
 ISO/IEC 14496-2 Committee Draft

i

 INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N2202
Tokyo, March 1998

INFORMATION TECHNOLOGY -

CODING OF AUDIO-VISUAL OBJECTS: VISUAL

ISO/IEC 14496-2

Committee Draft

Draft of 15 May, 1998

Contents

1. Introduction .. vii

1.1 Purpose.. vii
1.2 Application.. vii
1.3 Profiles and levels.. vii
1.4 Object based coding syntax ... viii

1.4.1 Video object.. viii
1.4.2 Face object .. ix
1.4.3 Mesh object.. x
1.4.4 Overview of the object based nonscalable syntax .. x
1.4.5 Generalized scalability .. xi

1.5 Error Resilience.. xiii

1. Scope ... 14

ISO/IEC 14496-2 Committee Draft

ii

2. Normative references ..14

3. Definitions ...16

4. Abbreviations and symbols ...24

4.1 Arithmetic operators...24
4.2 Logical operators..25
4.3 Relational operators..25
4.4 Bitwise operators..25
4.5 Conditional operators ...25
4.6 Assignment ..25
4.7 Mnemonics ..25
4.8 Constants ...26

5. Conventions ...27

5.1 Method of describing bitstream syntax..27
5.2 Definition of functions..28

5.2.1 Definition of bytealigned() function ..28
5.2.2 Definition of nextbits_bytealigned() function ..28
5.2.3 Definition of next_start_code() function..28
5.2.4 Definition of next_resync_marker() function ..28
5.2.5 Definition of transparent_mb() function..29
5.2.6 Definition of transparent_block() function ..29

5.3 Reserved, forbidden and marker_bit ...29
5.4 Arithmetic precision...29

6. Visual bitstream syntax and semantics...30

6.1 Structure of coded visual data...30
6.1.1 Visual object sequence..30
6.1.2 Visual object...31
6.1.3 Video object..31
6.1.4 Mesh object ..37
6.1.5 Face object..39

6.2 Visual bitstream syntax ..42
6.2.1 Start codes..42
6.2.2 Visual Object Sequence and Visual Object..43
6.2.3 Video Object...45
6.2.4 Video Object Layer...46
6.2.5 Group of Video Object Plane ..50
6.2.6 Video Object Plane and Video Plane with Short Header..51
6.2.7 Macroblock...64
6.2.8 Block..69
6.2.9 Still Texture Object ..71
6.2.10 Mesh Object ...80
6.2.11 Face Object...82

6.3 Visual bitstream semantics ...93
6.3.1 Semantic rules for higher syntactic structures ...93
6.3.2 Visual Object Sequence and Visual Object..93
6.3.3 Video Object...99
6.3.4 Video Object Layer...99
6.3.5 Group of Video Object Plane ..106
6.3.6 Video Object Plane and Video Plane with Short Header..107
6.3.7 Macroblock related ...118

 ISO/IEC 14496-2 Committee Draft

iii

6.3.8 Block related...121
6.3.9 Still texture object ...122
6.3.10 Mesh related ...127
6.3.11 Face object ..129

7. The visual decoding process ..135

7.1 Video decoding process ..135
7.2 Higher syntactic structures..136
7.3 Texture decoding ..137

7.3.1 Variable length decoding ..137
7.3.2 Inverse scan ..139
7.3.3 Intra dc and ac prediction for intra macroblocks..140
7.3.4 Inverse quantisation ..142
7.3.5 Inverse DCT ...145

7.4 Shape decoding...146
7.4.1 Higher syntactic structures ..146
7.4.2 Macroblock decoding ..146
7.4.3 Arithmetic decoding ...156
7.4.4 Grayscale Shape Decoding..158

7.5 Motion compensation decoding...160
7.5.1 Padding process ..161
7.5.2 Half sample interpolation..164
7.5.3 General motion vector decoding process..165
7.5.4 Unrestricted motion compensation ..167
7.5.5 Vector decoding processing and motion-compensation in progressive P-VOP167
7.5.6 Overlapped motion compensation ...169
7.5.7 Temporal prediction structure ...171
7.5.8 Vector decoding process of non-scalable progressive B-VOPs ...172
7.5.9 Motion compensation in non-scalable progressive B-VOPs ...172

7.6 Interlaced video decoding ...176
7.6.1 Field DCT and DC and AC Prediction ..176
7.6.2 Motion compensation..176

7.7 Sprite decoding...185
7.7.1 Higher syntactic structures ..186
7.7.2 Sprite Reconstruction..186
7.7.3 Low-latency sprite reconstruction..186
7.7.4 Sprite reference point decoding ...188
7.7.5 Warping..189
7.7.6 Sample reconstruction...190
7.7.7 Scalable sprite decoding..191

7.8 Generalized scalable decoding ..192
7.8.1 Temporal scalability..194
7.8.2 Spatial scalability..197

7.9 Still texture object decoding..201
7.9.1 Decoding of the DC subband...201
7.9.2 ZeroTree Decoding of the Higher Bands ...202
7.9.3 Inverse Quantization...208

7.10 Mesh object decoding..212
7.10.1 Mesh geometry decoding...213
7.10.2 Decoding of mesh motion vectors..216

7.11 Face object decoding...219
7.11.1 Frame based face object decoding..219

ISO/IEC 14496-2 Committee Draft

iv

7.11.2 DCT based face object decoding..220
7.11.3 Decoding of the viseme parameter fap 1..221
7.11.4 Decoding of the viseme parameter fap 2..222
7.11.5 Fap masking ...222

7.12 Output of the decoding process ...223
7.12.1 Video data ..223
7.12.2 2D Mesh data ...223
7.12.3 Face animation parameter data ...223

8. Visual-Systems Composition Issues...224

8.1 Temporal Scalability Composition..224
8.2 Sprite Composition...225

9. Profiles and Levels ..226

9.1 Visual Object Profiles...226
9.2 Visual Combination Profiles...228
9.3 Visual Combination Profiles@Levels ...228

9.3.1 Natural Visual ..228
9.3.2 Synthetic Visual ...228
2.4.3 Synthetic/Natural Hybrid Visual ...229

10. Annex A ...230

10.1 Discrete cosine transform for video texture ...230
10.2 Discrete wavelet transform for still texture ...231

10.2.1 Adding the mean ..231
10.2.2 wavelet filter...231
10.2.3 Symmetric extension...232
10.2.4 Decomposition level ...232
10.2.5 Shape adaptive wavelet filtering and symmetric extension ..233

11. Annex B ...234

11.1 Variable length codes ...234
11.1.1 Macroblock type ...234
11.1.2 Macroblock pattern...235
11.1.3 Motion vector ..238
11.1.4 DCT coefficients...240
11.1.5 Shape Coding ...250
11.1.6 Sprite Coding ...256
11.1.7 DCT based facial object decoding ...257

11.2 Arithmetic Decoding ..266
11.2.1 Aritmetic decoding for still texture object ...266
11.2.2 Arithmetic decoding for shape decoding ...271
11.2.3 Face Object Decoding ...273

12. Annex C ...275

13. Annex D ...286

14. Annex E ...287

14.1 Error resilience...287
14.1.1 Resynchronization ..287
14.1.2 Data Partitioning ..288
14.1.3 Reversible VLC ..289
14.1.4 Decoder Operation..290

 ISO/IEC 14496-2 Committee Draft

v

14.1.5 Adaptive Intra Refresh (AIR) Method ...294
14.2 Complexity Estimation ...296

14.2.1 Video Object Layer Class ..297
14.2.2 Video Object Plane Class ..300
14.2.3 Video Object Plane..300
14.2.4 Resynchronization in Case of Unknown Video Header Format......................................302

15. Annex F..304

15.1 Segmentation for VOP Generation..304
15.1.1 Introduction ..304
15.1.2 Description of a combined temporal and spatial segmentation framework304
15.1.3 References...306

15.2 Bounding Rectangle of VOP Formation ..308
15.3 Postprocessing for Coding Noise Reduction ..309

15.3.1 Deblocking filter ...309
15.3.2 Deringing filter ...310
15.3.3 Further issues..312

16. Annex G ...313

17. Annex H ...314

18. Annex I...315

19. Annex J ..316

20. Annex K ...317

20.1 Introduction..317
20.2 Decoding Process of a View-Dependent Object ...317

20.2.1 General Decoding Scheme ..317
20.2.2 Computation of the View-Dependent Scalability parameters ...319
20.2.3 VD mask computation...321
20.2.4 Differential mask computation ..322
20.2.5 DCT coefficients decoding ..322
20.2.6 Texture update ..322
20.2.7 IDCT ..323

21. Annex L..324

21.1 Introduction..324
21.2 Description of the set up of a visual decoder (informative) ..324

21.2.1 Processing of decoder configuration information ...325
21.3 Specification of decoder configuration information ...326

21.3.1 VideoObject ..326
21.3.2 StillTextureObject ...326
21.3.3 MeshObject...327
21.3.4 FaceObject ..327

22. Annex M...328

ISO/IEC 14496-2 Committee Draft

vi

Foreword

 (Foreword to be provided by ISO)

 ISO/IEC 14496-2 Committee Draft

vii

1. Introduction

1.1 Purpose

This part of this specification was developed in response to the growing need for a coding method that can
facilitate access to visual objects in natural and synthetic moving pictures and associated natural or
synthetic sound for various applications such as digital storage media, internet, various forms of wired or
wireless communication etc. The use of this specification means that motion video can be manipulated as
a form of computer data and can be stored on various storage media, transmitted and received over
existing and future networks and distributed on existing and future broadcast channels.

1.2 Application

The applications of this specification cover, but are not limited to, such areas as listed below:

IMM Internet Multimedia

IVG Interactive Video Games

IPC Interpersonal Communications (videoconferencing, videophone, etc.)

ISM Interactive Storage Media (optical disks, etc.)

MMM Multimedia Mailing

NDB Networked Database Services (via ATM, etc.)

RES Remote Emergency Systems

RVS Remote Video Surveillance

WMM Wireless Multimedia

1.3 Profiles and levels

This specification is intended to be generic in the sense that it serves a wide range of applications, bitrates,
resolutions, qualities and services. Furthermore, it allows a number of modes of coding of both natural and
synthetic video in a manner facilitating access to individual objects in images or video, referred to as
content based access. Applications should cover, among other things, digital storage media, content based
image and video databases, internet video, interpersonal video communications, wireless video etc. In the
course of creating this specification, various requirements from typical applications have been considered,
necessary algorithmic elements have been developed, and they have been integrated into a single syntax.
Hence this specification will facilitate the bitstream interchange among different applications.

ISO/IEC 14496-2 Committee Draft

viii

This specification includes one or more complete decoding algorithms as well as a set of decoding tools.
Moreover, the various tools of this specification as well as that derived from ISO/IEC 13818-2 can be
combined to form other decoding algorithms. Considering the practicality of implementing the full syntax
of this specification, however, a limited number of subsets of the syntax are also stipulated by means of
“profile” and “level”.

A “profile” is a defined subset of the entire bitstream syntax that is defined by this specification. Within
the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in
the performance of encoders and decoders depending upon the values taken by parameters in the
bitstream.

In order to deal with this problem “levels” are defined within each profile. A level is a defined set of
constraints imposed on parameters in the bitstream. These constraints may be simple limits on numbers.
Alternatively they may take the form of constraints on arithmetic combinations of the parameters.

1.4 Object based coding syntax

1.4.1 Video object

A video object in a scene is an entity that a user is allowed to access (seek, browse) and manipulate (cut
and paste). The instances of video objects at a given time are called video object planes (VOPs). The
encoding process generates a coded representation of a VOP as well as composition information necessary
for display. Further, at the decoder, a user may interact with and modify the composition process as
needed.

The full syntax allows coding of rectangular as well as arbitrarily shaped video objects in a scene.
Furthermore, the syntax supports both nonscalable coding and scalable coding. Thus it becomes possible
to handle normal scalabilities as well as object based scalabilities. The scalability syntax enables the
reconstruction of useful video from pieces of a total bitstream. This is achieved by structuring the total
bitstream in two or more layers, starting from a standalone base layer and adding a number of
enhancement layers. The base layer can be coded using a non-scalable syntax, or in the case of picture
based coding, even using a syntax of a different video coding standard.

To ensure the ability to access individual objects, it is necessary to achieve a coded representation of its
shape. A natural video object consists of a sequence of 2D representations (at different points in time)
referred to here as VOPs. For efficient coding of VOPs, both temporal redundancies as well as spatial
redundancies are exploited. Thus a coded representation of a VOP includes representation of its shape, its
motion and its texture.

 ISO/IEC 14496-2 Committee Draft

ix

1.4.2 Face object

A 3D (or 2D) face object is a representation of the human face that is structured for portraying the visual
manifestations of speech and facial expressions adequate to achieve visual speech intelligibility and the
recognition of the mood of the speaker. A face object is animated by a stream of face animation
parameters (FAP) encoded for low-bandwidth transmission in broadcast (one-to-many) or dedicated
interactive (point-to-point) communications. The FAPs manipulate key feature control points in a mesh
model of the face to produce animated visemes for the mouth (lips, tongue, teeth), as well as animation of
the head and facial features like the eyes. FAPs are quantized with careful consideration for the limited
movements of facial features, and then prediction errors are calculated and coded arithmetically. The
remote manipulation of a face model in a terminal with FAPs can accomplish lifelike visual scenes of the
speaker in real-time without sending pictorial or video details of face imagery every frame.

A simple streaming connection can be made to a decoding terminal that animates a default face model. A
more complex session can initialize a custom face in a more capable terminal by downloading face
definition parameters (FDP) from the encoder. Thus specific background images, facial textures, and
head geometry can be portrayed. The composition of specific backgrounds, face 2D/3D meshes, texture
attribution of the mesh, etc. is described in ISO/IEC part 1. The FAP stream for a given user can be
generated at the user’s terminal from video/audio, or from text-to-speech. FAPs can be encoded at bitrates
up to 2-3kbit/s at necessary speech rates. Optional temporal DCT coding provides further compression
efficiency in exchange for delay. Using the facilities of ISO/IEC part 1, a composition of the animated
face model and synchronized, coded speech audio (low-bitrate speech coder or text-to-speech) can provide
an integrated low-bandwidth audio/visual speaker for broadcast applications or interactive conversation.

Limited scalability is supported. Face animation achieves its efficiency by employing very concise motion
animation controls in the channel, while relying on a suitably equipped terminal for rendering of moving
2D/3D faces with non-normative models held in local memory. Models stored and updated for rendering
in the terminal can be simple or complex. To support speech intelligibility, the normative specification of
FAPs intends for their selective or complete use as signaled by the encoder. A masking scheme provides
for selective transmission of FAPs according to what parts of the face are naturally active from moment to
moment. A further control in the FAP stream allows face animation to be suspended while leaving face
features in the terminal in a defined quiescent state for higher overall efficiency during multi-point
connections.

The Face Animation specification is defined in parts 1 and 2 of the standard. This section is intended to
facilitate finding various parts of specification. As a rule of thumb, FAP specification is found in the part
2, and FDP specification in the part 1. However, this is not a strict rule. For an overview of FAPs and
their interpretation, read sections “6.1.5.2 Facial animation parameter set”, “6.1.5.3 Facial animation
parameter units”, “6.1.5.4 Description of a neutral face” as well as the table 12-1 (annex C) of part 2. The
viseme parameter is documented in section “7.12.3 Decoding of the viseme parameter fap 1” and the table
12-5 (annex C) of part 2. The expression parameter is documented in section “7.12.4 Decoding of the
expression parameter fap 2” and the table 12-3 of part 2. FAP bitstream syntax is found in section “6.2.11
Face Object”, semantics in “6.3.11 Face Object”, and section “7.12 Face object decoding” of part 2
explains in more detail the FAP decoding process. FAP masking and interpolation is explained in sections
“6.3.11.1 Face Object Plane”, “7.12.1.1 Decoding of faps”, “7.12.5 Fap masking” of part 2. The FIT
interpolation scheme is documented in section “7.2.5.3.2.4 FIT” of part 1. The FDPs and their
interpretation are documented in the section “7.2.5.3.2.6 FDP” of part 1. In particular, the FDP feature
points are documented in the figure 12-1 in the annex C of part 2.

ISO/IEC 14496-2 Committee Draft

x

1.4.3 Mesh object

A 2D mesh object is a representation of a 2D deformable geometric shape, with which synthetic video
objects may be created during a composition process at the decoder, by spatially piece-wise warping of
existing video object planes or still texture objects. The instances of mesh objects at a given time are called
mesh object planes (mops). The geometry of mesh object planes is coded losslessly. Temporally and
spatially predictive techniques and variable length coding are used to compress 2D mesh geometry. The
coded representation of a 2D mesh object includes representation of its geometry and motion.

1.4.4 Overview of the object based nonscalable syntax

The coded representation defined in the non-scalable syntax achieves a high compression ratio while
preserving good image quality. Further, when access to individual objects is desired, the shape of objects
also needs to be coded, and depending on the bandwidth available, the shape information can be coded
lossy or losslessly.

The compression algorithm employed for texture data is not lossless as the exact sample values are not
preserved during coding. Obtaining good image quality at the bitrates of interest demands very high
compression, which is not achievable with intra coding alone. The need for random access, however, is
best satisfied with pure intra coding. The choice of the techniques is based on the need to balance a high
image quality and compression ratio with the requirement to make random access to the coded bitstream.

