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Introduction

Description logics

• A DL is a formalism for expressing concepts, their attributes
(or associated roles), and the relationships between them.

• E.g. Person could be a concept and a role could be ParentOf.

• Can be regarded as a KR system based on a structured
representation of knowledge.

• Most DLs are fragments of FOL, written in a distinct syntax.

Predecessors of DLs

• Semantic networks of the 70s

• Frame-based systems



Why Description Logics?

Ideal AI case:

• Approaches have scientific (logical) and engineering aspects

• Scientific: Analyse the problem formally and in detail

• Engineering: Get something working quickly and efficiently

• Success:
When these two approaches coincide – efficient
implementations of (formally) well-understood
systems.

• Description Logic research has (arguably) reached this point



Background: Concepts, Roles, Constants

• In a description logic, there are sentences that will be true or
false (as in FOL).

• These are restricted to subsumption and instance assertions.

• In addition, there are three sorts of expressions that act like
nouns and noun phrases in English:

• Concepts are like category nouns: Person, Female,
GraduateStudent

• Roles are like relational nouns: AgeOf, ParentOf, AreaOfStudy
• Specify attributes of concepts and their types

• Constants are like proper nouns: John, Mary

• These correspond to unary predicates, binary predicates and
constants (respectively) in FOL.

• Unlike in FOL, concepts need not be atomic and can have
structure.



DL Knowledge Bases

An KB in a DL contains two parts:

• Define terminology: TBox
• E.g. MWD

.
= Mother u ∀ParentOf .¬Female

• Give assertions: ABox
• E.g. MWD(sue).



DL Knowledge Bases: TBox

Main components of the TBox:

• Concepts: classes of individuals
• E.g. Mother

• Roles: binary relations between individuals
• E.g. ∀ParentOf .¬Female

• Complex concepts using constructors
• E.g. Mother u ∀ParentOf .¬Female

• Assertions concerning complex concepts
• E.g. MWD

.
= Mother u ∀ParentOf .¬Female

Mother v Female
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DL Knowledge Bases: ABox

ABox: Assertions that individuals satisfy certain concepts and
roles.

• Think of as a (very) simple relational database.

• E.g. MWD(Mary), ParentOf (Mary , John).



DL: Advantages

• Well-defined formal semantics.

• Known (and often good) complexity characteristics or
implementations.

• Relatively easy to specify DL knowledge bases, in a structured
hierarchical fashion.

• DLs constitute a large family of approaches.
• Can tailor a language to a specific application.



Applications

Useful whenever a common vocabulary is important.

E.g.:

• Enhanced database systems
• DL-Lite

• Medical informatics: SnoMed, Galen
• EL

• Semantic Web
• Next generation web
• OWL: W3C recommendation.

+ We’ll look at perhaps the most central DL, ALC.



The Logic ALC
An ALC KB contains two parts:

• Define terminology: TBox

• Give assertions: ABox

Main components of the TBox:

• Concepts: Represent classes of individuals

• Roles: Represent binary relations between individuals

• Complex concepts using constructors

Examples:

• Concept names: Person, Female

• Role names: ParentOf, HasHusband

• Individual names (in the ABox): John, Mary
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The Logic ALC: Language

Logical symbols:

• Propositional constructors: u, t, ¬
• Other restrictions: ∀, ∃
• >, ⊥

Nonlogical symbols:

• Concept names

• Role names

Concept construction

• Let C and D be concepts and R a role.

• ¬C , C u D, C t D are concepts.

• ∀R.C , ∃R.C are concepts.
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The Logic ALC: Language

Let C and D be concepts and R a role.

• C stands for a concept or set of individuals.

• ¬C stands for the concept of things that are not a C .

• C u D is the concept of things that are both C and D.
• E.g. Female u Human

• C tD is the concept of things that are either C or D or both.
• E.g. Male t Female

• ∀R.C is the concept of things such that all things that are R
related to it are C ’s.

• E.g. ∀ParentOf .Female: things all of whose children are
female

• ∃R.C is the concept of things such that some thing R related
to it is a C .

• ∃ParentOf .Female: things with a female child
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The Logic ALC: Knowledge Bases

Axioms (assertions) in the TBox:

• Subsumption: C v D where C and D are concepts

• Equivalence axioms: C
.

= D where C and D are concepts

Assertions in the ABox:

• C (a) where C is a concept and a is an individual name.

• R(a, b) where R is a role name, a and b are individual names.

DL knowledge base:

• Set of TBox statements

• Set of ABox statements
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Examples

TBox:

• Person v Animal u Biped

• Woman
.

