly based on subsets of First Order Logic (FOL) + possible extensions.
- Basic Rule Formalisms (in Semantic Web):
 - Semantic Web Rule Language (SWRL)
 - Answer Set Programming (ASP) (Datalog^{∨¬})
- Immaturity

Why we need both of them?

- Ontologies are based on Description Logics (and thus in classical logic).
 - The Web is an open environment.
 - Reusability / interoperability.
 - An ontology is a model easy to understand.
- Rules are based on logic programming.
 - For the sake of decidability, ontology languages don't offer the expressiveness we want (e.g. constructor for composite properties?). Rules do it well.
 - Efficient reasoning support already exists.
 - Rules are well-known in practice.

Usual combination

LP and Classical logic Overlap

Basic Difficulties

Classical Logic vs. Logic Programming

- Monotonic vs. Non-monotonic Features
 - Open-world vs. Closed-world assumption
 - Negation-as-failure vs. classical negation
- Non-ground entailment
- Strong negation vs. classical negation
- Equality
- Decidability

Open-world vs. Closed-world assumption

- Logic Programming CWA
 - If KB $|\neq a$, then KB = KB $\cup \neg a$
- Classical Logic OWA
 - It keeps the world open.
 - KB:

Man \sqsubseteq Person, Woman \sqsubseteq Person

```
Bob ∈ Man, Mary ∈ Woman
```

Query: "find all individuals that are not women"

Equality

- LP ----> Unique Name Assumption (UNA)
- Classical logic ----> different names may represent the same atom
- Example:

differentPlayers(x,y) \leftarrow player(x), player(y), $x \neq y$

player(gerrard_of_liverpool).

player(gerrard_of_england).

In LP, we could conclude:

differentPlayers(gerrard_of_liverpool, gerrard_of_england)

Decidability

- The largest obstacle!
 - Tradeoff between expressiveness and decidability.
- Facing decidability issues from 2 different angles
 - In LP: Finiteness of the domain
 - In classical logic (and thus in DL): Combination of constructs

Problem:

Combination of "simple" DLs and Horn Logic are undecidable. (Levy & Rousset, 1998)

Rules + Ontologies

Still a challenging task!

A number of different approaches exists: SWRL,
 DLP (Grosof), dl-programs (Eiter), DL-safe rules,
 Conceptual Logic Programs (CLP), AL-Log,
 DL+log.

- 2 Main Strategies:
 - Tight Semantic Integration (Homogeneous Approaches)
 - Strict Semantic Separation (Hybrid Approaches)

Homogeneous Approach

- Interaction with tight semantic integration.
- Both ontologies and rules are embedding in a common logical language.
- No distinction between rule predicates and ontology predicates.
- Rules may be used for defining classes and properties of the ontology.
- Example: SWRL, DLP

Hybrid Approach

- Integration with strict semantic separation between the two layers.
- Ontology is used as a conceptualization of the domain.
- Rules cannot define classes and properties of the ontology, but some application-specific relations.
- Communication via a "safe interface".
- Example: Answer Set Programming (ASP)

SWRL

- Extend OWL axioms to include Horn-like clauses.
- Maximum compatibility with OWL
- Built on top of OWL (same semantics)
- Generic Formula:

$$a_1 \wedge \dots \wedge a_n \leftarrow b_1 \wedge \dots \wedge b_k$$

- Limitations
 - Negation, Disjunction
 - Undecidable

Tools

- Ontology Editors
 - Protégé, Swoop, TopBraid Composer
- Rule Editors
 - Protégé (SWRL-Tab)
- Ontology Reasoners
 - RacerPro, Bossam, Pellet, Fact++
- RuleEngines
 - Bossam, Jess, Jena Framework (only JRules)
 - ASP solvers: DLV, Smodels, nomore++

Limitations

- The rule inference support is not integrated with an OWL classifier.
 - So, new assertions by rules may violate existing restrictions in ontology. New inferred knowledge from classification may in turn produce knowledge useful for rules.

(1/2)

Limitations

Existing solution:

Solve these possible conflicts manually.

Ideal solution:

Have a single module for both ontology classification and rule inference.

(2/2)

- What if we want to combine non-monotonic features with classical logic?
 - Partial Solutions:
 - ASP
 - Externally (through the use of appropriate rule engines)