A number of techniques are used to achieve high compression. The algorithm first uses block-based
motion compensation to reduce the temporal redundancy. Motion compensation is used both for causal
prediction of the current VOP from a previous VOP, and for non-causal, interpolative prediction from past
and future VOPs. Motion vectors are defined for each 16-sample by 16-line region of a VOP or 8-sample
by 8-line region of a VOP as required. The prediction error, is further compressed using the discrete
cosine transform (DCT) to remove spatial correlation before it is quantised in an irreversible process that
discards the less important information. Finally, the shape information, motion vectors and the quantised
DCT information, are encoded using variable length codes.

1.4.4.1 Temporal processing

Because of the conflicting requirements of random access to and highly efficient compression, three main
VOP types are defined. Intra coded VOPs (I-VOPs) are coded without reference to other pictures. They
provide access points to the coded sequence where decoding can begin, but are coded with only moderate
compression. Predictive coded VOPs (P-VOPs) are coded more efficiently using motion compensated
prediction from a past intra or predictive coded VOPs and are generally used as a reference for further
prediction. Bidirectionally-predictive coded VOPs (B-VOPs) provide the highest degree of compression
but require both past and future reference VOPs for motion compensation. Bidirectionally-predictive
coded VOPs are never used as references for prediction (except in the case that the resulting VOP is used
as a reference for scalable enhancement layer). The organisation of the three VOP types in a sequence is
very flexible. The choice is left to the encoder and will depend on the requirements of the application.

1.4.4.2 Coding of Shapes

In natural video scenes, VOPs are generated by segmentation of the scene according to some semantic
meaning. For such scenes, the shape information is thus binary (binary shape). Shape information is also
referred to as alpha plane. The binary alpha plane is coded on a macroblock basis by a coder which uses
the context information, motion compensation and arithmetic coding.

 ISO/IEC 14496-2 Committee Draft

xi

For coding of shape of a VOP, a bounding rectangle is first created and is extended to multiples of 16×16
blocks with extended alpha samples set to zero. Shape coding is then initiated on a 16×16 block basis;
these blocks are also referred to as binary alpha blocks.

1.4.4.3 Motion representation - macroblocks

The choice of 16×16 blocks (referred to as macroblocks) for the motion-compensation unit is a result of
the trade-off between the coding gain provided by using motion information and the overhead needed to
represent it. Each macroblock can further be subdivided to 8×8 blocks for motion estimation and
compensation depending on the overhead that can be afforded.

Depending on the type of the macroblock, motion vector information and other side information is
encoded with the compressed prediction error in each macroblock. The motion vectors are differenced
with respect to a prediction value and coded using variable length codes. The maximum length of the
motion vectors allowed is decided at the encoder. It is the responsibility of the encoder to calculate
appropriate motion vectors. The specification does not specify how this should be done.

1.4.4.4 Spatial redundancy reduction

Both source VOPs and prediction errors VOPs have significant spatial redundancy. This specification uses
a block-based DCT method with optional visually weighted quantisation, and run-length coding. After
motion compensated prediction or interpolation, the resulting prediction error is split into 8×8 blocks.
These are transformed into the DCT domain where they can be weighted before being quantised. After
quantisation many of the DCT coefficients are zero in value and so two-dimensional run-length and
variable length coding is used to encode the remaining DCT coefficients efficiently.

1.4.4.5 Chrominance formats

This specification currently supports the 4:2:0 chrominance format.

1.4.4.6 Pixel depth

This specification suppports pixel depths between 4 and 12 bits in luminance and chrominance planes.

1.4.5 Generalized scalability

The scalability tools in this specification are designed to support applications beyond that supported by
single layer video. The major applications of scalability include internet video, wireless video, multi-
quality video services, video database browsing etc. In some of these applications, either normal
scalabilities on picture basis such as those in ISO/IEC 13818-2 may be employed or object based
scalabilities may be necessary; both categories of scalability are enabled by this specification.

Although a simple solution to scalable video is the simulcast technique that is based on
transmission/storage of multiple independently coded reproductions of video, a more efficient alternative
is scalable video coding, in which the bandwidth allocated to a given reproduction of video can be
partially re-utilised in coding of the next reproduction of video. In scalable video coding, it is assumed
that given a coded bitstream, decoders of various complexities can decode and display appropriate
reproductions of coded video. A scalable video encoder is likely to have increased complexity when
compared to a single layer encoder. However, this standard provides several different forms of scalabilities
that address non-overlapping applications with corresponding complexities.

ISO/IEC 14496-2 Committee Draft

xii

The basic scalability tools offered are temporal scalability and spatial scalability. Moreover, combinations
of these basic scalability tools are also supported and are referred to as hybrid scalability. In the case of
basic scalability, two layers of video referred to as the lower layer and the enhancement layer are
allowed, whereas in hybrid scalability up to four layers are supported.

1.4.5.1 Object based Temporal scalability

Temporal scalability is a tool intended for use in a range of diverse video applications from video
databases, internet video, wireless video and multiview/stereoscopic coding of video. Furthermore, it may
also provide a migration path from current lower temporal resolution video systems to higher temporal
resolution systems of the future.

Temporal scalability involves partitioning of VOPs into layers, where the lower layer is coded by itself to
provide the basic temporal rate and the enhancement layer is coded with temporal prediction with respect
to the lower layer. These layers when decoded and temporally multiplexed yield full temporal resolution.
The lower temporal resolution systems may only decode the lower layer to provide basic temporal
resolution whereas enhanced systems of the future may support both layers. Furthermore, temporal
scalability has use in bandwidth constrained networked applications where adaptation to frequent changes
in allowed throughput are necessary. An additional advantage of temporal scalability is its ability to
provide resilience to transmission errors as the more important data of the lower layer can be sent over a
channel with better error performance, whereas the less critical enhancement layer can be sent over a
channel with poor error performance. Object based temporal scalability can also be employed to allow
graceful control of picture quality by controlling the temporal rate of each video object under the
constraint of a given bit-budget.

1.4.5.2 Object based Spatial scalability

Spatial scalability is a tool intended for use in video applications involving multi quality video services,
video database browsing, internet video and wireless video, i.e., video systems with the primary common
feature that a minimum of two layers of spatial resolution are necessary. Spatial scalability involves
generating two spatial resolution video layers from a single video source such that the lower layer is coded
by itself to provide the basic spatial resolution and the enhancement layer employs the spatially
interpolated lower layer and carries the full spatial resolution of the input video source.

An additional advantage of spatial scalability is its ability to provide resilience to transmission errors as
the more important data of the lower layer can be sent over a channel with better error performance,
whereas the less critical enhancement layer data can be sent over a channel with poor error performance.
Further, it can also allow interoperability between various standards. Object based spatial scalability can
allow better bit budgeting, complexity scalability and ease of decoding.

1.4.5.3 Hybrid scalability

There are a number of applications where neither the temporal scalability nor the spatial scalability may
offer the necessary flexibility and control. This may necessitate use of temporal and spatial scalability
simultaneously and is referred to as the hybrid scalability. Among the applications of hybrid scalability
are wireless video, internet video, multiviewpoint/stereoscopic coding etc.

 ISO/IEC 14496-2 Committee Draft

xiii

1.5 Error Resilience

ISO/IEC 14496-2 provides error robustness and resilience to allow accessing of image or video
information over a wide range of storage and transmission media. The error resilience tools developed for
ISO/IEC 14496-2 can be divided into three major categories. These categories include synchronization,
data recovery, and error concealment. It should be noted that these categories are not unique to ISO/IEC
14496-2, and have been used elsewhere in general research in this area. It is, however, the tools contained
in these categories that are of interest, and where ISO/IEC 14496-2 makes its contribution to the problem
of error resilience.

ISO/IEC 14496-2 Committee Draft

14

COMMITTEE DRAFT OF ISO/IEC 14496-2

INFORMATION TECHNOLOGY -
CODING OF AUDIO-VISUAL OBJECTS: VIDEO

1. Scope

This committee draft of International Standard specifies the coded representation of picture
information in the form of natural or synthetic visual objects like video sequences of rectangular or
arbitrarily shaped pictures, moving 2D meshes, animated 3D face models and texture for synthetic
objects. The coded representation allows for content based access for digital storage media, digital
video communication and other applications. The International Standard specifies also the decoding
process of the aforementioned coded representation. The representation supports constant bitrate
transmission, variable bitrate transmission, robust transmission, content based random access
(including normal random access), object based scalable decoding (including normal scalable
decoding), object based bitstream editing, as well as special functions such as fast forward playback,
fast reverse playback, slow motion, pause and still pictures. Synthetic objects and coding of special
2D/3D meshes, texture, and animation parameters are provided for use with downloadable models to
exploit mixed media and the bandwidth improvement associated with remote manipulation of such
models. This International Standard is intended to allow some level of interoperability with ISO/IEC
11172-2, ISO/IEC 13818-2 and ITU-T H.263.

2. Normative references

The following ITU-T Recommendations and International Standards contain provisions which
through reference in this text, constitute provisions of this International Standard. At the time of
publication, the editions indicated were valid. All Recommendations and Standards are subject to
revision, and parties to agreements based on this International Standard are encouraged to investigate
the possibility of applying the most recent editions of the standards indicated below. Members of IEC
and ISO maintain registers of currently valid International Standards. The Telecommunication
Standardisation Bureau maintains a list of currently valid ITU-T Recommendations.

 ISO/IEC 14496-2 Committee Draft

15

• Recommendations and reports of the CCIR, 1990 XVIIth Plenary Assembly, Dusseldorf,
1990 Volume XI - Part 1 Broadcasting Service (Television) Recommendation
ITU-R BT.601-3 “Encoding parameters of digital television for studios”.

• CCIR Volume X and XI Part 3 Recommendation ITU-R BR.648 “Recording of audio
signals”.

• CCIR Volume X and XI Part 3 Report ITU-R 955-2 “Satellite sound broadcasting to
vehicular, portable and fixed receivers in the range 500 - 3000Mhz”.

• ISO/IEC 11172-1 1993, Information technology — Coding of moving pictures and
associated audio for digital storage media at up to about 1,5 Mbit/s — Part 1: Systems.

• ISO/IEC 11172-2 1993, Information technology — Coding of moving pictures and
associated audio for digital storage media at up to about 1,5 Mbit/s — Part 2: Video.

• ISO/IEC 11172-3 1993, Information technology — Coding of moving pictures and
associated audio for digital storage media at up to about 1,5 Mbit/s — Part 3: Audio.

• ISO/IEC 13818-1 1995, Information technology — Generic Coding of moving pictures and
associated audio — Part 1: Systems.

• ISO/IEC 13818-2 1995, Information technology — Generic Coding of moving pictures and
associated audio— Part 2: Video.

• ISO/IEC 13818-3 1995, Information technology — Generic Coding of moving pictures and
associated audio — Part 3: Audio.

• IEEE Standard Specifications for the Implementations of 8 by 8 Inverse Discrete Cosine
Transform, IEEE Std 1180-1990, December 6, 1990.

• IEC Publication 908:1987, CD Digital Audio System.

• IEC Publication 461:1986, Time and control code for video tape recorder.

• ITU-T Recommendation H.261 (Formerly CCITT Recommendation H.261) Codec for
audiovisual services at px64 kbit/s Geneva, 1990.

• ITU-T Recommendation H.263 Video Coding for Low Bitrate Communication Geneva,
1996.

• ISO/IEC 10918-1:1994 | Recommendation ITU-T T.81 (JPEG) Information Technology —
Digital compression and coding of continuous-tone still images: Requirements and
guidelines.

ISO/IEC 14496-2 Committee Draft

16

3. Definitions

For the purposes of this International Standard, the following definitions apply.

3.1 AC coefficient: Any DCT coefficient for which the frequency in one or both dimensions
is non-zero.

3.2 B-VOP; bidirectionally predictive-coded video object plane (VOP): A VOP that is
coded using motion compensated prediction from past and/or future reference VOPs

3.3 backward compatibility: A newer coding standard is backward compatible with an
older coding standard if decoders designed to operate with the older coding standard are
able to continue to operate by decoding all or part of a bitstream produced according to
the newer coding standard.

3.4 backward motion vector: A motion vector that is used for motion compensation from a
reference VOP at a later time in display order.

3.5 backward prediction: Prediction from the future reference VOP

3.6 base layer: An independently decodable layer of a scalable hierarchy

3.7 binary alpha block: A block of size 16x16 pels, colocated with macroblock,
representing shape information of the binary alpha map; it is also referred to as a bab.

3.8 binary alpha map: A 2D binary mask used to represent the shape of a video object such
that the pixels that are opaque are considered as part of the object where as pixels that
are transparent are not considered to be part of the object.

3.9 bitstream; stream: An ordered series of bits that forms the coded representation of the
data.

3.10 bitrate: The rate at which the coded bitstream is delivered from the storage medium or
network to the input of a decoder.

3.11 block: An 8-row by 8-column matrix of samples, or 64 DCT coefficients (source,
quantised or dequantised).

3.12 byte aligned: A bit in a coded bitstream is byte-aligned if its position is a multiple of 8-
bits from the first bit in the stream.

3.13 byte: Sequence of 8-bits.

3.14 context based arithmetic encoding: The method used for coding of binary shape; it is
also referred to as cae.

3.15 channel: A digital medium or a network that stores or transports a bitstream constructed
according to this specification.

3.16 chrominance format: Defines the number of chrominance blocks in a macroblock.

 ISO/IEC 14496-2 Committee Draft

17

3.17 chrominance component: A matrix, block or single sample representing one of the two
colour difference signals related to the primary colours in the manner defined in the
bitstream. The symbols used for the chrominance signals are Cr and Cb.

3.18 coded B-VOP: A B-VOP that is coded.

3.19 coded VOP: A coded VOP is a coded I-VOP, a coded P-VOP or a coded B-VOP.

3.20 coded I-VOP: An I-VOP that is coded.

3.21 coded P-VOP: A P-VOP that is coded.

3.22 coded video bitstream: A coded representation of a series of one or more VOPs as
defined in this specification.

3.23 coded order: The order in which the VOPs are transmitted and decoded. This order is
not necessarily the same as the display order.

3.24 coded representation: A data element as represented in its encoded form.

3.25 coding parameters: The set of user-definable parameters that characterise a coded video
bitstream. Bitstreams are characterised by coding parameters. Decoders are
characterised by the bitstreams that they are capable of decoding.

3.26 component: A matrix, block or single sample from one of the three matrices (luminance
and two chrominance) that make up a picture.

3.27 composition process: The (non-normative) process by which reconstructed VOPs are
composed into a scene and displayed.

3.28 compression: Reduction in the number of bits used to represent an item of data.

3.29 constant bitrate coded video: A coded video bitstream with a constant bitrate.

3.30 constant bitrate: Operation where the bitrate is constant from start to finish of the
coded bitstream.

3.31 conversion ratio: The size conversion ratio for the purpose of rate control of shape.

3.32 data element: An item of data as represented before encoding and after decoding.

3.33 DC coefficient: The DCT coefficient for which the frequency is zero in both dimensions.

3.34 DCT coefficient: The amplitude of a specific cosine basis function.

3.35 decoder input buffer: The first-in first-out (FIFO) buffer specified in the video
buffering verifier.

3.36 decoder: An embodiment of a decoding process.

3.37 decoding (process): The process defined in this specification that reads an input coded
bitstream and produces decoded VOPs or audio samples.

ISO/IEC 14496-2 Committee Draft

18

3.38 dequantisation: The process of rescaling the quantised DCT coefficients after their
representation in the bitstream has been decoded and before they are presented to the
inverse DCT.

3.39 digital storage media; DSM: A digital storage or transmission device or system.

3.40 discrete cosine transform; DCT: Either the forward discrete cosine transform or the
inverse discrete cosine transform. The DCT is an invertible, discrete orthogonal
transformation. The inverse DCT is defined in Annex A of this specification.

3.41 display order: The order in which the decoded pictures are displayed. Normally this is
the same order in which they were presented at the input of the encoder.

3.42 editing: The process by which one or more coded bitstreams are manipulated to produce
a new coded bitstream. Conforming edited bitstreams must meet the requirements
defined in this specification.

3.43 encoder: An embodiment of an encoding process.

3.44 encoding (process): A process, not specified in this specification, that reads a stream of
input pictures or audio samples and produces a valid coded bitstream as defined in this
specification.

3.45 enhancement layer: A relative reference to a layer (above the base layer) in a scalable
hierarchy. For all forms of scalability, its decoding process can be described by reference
to the lower layer decoding process and the appropriate additional decoding process for
the enhancement layer itself.

3.46 face animation parameter units, FAPU: Special normalized units (e.g. translational,
angular, logical) defined to allow interpretation of FAPs with any facial model in a
consistent way to produce reasonable results in expressions and speech pronunciation.

3.47 face animation parameters, FAP: Coded streaming animation parameters that
manipulate the displacements and angles of face features, and that govern the blending
of visemes and face expressions during speech.

3.48 face animation table, FAT: A downloadable function mapping from incoming FAPs to
feature control points in the face mesh that provides piecewise linear weightings of the
FAPs for controlling face movements.

3.49 face calibration mesh: Definition of a 3D mesh for calibration of the shape and
structure of a baseline face model.

3.50 face definition parameters, FDP: Downloadable data to customize a baseline face
model in the decoder to a particular face, or to download a face model along with the
information about how to animate it. The FDPs are normally transmitted once per
session, followed by a stream of compressed FAPs. FDPs may include feature points for
calibrating a baseline face, face texture and coordinates to map it onto the face,
animation tables, etc.

3.51 face feature control point: A normative vertex point in a set of such points that define
the critical locations within face features for control by FAPs and that allow for
calibration of the shape of the baseline face.

