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Introduction

Description logics

e A DL is a formalism for expressing concepts, their attributes
(or associated roles), and the relationships between them.

e E.g. Person could be a concept and a role could be ParentOf.

e Can be regarded as a KR system based on a structured
representation of knowledge.

e Most DLs are fragments of FOL, written in a distinct syntax.

Predecessors of DLs

e Semantic networks of the 70s

e Frame-based systems



Why Description Logics?
Ideal Al case:

e Approaches have scientific (logical) and engineering aspects

Scientific: Analyse the problem formally and in detail

e Engineering: Get something working quickly and efficiently
e Success:

When these two approaches coincide — efficient

implementations of (formally) well-understood
systems.

Description Logic research has (arguably) reached this point



Background: Concepts, Roles, Constants

In a description logic, there are sentences that will be true or
false (as in FOL).

e These are restricted to subsumption and instance assertions.
In addition, there are three sorts of expressions that act like
nouns and noun phrases in English:

e Concepts are like category nouns: Person, Female,

GraduateStudent
e Roles are like relational nouns: AgeOf, ParentOf, AreaOfStudy

e Specify attributes of concepts and their types
e Constants are like proper nouns: John, Mary

These correspond to unary predicates, binary predicates and
constants (respectively) in FOL.

Unlike in FOL, concepts need not be atomic and can have
structure.



DL Knowledge Bases

An KB in a DL contains two parts:
e Define terminology: TBox
e E.g. MWD = Mother MY ParentOf .—~Female
e Give assertions: ABox
e E.g. MWD(sue).
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DL Knowledge Bases: TBox

Main components of the TBox:

e Concepts: classes of individuals
o E.g. Mother

e Roles: binary relations between individuals
o E.g. VParentOf .—~Female

e Complex concepts using constructors
o E.g. Mother MY ParentOf .—Female

e Assertions concerning complex concepts

e E.g. MWD = Mother MY ParentOf .—Female
Mother T Female



DL Knowledge Bases: ABox

ABox: Assertions that individuals satisfy certain concepts and
roles.

e Think of as a (very) simple relational database.
e E.g. MWD(Mary), ParentOf (Mary, John).



DL: Advantages

Well-defined formal semantics.

Known (and often good) complexity characteristics or
implementations.

Relatively easy to specify DL knowledge bases, in a structured
hierarchical fashion.
DLs constitute a /arge family of approaches.

e Can tailor a language to a specific application.



Applications
Useful whenever a common vocabulary is important.

Eg.:
e Enhanced database systems
e DIL-Lijte
e Medical informatics: SnoMed, Galen
o EL
e Semantic Web

e Next generation web
e OWL: W3C recommendation.

1= We'll look at perhaps the most central DL, ALC.
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e Give assertions: ABox



The Logic ALC
An ALC KB contains two parts:

e Define terminology: TBox

e Give assertions: ABox

Main components of the TBox:
e Concepts: Represent classes of individuals
e Roles: Represent binary relations between individuals
e Complex concepts using constructors
Examples:
e Concept names: Person, Female
e Role names: ParentOf, HasHusband

e Individual names (in the ABox): John, Mary
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e Propositional constructors: M, LI, =
e Other restrictions: V, 3
o T, 1L
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The Logic ALC

Logical symbols:
e Propositional constructors: M, LI, =
e Other restrictions: V, 3
o T, 1L
Nonlogical symbols:
e Concept names
e Role names
Concept construction
e Let C and D be concepts and R a role.
e -C, CND, CUD are concepts.
e VR.C, dR.C are concepts.

. Language
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Let

The Logic ALC: Language

C and D be concepts and R a role.
C stands for a concept or set of individuals.

—C stands for the concept of things that are not a C.

C 1 D is the concept of things that are both C and D.
e E.g. Female M Human

C U D is the concept of things that are either C or D or both.
o E.g. MaleU Female

VR.C is the concept of things such that all things that are R
related to it are C's.

o E.g. VParentOf.Female: things all of whose children are
female
JR.C is the concept of things such that some thing R related
toitisa C.
o JParentOf.Female: things with a female child
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The Logic ALC: Knowledge Bases

Axioms (assertions) in the TBox:

e Subsumption: C C D where C and D are concepts

e Equivalence axioms: C = D where C and D are concepts

Assertions in the ABox:

e C(a) where C is a concept and a is an individual name.

e R(a, b) where R is a role name, a and b are individual names.

DL knowledge base:

e Set of TBox statements

e Set of ABox statements



Examples

TBox:

e Person T Animal M Biped

e Woman = PersonTl Female
Mother = Woman 1 3ParentOf . Person
Parent = Mother LI Father

Man = Person ~Woman

MotherWithoutDaughter = Mother MY ParentOf .—Female
e GrandMother = Woman M dParentOf . Parent

ABox:
o GrandMother(Sally)
e (Person M Male)(John)
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Formal Semantics for Concepts and Names
iz Semantically, a DL can be seen as a fragment of FOL
An interpretation is a pair Z = (A, )
e Domain A: non-empty set of objects
e Interpretation function .Z: Maps structures into the domain.
e Recall, Brachman and Levesque write this as Z = (D, /).