= Person u Female

• Mother
.

= Woman u ∃ParentOf .Person
• Parent

.
= Mother t Father

• Man
.

= Person u ¬Woman

• MotherWithoutDaughter
.

= Mother u ∀ParentOf .¬Female

• GrandMother
.

= Woman u ∃ParentOf .Parent
ABox:

• GrandMother(Sally)

• (Person uMale)(John)



Formal Semantics for Concepts and Names

+ Semantically, a DL can be seen as a fragment of FOL

An interpretation is a pair I = 〈∆, .I〉

• Domain ∆: non-empty set of objects

• Interpretation function .I : Maps structures into the domain.

• Recall, Brachman and Levesque write this as I = 〈D, I 〉.

Then:

• .I maps every concept name A to a subset AI ⊆ ∆

• .I maps every role name R to a binary relation RI ⊆ ∆×∆

• .I maps individual names a to elements of ∆ : aI ∈ ∆

• >I = ∆ and ⊥I = ∅.
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Semantics for Complex Concepts

Assume C , D are concepts, and R is a role.

• (¬C )I = ∆ \ CI

• (C u D)I = CI ∩ DI

• (C t D)I = CI ∪ DI

• (∀R.C )I = {x | y ∈ CI for every y s.t. (x , y) ∈ RI}
• (∃R.C )I = {x | y ∈ CI for some y s.t. (x , y) ∈ RI}



Semantics for Axioms and Assertions

Assume C , D are concepts, R is a role, a and b are individual
names.
Let I = (∆, .I) be an interpretation.

• C v D is true in I iff CI ⊆ DI

• C
.

= D is true in I iff CI = DI

• C (a) is true in I iff aI ∈ CI

• R(a, b) is true in I iff (aI , bI) ∈ RI



Reasoning in ALC

• Sentences: Axioms or assertions

• I is a model for a sentence S iff S is true in I
• I is a model for a DL knowledge base K iff it is a model for

every sentence in K

• Models of K are denoted by [K ]

• S is entailed by K , written K |= S iff [K ] ⊆ [S ]
(I.e. every model of K is a model of S .)



Types of Reasoning in ALC
K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

• Instance checking: K |= C (a) or K |= R(a, b)

• Subsumption checking: K |= C v D

• Equivalence checking: K |= C
.

= D

• Consistency checking: K 6|= > v ⊥
• Concept satisfiability: K 6|= C v ⊥
• Disjoint concepts: K |= C u D v ⊥
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Reduction to Consistency Checking

Let b be a new individual

• Instance checking:
K |= C (a) iff K ∪ {¬C (a)} |= > v ⊥

• Subsumption checking:
K |= C v D iff K ∪ {(C u ¬D)(b)} |= > v ⊥

• Equivalence checking:
K |= C

.
= D iff K ∪ {(C u ¬D)(b), (¬C u D)(b)} |= > v ⊥

• Concept satisfiability:
K 6|= C v ⊥ iff K ∪ {C (b)} 6|= > v ⊥

• Disjoint concepts:
K |= C u D v ⊥ iff K ∪ {(C u D)(b)} |= > v ⊥
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Aside: Extensions to ALC
Extended concepts

• Number restrictions: (≤ nR.C ) and (≥ nR.C )

Role operators

• Inverse roles: R− where R is a role

Role axioms

• Role hierarchy: R v S where R and S are roles
+ So far have just used v for concepts.

• Transitive roles: R ∈ R+ where R is a role



Extensions to ALC: Examples

• ParentWithManySons
.

= (≥ 3ParentOf .Male)

• ∃ParentOf −.Citizen v Citizen

• ParentOf v AncestorOf

• AncestorOf ∈ R+



Extensions to ALC: Semantics

• (≤ nR.C )I = {x | |{y ∈ CI | (x , y) ∈ RI}| ≤ n}
• (≥ nR.C )I = {x | |{y ∈ CI | (x , y) ∈ RI}| ≥ n}
• Inverse roles: (R−)I = {(y , x) | (x , y) ∈ RI}
• R v S is true in I iff RI ⊆ SI for roles R and S .

• R ∈ R+ is true in I iff
(x , z) ∈ RI whenever (x , y) ∈ RI and (y , z) ∈ RI



A Tableau Algorithm for ALC
Goal: Show KB |= A v B by showing KB ∪{Au¬B} unsatisfiable.

Assume an unfoldable terminology:

• Axioms are of the form A v C and A
.

= C where A is a
concept name.

• For each concept name A, at most one axiom of the form
A v C or A

.
= C .