 ISO/IEC 14496-2 Committee Draft

19

3.52 face interpolation transform, FIT: A downloadable node type defined in ISO/IEC
14496-1 for optional mapping of incoming FAPs to FAPs before their application to
feature points, through weighted rational polynomial functions, for complex cross-
coupling of standard FAPs to link their effects into custom or proprietary face models.

3.53 face model mesh: A 2D or 3D contiguous geometric mesh defined by vertices and
planar polygons utilizing the vertex coordinates, suitable for rendering with photometric
attributes (e.g. texture, color, normals).

3.54 feathering: A tool that tapers the values around edges of binary alpha mask for
composition with the background.

3.55 flag: A one bit integer variable which may take one of only two values (zero and one).

3.56 forbidden: The term “forbidden” when used in the clauses defining the coded bitstream
indicates that the value shall never be used. This is usually to avoid emulation of start
codes.

3.57 forced updating: The process by which macroblocks are intra-coded from time-to-time
to ensure that mismatch errors between the inverse DCT processes in encoders and
decoders cannot build up excessively.

3.58 forward compatibility: A newer coding standard is forward compatible with an older
coding standard if decoders designed to operate with the newer coding standard are able
to decode bitstreams of the older coding standard.

3.59 forward motion vector: A motion vector that is used for motion compensation from a
reference frame VOP at an earlier time in display order.

3.60 forward prediction: Prediction from the past reference VOP.

3.61 frame: A frame contains lines of spatial information of a video signal. For progressive
video, these lines contain samples starting from one time instant and continuing through
successive lines to the bottom of the frame.

3.62 frame period: The reciprocal of the frame rate.

3.63 frame rate: The rate at which frames are be output from the composition process.

3.64 future reference VOP: A future reference VOP is a reference VOP that occurs at a
later time than the current VOP in display order.

3.65 VOP reordering: The process of reordering the reconstructed VOPs when the coded
order is different from the composition order for display. VOP reordering occurs when
B-VOPs are present in a bitstream. There is no VOP reordering when decoding low
delay bitstreams.

3.66 hybrid scalability: Hybrid scalability is the combination of two (or more) types of
scalability.

ISO/IEC 14496-2 Committee Draft

20

3.67 interlace: The property of conventional television frames where alternating lines of the
frame represent different instances in time. In an interlaced frame, one of the field is
meant to be displayed first. This field is called the first field. The first field can be the
top field or the bottom field of the frame.

3.68 I-VOP; intra-coded VOP: A VOP coded using information only from itself.

3.69 intra coding: Coding of a macroblock or VOP that uses information only from that
macroblock or VOP.

3.70 intra shape coding: Shape coding that does not use any temporal prediction.

3.71 inter shape coding: Shape coding that uses temporal prediction.

3.72 level: A defined set of constraints on the values which may be taken by the parameters of
this specification within a particular profile. A profile may contain one or more levels.
In a different context, level is the absolute value of a non-zero coefficient (see “run”).

3.73 layer: In a scalable hierarchy denotes one out of the ordered set of bitstreams and (the
result of) its associated decoding process.

3.74 layered bitstream: A single bitstream associated to a specific layer (always used in
conjunction with layer qualifiers, e. g. “enhancement layer bitstream”)

3.75 lower layer: A relative reference to the layer immediately below a given enhancement
layer (implicitly including decoding of all layers below this enhancement layer)

3.76 luminance component: A matrix, block or single sample representing a monochrome
representation of the signal and related to the primary colours in the manner defined in
the bitstream. The symbol used for luminance is Y.

3.77 Mbit: 1 000 000 bits

3.78 macroblock: The four 8×8 blocks of luminance data and the two (for 4:2:0
chrominance format) corresponding 8×8 blocks of chrominance data coming from a
16×16 section of the luminance component of the picture. Macroblock is sometimes
used to refer to the sample data and sometimes to the coded representation of the sample
values and other data elements defined in the macroblock header of the syntax defined in
this part of this specification. The usage is clear from the context.

3.79 mesh: A 2D triangular mesh refers to a planar graph which tessellates a video object
plane into triangular patches. The vertices of the triangular mesh elements are referred
to as node points. The straight-line segments between node points are referred to as
edges. Two triangles are adjacent if they share a common edge.

3.80 mesh geometry: The spatial locations of the node points and the triangular structure of a
mesh.

3.81 mesh motion: The temporal displacements of the node points of a mesh from one time
instance to the next.

 ISO/IEC 14496-2 Committee Draft

21

3.82 motion compensation: The use of motion vectors to improve the efficiency of the
prediction of sample values. The prediction uses motion vectors to provide offsets into
the past and/or future reference VOPs containing previously decoded sample values that
are used to form the prediction error.

3.83 motion estimation: The process of estimating motion vectors during the encoding
process.

3.84 motion vector: A two-dimensional vector used for motion compensation that provides an
offset from the coordinate position in the current picture or field to the coordinates in a
reference VOP.

3.85 motion vector for shape: A motion vector used for motion compensation of shape.

3.86 non-intra coding: Coding of a macroblock or a VOP that uses information both from
itself and from macroblocks and VOPs occurring at other times.

3.87 opaque macroblock: A macroblock with shape mask of all 255’s.

3.88 P-VOP; predictive-coded VOP: A picture that is coded using motion compensated
prediction from the past VOP.

3.89 parameter: A variable within the syntax of this specification which may take one of a
range of values. A variable which can take one of only two values is called a flag.

3.90 past reference picture: A pas.t reference VOP is a reference VOP that occurs at an
earlier time than the current VOP in composition order.

3.91 picture: Source, coded or reconstructed image data. A source or reconstructed picture
consists of three rectangular matrices of 8-bit numbers representing the luminance and
two chrominance signals. A “coded VOP” was defined earlier. For progressive video, a
picture is identical to a frame.

3.92 prediction: The use of a predictor to provide an estimate of the sample value or data
element currently being decoded.

3.93 prediction error: The difference between the actual value of a sample or data element
and its predictor.

3.94 predictor: A linear combination of previously decoded sample values or data elements.

3.95 profile: A defined subset of the syntax of this specification.

3.96 progressive: The property of film frames where all the samples of the frame represent
the same instances in time.

3.97 quantisation matrix: A set of sixty-four 8-bit values used by the dequantiser.

3.98 quantised DCT coefficients: DCT coefficients before dequantisation. A variable length
coded representation of quantised DCT coefficients is transmitted as part of the coded
video bitstream.

ISO/IEC 14496-2 Committee Draft

22

3.99 quantiser scale: A scale factor coded in the bitstream and used by the decoding process
to scale the dequantisation.

3.100 random access: The process of beginning to read and decode the coded bitstream at an
arbitrary point.

3.101 reconstructed VOP: A reconstructed VOP consists of three matrices of 8-bit numbers
representing the luminance and two chrominance signals. It is obtained by decoding a
coded VOP

3.102 reference VOP: A reference frame is a reconstructed VOP that was coded in the form
of a coded I-VOP or a coded P-VOP. Reference VOPs are used for forward and
backward prediction when P-VOPs and B-VOPs are decoded.

3.103 reordering delay: A delay in the decoding process that is caused by VOP reordering.

3.104 reserved: The term “reserved” when used in the clauses defining the coded bitstream
indicates that the value may be used in the future for ISO/IEC defined extensions.

3.105 scalable hierarchy: coded video data consisting of an ordered set of more than one
video bitstream.

3.106 scalability: Scalability is the ability of a decoder to decode an ordered set of bitstreams
to produce a reconstructed sequence. Moreover, useful video is output when subsets are
decoded. The minimum subset that can thus be decoded is the first bitstream in the set
which is called the base layer. Each of the other bitstreams in the set is called an
enhancement layer. When addressing a specific enhancement layer, “lower layer” refers
to the bitstream that precedes the enhancement layer.

3.107 side information: Information in the bitstream necessary for controlling the decoder.

3.108 run: The number of zero coefficients preceding a non-zero coefficient, in the scan order.
The absolute value of the non-zero coefficient is called “level”.

3.109 saturation: Limiting a value that exceeds a defined range by setting its value to the
maximum or minimum of the range as appropriate.

3.110 source; input: Term used to describe the video material or some of its attributes before
encoding.

3.111 spatial prediction: prediction derived from a decoded frame of the lower layer decoder
used in spatial scalability

3.112 spatial scalability: A type of scalability where an enhancement layer also uses
predictions from sample data derived from a lower layer without using motion vectors.
The layers can have different VOP sizes or VOP rates.

3.113 static sprite: The luminance, chrominance and binary alpha plane for an object which
does not vary in time.

3.114 sprite-VOP: A picture that is coded using information obtained by warping whole or
part of a static sprite.

 ISO/IEC 14496-2 Committee Draft

23

3.115 start codes: 32-bit codes embedded in that coded bitstream that are unique. They are
used for several purposes including identifying some of the structures in the coding
syntax.

3.116 stuffing (bits); stuffing (bytes): Code-words that may be inserted into the coded
bitstream that are discarded in the decoding process. Their purpose is to increase the
bitrate of the stream which would otherwise be lower than the desired bitrate.

3.117 temporal prediction: prediction derived from reference VOPs other than those defined
as spatial prediction

3.118 temporal scalability: A type of scalability where an enhancement layer also uses
predictions from sample data derived from a lower layer using motion vectors. The
layers have identical frame size, and but can have different VOP rates.

3.119 top layer: the topmost layer (with the highest layer_id) of a scalable hierarchy.

3.120 transparent macroblock: A macroblock with shape mask of all zeros.

3.121 variable bitrate: Operation where the bitrate varies with time during the decoding of a
coded bitstream.

3.122 variable length coding; VLC: A reversible procedure for coding that assigns shorter
code-words to frequent events and longer code-words to less frequent events.

3.123 video buffering verifier; VBV: A hypothetical decoder that is conceptually connected to
the output of the encoder. Its purpose is to provide a constraint on the variability of the
data rate that an encoder or editing process may produce.

3.124 video session: The highest syntactic structure of coded video bitstreams. It contains a
series of one or more coded video objects.

3.125 viseme: the physical (visual) configuration of the mouth, tongue and jaw that is visually
correlated with the speech sound corresponding to a phoneme.

3.126 warping: Processing applied to extract a sprite VOP from a static sprite. It consists of a
global spatial transformation driven by a few motion parameters (0,2,4,8), to recover
luminance, chrominance and shape information.

3.127 zigzag scanning order: A specific sequential ordering of the DCT coefficients from
(approximately) the lowest spatial frequency to the highest.

ISO/IEC 14496-2 Committee Draft

24

4. Abbreviations and symbols

The mathematical operators used to describe this specification are similar to those used in the C
programming language. However, integer divisions with truncation and rounding are specifically
defined. Numbering and counting loops generally begin from zero.

4.1 Arithmetic operators

+ Addition.

- Subtraction (as a binary operator) or negation (as a unary operator).

++ Increment. i.e. x++ is equivalent to x = x + 1

- - Decrement. i.e. x-- is equivalent to x = x - 1

×
∗





Multiplication.

^ Power.

/ Integer division with truncation of the result toward zero. For example, 7/4 and -7/-4 are
truncated to 1 and -7/4 and 7/-4 are truncated to -1.

// Integer division with rounding to the nearest integer. Half-integer values are rounded
away from zero unless otherwise specified. For example 3//2 is rounded to 2, and -3//2
is rounded to -2.

/// Integer division with sign dependent rounding to the nearest integer. Half-integer values
when positive are rounded away from zero, and when negative are rounded towards zero.
For example 3///2 is rounded to 2, and -3///2 is rounded to -1.

//// Integer division with truncation towards the negative infinity.

÷ Used to denote division in mathematical equations where no truncation or rounding is
intended.

% Modulus operator. Defined only for positive numbers.

Sign() Sign(x) =
1 x >= 0

− 1 x < 0




Abs() Abs(x) =
x x >= 0

− x x < 0





f (i)
i=a

i<b

∑ The summation of the f(i) with i taking integral values from a up to, but not including b.

 ISO/IEC 14496-2 Committee Draft

25

4.2 Logical operators

|| Logical OR.

&& Logical AND.

! Logical NOT.

4.3 Relational operators

> Greater than.

>= Greater than or equal to.

< Less than.

<= Less than or equal to.

== Equal to.

!= Not equal to.

max [, … ,] the maximum value in the argument list.

min [, … ,] the minimum value in the argument list.

4.4 Bitwise operators

& AND

| OR

>> Shift right with sign extension.

<< Shift left with zero fill.

4.5 Conditional operators

?: (? :
 if is true,

 otherwise.
condition a b

a condition

b
) =





4.6 Assignment

= Assignment operator.

4.7 Mnemonics

The following mnemonics are defined to describe the different data types used in the coded bitstream.

ISO/IEC 14496-2 Committee Draft

26

bslbf Bit string, left bit first, where “left” is the order in which bit strings are written in this
specification. Bit strings are generally written as a string of 1s and 0s within single
quote marks, e.g. ‘1000 0001’. Blanks within a bit string are for ease of reading and
have no significance. For convenience large strings are occasionally written in
hexadecimal, in this case conversion to a binary in the conventional manner will yield
the value of the bit string. Thus the left most hexadecimal digit is first and in each
hexadecimal digit the most significant of the four bits is first.

uimsbf Unsigned integer, most significant bit first.

simsbf Signed integer, in twos complement format, most significant (sign) bit first.

vlclbf Variable length code, left bit first, where “left” refers to the order in which the VLC
codes are written. The byte order of multibyte words is most significant byte first.

4.8 Constants

Π 3,141 592 653 58…

e 2,718 281 828 45…

 ISO/IEC 14496-2 Committee Draft

27

5. Conventions

5.1 Method of describing bitstream syntax

The bitstream retrieved by the decoder is described in 6.2. Each data item in the bitstream is in bold
type. It is described by its name, its length in bits, and a mnemonic for its type and order of
transmission.

The action caused by a decoded data element in a bitstream depends on the value of that data element
and on data elements previously decoded. The decoding of the data elements and definition of the
state variables used in their decoding are described in 6.3. The following constructs are used to
express the conditions when data elements are present, and are in normal type:

while (condition) { If the condition is true, then the group of data elements

data_element occurs next in the data stream. This repeats until the

. . . condition is not true.

}

do {

data_element The data element always occurs at least once.

. . .

} while (condition) The data element is repeated until the condition is not true.

if (condition) { If the condition is true, then the first group of data

data_element elements occurs next in the data stream.

. . .

} else { If the condition is not true, then the second group of data

data_element elements occurs next in the data stream.

. . .

}

for (i = m; i < n; i++) { The group of data elements occurs (n-m) times. Conditional

data_element constructs within the group of data elements may depend

. . . on the value of the loop control variable i, which is set to

} m for the first occurrence, incremented by one for

the second occurrence, and so forth.

/* comment … */ Explanatory comment that may be deleted entirely without

in any way altering the syntax.

This syntax uses the ‘C-code’ convention that a variable or expression evaluating to a non-zero value
is equivalent to a condition that is true and a variable or expression evaluating to a zero value is
equivalent to a condition that is false. In many cases a literal string is used in a condition. For
example;

if (video_object_layer_shape == “rectangular”) …

In such cases the literal string is that used to describe the value of the bitstream element in 6.3. In
this example, we see that “rectangular” is defined in a Table?? to be represented by the two bit binary
number ‘00’.

ISO/IEC 14496-2 Committee Draft

28

As noted, the group of data elements may contain nested conditional constructs. For compactness, the
brackets { } are omitted when only one data element follows.

data_element [n] data_element [n] is the n+1th element of an array of data.

data_element [m][n] data_element [m][n] is the m+1, n+1th element of a two-dimensional array
of data.

data_element [l][m][n] data_element [l][m][n] is the l+1, m+1, n+1th element of a three-
dimensional array of data.

While the syntax is expressed in procedural terms, it should not be assumed that 6.2 implements a
satisfactory decoding procedure. In particular, it defines a correct and error-free input bitstream.
Actual decoders must include means to look for start codes in order to begin decoding correctly, and
to identify errors, erasures or insertions while decoding. The methods to identify these situations, and
the actions to be taken, are not standardised.

5.2 Definition of functions

Several utility functions for picture coding algorithm are defined as follows:

5.2.1 Definition of bytealigned() function

The function bytealigned () returns 1 if the current position is on a byte boundary, that is the next bit
in the bitstream is the first bit in a byte. Otherwise it returns 0. . If the 8 bits following the next byte
alignment position are ’01111111’, these bits shall be discarded.

5.2.2 Definition of nextbits_bytealigned() function

The function nextbits_bytealigned() permits comparison of a bit string with the next bits to be decoded
in the bitstream at which the first bit is byte aligned.

5.2.3 Definition of next_start_code() function

The next_start_code() function removes any zero bit and a string of ‘1’ bits used for stuffing and
locates the next start code.

next_start_code() { No. of bits Mnemonic

zero_bit 1 ‘0’

while (!bytealigned())

one_bit 1 ‘1’

}

This function checks whether the current position is byte aligned. If it is not, a zero stuffing bit
followed by a number of one stuffing bits may be present before the start code.

5.2.4 Definition of next_resync_marker() function

The next_resync_marker() function removes any zero bit and a string of one bits used for stuffing and
locates the next resync marker; it thus performs similar operation as next_start_code() but for
resync_marker.