Then:

T

e .7 maps every concept name A to a subset AZ C A

e .7 maps every role name R to a binary relation RZ C A x A

e .~ maps individual names a to elements of A : aZ € A

e T2 =Aand LT =¢.



Semantics for Complex Concepts

Assume C, D are concepts, and R is a role.
o (- =A\CT
e (CND)Y =ctnD?
(CuD)*=ctup?
(VR.C)L = {x |y € CT for every y s.it. (x,y) € RT}
e 3R.C)T ={x|ye C* forsomeyst. (x,y) € RT}



Semantics for Axioms and Assertions

Assume C, D are concepts, R is a role, a and b are individual
names.
Let Z = (A, .T) be an interpretation.

e CC Distruein Z iff CX Cc DT

e C=Distruein T iff (T =D*

o C(a) is true in T iff a¥ € C*

e R(a,b) is true in T iff (a%, b?) € R



Reasoning in ALC

Sentences: Axioms or assertions
7 is a model for a sentence S iff S is true in Z

7T is a model for a DL knowledge base K iff it is a model for
every sentence in K

Models of K are denoted by [K]

S is entailed by K, written K = S iff [K] C [S]
(l.e. every model of K is a model of S.)



Types of Reasoning in ALC

K a DL knowledge base;

C and D are concepts;

R is a role;

a and b are individual names

e Instance checking: K |= C(a) or K = R(a, b)



Types of Reasoning in ALC

K a DL knowledge base;

C and D are concepts;

R is a role;

a and b are individual names

e Instance checking: K |= C(a) or K = R(a, b)
e Subsumption checking: K = CC D



Types of Reasoning in ALC

K a DL knowledge base;

C and D are concepts;

R is a role;

a and b are individual names
e Instance checking: K |= C(a) or K = R(a, b)
e Subsumption checking: K = CC D
e Equivalence checking: K =C =D



Types of Reasoning in ALC

K a DL knowledge base;

C and D are concepts;

R is a role;

a and b are individual names

e Instance checking: K |= C(a) or K = R(a, b)
e Subsumption checking: K = CC D

e Equivalence checking: K =C =D

e Consistency checking: K = T C L



Types of Reasoning in ALC

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names
e Instance checking: K |= C(a) or K = R(a, b)
Subsumption checking: K = CC D
Equivalence checking: K= C =D
e Consistency checking: K = T C L
e Concept satisfiability: K = CC L



Types of Reasoning in ALC
K a DL knowledge base;

C and D are concepts;
R is a role;
a and b are individual names
e Instance checking: K |= C(a) or K = R(a, b)
Subsumption checking: K = CC D
Equivalence checking: K= C =D
e Consistency checking: K = T C L
e Concept satisfiability: K = CC L
e Disjoint concepts: K =CMnDC L
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Reduction to Consistency Checking

Let b be a new individual

e Instance checking:
KE=C(a)iff KU{-C(a)} ETC L
Subsumption checking:
KECCDIiffKU{(CN-D)(b)} ETC L

Equivalence checking:

KEC=Diff Ku{(Cn=-D)(b),(-CND)b)} ETLECL
Concept satisfiability:

KECC Liff KU{C(b)}rTC L

Disjoint concepts:
KECNDC Liff KU{(CND)(b)} ETC L



Aside: Extensions to ALC

Extended concepts

e Number restrictions: (< nR.C) and (> nR.C)
Role operators

e Inverse roles: R~ where R is a role
Role axioms

e Role hierarchy: R C S where R and S are roles
1= So far have just used C for concepts.

e Transitive roles: R € Rt where R is a role



Extensions to ALC: Examples

ParentWithManySons = (> 3ParentOf .Male)
dParentOf ~—.Citizen T Citizen

ParentOf T AncestorOf

AncestorOf € R™



Extensions to ALC: Semantics

o (<nR.CYF ={x| Hye C"|(x,y) e R"}| <n}
(> nR.C)F = {x| Hy € C* | (x,y) € R*}| >n}
Inverse roles: (R™)% = {(y,x) | (x,y) € R*}

e RC Sistruein I iff RT C ST for roles R and S.

R € Rt is true in [ iff
(x,z) € RT whenever (x,y) € RT and (y, z) € R?



A Tableau Algorithm for ALC
Goal: Show KB = A C B by showing KBU{AM-B} unsatisfiable.