• Axioms are acyclic:
• A v C or A

.
= C directly uses a concept name A1 iff A1 occurs

in C .
• A v C or A

.
= C uses a concept name A1 iff it directly uses A1

or it directly uses a concept name A2 and A2 uses A1.
• A v C or A

.
= C is acyclic iff it does not use A.



General Method

Show KB |= A v B by showing KB ∪ {A u ¬B} is unsatisfiable.

Try to prove concept (un)satisfiability by constructing a model.

• A tableau is a graph representing such a model.

• A set of tableau expansion rules is used to construct the
tableau.

• Either a model is constructed or a contradiction is found.



General Method

At the start:

• Assume an unfoldable terminology.

• Assume that all axioms are of the form P
.

= Q
• This can be done by replacing any axiom of the form A v B by

A
.

= B u C where C is a new concept name.

If the query is A v B:

• negate the query to get A u ¬B (to show unsatisfiable);

• unfold the negated query;

• convert to negation normal form.

+ Once the negated query has been unfolded, the rest of the KB
can be ignored.
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To Start

Unfold:
Expand every concept name occurring in the (negated) query.

• I.e. if concept C appears in the query and C
.

= D is in the
KB, replace C by D in the query.

• Recall that for C
.

= D in the KB, C is a concept name and D
is an arbitrary ALC concept expression.

Negation normal form:

Negation occurs only in front of concept names

• ¬(C u D) gives ¬C t ¬D, and
¬(C t D) gives ¬C u ¬D

• ¬∃R.C gives ∀R.¬C , and
¬∀R.C gives ∃R.¬C

• ¬¬C gives C
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Algorithm

• Use a tree to represent the model being constructed

• Each node x represents an individual, labelled with a set L(x)
of concepts it has to satisfy

• C ∈ L(x) implies x ∈ CI

• Each edge (x , y) represents a pair occurring in the
interpretation of a role, labelled with the role name

• R = L((x , y)) implies (x , y) ∈ RI



To Determine the Satisfiability of a
Concept C

• Initialise the tree T with a single node x with L(x) = {C}.
• Expand by repeatedly applying a set of expansion rules.

• T is fully expanded when none of the rules can be applied.

• T contains a clash when, for a node y and a concept D,
⊥ ∈ L(y) or {D,¬D} ⊆ L(y).

• If T can’t be expanded without producing a clash, the
concept is unsatisfiable.



Expansion Rules

(u-rule) If (C1 u C2) ∈ L(x) and {C1,C2} 6⊆ L(x) then:
Add C1 and C2 to L(x).

(t-rule) If (C1 t C2) ∈ L(x) and {C1,C2} ∩ L(x) = ∅ then:
Add C1 to L(x).
If this leads to a clash, go back and add C2 to L(x).

(∃-rule) If ∃R.C ∈ L(x) and there is no y s.t. L((x , y)) = R
and C ∈ L(y) then:
Create a new node y and edge (x , y) with L(y) = C
and L((x , y)) = R.

(∀-rule) If ∀R.C ∈ L(x) and there is some y s.t.
L((x , y)) = R and C 6∈ L(y) then:
Add C to L(y).



Expansion Rules

(u-rule) If (C1 u C2) ∈ L(x) and {C1,C2} 6⊆ L(x) then:
Add C1 and C2 to L(x).

(t-rule) If (C1 t C2) ∈ L(x) and {C1,C2} ∩ L(x) = ∅ then:
Add C1 to L(x).
If this leads to a clash, go back and add C2 to L(x).

(∃-rule) If ∃R.C ∈ L(x) and there is no y s.t. L((x , y)) = R
and C ∈ L(y) then:
Create a new node y and edge (x , y) with L(y) = C
and L((x , y)) = R.

(∀-rule) If ∀R.C ∈ L(x) and there is some y s.t.
L((x , y)) = R and C 6∈ L(y) then:
Add C to L(y).
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(∃-rule) If ∃R.C ∈ L(x) and there is no y s.t. L((x , y)) = R
and C ∈ L(y) then:
Create a new node y and edge (x , y) with L(y) = C
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L((x , y)) = R and C 6∈ L(y) then:
Add C to L(y).



Interpreting a tree T

• If T contains a clash the concept C is unsatisfiable.

• If T is fully expanded and clash-free, then C is satisfiable.

• In the second case, construct a model I as follows:
• ∆ = {x | x is a node in T}.
• AI = {x ∈ ∆ | A ∈ L(x)} for all concept names A in C .
• RI = {(x , y) | (x , y) is an edge in T and L((x , y)) = R}.