 ISO/IEC 14496-2 Committee Draft

29

next_resync_marker() { No. of bits Mnemonic

zero_bit 1 ‘0’

while (!bytealigned())

one_bit 1 ‘1’

}

5.2.5 Definition of transparent_mb() function

The function transparent_mb() returns 1 if the current macroblock consists only of transparent pixels.
Otherwise it returns 0.

5.2.6 Definition of transparent_block() function

The function transparent_block(j) returns 1 if the 8x8 with index j consists only of transparent pixels.
Otherwise it returns 0. The index value for each block is defined in Figure 6-5.

5.3 Reserved, forbidden and marker_bit

The terms “reserved” and “forbidden” are used in the description of some values of several fields in
the coded bitstream.

The term “reserved” indicates that the value may be used in the future for ISO/IEC defined
extensions.

The term “forbidden” indicates a value that shall never be used (usually in order to avoid emulation of
start codes).

The term “marker_bit” indicates a one bit integer in which the value zero is forbidden (and it
therefore shall have the value ‘1’). These marker bits are introduced at several points in the syntax to
avoid start code emulation.

5.4 Arithmetic precision

In order to reduce discrepancies between implementations of this specification, the following rules for
arithmetic operations are specified.

(a) Where arithmetic precision is not specified, such as in the calculation of the IDCT, the
precision shall be sufficient so that significant errors do not occur in the final integer values

(b) Where ranges of values are given by a colon, the end points are included if a bracket is
present, and excluded if the ‘less than’ (<) and ‘greater than’ (>) characters are used. For
example, [a : b> means from a to b, including a but excluding b.

ISO/IEC 14496-2 Committee Draft

30

6. Visual bitstream syntax and semantics

6.1 Structure of coded visual data

Coded visual data can be of several different types, such as video data, still texture data, 2D mesh data
or facial animation parameter data.

Synthetic objects and their attribution are structured in a hierarchical manner to support both
bitstream scalability and object scalability. ISO/IEC 14496-1 of the specification provides the
approach to spatial-temporal scene composition including normative 2D/3D scene graph nodes and
their composition supported by Binary Interchange Format Specification. At this level, synthetic and
natural object composition relies on ISO/IEC 14496-1 with subsequent (non-normative) rendering
performed by the application to generate specific pixel-oriented views of the models.

Coded video data consists of an ordered set of video bitstreams, called layers. If there is only one
layer, the coded video data is called non-scalable video bitstream. If there are two layers or more, the
coded video data is called a scalable hierarchy.

One of the layers is called base layer, and it can always be decoded independently. Other layers are
called enhancement layers, and can only be decoded together with the lower layers (previous layers in
the ordered set), starting with the base layer. The multiplexing of these layers is discussed in ISO/IEC
14496-1. The base layer of a scalable set of streams can be coded by other standards. The
Enhancement layers shall conform to this specification. In general the visual bitstream can be thought
of as a syntactic hierarchy in which syntactic structures contain one or more subordinate structures.

Visual texture, referred to herein as still texture coding, is designed for maintaining high visual
quality in the transmission and rendering of texture under widely varied viewing conditions typical of
interaction with 2D/3D synthetic scenes. Still texture coding provides for a multi-layer representation
of luminance, color and shape. This supports progressive transmission of the texture for image build-
up as it is received by a terminal. Also supported is the downloading of the texture resolution
hierarchy for construction of image pyramids used by 3D graphics APIs. Quality and SNR scalability
are supported by the structure of still texture coding.

Coded mesh data consists of just one non-scalable bitstream. This bitstream defines the structure and
motion of the 2D mesh, the texture of the mesh has to be coded as a separate video object.

Coded face animation parameter data consists of one non-scaleable bitstream. It defines the animation
of the facemodel of the decoder. Face animation data is structured as standard formats for
downloadable models and their animation controls, and a single layer of compressed face animation
parameters used for remote manipulation of the face model. The face is a node in a scene graph that
includes face geometry ready for rendering. The shape, texture and expressions of the face are
generally controlled by the bitstream containing instances of Facial Definition Parameter (FDP) sets
and/or Facial Animation Parameter (FAP) sets. Upon initial or baseline construction, the face object
contains a generic face with a neutral expression. This face can receive FAPs from the bitstream and
be subsequently rendered to produce animation of the face. If FDPs are transmitted, the generic face
is transformed into a particular face of specific shape and appearance. A downloaded face model via
FDPs is a scene graph for insertion in the face node.

6.1.1 Visual object sequence

Visual object sequence is is the highest syntactic structure of the coded visual bitstream.

 ISO/IEC 14496-2 Committee Draft

31

A visual object sequence commences with a visual_object_sequence_start_code which is followed by a
one or more visual objects coded concurrently. The visual obbject sequence is terminated by a
visual_object_sequence_end_code.

6.1.2 Visual object

A visual object commences with a visual_object_start_code, is followed by profile and level
identification, and a visual object id, is followed by a video object, a still texture object, a mesh object,
or a face object.

6.1.3 Video object

A video object commences with a video_object_start_code, and is followed by one or more video
object layers.

6.1.3.1 Progressive and interlaced sequences

This specification deals with coding of both progressive and interlaced sequences although the tools of
this specification can be combined with that of tools derived from ISO/IEC 13818-2 to form
algorithms to code interlaced sequences.

The sequence, at the output of the decoding process, consists of a series of reconstructed VOPs
separated in time and are readied for display via the compositor.

6.1.3.2 Frame

A frame consists of three rectangular matrices of integers; a luminance matrix (Y), and two
chrominance matrices (Cb and Cr).

6.1.3.3 VOP

A reconstructed VOP is obtained by decoding a coded VOP. A coded VOP may have been derived
from a either progressive or interlaced frame.

6.1.3.4 VOP types

There are four types of VOPs that use different coding methods:

1. An Intra-coded (I) VOP is coded using information only from itself.

2. A Predictive-coded (P) VOP is a VOP which is coded using motion compensated prediction from
a past reference VOP.

3. A Bidirectionally predictive-coded (B) VOP is a VOP which is coded using motion compensated
prediction from a past and/or future reference VOP(s).

4. A sprite (S) VOP is a VOP for a sprite object.

6.1.3.5 I-VOPs and group of VOPs

I-VOPs are intended to assist random access into the sequence. Applications requiring random access,
fast-forward playback, or fast reverse playback may use I-VOPs relatively frequently.

I-VOPs may also be used at scene cuts or other cases where motion compensation is ineffective.

ISO/IEC 14496-2 Committee Draft

32

Group of VOP hearder is an optional header that can be used immediately before a coded I-VOP to
indicate to the decoder if the first consecutive B-VOPs immediately following the coded I-frame can
be reconstructed properly in the case of a random access. In the code bitstream, the first coded frame
following a group of VOPs header shall be a coded I-VOP.

6.1.3.6 4:2:0 Format

In this format the Cb and Cr matrices shall be one half the size of the Y-matrix in both horizontal and
vertical dimensions. The Y-matrix shall have an even number of lines and samples.

The luminance and chrominance samples are positioned as shown in Figure 6-1.

The two variations in the vertical and temporal positioning of the samples for interlaced VOPs are
shown in Figure 6-2 and Figure 6-3.

 Figure 6-4 shows the vertical and temporal positioning of the samples in a progressive frame.

Represent luminance samples

Represent chrominance samples

Figure 6-1 -- The position of luminance and chrominance samples in 4:2:0 data.

 ISO/IEC 14496-2 Committee Draft

33

Top
Field

Bottom
Field

time

Figure 6-2 – Vertical and temporal positions of samples in an interlaced frame with
top_field_first=1.

ISO/IEC 14496-2 Committee Draft

34

time

Top
Field

Bottom
Field

Figure 6-3 -- Vertical and temporal position of samples in an interlaced frame with
top_field_first=0

 ISO/IEC 14496-2 Committee Draft

35

time

Frame

Figure 6-4– Vertical and temporal positions of samples in a progressive frame.

6.1.3.7 VOP reordering

When a video object layer contains coded B-VOPs, the number of consecutive coded B-VOPs is
variable and unbounded. The first coded VOP shall not be a B-VOP.

A video object layer may contain no coded P-VOPs. A video object layer may also contain no coded I-
VOPs in which case some care is required at the start of the video object layer and within the video
object layer to effect both random access and error recovery.

The order of the coded VOPs in the bitstream, also called coded order, is the order in which a decoder
reconstructs them. The order of the reconstructed VOPs at the output of the decoding process, also
called the display order, is not always the same as the coded order and this section defines the rules of
VOP reordering that shall happen within the decoding process.

When the video object layer contains no coded B-VOPs, the coded order is the same as the display
order.

When B-VOPs are present in the video object layer re-ordering is performed according to the
following rules:

If the current VOP in coded order is a B-VOP the output VOP is the VOP reconstructed from that B-
VOP.

If the current VOP in coded order is a I-VOP or P-VOP the output VOP is the VOP reconstructed
from the previous I-VOP or P-VOP if one exists. If none exists, at the start of the video object layer,
no VOP is output.

ISO/IEC 14496-2 Committee Draft

36

The following is an example of VOPs taken from the beginning of a video object layer. In this
example there are two coded B-VOPs between successive coded P-VOPs and also two coded B-VOPs
between successive coded I- and P-VOPs. VOP ‘1I’ is used to form a prediction for VOP ‘4P’. VOPs
‘4P’ and ‘1I’ are both used to form predictions for VOPs ‘2B’ and ‘3B’. Therefore the order of coded
VOPs in the coded sequence shall be ‘1I’, ‘4P’, ‘2B’, ‘3B’. However, the decoder shall display them
in the order ‘1I’, ‘2B’, ‘3B’, ‘4P’.

At the encoder input,

1

I

2

B

3

B

4

P

5

B

6

B

7

P

8

B

9

B

10

I

11

B

12

B

13

P

At the encoder output, in the coded bitstream, and at the decoder input,

1

I

4

P

2

B

3

B

7

P

5

B

6

B

10

I

8

B

9

B

13

P

11

B

12

B

At the decoder output,

1 2 3 4 5 6 7 8 9 10 11 12 13

6.1.3.8 Macroblock

A macroblock contains a section of the luminance component and the spatially corresponding
chrominance components. The term macroblock can either refer to source and decoded data or to the
corresponding coded data elements. A skipped macroblock is one for which no information is
transmitted. Presently there is only one chrominance format for a macroblock, namely, 4:2:0 format.
The orders of blocks in a macroblock is illustrated below:

A 4:2:0 Macroblock consists of 6 blocks. This structure holds 4 Y, 1 Cb and 1 Cr Blocks and the block
order is depicted in Figure 6-5.

1

2
4

3
5

0

Y CrCb

Figure 6-5 -- 4:2:0 Macroblock structure

The organisation of VOPs into macroblocks is as follows.

For the case of a progressive VOP, the interlaced flag (in the VOP header) is set to “0” and the
organisation of lines of luminance VOP into macroblocks is called frame organization and is
illustrated in Figure 6.4. In this case, frame DCT coding is employed.

For the case of interlaced VOP, the interlaced flag is set to “1” and the organisation of lines of
luminance VOP into macroblocks can be either frame organization or field organization and thus both
frame and field DCT coding may be used in the VOP.

• In the case of frame DCT coding, each luminance block shall be composed of lines from two
fields alternately. This is illustrated in Figure 6-9.

• In the case of field DCT coding, each luminance block shall be composed of lines from only one
of the two fields. This is illustrated in Figure 6-10.

 ISO/IEC 14496-2 Committee Draft

37

Only frame DCT coding is applied to the chrominance blocks. It should be noted that field based
predicitons may be applied for these chrominance blocks which will require predictions of 8x4 regions
(after half-sample filtering).

Figure 6-6 -- Luminance macroblock structure in field DCT coding

Figure 6-7 -- Luminance macroblock structure in field DCT coding

6.1.3.9 Block

The term block can refer either to source and reconstructed data or to the DCT coefficients or to the
corresponding coded data elements.

When the block refers to source and reconstructed data it refers to an orthogonal section of a
luminance or chrominance component with the same number of lines and samples. There are 8 lines
and 8 samples/line in the block.

6.1.4 Mesh object

A 2D triangular mesh refers to a tessellation of a 2D visual object plane into triangular patches. The
vertices of the triangular patches are called node points. The straight-line segments between node
points are called edges. Two triangles are adjacent if they share a common edge.

ISO/IEC 14496-2 Committee Draft

38

A dynamic 2D mesh consists of a temporal sequence of 2D triangular meshes, where each mesh has
the same topology, but node point locations may differ from one mesh to the next. Thus, a dynamic
2D mesh can be specified by the geometry of the initial 2D mesh and motion vectors at the node
points for subsequent meshes, where each motion vector points from a node point of the previous
mesh in the sequence to the corresponding node point of the current mesh. The dynamic 2D mesh can
be used to create 2D animations by mapping texture from e.g. a video object plane onto successive 2D
meshes.

A 2D dynamic mesh with implicit structure refers to a 2D dynamic mesh of which the initial mesh
has either uniform or Delaunay topology. In both cases, the topology of the initial mesh does not have
to be coded (since it is implicitly defined), only the node point locations of the initial mesh have to be
coded. Note that in both the uniform and Delaunay case, the mesh is restricted to be simple, i.e. it
consists of a single connected component without any holes, topologically equivalent to a disk.

A mesh object represents the geometry and motion of a 2D triangular mesh. A mesh object consists of
one or more mesh object planes, each corresponding to a 2D triangular mesh at a certain time
instance. An example of a mesh object is shown in the figure below.

A sequence of mesh object planes represents the piece-wise deformations to be applied to a video
object plane or still texture object to create a synthetic animated video object. Triangular patches of a
video object plane are to be warped according to the motion of corresponding triangular mesh
elements. The motion of mesh elements is specified by the temporal displacements of the mesh node
points.

The syntax and semantics of the mesh object pertains to the mesh geometry and mesh motion only;
the video object to be used in an animation is coded separately. The warping or texture mapping
applied to render visual object planes is handled in the context of scene composition. Furthermore, the
syntax does not allow explicit encoding of other mesh properties such as colors or texture coordinates.

Figure 6-8: Mesh object with uniform triangular geometry.

6.1.4.1 Mesh object plane

There are two types of mesh object planes that use different coding methods.

An intra-coded mesh object plane codes the geometry of a single 2D mesh. An intra-coded mesh is
either of uniform or Delaunay type. In the case of a mesh of uniform type, the mesh geometry is coded
by a small set of parameters. In the case of a mesh of Delaunay type, the mesh geometry is coded by
the locations of the node points and boundary edge segments. The triangular mesh structure is
specified implicitly by the coded information.

 ISO/IEC 14496-2 Committee Draft

39

A predictive-coded mesh object plane codes a 2D mesh using temporal prediction from a past
reference mesh object plane. The triangular structure of a predictive-coded mesh is identical to the
structure of the reference mesh used for prediction; however, the locations of node points may change.
The displacements of node points represent the motion of the mesh and are coded by specifying the
motion vectors of node points from the reference mesh towards the predictive-coded mesh.

Note that each coded mesh is restricted to be simple, i.e. it consists of a single connected component
without any holes, topologically equivalent to a disk.

6.1.5 Face object

Conceptually the face object consists of a collection of nodes in a scene graph which are animated by
the facial object bitstream. The shape, texture and expressions of the face are generally controlled by
the bitstream containing instances of Facial Definition Parameter (FDP) sets and/or Facial Animation
Parameter (FAP) sets. Upon construction, the Face object contains a generic face with a neutral
expression. This face can already be rendered. It is also immediately capable of receiving the FAPs
from the bitstream, which will produce animation of the face: expressions, speech etc. If FDPs are
received, they are used to transform the generic face into a particular face determined by its shape and
(optionally) texture. Optionally, a complete face model can be downloaded via the FDP set as a scene
graph for insertion in the face node.

The FDP and FAP sets are designed to allow the definition of a facial shape and texture, as well as
animation of faces reproducing expressions, emotions and speech pronunciation. The FAPs, if
correctly interpreted, will produce reasonably similar high level results in terms of expression and
speech pronunciation on different facial models, without the need to initialize or calibrate the model.
The FDPs allow the definition of a precise facial shape and texture in the setup phase. If the FDPs are
used in the setup phase, it is also possible to produce more precisely the movements of particular
facial features. Using a phoneme to FAP conversion it is possible to control facial models accepting
FAPs via TTS systems. The translation from phonemes to FAPs is not standardized. It is assumed
that every decoder has a default face model with default parameters. Therefore, the setup stage is not
necessary to create face animation. The setup stage is used to customize the face at the decoder.

6.1.5.1 Structure of the face object bitstream

A face object is formed by a temporal sequence of face object planes. This is depicted as follows in
Figure 6-9.

Face Object
Plane n

Face Object
Plane 2

Face Object
Plane 1

Face Object

Figure 6-9 Structure of the face object bitstream

A face object represents a node in an MPEG4 scene graph. An MPEG-4 scene is understood as a
composition of Audio-Visual objects according to some spatial and temporal relationships. The scene
graph is the hierarchical representation of the MPEG-4 scene structure (see ISO/IEC 14496-1).

Alternatively, a face object can be formed by a temporal sequence of face object plane groups (called
segments for simplicity), where each face object plane group itself is composed of a temporal sequence
of 16 face object planes, as depicted in the following:

face object:

ISO/IEC 14496-2 Committee Draft

40

Face Object
Plane Group n

Face Object
Plane Group 2

Face Object
Plane Group 1

face object plane group:

Face Object
Plane 16

Face Object
Plane 2

Face Object
Plane 1

When the alternative face object bitstream structure is employed, the bitstream is decoded by DCT-
based face object decoding as described in Section 7.11.2. Otherwise, the bitstream is decoded by the
frame-based face object decoding.