Assume an unfoldable terminology:

e Axioms are of the form AC C and A = C where A is a
concept name.

e For each concept name A, at most one axiom of the form
ALC Cor A= C.
e Axioms are acyclic:
e AL C or A= C directly uses a concept name A; iff A; occurs
in C.
e AL C or A= C uses a concept name A; iff it directly uses A;
or it directly uses a concept name A, and A, uses Aj.
e AL C or A= C is acyclic iff it does not use A.



General Method
Show KB |= A C B by showing KB U {A =B} is unsatisfiable.

Try to prove concept (un)satisfiability by constructing a model.
e A tableau is a graph representing such a model.

e A set of tableau expansion rules is used to construct the
tableau.
e Either a model is constructed or a contradiction is found.
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e Assume that all axioms are of the form P = @

e This can be done by replacing any axiom of the form A C B by
A = BT C where C is a new concept name.
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General Method

At the start:

e Assume an unfoldable terminology.
e Assume that all axioms are of the form P = @

e This can be done by replacing any axiom of the form A C B by
A = BT C where C is a new concept name.

If the query is AC B:
e negate the query to get AT =B (to show unsatisfiable);
e unfold the negated query;

e convert to negation normal form.

1= Once the negated query has been unfolded, the rest of the KB
can be ignored.



To Start

Unfold:
Expand every concept name occurring in the (negated) query.
e |.e. if concept C appears in the query and C = D is in the
KB, replace C by D in the query.

e Recall that for C = D in the KB, C is a concept name and D
is an arbitrary ALC concept expression.



To Start

Unfold:

Expand every concept name occurring in the (negated) query.

e |.e. if concept C appears in the query and C = D is in the
KB, replace C by D in the query.

e Recall that for C = D in the KB, C is a concept name and D
is an arbitrary ALC concept expression.

Negation normal form:
Negation occurs only in front of concept names

e =(CMND) gives ~C LU -D, and
—(C U D) gives -C M =D

e —1R.C gives YR.—C, and
—VR.C gives 3R.-C

e ——( gives C



Algorithm

e Use a tree to represent the model being constructed

e Each node x represents an individual, labelled with a set L(x)
of concepts it has to satisfy

e C € L(x) implies x € C*
e Each edge (x,y) represents a pair occurring in the
interpretation of a role, labelled with the role name
e R=L((x,y)) implies (x,y) € R?



To Determine the Satisfiability of a
Concept C

Initialise the tree T with a single node x with L(x) = {C}.
Expand by repeatedly applying a set of expansion rules.
T is fully expanded when none of the rules can be applied.

T contains a clash when, for a node y and a concept D,
L € L(y) or{D,~D} C L(y).

If T can't be expanded without producing a clash, the

concept is unsatisfiable.



Expansion Rules

(M-rule) If (G &) € L(x) and {Cy, G} € L(x) then:
Add G and G, to L(x).
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Expansion Rules

(M-rule) If (G N G) € L(x) and {Cy, Co} € L(x) then:
Add G and G, to L(x).
(L-rule) If (G U G) € L(x) and {C1, G} N L(x) = O then:
Add G to L(x).
If this leads to a clash, go back and add G, to L(x).
(F-rule) If 3R.C € L(x) and there is no y s.t. L((x,y)) =R
and C € L(y) then:

Create a new node y and edge (x, y) with L(y) = C
and L((x,y)) = R.



Expansion Rules

(M-rule) If (G N G) € L(x) and {Cy, Co} € L(x) then:
Add G and G, to L(x).
(L-rule) If (G U G) € L(x) and {C1, G} N L(x) = O then:
Add G to L(x).
If this leads to a clash, go back and add G, to L(x).
(F-rule) If 3R.C € L(x) and there is no y s.t. L((x,y)) =R
and C € L(y) then:

Create a new node y and edge (x,y) with L(y) = C
and L((x,y)) = R.
(V-rule) If VR.C € L(x) and there is some y s.t.
L((x,y)) = R and C & L(y) then:
Add C to L(y).



Interpreting a tree T

e If T contains a clash the concept C is unsatisfiable.

o If T is fully expanded and clash-free, then C is satisfiable.
e In the second case, construct a model / as follows:

e A={x]|xisanodein T}.

o AT ={x€ A|AEc L(x)} for all concept names A in C.

e RT ={(x,y)| (x,y) is an edge in T and L((x,y)) = R}.



Termination of the Algorithm

e The M-, Ll-and J-rules can only be applied once to a concept
in L(x).

e The V-rule can be applied many times to a given VR.C
expression in L(x), but only once to a given edge (x, y).

e Applying any rule to a concept C extends the labelling with a
concept strictly smaller than C.

1= Therefore the algorithm must terminate.



Tableau Algorithm: Example 1
DL knowledge base:

e vegan = person [1Veats.plant

e vegetarian = person I Veats.(plants LI dairy)

Query: vegan C vegetarian

Convert to:

e vegan T —vegetarian is unsatisfiable ?