Termination of the Algorithm

• The u-, t-and ∃-rules can only be applied once to a concept
in L(x).

• The ∀-rule can be applied many times to a given ∀R.C
expression in L(x), but only once to a given edge (x , y).

• Applying any rule to a concept C extends the labelling with a
concept strictly smaller than C .

+ Therefore the algorithm must terminate.



Tableau Algorithm: Example 1

DL knowledge base:

• vegan
.

= person u ∀eats.plant
• vegetarian

.
= person u ∀eats.(plants t dairy)

Query: vegan v vegetarian

Convert to:

• vegan u ¬vegetarian is unsatisfiable ?



Example 1

• Unfold and normalise vegan u ¬vegetarian:
person u ∀eats.plant u (¬person t ∃eats.(¬plant u ¬dairy))

• Initialise T to L(x) to contain:
person u ∀eats.plant u (¬person t ∃eats.(¬plant u ¬dairy))

• Apply u-rule and add to L(x):
{person, ∀eats.plant,¬person t ∃eats.(¬plant u ¬dairy)}
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Example 1

• Apply t-rule to ¬person t ∃eats.(¬plant u ¬dairy):
Add ¬person to L(x): Clash
Go back and add ∃eats.(¬plant u ¬dairy) to L(x)

• Apply ∃-rule to ∃eats.(¬plant u ¬dairy):
Create new node y and new edge (x , y):
L(y) = {¬plant u ¬dairy}; L((x , y)) = eats

• Apply ∀-rule to ∀eats.plant in L(x) and L((x , y)) = eats:
Add plant to L(y)
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Example 1

• Apply u-rule to ¬plant u ¬dairy in L(y):
Add {¬plant,¬dairy} to L(y): Clash

• Conclusion
• Both applications of the t-rule lead to clashes
• So vegan u ¬vegetarian is unsatisfiable
• So vegan v vegetarian
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• Apply u-rule to ¬plant u ¬dairy in L(y):
Add {¬plant,¬dairy} to L(y): Clash

• Conclusion
• Both applications of the t-rule lead to clashes
• So vegan u ¬vegetarian is unsatisfiable
• So vegan v vegetarian



Example 2

• Query: vegetarian v vegan

• Convert to: vegetarian u ¬vegan is satisfiable ?

• Unfold and normalise vegetarian u ¬vegan:
person u ∀eats.(plant t dairy) u (¬person t ∃eats.¬plant)

• Initialise T to L(x) to contain:
{person u ∀eats.(plant t dairy) u (¬person t ∃eats.¬plant)}



Example 2

• Apply u-rule and add to L(x):
{person, ∀eats.(plant t dairy),¬person t ∃eats.¬plant}

• Apply t-rule to¬person t ∃eats.¬plant:
Add ¬person to L(x): Clash
Go back and add ∃eats.¬plant to L(x)

• Apply ∃-rule to ∃eats.¬plant:
Create new node y and new edge (x , y)
L(y) = {¬plant}; L((x , y)) = eats
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Go back and add ∃eats.¬plant to L(x)

• Apply ∃-rule to ∃eats.¬plant:
Create new node y and new edge (x , y)

L(y) = {¬plant}; L((x , y)) = eats



Example 2

• Apply ∀-rule to ∀eats.(plant t dairy) in L(x) and
L((x , y)) = eats:
Add plant t dairy to L(y)

• Apply t-rule to plant t dairy in L(y):
Add plant to L(y): Clash
Go back and add dairy to L(y)

• Conclusion
• No rules are applicable, so T is fully expanded
• So vegetarian u ¬vegan is satisfiable
• So vegetarian 6v vegan
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L((x , y)) = eats:
Add plant t dairy to L(y)

• Apply t-rule to plant t dairy in L(y):
Add plant to L(y): Clash
Go back and add dairy to L(y)

• Conclusion
• No rules are applicable, so T is fully expanded
• So vegetarian u ¬vegan is satisfiable
• So vegetarian 6v vegan



The Brachman&Levesque DL and ALC
Constructor B&L ALC

Conj. (AND A B) A u B
Univ. quant. (ALL R C ) ∀R.C
Exist. quant. ∃R.C

Unqual. exist. quant. (EXISTS 1 R) ∃R.>
Number restriction (EXISTS n R)

Role filler (FILLS R a)

Assertion a→ C C (a)

• FL− consists of Conj., Univ. quant., and Unqual. exist. quant.

• The B&L DL is slightly more general than FL−.

• ALC is FL− plus >, ⊥, and general negation.

• The extension to ALC for a role filler would use ∀R.{a}.
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