6.1.5.2 Facial animation parameter set

The FAPs are based on the study of minimal facial actions and are closely related to muscle actions.
They represent a complete set of basic facial actions, and therefore allow the representation of most
natural facial expressions. Exaggerated values permit the definition of actions that are normally not
possible for humans, but could be desirable for cartoon-like characters.

The FAP set contains two high level parameters visemes and expressions. A viseme is a visual
correlate to a phoneme. The viseme parameter allows viseme rendering (without having to express
them in terms of other parameters) and enhances the result of other parameters, insuring the correct
rendering of visemes. Only static visemes which are clearly distinguished are included in the standard
set. Additional visemes may be added in future extensions of the standard. Similarly, the expression
parameter allows definition of high level facial expressions. The facial expression parameter values
are defined by textual descriptions. To facilitate facial animation, FAPs that can be used together to
represent natural expression are grouped together in FAP groups, and can be indirectly addressed by
using an expression parameter. The expression parameter allows for a very efficient means of
animating faces. In Annex C, a list of the FAPs is given, together with the FAP grouping, and the
definitions of the facial expressions.

6.1.5.3 Facial animation parameter units

All the parameters involving translational movement are expressed in terms of the Facial Animation
Parameter Units (FAPU). These units are defined in order to allow interpretation of the FAPs on any
facial model in a consistent way, producing reasonable results in terms of expression and speech
pronunciation. They correspond to fractions of distances between some key facial features and are
defined in terms of distances between feature points. The fractional units used are chosen to allow
enough precision. Annex C contains the list of the FAPs and the list of the FDP feature points. For
each FAP the list contains the name, a short description, definition of the measurement units,
whether the parameter is unidirectional (can have only positive values) or bi-directional, definition of
the direction of movement for positive values, group number (for coding of selected groups), FDP
subgroup number (Annex C) and quantization step size. FAPs act on FDP feature points in the
indicated subgroups. The measurement units are shown in Table 6-1, where the notation 3.1.y
represents the y coordinate of the feature point 3.1; also refer to Figure 6-10.

Table 6-1 Facial Animation Parameter Units

 ISO/IEC 14496-2 Committee Draft

41

Description FAPU Value

IRISD0 = 3.1.y – 3.3.y =
3.2.y – 3.4.y

Iris diameter (by definition it is equal to the
distance between upper ad lower eyelid) in
neutral face

IRISD = IRISD0 / 1024

ES0 = 3.5.x – 3.6.x Eye separation ES = ES0 / 1024

ENS0 = 3.5.y – 9.15.y Eye - nose separation ENS = ENS0 / 1024

MNS0 = 9.15.y – 2.2.y Mouth - nose separation MNS = MNS0 / 1024

MW0 = 8.3.x – 8.4.x Mouth width MW = MW0 / 1024

AU Angle Unit 10-5 rad

ES0

ENS0

MNS0

MW0

IRISD0

Figure 6-10 The Facial Animation Parameter Units

6.1.5.4 Description of a neutral face

At the beginning of a sequence, the face is supposed to be in a neutral position. Zero values of the
FAPs correspond to a neutral face. All FAPs are expressed as displacements from the positions
defined in the neutral face. The neutral face is defined as follows:

• the coordinate system is right-handed; head axes are parallel to the world axes

• gaze is in direction of Z axis

• all face muscles are relaxed

• eyelids are tangent to the iris

• the pupil is one third of IRISD0

• lips are in contact; the line of the lips is horizontal and at the same height of lip corners

• the mouth is closed and the upper teeth touch the lower ones

• the tongue is flat, horizontal with the tip of tongue touching the boundary between upper and
lower teeth (feature point 6.1 touching 9.11 in Annex C)

ISO/IEC 14496-2 Committee Draft

42

6.1.5.5 Facial definition parameter set

The FDPs are used to customize the proprietary face model of the decoder to a particular face or to
download a face model along with the information about how to animate it. The definition and
description of FDP fields is given in Annex C. The FDPs are normally transmitted once per session,
followed by a stream of compressed FAPs. However, if the decoder does not receive the FDPs, the use
of FAPUs ensures that it can still interpret the FAP stream. This insures minimal operation in
broadcast or teleconferencing applications. The FDP set is specified in BIFS syntax (see ISO/IEC
14496-1). The FDP node defines the face model to be used at the receiver. Two options are supported:

• calibration information is downloaded so that the proprietary face of the receiver can be
configured using facial feature points and optionally a 3D mesh or texture.

• a face model is downloaded with the animation definition of the Facial Animation Parameters.
This face model replace the proprietary face model in the receiver.

6.2 Visual bitstream syntax

6.2.1 Start codes

Start codes are specific bit patterns that do not otherwise occur in the video stream.

Each start code consists of a start code prefix followed by a start code value. The start code prefix is a
string of twenty three bits with the value zero followed by a single bit with the value one. The start
code prefix is thus the bit string ‘0000 0000 0000 0000 0000 0001’.

The start code value is an eight bit integer which identifies the type of start code. Many types of start
code have just one start code value. However video_object_start_code and
video_object_layer_start_code are represented by many start code values.

All start codes shall be byte aligned. This shall be achieved by first inserting a bit with the value zero
and then, if necessary, inserting bits with the value one before the start code prefix such that the first
bit of the start code prefix is the first (most significant) bit of a byte. For stuffing of 1 to 8 bits, the
codewords are as follows in Table 6-2. Nevertheless, these stuffing bits shall not be present if and only
if the previous code is a start code.

Table 6-2-- Stuffing codewords

Bits to be stuffed Stuffing Codeword

1 0

2 01

3 011

4 0111

5 01111

6 011111

7 0111111

8 01111111

Table 6-3 defines the start code values for all start codes used in the visual bitstream.

Table 6-3 — Start code values

 ISO/IEC 14496-2 Committee Draft

43

name start code value

(hexadecimal)

video_object_start_code 00 through 1F

video_object_layer_start_code 20 through 2F

reserved 30 through AF

visual_object_sequence__start_code B0

visual_object_sequence_end_code B1

user_data_start_code B2

group_of_VOP_start_code B3

video_session_error_code B4

visual_object_start_code B5

VOP_start_code B6

reserved B7-B9

face_object_start_code BA

face_object_plane_start_code BB

mesh_object_start_code BC

mesh_object_plane_start_code BD

still_texture_object_start_code BE

texture_spatial_layer_start_code BF

texture_snr_layer_start_code C0

reserved C0-C5

System start codes (see note) C6 through FF

NOTE - System start codes are defined in Part 1 of this specification

The use of the start codes is defined in the following syntax description with the exception of the
video_session_error_code. The video_session_error_code has been allocated for use by a media
interface to indicate where uncorrectable errors have been detected.

6.2.2 Visual Object Sequence and Visual Object

VisualObjectSequence() { No. of bits Mnemonic

visual_object_sequence_start_code 32 bslbf

 while (nextbits()== user_data_start_code){

 user_data()

 }

do {

VisualObject()

}while(nextbits()==visual_object_sequence_start_code)

visual_object_sequence_end_code 32 bslbf

}

ISO/IEC 14496-2 Committee Draft

44

VisualObject() { No. of bits Mnemonic

visual_object_start_code 32 bslbf

profile_and_level_indication 8 uimsbf

 is_visual_object_identifier 1 uimsbf

 if (is_visual_object_identifier) {

 visual_object_verid 4 uimsbf

visual_object_priority 3 uimsbf

 }

visual_object_type 4 uimsbf

 next_start_code()

 while (nextbits()== user_data_start_code){

 user_data()

 }

if (visual_object_type == “video ID” || visual_object_type == “still
texture ID“) {

video_signal_type()

}

if (visual_object_type == “video ID”) {

VideoObject()

}

else if (visual_object_type == “still texture ID”) {

StillTextureObject()

}

else if (visual_object_type == “mesh ID”) {

MeshObject()

}

else if (visual_object_type == “face ID”) {

FaceObject()

}

 next_start_code()

}

video_signal_type() 1 bslbf

video_signal_type 1 bslbf

if(video_signal_type) {

 video_format 3 uimsbf

 video_range 1 bslbf

 colour_description 1 bslbf

 if (colour_description) {

 colour_primaries 8 uimsbf

 transfer_characteristics 8 uimsbf

 matrix_coefficients 8 uimsbf

 }

 ISO/IEC 14496-2 Committee Draft

45

}

6.2.2.1 User data

user_data() { No. of bits Mnemonic

user_data_start_code 32 bslbf

while(nextbits() != ‘0000 0000 0000 0000 0000 0001’) {

user_data 8 uimsbf

}

next_start_code()

}

6.2.3 Video Object

VideoObject() { No. of bits Mnemonic

video_object_start_code

 /* 5 least significant bits specify video_object_id value */

32 bslbf

 while (nextbits()== user_data_start_code){

 user_data()

 }

do{

VideoObjectLayer()

} while (next_bits() == video_object_layer_start_code)

}

ISO/IEC 14496-2 Committee Draft

46

6.2.4 Video Object Layer

VideoObjectLayer() { No. of bits Mnemonic

if(nextbits() == video_object_layer_start_code) {

short_video_header = 0

video_object_layer_start_code 32 bslbf

 is_object_layer_identifier 1 uimsbf

if (is_object_layer_identifier) {

video_object_layer_verid 4 uimsbf

video_object_layer_priority 3 uimsbf

}

vol_control_parameters 1 bslbf

if (vol_control_parameters)

aspect_ratio_info 4 uimsbf

VOP_rate_code 4 uimsbf

bit_rate 30 uimsbf

vbv_buffer_size 18 uimsbf

chroma_format 2 uimsbf

low_delay 1 uimsbf

}

video_object_layer_shape 2 uimsbf

VOP_time_increment_resolution 15 uimsbf

fixed_VOP_rate 1 bslbf

if (video_object_layer_shape != “binary only”) {

if (video_object_layer_shape == “rectangular”) {

marker_bit 1 bslbf

video_object_layer_width 13 uimsbf

marker_bit 1 bslbf

video_object_layer_height 13 uimsbf

}

obmc_disable 1 bslbf

sprite_enable 1 bslbf

if (sprite_enable) {

sprite_width 13 uimsbf

marker_bit 1 bslbf

sprite_height 13 uimsbf

marker_bit 1 bslbf

sprite_left_coordinate 13 simsbf

marker_bit 1 bslbf

sprite_top_coordinate 13 simsbf

marker_bit 1 bslbf

no_of_sprite_warping_points 6 uimsbf

sprite_warping_accuracy 2 uimsbf

sprite_brightness_change 1 bslbf

low_latency_sprite_enable 1 bslbf

 ISO/IEC 14496-2 Committee Draft

47

}

not_8_bit 1 bslbf

if (not_8_ bit) {

quant_precision 4 uimsbf

bits_per_pixel 4 uimsbf

if (video_object_layer_shape==”grayscale”) {

 no_gray_quant_update 1 bslbf

 }

}

quant_type 1 bslbf

if (quant_type) {

load_intra_quant_mat 1 bslbf

if (load_intra_quant_mat)

intra_quant_mat 8*[2-64] uimsbf

load_nonintra_quant_mat 1 bslbf

if (load_nonintra_quant_mat)

nonintra_quant_mat 8*[2-64] uimsbf

 if(video_object_layer_shape==”grayscale”) {

 load_intra_quant_mat_grayscale 1 bslbf

 if(load_intra_quant_mat_grayscale)

 intra_quant_mat_grayscale 8*[2-64] uimsbf

 load_nonintra_quant_mat_grayscale 1 bslbf

 if(load_nonintra_quant_mat_grayscale)

 nonintra_quant_mat_grayscale 8*[2-64] uimsbf

}

}

complexity_estimation_disable 1 bslbf

if (!complexity_estimation_disable)

define_VOP_complexity_estimation_header()

error_resilient_disable 1 bslbf

if (!error_resilient_disable) {

data_partitioned 1 bslbf

if(data_partitioned)

reversible_vlc 1 bslbf

}

scalability 1 bslbf

if (scalability) {

ref_layer_id 4 uimsbf

ref_layer_sampling_direc 1 bslbf

hor_sampling_factor_n 5 uimsbf

hor_sampling_factor_m 5 uimsbf

vert_sampling_factor_n 5 uimsbf

vert_sampling_factor_m 5 uimsbf

enhancement_type 1 bslbf

ISO/IEC 14496-2 Committee Draft

48

}

}

random_accessible_vol 1 bslbf

else

error_resilient_disable 1 bslbf

next_start_code()

 while (nextbits()== user_data_start_code){

 user_data()

 }

if (sprite_enable && !low_latency_sprite_enable)

VideoObjectPlane()

do {

if (next_bits() == group_of_VOP_start_code)

Group_of_VideoObjectPlane()

VideoObjectPlane()

} while ((next_bits() == group_of_VOP_start_code) ||

 (next_bits() == VOP_start_code))

} else {

short_video_header = 1

do {

short_video_start_marker 22 bslbf

video_plane_with_short_header()

if(nextbits() == short_video_end_marker) {

short_video _end_marker 22 uimsbf

while(!byte_aligned())

zero_bit 1 bslbf

}

} while(next_bits() == short_video_start_marker)

}

}

 ISO/IEC 14496-2 Committee Draft

49

define_VOP_complexity_estimation_header() { No. of bits Mnemonic

estimation_method 2 uimsbf

if (estimation_method ==’00’){

shape_complexity_estimation_disable 1

if (shape_complexity_estimation_disable) { bslbf

opaque 1 bslbf

transparent 1 bslbf

intra_cae 1 bslbf

inter_cae 1 bslbf

no_update 1 bslbf

upsampling 1 bslbf

}

texture_complexity_estimation_set_1_disable 1 bslbf

if (!texture_complexity_estimation_set_1_disable) {

intra_blocks 1 bslbf

inter_blocks 1 bslbf

inter4v_blocks 1 bslbf

not_coded_blocks 1 bslbf

}

texture_complexity_estimation_set_2_disable 1 bslbf

if (!texture_complexity_ estimation_set_2_disable) {

dct_coefs 1 bslbf

dct_lines 1 bslbf

vlc_symbols 1 bslbf

vlc_bits 1 bslbf

}

motion_compensation_complexity_disable 1 bslbf

If (!motion_compensation_complexity_disable) {

apm 1 bslbf

npm 1 bslbf

interpolate_mc_q 1 bslbf

forw_back_mc_q 1 bslbf

halfpel2 1 bslbf

halfpel4 1 bslbf

}

}

}

ISO/IEC 14496-2 Committee Draft

50

6.2.5 Group of Video Object Plane

Group_of_VideoObjectPlane() { No. of bits Mnemonic

group_VOP_start_code 32 bslbf

time_code 18

closed_gov 1 bslbf

broken_link 1 bslbf

next_start_code()

 while (nextbits()== user_data_start_code){

 user_data()

 }

}

 ISO/IEC 14496-2 Committee Draft

51

6.2.6 Video Object Plane and Video Plane with Short Header

VideoObjectPlane() { No. of bits Mnemonic

VOP_start_code 32 bslbf

VOP_coding_type 2 uimsbf

do {

modulo_time_base 1 bslbf

} while (modulo_time_base != ‘0’)

 marker_bit 1 bslbf

VOP_time_increment 1-15 uimsbf

 marker_bit 1 bslbf

VOP_coded 1 bslbf

if (VOP_coded == ’0’) {

next_start_code()

return()

}

if ((video_object_layer_shape != “binary only”) &&

 (VOP_coding_type == “P”))

VOP_rounding_type 1 bslbf

if (video_object_layer_shape != “rectangular”) {

if(!(sprite_enable && VOP_coding_type == “I”)) {

VOP_width 13 uimsbf

marker_bit 1 bslbf

VOP_height 13 uimsbf

marker_bit 1 bslbf

VOP_horizontal_mc_spatial_ref 13 simsbf

marker_bit 1 bslbf

VOP_vertical_mc_spatial_ref 13 simsbf

}

if ((video_object_layer_shape != “ binary only”) &&

 scalability && enhancement_type)

background_composition 1 bslbf

change_conv_ratio_disable 1 bslbf

VOP_constant_alpha 1 bslbf

if (VOP_constant_alpha)

VOP_constant_alpha_value 8 bslbf

}

if (!complexity_estimation_disable)

read_VOP_complexity_estimation_header()

if (video_object_layer_shape != “binary only”) {

intra_dc_vlc_thr 3 uimsbf

interlaced 1 bslbf

if (interlaced) {

top_field_first 1 bslbf

alternate_scan 1 bslbf

ISO/IEC 14496-2 Committee Draft

52

}

}

if (sprite_enable && VOP_coding_type == “S”) {

if (no_sprite_points > 0)

sprite_trajectory()

if (sprite_brightness_change)

brightness_change_factor()

if (sprite_transmit_mode != “stop”

&& low_latency_sprite_enable) {

do {

sprite_transmit_mode 2 uimsbf

if ((sprite_transmit_mode == “piece”) ||

 (sprite_transmit_mode == “update”))

decode_sprite_piece()

} while (sprite_transmit_mode != “stop” &&

 sprite_transmit_mode != “pause”)

}

next_start_code()

return()

}

if (video_object_layer_shape != “binary only”) {

VOP_quant 3-9 uimsbf

 if(video_object_layer_shape==”grayscale”)

 VOP_alpha_quant 6 uimsbf

if (VOP_coding_type != “I”)

VOP_fcode_forward 3 uimsbf

if (VOP_coding_type == “B”)