Example 1

e Unfold and normalise vegan M —vegetarian:
person M Yeats.plant M (—person L Jeats.(—plant M —dairy))
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e Unfold and normalise vegan M —vegetarian:
person M Yeats.plant M (—person L Jeats.(—plant M —dairy))

e Initialise T to L(x) to contain:
person 1 Veats.plant M (=person L Jeats.(—plant M —dairy))



Example 1

e Unfold and normalise vegan M —vegetarian:
person M Yeats.plant M (—person L Jeats.(—plant M —dairy))

e Initialise T to L(x) to contain:
person 1 Veats.plant M (=person L Jeats.(—plant M —dairy))

e Apply M-rule and add to L(x):
{person, Veats.plant, —person U Jeats.(—plant M —dairy)}



Example 1

e Apply U-rule to —person LI Jeats.(—plant M —dairy):

Add —person to L(x): Clash
Go back and add Jeats.(—plant M —dairy) to L(x)



Example 1

e Apply U-rule to —person LI Jeats.(—plant M —dairy):
Add —person to L(x): Clash
Go back and add Jeats.(—plant M —dairy) to L(x)
e Apply 3-rule to Jeats.(—plant M —dairy):
Create new node y and new edge (x,y):
L(y) = {—plant M —dairy}; L((x,y)) = eats



Example 1

e Apply U-rule to —person LI Jeats.(—plant M —dairy):
Add —person to L(x): Clash
Go back and add Jeats.(—plant M —dairy) to L(x)
e Apply 3-rule to Jeats.(—plant M —dairy):
Create new node y and new edge (x,y):
L(y) = {—plant M —dairy}; L((x,y)) = eats
o Apply V-rule to Veats.plant in L(x) and L((x,y)) = eats:
Add plant to L(y)



Example 1

e Apply M-rule to —plant M —dairy in L(y):
Add {—plant,—~dairy} to L(y): Clash



Example 1

e Apply M-rule to —plant M —dairy in L(y):
Add {—plant,—dairy} to L(y): Clash
e Conclusion

e Both applications of the L-rule lead to clashes
e So vegan [ —vegetarian is unsatisfiable
e So vegan C vegetarian



Example 2

Query: vegetarian C vegan

Convert to: vegetarian T —vegan is satisfiable 7

Unfold and normalise vegetarian 1 —vegan:

person M Yeats.(plant U dairy) M (—person LI Jeats.—plant)

Initialise T to L(x) to contain:
{person M Veats.(plant LI dairy) M (—person LI Jeats.—plant)}



Example 2

e Apply M-rule and add to L(x):
{person, Veats.(plant U dairy), ~person Ll Jeats.—plant }



Example 2

e Apply M-rule and add to L(x):

{person, Veats.(plant U dairy), ~person Ll Jeats.—plant }
e Apply U-rule to—person LI deats.—plant:

Add —person to L(x): Clash

Go back and add Jeats.—plant to L(x)



Example 2

e Apply M-rule and add to L(x):

{person, Veats.(plant U dairy), ~person Ll Jeats.—plant }
e Apply U-rule to—person LI deats.—plant:

Add —person to L(x): Clash

Go back and add Jeats.—plant to L(x)
e Apply 3-rule to deats.—plant:

Create new node y and new edge (x, y)

L(y) = {—plant}; L((x,y)) = eats



Example 2

e Apply V-rule to Veats.(plant U dairy) in L(x) and
L((x,y)) = eats:
Add plant U dairy to L(y)



Example 2

e Apply V-rule to Veats.(plant U dairy) in L(x) and
L((x,y)) = eats:
Add plant U dairy to L(y)
o Apply U-rule to plant U dairy in L(y):
Add plant to L(y): Clash
Go back and add dairy to L(y)



Example 2

e Apply V-rule to Veats.(plant U dairy) in L(x) and
L((x,y)) = eats:
Add plant U dairy to L(y)
o Apply U-rule to plant U dairy in L(y):
Add plant to L(y): Clash
Go back and add dairy to L(y)
e Conclusion

e No rules are applicable, so T is fully expanded
e So vegetarian [ —wvegan is satisfiable
e So vegetarian [ vegan



The Brachman&Levesque DL and ALC

Constructor \ B&L | ALC |
Conj. (AND AB) | AnB

Univ. quant. (ALL R C) VR.C

Exist. quant. JR.C

Unqual. exist. quant. | (EXISTS 1 R) | 3R.T

Number restriction | (EXISTS n R)

Role filler (FILLS R a)

Assertion \ a— C | C(a) |

F L™ consists of Conj., Univ. quant., and Unqual. exist. quant.
The B&L DL is slightly more general than FL™.

ALC is FL™ plus T, L, and general negation.

The extension to ALC for a role filler would use VR.{a}.
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