VOP_fcode_backward 3 uimsbf

if (!scalability) {

if (!error_resilient_disable) {

if (video_object_layer_shape != “rectangular”

 && VOP_coding_type != “I”)

VOP_shape_coding_type 1 bslbf

motion_shape_texture()

while (nextbits_bytealigned() == resync_marker) {

video_packet_header()

motion_shape_texture()

}

}

else{

do {

motion_shape_texture()

} while (nextbits_bytealigned() != ‘0000 0000 0000

 0000 0000 000’)

 ISO/IEC 14496-2 Committee Draft

53

}

}

else {

if (enhancement_type) {

load_backward_shape 1 bslbf

if (load_backward_shape) {

backward_shape_width 13 uimsbf

backward_shape_ height 13 uimsbf

backward_shape_horizontal_mc_spatial_ref 13 simsbf

marker_bit 1 bslbf

backward_shape_vertical_mc_spatial_ref 13 simsbf

backward_shape()

load_forward_shape 1 bslbf

if (load_forward_shape) {

forward_shape_width 13 uimsbf

forward_shape_height 13 uimsbf

forward_shape_horizontal_mc_spatial_ref 13 simsbf

marker_bit 1 bslbf

forward_shape_vertical_mc_spatial_ref 13 simsbf

forward_shape()

}

}

}

ref_select_code 2 uimsbf

motion_shape_texture()

}

}

else {

if (!error_resilient_disable) {

motion_shape_texture()

while (nextbits_bytealigned() == resync_marker) {

video_packet_header()

motion_shape_texture()

}

} else

motion_shape_texture()

}

next_start_code()

}

ISO/IEC 14496-2 Committee Draft

54

read_VOP_complexity_estimation_header() { No. of bits Mnemonic

if (estimation_method==’00’){

if (VOP_prediction_type==‘00’){

if (opaque) dcecs_opaque 8 uimsbf

if (transparent) dcecs_transparent 8 uimsbf

if (intra_cae) dcecs_intra_cae 8 uimsbf

if (inter_cae) dcecs_inter_cae 8 uimsbf

if (no_update) dcecs_no_update 8 uimsbf

if (upsampling) dcecs_upsampling 8 uimsbf

if (intra_blocks) dcecs_intra_blocks 8 uimsbf

if (not_coded_blocks) dcecs_not_coded_blocks 8 uimsbf

if (dct_coefs) dcecs_dct_coefs 8 uimsbf

if (dct_lines) dcecs_dct_lines 8 uimsbf

if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf

if (vlc_bits) dcecs_vlc_bits 4 uimsbf

}

if (VOP_prediction_type==‘01’){

if (opaque) dcecs_opaque 8 uimsbf

if (transparent) dcecs_transparent 8 uimsbf

if (intra_cae) dcecs_intra_cae 8 uimsbf

if (inter_cae) dcecs_inter_cae 8 uimsbf

if (no_update) dcecs_no_update 8 uimsbf

if (upsampling) dcecs_upsampling 8 uimsbf

if (intra) dcecs_intra_blocks 8 uimsbf

if (not_coded) dcecs_not_coded_blocks 8 uimsbf

if (dct_coefs) dcecs_dct_coefs 8 uimsbf

if (dct_lines) dcecs_dct_lines 8 uimsbf

if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf

if (vlc_bits) dcecs_vlc_bits 4 uimsbf

if (inter_blocks) dcecs_inter_blocks 8 uimsbf

if (inter4v_blocks) dcecs_inter4v_blocks 8 uimsbf

if (apm) dcecs_apm 8 uimsbf

if (npm) dcecs_npm 8 uimsbf

if (forw_back_mc_q) dcecs_forw_back_mc_q 8 uimsbf

if (halfpel2) dcecs_halfpel2 8 uimsbf

if (halfpel4) dcecs_halfpel4 8 uimsbf

}

if (VOP_prediction_type==‘10’){

if (opaque) dcecs_opaque 8 uimsbf

if (transparent) dcecs_transparent 8 uimsbf

if (intra_cae) dcecs_intra_cae 8 uimsbf

if (inter_cae) dcecs_inter_cae 8 uimsbf

if (no_update) dcecs_no_update 8 uimsbf

 ISO/IEC 14496-2 Committee Draft

55

if (upsampling) dcecs_upsampling 8 uimsbf

if (intra_blocks) dcecs_intra_blocks 8 uimsbf

if (not_coded_blocks) dcecs_not_coded_blocks 8 uimsbf

if (dct_coefs) dcecs_dct_coefs 8 uimsbf

if (dct_lines) dcecs_dct_lines 8 uimsbf

if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf

if (vlc_bits) dcecs_vlc_bits 4 uimsbf

if (inter_blocks) dcecs_inter_blocks 8 uimsbf

if (inter4v_blocks) dcecs_inter4v_blocks 8 uimsbf

if (apm) dcecs_apm 8 uimsbf

if (npm) dcecs_npm 8 uimsbf

if (forw_back_mc_q) dcecs_forw_back_mc_q 8 uimsbf

if (halfpel2) dcecs_halfpel2 8 uimsbf

if (halfpel4) dcecs_halfpel4 8 uimsbf

if (interpolate_mc_q) dcecs_interpolate_mc_q 8 uimsbf

}

if (VOP_prediction_type==‘11’){

if (intra_blocks) dcecs_intra_blocks 8 uimsbf

if (not_coded_blocks) dcecs_not_coded_blocks 8 uimsbf

if (dct_coefs) dcecs_dct_coefs 8 uimsbf

if (dct_lines) dcecs_dct_lines 8 uimsbf

if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf

if (vlc_bits) dcecs_vlc_bits 4 uimsbf

if (inter_blocks) dcecs_inter_blocks 8 uimsbf

if (inter4v_blocks) dcecs_inter4v_blocks 8 uimsbf

if (apm) dcecs_apm 8 uimsbf

if (npm) dcecs_npm 8 uimsbf

if (forw_back_q) dcecs_forw_back_q 8 uimsbf

if (halfpel2) dcecs_halfpel2 8 uimsbf

if (halfpel4) dcecs_halfpel4 8 uimsbf

if (interpolate_mc_q) dcecs_interpolate_mc_q 8 uimsbf

}

}

}

ISO/IEC 14496-2 Committee Draft

56

video_plane_with_short_header() { No. of bits Mnemonic

temporal_reference 8 uimsbf

marker_bit 1 bslbf

zero_bit 1 bslbf

split_screen_indicator 1 bslbf

document_camera_indicator 1 bslbf

full_picture_freeze_release 1 bslbf

source_format 3 bslbf

picture_coding_type 1 bslbf

four_reserved_zero_bits 4 bslbf

vop_quant 5 uimsbf

zero_bit 1 bslbf

do{

pei 1 bslbf

if (pei == “1”)

psupp 8 bslbf

} while (pei == “1”)

gob_number = 0

for(i=0; i<num_gobs_in_vop; i++)

gob_layer()

}

gob_layer() { No. of bits Mnemonic

gob_header_empty = 1

if(gob_number != 0) {

if (next_bits == gob_resync_marker) {

gob_header_empty = 0

gob_resync_marker 17 bslbf

gob_number 5 uimsbf

gob_frame_id 2 bslbf

quant_scale 5 uimsbf

} else

gob_number++

}

for(i=0; i<num_macroblocks_in_gob; i++)

macroblock()

if(next_bits != gob_resync_marker &&
 nextbits_byte_aligned == gob_resync_marker)

while(!byte_aligned())

zero_bit 1 bslbf

}

 ISO/IEC 14496-2 Committee Draft

57

video_packet_header() { No. of bits Mnemonic

 next_resync_marker()

resync_marker 17-23 uimsbf

macroblock_number 1-14 vlclbf

if (video_object_layer_shape != “binary only”)

quant_scale 5 uimsbf

header_extension_code 1 uimsbf

 if (header_extension_code) {

 do {

 modulo_time_base 1 bslbf

 } while (modulo_time_base != ‘0’)

 marker_bit 1 bslbf

 VOP_time_increment 1-15 bslbf

 marker_bit 1 uimsbf

 VOP_coding_type 2 uimsbf

intra_dc_vlc_thr 3 uimsbf

if (video_object_layer_shape != “binary only”) {

 if (VOP_coding_type != “I”)

 VOP_fcode_forward 3 uimsbf

 if (VOP_coding_type == “B”)

 VOP_fcode_backward 3 uimsbf

}

 }

}

6.2.6.1 Motion Shape Texture

motion_shape_texture() { No. of bits Mnemonic

if (data_partitioning &&

video_object_layer_shape != “binary only”)

 data_partitioning_motion _shape_texture()

else

 combined_motion_shape_texture()

}

combined_motion_shape_texture() { No. of bits Mnemonic

do{

macroblock()

} while (nextbits_bytealigned() != resync_marker &&
nextbits_bytealigned() != ‘000 0000 0000 0000 0000 0000’)

}

ISO/IEC 14496-2 Committee Draft

58

data_partitioning_motion_shape_texture() { No. of bits Mnemonic

if (VOP_coding_type == “I”) {

data_partitioning_I_VOP()

} else if (VOP_coding_type == “P”) {

data_partitioning_P_VOP()

} else if (VOP_coding_type == “B”) {

 combined_motion_shape_texture()

}

Note: Data partitioning is not supported in B-VOPs.

 ISO/IEC 14496-2 Committee Draft

59

data_partitioned_I_VOP() { No. of bits Mnemonic

do{

if (video_object_layer_shape != “rectangular”){

bab_type 1-3

if (bab_type >= 4) {

if (!change_conv_rate_disable) conv_ratio 1-2

scan_type 1

binary_arithmetic_code()

}

}

if (!transparent_mb()) {

mcbpc 1-9 vlclbf

if (mb_type == 4)

dquant 2 bslbf

if (use_intra_dc_vlc) {

for (j = 0; j < 4; j++) {

if (!transparent_block(j)) {

dct_dc_size_luminance 2-11 vlclbf

if (dct_dc_size_luminance > 0)

dct_dc_differential 1-12 vlclbf

if (dct_dc_size_luminance > 8)

marker_bit 1 bslbf

}

}

for (j = 0; j < 2; j++) {

dct_dc_size_chrominance 2-12 vlclbf

if (dct_dc_size_chrominance > 0)

dct_dc_differential 1-12 vlclbf

if (dct_dc_size_chrominance > 8)

marker_bit 1 bslbf

}

}

}

} while (nextbits() != dc_marker)

dc_marker /* 110 1011 0000 0000 0001 */ 19 bslbf

for (i = 0; i < mb_in_video_packet; i++) {

if (!transparent_mb()) {

ac_pred_flag 1 bslbf

cbpy 1-6 vlclbf

}

}

for (i = 0; i < mb_in_video_packet; i++) {

 if (!transparent_mb()) {

ISO/IEC 14496-2 Committee Draft

60

for (j = 0; j < block_count; j++)

block(j)

 }

}

}

 ISO/IEC 14496-2 Committee Draft

61

data_partitioned_P_VOP() { No. of bits Mnemonic

do{

 if (video_object_layer_shape != “rectangular”){

bab_type 1-7 vlclbf

if ((bab_type == 1) || (bab_type == 6)) {

mvds_x 1-18 vlclbf

mvds_y 1-18 vlclbf

}

if (bab_type >= 4) {

if (!change_conv_rate_disable) conv_ratio 1-2 vlclbf

scan_type 1 bslbf

binary_arithmetic_code()

}

}

if (!transparent_mb()) {

 not_coded 1 bslbf

if (!not_coded) {

mcbpc 1-9 vlclbf

if (derived_mb_type < 3)

 motion_coding(“forward”, derived_mb_type)

}

}

} while (nextbits() != motion_marker)

motion_marker /* 1 1111 0000 0000 0001 */ 17 bslbf

for (i = 0; i < mb_in_video_packet; i++) {

if (!transparent_mb()) {

 if (!not_coded){

if (derived_mb_type >= 3)

ac_pred_flag 1 bslbf

cbpy 1-6 vlclbf

if (derived_mb_type == 1 || derived_mb_type == 4)

dquant 2 bslbf

if (derived_mb_type >= 3 && use_intra_dc_vlc) {

for (j = 0; j < 4; j++) {

if (!transparent_block(j)) {

dct_dc_size_luminance 2-11 vlclbf

if (dct_dc_size_luminance > 0)

dct_dc_differential 1-12 vlclbf

if (dct_dc_size_chrominance > 8)

marker_bit 1 bslbf

}

for (j = 0; j < 2; j++) {

dc_size_chrominance 2-11 vlclbf

ISO/IEC 14496-2 Committee Draft

62

if (dct_dc_size_chrominance > 0)

dct_dc_differential 1-12 vlclbf

if (dct_dc_size_chrominance > 8)

marker_bit 1 bslbf

}

} derived

 } !not_coded

}!trans

}for

for (i = 0; i < mb_in_video_packet; i++) {

if (!transparent_mb()) {

 if (! not_coded) {

for (j = 0; j < block_count; j++)

block(j)

}

}

}

}

motion_coding(mode, type_of_mb) { No. of bits Mnemonic

motion_vector(mode)

if (type_of_mb == 2) {

for (i = 0; i < 3; i++)

motion_vector(mode)

}

}

6.2.6.2 Sprite coding

decode_sprite_piece() { No. of bits Mnemonic

piece_quant 5 bslbf

piece_width 9 bslbf

piece_height 9 bslbf

marker_bit 1 bslbf

piece_xoffset 9 bslbf

 piece_yoffset 9 bslbf

 sprite_shape_texture()

}

 ISO/IEC 14496-2 Committee Draft

63

sprite_shape_texture() { No. of bits Mnemonic

 if (sprite_transmit_mode == “piece”) {

 for (i=0; i < piece_height; i++) {

 for (j=0; j < piece_width; j++) {

 if (!send_mb()) {

 macroblock()

 }

 }

 }

 }

 if (sprite_transmit_mode == “update”) {

 for (i=0; i < piece_height; i++) {

 for (j=0; j < piece_width; j++) {

 macroblock()

 }

 }

}

}

sprite_trajectory() { No. of bits Mnemonic

for (i=0; i < no_of_sprite_warping_points; i++) {

 warping_mv_code(du[i])

 warping_mv_code(dv[i])

 }

}

warping_mv_code(d) { No. of bits Mnemonic

 dmv_length 2-9 uimsbf

 dmv_code 0-11 uimsbf

}

brightness_change_factor() { No. of bits Mnemonic

 brightness_change_factor_size 1-4 uimsbf

 brightness_change_factor_code 5-10 uimsbf

}

ISO/IEC 14496-2 Committee Draft

64

6.2.7 Macroblock

macroblock() { No. of bits Mnemonic

if (VOP_coding_type != “B”) {

if (video_object_layer_shape != “rectangular”

&& !(sprite_enable && low_latency_sprite_enable

&& sprite_transmit_mode == “update”))

mb_binary_shape_coding()

if (video_object_layer_shape != “binary only”) {

if (!transparent_mb()) {

if (VOP_coding_type != “I” && !(sprite_enable

&& sprite_transmit_mode == “piece”))

not_coded 1 bslbf

if (!not_coded || VOP_coding_type == “I”) {

mcbpc 1-9 vlclbf

if ((!short_video_header &&

derived_mb_type == 3 ||

 derived_mb_type == 4))

ac_pred_flag 1 bslbf

if (derived_mb_type != “stuffing”)

cbpy 1-6 vlclbf

else

return()

if (derived_mb_type == 1 ||

 derived_mb_type == 4)

dquant 2 uimsbf

if (interlaced)

interlaced_information()

if (!(ref_select_code==‘11’ && scalability)

&& VOP_coding_type != “S”) {

if (derived_mb_type == 0 ||

 derived_mb_type == 1) {

motion_vector(“forward”))

if (field_prediction)

motion_vector(“forward”)

}

if (derived_mb_type == 2) {

for (j=0; j < 4; j++)

if (!transparent_block(j))

motion_vector(“forward”))

}

}

for (i = 0; i < block_count; i++)

block(i)

}

 ISO/IEC 14496-2 Committee Draft

65

}

}

}

else if (co_located_not_coded != 1 || (ref_select_code == ’11’ ||
enhancement_type == 1) && scalability)) {

if (video_object_layer_shape != “rectangular”)

mb_binary_shape_coding()

if (video_object_layer_shape != “binary only”) {

if (!transparent_mb()) {

modb 1-2 vlclbf

if (modb) {

if (modb > 0)

mb_type 1-4 vlclbf

if (modb == 2)

cbpb 6 uimsbf

if (ref_select_code != ‘00’ || !scalability) {

if (mb_type != “1” && cbpb!=0)

dquant 2 uimsbf

if (field_prediction)

interlaced_information()

if (mb_type == ‘01’ ||

 mb_type == ‘0001’) {

motion_vector(“forward”)

if (interlaced)

motion_vector(“forward”)

}

if (mb_type == ‘01’ || mb_type == ‘001’) {

motion_vector(“backward”)

if (field_prediction)

motion_vector(“backward”)

}

if (mb_type == “1”)

motion_vector(“direct”)

}

if (ref_select_code == ‘00’ && scalability &&

 cbpb !=0) {

dquant 2 uimsbf

if (mb_type == ‘01’ || mb_type == ‘1’)

motion_vector(“forward”)

}

for (i = 0; i < block_count; i++)

block(i)

}

}

ISO/IEC 14496-2 Committee Draft

66

}

}

 if(video_object_layer_shape==’grayscale’&& !transparent_mb())
{

 if(VOP_coding_type==”I” || (VOP_coding_type==”P” &&
!not_coded && mb_type==”I”)) {

 CODA_I 1 bslbf

 if(CODA_I==”coded”) {

 ac_pred_flag_alpha 1 bslbf

 CBPA 2—6 vlclbf

 for(i=0;i<alpha_block_count;i++)

 alpha_block(i)

 }

 } else { /* P or B macroblock */

 if(VOP_coding_type==”P” || co_located_not_coded!=1) {

 CODA_PB 1—2 vlclbf

 if(CODA_PB==”coded”) {

 CBPA 2—6 vlclbf

 for(i=0;i<alpha_block_count;i++)

 alpha_block(i)

 }

 }

 }

 }

}

 ISO/IEC 14496-2 Committee Draft

67

6.2.7.1 MB Binary Shape Coding

mb_binary_shape_coding() { No. of bits Mnemonic

 bab_type 1-7 vlclbf

 if ((VOP_coding_type == ‘P’) || (VOP_coding_type == ‘B’)) {

 if ((bab_type==1) || (bab_type == 6)) {

 mvds_x 1-18 vlclbf

 mvds_y 1-18 vlclbf

 }

 }

 if (bab_type >=4) {

 if (!change_conv_ratio_disable)

 conv_ratio 1-2 vlcbf

 scan_type 1 bslbf

 binary_arithmetic_code()

 }

 }

backward_shape () { No. of bits Mnemonic

for(i=0; i<backward_shape_height/16; i++)

for(j=0; j<backward_shape_width/16; j++) {

 bab_type 1-3 vlclbf

 if (bab_type >=4) {

 if (!change_conv_ratio_disable)

 conv_ratio 1-2 vlcbf

 scan_type 1 bslbf

 binary_arithmetic_code()

 }

}

 }

ISO/IEC 14496-2 Committee Draft

68

forward_shape () { No. of bits Mnemonic

for(i=0; i<forward_shape_height/16; i++)

for(j=0; j<forward_shape_width/16; j++) {

 bab_type 1-3 vlclbf

 if (bab_type >=4) {

 if (!change_conv_ratio_disable)

 conv_ratio 1-2 vlcbf

 scan_type 1 bslbf

 binary_arithmetic_code()

 }

}

 }

6.2.7.2 Motion vector

motion_vector (mode) { No. of bits Mnemonic

if (mode == „direct“) {

horizontal_mv_data 1-13 vlclbf

vertical_mv_data 1-13 vlclbf

}

else if (mode == „forward“) {

horizontal_mv_data 1-13 vlclbf

if ((VOP_fcode_forward != 1)&&(horizontal_mv_data != 0))

horizontal_mv_residual 1-6 uimsbf

vertical_mv_data 1-13 vlclbf

if ((VOP_fcode_forward != 1)&&(vertical_mv_data != 0))

vertical_mv_residual 1-6 uimsbf

}

else if (mode == „backward“) {

horizontal_mv_data 1-13 vlclbf

if ((VOP_fcode_backward != 1)&&(horizontal_mv_data !=
0))

horizontal_mv_residual 1-6 uimsbf

vertical_mv_data 1-13 vlclbf

if ((VOP_fcode_backward != 1)&&(vertical_mv_data != 0))

vertical_mv_residual 1-6 uimsbf

}

}

 ISO/IEC 14496-2 Committee Draft

69

6.2.7.3 Interlaced Information

interlaced_information () { No. of bits Mnemonic

if ((derived_mbtype == 3) || (derived_mbtype == 4) ||

 (cbp != 0))

dct_type 1 bslbf

if (((VOP_coding_type == “P”) &&

 ((derived_mbtype == 0) || (derived_mbtype == 1))) ||

 ((VOP_coding_type == “B”) && (mb_type != “1”))) {

field_prediction 1 bslbf

if (field_prediction) {

if (VOP_coding_type == “P” ||

 (VOP_coding_type == “B” &&

 mb_type != “001”)) {

forward_top_field_reference 1 bslbf

forward_bottom_field_reference 1 bslbf

}

if ((VOP_coding_type == “B”) &&

 (mb_type != “0001”)) {

backward_top_field_reference 1 bslbf

backward_bottom_field_reference 1 bslbf

}

}

}

}

6.2.8 Block

The detailed syntax for the terms “First DCT coefficient”, “Subsequent DCT coefficient” and “End of
Block” is fully described in the section 7.

ISO/IEC 14496-2 Committee Draft

70

block(i) { No. of bits Mnemonic

if (pattern_code[i]) {

 if((derived_mb_type==3 || derived_mb_type==4)

&&use_intra_dc_vlc

 && ! data_partitioning

&& short_video_header==0) {

if (i<4) {

dct_dc_size_luminance 2-11 vlclbf

if(dct_dc_size_luminance != 0)

dct_dc_differential 1-11 uimsbf

if (dct_dc_size_luminance > 8)

marker_bit 1 bslbf

} else {

dct_dc_size_chrominance 2-12 vlclbf

if(dct_dc_size_chrominance !=0)

dct_dc_differential 1-11 uimsbf

if (dct_dc_size_luminance > 8)

marker_bit 1 bslbf

}

} else {

First DCT coefficient 2-24 vlclbf

}

while (nextbits() != lastcoef)

Subsequent DCT coefficients 3-24 vlclbf

}

}

6.2.8.1 Alpha Block

The syntax for DCT coefficient decoding is the same as for Block in Section 6.2.8.

 ISO/IEC 14496-2 Committee Draft

71

alpha_block(i) {

 if(pattern_coded[i]) {

 if(VOP_coding_type==”I” || (VOP_coding_type==”P” &&
!not_coded && mb_type==”I”)) {

 dct_dc_size_alpha 2-12 vlclbf

 if(dct_dc_size_alpha != 0)

 dct_dc_differential 1-11 uimsbf

 } else {

 First DCT coefficient 2-24

 }

 while(nextbits() != lastcoef)

 Subsequent DCT coefficients 3-24 vlclbf

 }

}

6.2.9 Still Texture Object

StillTextureObject() { No. of bits Mnemonic

still_texture_object_start_code 32 bslbf

texture_object_id 16 uimsbf

 marker_bit 1 bslbf

 wavelet_filter_type 1 uimsbf

 wavelet_download 1 uimsbf

 if (wavelet_download == “1”){

download_wavelet_filters()

 }

wavelet_stuffing quantization_type 2 uimsbf

scan_direction 1 bslbf

start_code_enable 1 bslbf

wavelet_stuffing 3 uimsbf

texture_object_layer_shape 2 uimsbf

 wavelet_stuffing 3 uimsbf

if(texture_object_layer_shape == “00”){

texture_object_layer_width 15 uimsbf

 marker_bit 1 bslbf

texture_object_layer_height 15 uimsbf

 marker_bit 1 bslbf

}

 else {

 horizontal_ref 15 imsbf

 marker_bit 1 bslbf

 vertical_ref 15 imsbf

 marker_bit 1 bslbf

 object_width 15 uimsbf

ISO/IEC 14496-2 Committee Draft

72

 marker_bit 1 bslbf

 object_height 15 uimsbf

 marker_bit 1 bslbf

 shape_object_decoding ()

 }

for (color = “y”, “u”, “v”){

wavelet_dc_decode()

}

if(quantization_type == 1){

TextureLayerSQ ()

}

 else if (quantization_type == 2){

spatial_scalability_levels 5 uimsbf

if (start_code_enable == 1) {

do {

TextureSpatialLayerMQ ()

} while (nextbits() ==
texture_spatial_layer_start_code)

 } else {

for (i =0; i<spatial_scalability_levels; i++)

TextureSpatialLayerMQNSC ()

 }

}

 else if (quantization_type == 3){

TextureSNRLayerMQNSC ()

for (color = “y”, “u”, “v”)

 do{

quant_byte 8 uimsbf

} while(quant_byte >>7)

max_bitplanes 5 uimsbf

if (start_code_enable == 1) {

if (scan_direction == 0) {

 do {

 TextureSNRLayerBQ ()

 } while (nextbits() ==
texture_snr_layer_start_code)

} else {

do {

 TextureSpatialLayerBQ ()

 } while (nextbits() ==
texture_spatial_layer_start_code)

 }

 } else {

if (scan_direction == 0) {

 ISO/IEC 14496-2 Committee Draft

73

for (i =0; i<max_bitplane; i++)

TextureSNRLayerBQNSC ()

} else {

for (i =0; i<wavelet_decomposition_levels; i++)

TextureSpatialLayerBQNSC ()

 }

}

}

6.2.9.1 TextureLayerSQ

TextureLayerSQ() { No. of bits Mnemonic

For (color = “y”, “u”, “v”){

 do{

quant_byte 8 uimsbf

} while(quant_byte >>7)

do{

root_max_alphabet_byte 8 uimsbf

} while (root_max_alphabet_byte >>7)

marker_bit 1 bslbf

do{

valz_max_alphabet_byte 8 uimsbf

} while (valz_max_alphabet_byte >>7)

do{

valnz_max_alphabet_byte 8 uimsbf

} while (valnz_max_alphabet_byte >>7)

}

if (scan_direction == 0) {

for (i = 0; i<tree_blocks; i++)

for (color = “y”, “u”, “v”)

arith_decode_highbands()

} else {

if (start_code_enable) {

do {

TextureSpatialLayerSQ()

} while (nextbits() == texture_spatial_layer_start_code)

} else {

for (i = 0; i< wavelet_decomposition_levels; i++)

TextureSpatialLayerSQNSC()

}

}

}

ISO/IEC 14496-2 Committee Draft

74

6.2.9.2 TextureSpatialLayerSQ

TextureSpatialLayerSQ() { No. of bits Mnemonic

texture_spatial_layer_start_code 32 bslbf

texture_spatial_layer_id 5 uimsbf

TextureSpatialLayerSQNSC()

next_start_code ()

}

6.2.9.3 TextureSpatialLayerSQNSC

TextureSpatialLayerSQNSC() { No. of bits Mnemonic

for (color = “y”, “u”, “v”) {

if (texture_spatial_layer_id != 0 || color != “u”, “v”)

arith_decode_highbands()

}

}

6.2.9.4 TextureSpatialLayerMQ

TextureSpatialLayerMQ() { No. of bits Mnemonic

texture_spatial_layer_start_code 32 bslbf

texture_spatial_layer_id 5 uimsbf

snr_scalability_levels 5 uimsbf

do {

TextureSNRLayerMQ()

} while (nextbits() == texture_snr_layer_start_code)

 next_start_code ()

}

6.2.9.5 TextureSpatialLayerMQNSC

TextureSpatialLayerMQNSC() { No. of bits Mnemonic

 snr_scalability_levels 5 uimsbf

for (i =0; i<snr_scalability_levels; i++)

TextureSNRLayerMQNSC ()

}

 ISO/IEC 14496-2 Committee Draft

75

6.2.9.6 TextureSNRLayerMQ

TextureSNRLayerMQ(){

texture_snr_layer_start_code 32 bslbf

texture_snr_layer_id 5 uimsbf

TextureSNRLayerMQNSC()

 next_start_code ()

}

6.2.9.7 TextureSNRLayerMQNSC

TextureSNRLayerMQNSC(){

For (color = “y”, “u”, “v”){

 do{

quant_byte 8 uimsbf

} while(quant_byte >>7)

do{

root_max_alphabet_byte 8 uimsbf

} while (root_max_alphabet_byte >>7)

marker_bit 1 bslbf

do{

valz_max_alphabet_byte 8 uimsbf

} while (valz_max_alphabet_byte >>7)

do{

valnz_max_alphabet_byte 8 uimsbf

} while (valnz_max_alphabet_byte >>7)

}

if (scan_direction == 0) {

for (i = 0; i<tree_blocks; i++)

for (color = “y”, “u”, “v”)

arith_decode_highbands()

} else {

for (i = 0; i< spatial_layers; i++) {

for (color = “y”, “u”, “v”) {

if (wavelet_decomposition_layer_id != 0 || color !=
“u”, “v”)

arith_decode_highbands()

}

}

}

}

ISO/IEC 14496-2 Committee Draft

76

6.2.9.8 TextureSpatialLayerBQ

TextureSpatialLayerBQ() { No. of bits Mnemonic

texture_spatial_layer_start_code 32 bslbf

texture_spatial_layer_id 5 uimsbf

for (i=0; i<max_bitplanes; i++)

TextureBitPlaneBQNSC()

next_start_code ()

}

6.2.9.9 TextureSpatialLayerBQNSC

TextureSpatialLayerBQNSC() { No. of bits Mnemonic

for (i=0; i<max_bitplanes; i++)

TextureBitPlaneBQNSC()

}

6.2.9.10 TextureBitPlaneBQNSC

TextureBitPlaneBQNSC() { No. of bits Mnemonic

for (color = “y”, “u”, “v”)

if (wavelet_decomposition_layer_id != 0 || color != “u”, “v”)
{

snr_all_zero 1 bslbf

if(snr_all_zero == 0)

arith_decode_highbands_bilevel()

}

}

}

6.2.9.11 TextureSNRLayerBQ

TextureSNRLayerBQ() { No. of bits Mnemonic

texture_snr_layer_start_code 32 bslbf

texture_snr_layer_id 5 uimsbf

TextureSNRLayerBQNSC()

next_start_code ()

}

 ISO/IEC 14496-2 Committee Draft

77

6.2.9.12 TextureSNRLayerBQNSC

TextureSNRLayerBQNSC() { No. of bits Mnemonic

for (color = “y”, “u”, “v”)

snr_all_zero[color] 1 bslbf

for (i=0; i<wavelet_decomposition_levels; i++) {

for (color = “y”, “u”, “v”) {

if(snr_all_zero[color] == 0)

arith_decode_highbands_bilevel()

}

}

}

ISO/IEC 14496-2 Committee Draft

78

6.2.9.13 DownloadWaveletFilters

download_wavelet_filters(){ No. of bits Mnemonic

lowpass_filter_length 4 uimsbf

 highpass_filter_length 4 uimsbf

 do{

 if (wavelet_filter_type == 0) {

filter_tap_integer 16 imsbf

marker_bit 1 bslbf

} else {

filter_tap_float_high 16 uimsbf

marker_bit 1 bslbf

filter_tap_float_low 16 uimsbf

marker_bit 1 bslbf

}

 } while (lowpass_filter_length--)

 do{

 if (wavelet_filter_type == 0){

filter_tap_integer 16 imsbf

marker_bit 1 bslbf

} else {

filter_tap_float_high 16 uimsbf

marker_bit 1 bslbf

filter_tap_float_low 16 uimsbf

marker_bit 1 bslbf

}

} while (highpass_filter_length--)

if (wavelet_filter_type == 0) {

integer_scale 16 uimsbf

marker_bit

}

}

 ISO/IEC 14496-2 Committee Draft

79

6.2.9.14 Wavelet dc decode

wavelet_dc_decode() { No. of bits Mnemonic

mean 8 uimsbf

do{

quant_dc_byte 8 uimsbf

 } while(quant_dc_byte >>7)

 do{

 band_offset_byte 8 uimsbf

 } while (band_offset_byte >>7)

 do{

 band_max_byte 8 uimsbf

 } while (band_max_byte >>7)

 arith_decode_dc()

}

6.2.9.15 Wavelet higher bands decode

wavelet_ higher_bands_decode() { No. of bits Mnemonic

 do{

 root_max_alphabet_byte 8 uimsbf

 } while (root_max_alphabet_byte >>7)

marker_bit 1 bslbf

 do{

 valz_max_alphabet_byte 8 uimsbf

 } while (valz_max_alphabet_byte >>7)

 do{

 valnz_max_alphabet_byte 8 uimsbf

 } while (valnz_max_alphabet_byte >>7)

 arith_decode_highbands()

}

wavelet_ higher_bands_decode_bilevel() { No. of bits Mnemonic

 arith_decode_highbands_bilevel()

}

ISO/IEC 14496-2 Committee Draft

80

6.2.9.16 Shape Object Decoding

shape_object_decoding() { No. of bits Mnemonic

change_conv_ratio_disable 1 bslbf

STO_constant_alpha 1 bslbf

if (STO_constant_alpha)

STO_constant_alpha_value 8 bslbf

for (i=0; i<((object_width*object_height)/(16*16)); i++) {

bab_type 1-2 vlclbf

if (bab_type ==4) {

if (!change_conv_ratio_disable)

conv_ratio 1-2 vlcbf

scan_type 1 bslbf

binary_arithmetic_decode()

 }

}

 }

6.2.10 Mesh Object

MeshObject() { No. of bits Mnemonic

mesh_object_start_code 32 bslbf

do{

MeshObjectPlane()

} while (nextbits() == mesh_object_plane_start_code ||

nextbits() != ‘0000 0000 0000 0000 0000 0001’)

}

6.2.10.1 Mesh Object Plane

MeshObjectPlane() { No. of bits Mnemonic

MeshObjectPlaneHeader()

MeshObjectPlaneData()

}

MeshObjectPlaneHeader() { No. of bits Mnemonic

if (nextbits() == ‘0000 0000 0000 0000 0000 0001’)

mesh_object_plane_start_code 32 bslbf

is_intra 1 bslbf

mesh_mask 1 bslbf

Temporal_header()

}

 ISO/IEC 14496-2 Committee Draft

81

MeshObjectPlaneData() { No. of bits Mnemonic

if (mesh_mask == 1) {

if (is_intra == 1)

mesh_geometry()

else

mesh_motion()

}

next_start_code()

}

6.2.10.2 Mesh geometry

mesh_geometry() { No. of bits Mnemonic

mesh_type _code 2 bslbf

if (mesh_type_code == ‘00’) {

nr_of_mesh_nodes_hor 10 uimsbf

nr_of_mesh_nodes_vert 10 uimsbf

marker_bit 1 uimsbf

mesh_rect_size_hor 8 uimsbf

mesh_rect_size_vert 8 uimsbf

triangle_split_code 2 bslbf

}

else if (mesh_type_code == ‘01’) {

nr_of_mesh_nodes 16 uimsbf

marker_bit 1 uimsbf

nr_of_boundary_nodes 10 uimsbf

marker_bit 1 uimsbf

node0_x 10 uimsbf

node0_y 10 uimsbf

marker_bit 1 uimsbf

 for (n=1; n < nr_of_mesh_nodes; n++) {

delta_x_len_vlc 2-9 vlcbf

if (delta_x_len_vlc)

delta_x 1-11 vlcbf

delta_y_len_vlc 2-9 vlcbf

if (delta_y_len_vlc)

delta_y 1-11 vlcbf

}

}

}

ISO/IEC 14496-2 Committee Draft

82

6.2.10.3 Mesh motion

mesh_motion() { No. of bits Mnemonic

motion_range_code 3 bslbf

for (n=0; n <nr_of_mesh_nodes; n++) {

node_motion_vector_flag 1 bslbf

if (node_motion_vector_flag == ‘0’) {

delta_mv_x_vlc 1-13 vlcbf

if ((motion_range_code != 1) && (delta_mv_x_vlc !=
0))

delta_mv_x_res 1-6 vlcbf

delta_mv_y_vlc 1-13 vlcbf

if ((motion_range_code != 1) && (delta_mv_y_vlc != 0))

delta_mv_y_res 1-6 vlcbf

}

}

}

6.2.11 Face Object

fba_object() { No. of bits Mnemoni
c

 face_object_start_code 32 bslbf

 do {

fba_object_plane()

} while(!(

(nextbits_bytealigned() == ‘000 0000 0000 0000 0000 0000’) &&

(nextbits_bytealigned() != face_object_plane_start_code)))

}

6.2.11.1 Face Object Plane

fba_object_plane() { No. of bits Mnemonic

 fba_object_plane_header()

fba_object_plane_data()

}

fba_object_plane_header() { No. of bits Mnemonic

 if (nextbits_bytealigned() == ‘000 0000 0000 0000 0000 0000’) {

 ISO/IEC 14496-2 Committee Draft

83

next_start_code()

fba_object_plane_start_code 32 bslbf

}

is_intra 1 bslbf

fba_object_mask 2 bslbf

temporal_header()

}

fba_object_plane_data() {

if(fba_object_mask &’01’) {

if(is_intra) {

fap_quant 5 uimsbf

for (group_number = 1; group_number <= 10;
group_number++) {

marker_bit 1 uimsbf

fap_mask_type 2 bslbf

if(fap_mask_type == ‘01’|| fap_mask_type ==
‘10’)

fap_group_mask[group_number] 2-16 vlcbf

}

fba_object_coding_type 2 bslbf

if(fba_object_coding_type == 0) {

is_i_new_max 1 bslbf

is_i_new_min 1 bslbf

is_p_new_max 1 bslbf

is_p_new_min 1 bslbf

decode_new_minmax()

decode_ifap()

}

if(fba_object_coding_type == 1)

decode_i_segment()

}

else {

if(fba_object_coding_type == 0)

decode_pfap()

if(fba_object_coding_type == 1)

decode_p_segment()

}

}

}

ISO/IEC 14496-2 Committee Draft

84

temporal_header() {

if (is_intra) {

is_frame_rate 1 bslbf

if(is_frame_rate)

decode_frame_rate()

is_time_code 1 bslbf

if (is_time_code)

time_code 18 bsIbf

}

skip_frames 1 bslbf

if(skip_frames)

decode_skip_frames()

}

6.2.11.2 Decode frame rate and skip frames

decode_frame_rate(){ No. of bits Mnemonic

frame_rate 8 uimsbf

seconds 4 uimsbf

frequency_offset 1 uimsbf

}

decode_skip_frames(){ No. of bits Mnemonic

do{

 number_of_frames_to_skip 4 uimsbf

 } while (number_of_frames_to_skip = “1111”)

}

 ISO/IEC 14496-2 Committee Draft

85

6.2.11.3 Decode new minmax

 decode_new_minmax() { No. of bits Mnemonic

 if (is_i_new_max) {

 for (group_number = 2, j=0, group_number <= 10,
group_number++)

 for (i=0; i < NFAP[group_number]; i++, j++) {

 if (!(i & 0x3))

 marker_bit 1 uimsbf

 if (fap_group_mask[group_number] & (1 <<i))

 i_new_max[j] 5 uimsbf

 }

 if (is_i_new_min) {

 for (group_number = 2, j=0, group_number <= 10,
group_number++)

 for (i=0; i < NFAP[group_number]; i++, j++) {

 if (!(i & 0x3))

 marker_bit 1 uimsbf

 if (fap_group_mask[group_number] & (1 <<i))

 i_new_min[j] 5 uimsbf

 }

 if (is_p_new_max) {

 for (group_number = 2, j=0, group_number <= 10,
group_number++)

 for (i=0; i < NFAP[group_number]; i++, j++) {

 if (!(i & 0x3))

 marker_bit 1 uimsbf

 if (fap_group_mask[group_number] & (1 <<i))

 p_new_max[j] 5 uimsbf

 }

 if (is_p_new_min) {

 for (group_number = 2, j=0, group_number <= 10,
group_number++)

 for (i=0; i < NFAP[group_number]; i++, j++) {

 if (!(i & 0x3))

 marker_bit 1 uimsbf

 if (fap_group_mask[group_number] & (1 <<i))

 p_new_min[j] 5 uimsbf

 }

 }

 }

ISO/IEC 14496-2 Committee Draft

86

6.2.11.4 Decode ifap

 decode_ifap(){ No. of bits Mnemonic

 for (group_number = 1, j=0; group_number <= 10; group_number++)
{

 if (group_number == 1) {

 if(fap_group_mask[1] & 0x1)

 decode_viseme()

 if(fap_group_mask[1] & 0x2)

 decode_expression()

 } else {

 for (i= 0; i<NFAP[group_number]; i++, j++) {

 if(fap_group_mask[group_number] & (1 << i)) {

 aa_decode(ifap_Q[j],ifap_cum_freq[j])

 }

 }

 }

 }

 }

6.2.11.5 Decode pfap

 decode_pfap(){ No. of bits Mnemonic

 for (group_number = 1, j=0; group_number <= 10;
group_number++) {

if (group_number == 1) {

if(fap_group_mask[1] & 0x1)

 decode_viseme()

if(fap_group_mask[1] & 0x2)

 decode_expression()

} else {

for (I= 0; i<NFAP[group_number]; i++, j++) {

 if(fap_group_mask[group_number] & (1 << i)) {

aa_decode(pfap_diff[j], pfap_cum_freq[j])

 }

}

}

}

 }

 ISO/IEC 14496-2 Committee Draft

87

6.2.11.6 Decode viseme and expression

 decode_viseme() { No. of bits Mnemonic

 aa_decode(viseme_select1Q, viseme_select1_cum_freq) vlclbf

 aa_decode(viseme_select2Q, viseme_select2_cum_freq) vlclbf

 aa_decode(viseme_blendQ, viseme_blend_cum_freq) vlclbf

 viseme_def 1 bslbf

 }

 decode_expression() { No. of bits Mnemonic

 aa_decode(expression_select1Q, expression_select1_cum_freq) vlclbf

 aa_decode(expression_intensity1Q,

 expression_intensity1_cum_freq)

 vlclbf

 aa_decode(expression_select2Q, expression_select2_cum_freq) vlclbf

 aa_decode(expression_intensity2Q,

 expression_intensity2_cum_freq)

 vlclbf

 aa_decode(expression_blendQ, expression_blend_cum_freq) vlclbf

 init_face 1 bslbf

 expression_def 1 bslbf

 }

ISO/IEC 14496-2 Committee Draft

88

6.2.11.7 Face Object Plane Group

 face_object_plane_group() { No. of bits Mnemonic

 face_object_plane_start_code 32 bslbf

 is_intra 1 bslbf

 if (is_intra) {

 face_paramset_mask 2 bslbf

 is_frame_rate 1 bslbf

 if(is_frame_rate)

 decode_frame_rate()

 is_time_code 1 bslbf

 if(is_time_code)

 time_code 18

 skip_frames 1 bslbf

 if(skip_frames)

 decode_skip_frames()

 if(face_paramset_mask ==’01’) {

 fap_quant_index 5 uimsbf

 for (group_number = 1 to 10) {

 marker_bit 1 uimsbf

 fap_mask_type 2 bslbf

 if(fap_mask_type == ‘01’|| fap_mask_type == ‘10’)

 fap_group_mask[group_number] 2-16 vlcbf

 }

 decode_i_segment()

 } else {

 face_object_group_prediction()

 }

 next_start_code()

 }

6.2.11.8 Face Object Group Prediction

 face_object_group_prediction() { No. of bits Mnemonic

 skip_frames 1 bslbf

 if(skip_frames)

 decode_skip_frames()

 if(face_paramset_mask ==’01’) {

 decode_p_segment()

 }

 }

 ISO/IEC 14496-2 Committee Draft

89

6.2.11.9 Decode i_segment

 decode_i_segment(){ No. of bits Mnemonic

 for (group_number= 1, j=0; group_number<= 10; group_number++) {

 if (group_number == 1) {

 if(fap_group_mask[1] & 0x1)

 decode_i_viseme_segment()

 if(fap_group_mask[1] & 0x2)

 decode_i_expression_segment()

 } else {

 for(i=0; i<NFAP[group_number]; i++, j++) {

 if(fap_group_mask[group_number] & (1 << i)) {

 decode_i_dc(dc_Q[j])

 decode_ac(ac_Q[j])

 }

 }

 }

 }

 }

6.2.11.10 Decode p_segment

 decode_p_segment(){ No. of bits Mnemonic

 for (group_number = 1, j=0; group_number <= 10; group_number++)
{

 if (group_number == 1) {

 if(fap_group_mask[1] & 0x1)

 decode_p_viseme_segment()

 if(fap_group_mask[1] & 0x2)

 decode_p_expression_segment()

 } else {

 for (i=0; i<NFAP[group_number]; i++, j++) {

 If(fap_group_mask[group_number] & (1 << i)) {

 decode_p_dc(dc_Q[j])

 decode_ac(ac_Q[j])

 }

 }

 }

 }

 }

ISO/IEC 14496-2 Committee Draft

90

6.2.11.11 Decode viseme and expression

 decode_i_viseme_segment(){ No. of bits Mnemonic

 viseme_segment_select1Q[0] 4 uimsbf

 viseme_segment_select2Q[0] 4 uimsbf

 viseme_segment_blendQ[0] 6 uimsbf

 viseme_segment_def[0] 1 bslbf

 for (k=1; k<16, k++) {

 viseme_segment_select1Q_diff[k] vlclbf

 viseme_segment_select2Q_diff[k] vlclbf

 viseme_segment_blendQ_diff[k] vlclbf

 viseme_segment_def[k] 1 bslbf

 }

 }

 decode_p _viseme_segment(){ No. of bits Mnemonic

 for (k=0; k<16, k++) {

 viseme_segment_select1Q_diff[k] vlclbf

 viseme_segment_select2Q_diff[k] vlclbf

 viseme_segment_blendQ_diff[k] vlclbf

 viseme_segment_def[k] 1 bslbf

 }

 }

 decode_i_expression_segment(){ No. of bits Mnemonic

 expression_segment_select1Q[0] 4 uimsbf

 expression_segment_select2Q[0] 4 uimsbf

 expression_segment_intensity1Q[0] 6 uimsbf

 expression_segment_intensity2Q[0] 6 uimsbf

 expression_segment_init_face[0] 1 bslbf

 expression_segment_def[0] 1 bslbf

 for (k=1; k<16, k++) {

 expression_segment_select1Q_diff[k] vlclbf

 expression_segment_select2Q_diff[k] vlclbf

 expression_segment_intensity1Q_diff[k] vlclbf

 expression_segment_intensity2Q_diff[k] vlclbf

 expression_segment_init_face[k] 1 bslbf

 expression_segment_def[k] 1 bslbf

 }

 }

 ISO/IEC 14496-2 Committee Draft

91

 decode_p _expression_segment(){ No. of bits Mnemonic

 for (k=0; k<16, k++) {

 expression_segment_select1Q_diff[k] vlclbf

 expression_segment_select2Q_diff[k] vlclbf

 expression_segment_intensity1Q_diff[k] vlclbf

 expression_segment_intensity2Q_diff[k] vlclbf

 expression_segment_init_face[k] 1 bslbf

 expression_segment_def[k] 1 bslbf

 }

 }

 decode_i_dc(dc_Q) { No. of bits Mnemonic

 dc_Q 16 simsbf

 if(dc_Q == -256*128)

 dc_Q 31 simsbf

 }

 decode_p_dc(dc_Q_diff) { No. of bits Mnemonic

 dc_Q_diff vlclbf

 dc_Q_diff = dc_Q_diff- 256

 if(dc_Q_diff == -256)

 dc_Q_diff 16 simsbf

 if(dc_Q == 0-256*128)

 dc_Q_diff 32 simsbf

 }

ISO/IEC 14496-2 Committee Draft

92

 decode_ac(ac_Q[i]) { No. of bits Mnemonic

this = 0

 next = 0

 while(next < 15) {

 count_of_runs vlclbf

 if (count_of_runs == 15)

 next = 16

 else {

 next = this+1+count_of_runs

 for (n=this+1; n<next; n++)

 ac_Q[i][n] = 0

 ac_Q[i][next] vlclbf

 if(ac_Q[i][next] == 256)

 decode_i_dc(ac_Q[i][next])

 else

 ac_Q[i][next] = ac_Q[i][next]-256

 this = next

 }

 }

 }

 ISO/IEC 14496-2 Committee Draft

93

6.3 Visual bitstream semantics

6.3.1 Semantic rules for higher syntactic structures

This clause details the rules that govern the way in which the higher level syntactic elements may be
combined together to produce a legal bitstream. Subsequent clauses detail the semantic meaning of
all fields in the video bitstream.

6.3.2 Visual Object Sequence and Visual Object

visual_object_sequence_start_code -- The visual_session_start_code is the bit string ‘000001B0’ in
hexadecimal. It initiates a visual session.

visual_object_sequence_end_code -- The visual_session_end_code is the bit string ‘000001B1’ in
hexadecimal. It terminates a visual session.

visual_object_start_code -- The visual_object_start_code is the bit string ‘000001B5’ in
hexadecimal. It initiates a visual object.

profile_and_level_indication – This is an 8-bit integer used to signal the profile and level
identification. The meaning of the bits is given in Annex G.

visual_object_type -- The visual_object_type is a 4-bit code given in Table 6-4 which identifies the
type of the visual object.

Table 6-4 Meaning of visual object type

code visual object type

0000 reserved

0001 video ID

0010 still texture ID

0011 mesh ID

0100 face ID

0101 reserved

: :

: :

1111 reserved

is_visual_object_identifier – This is a 1-bit code which when set to ‘1’ indicates that version
identification and priority is specified for the visual object. When set to ‘0’, no version identification
or priority needs to be specified.

visual_object_verid – This is a 4-bit code which identifies the version number of the visual object. It
takes values between 1 and 15, a zero value is disallowed.

visual_object_priority – This is a 3-bit code which specifies the priority of the visual object. It takes
values between 1 and 7, with 1 representing the highest priority and 7, the lowest priority. The value
of zero is reserved.

ISO/IEC 14496-2 Committee Draft

94

video_signal_type - A flag which if set to ‘1’ indicates the presence of video_signal_type
information.

video_format -- This is a three bit integer indicating the representation of the pictures before being
coded in accordance with this specification. Its meaning is defined in Table 6-6. If the
video_signal_type() is not present in the bitstream then the video format may be assumed to be
“Unspecified video format”.

Table 6-6. Meaning of video_format

video_format Meaning

000 Component

001 PAL

010 NTSC

011 SECAM

100 MAC

101 Unspecified video format

110 Reserved

111 Reserved

colour_description -- A flag which if set to ‘1’ indicates the presence of colour_primaries,
transfer_characteristics and matrix_coefficients in the bitstream.

colour_primaries -- This 8-bit integer describes the chromaticity coordinates of the source primaries,
and is defined in Table 6-7.

Table 6-7. Colour Primaries

Value Primaries

0 (forbidden)

1 Recommendation ITU-R BT.709

primary x y

green 0,300 0,600

blue 0,150 0,060

red 0,640 0,330

2 Unspecified Video

Image characteristics are unknown.

3 Reserved

4 Recommendation ITU-R BT.470-2 System M

primary x y

green 0,21 0,71

blue 0,14 0,08

red 0,67 0,33

5 Recommendation ITU-R BT.470-2 System B, G

primary x y

green 0,29 0,60

blue 0,15 0,06

red 0,64 0,33

 ISO/IEC 14496-2 Committee Draft

95

6 SMPTE 170M

primary x y

green 0,310 0,595

blue 0,155 0,070

red 0,630 0,340

7 SMPTE 240M (1987)

primary x y

green 0,310 0,595

blue 0,155 0,070

red 0,630 0,340

8 Generic film (colour filters using Illuminant C)

primary x y

green 0,243 0,692 (Wratten 58)

blue 0,145 0,049 (Wratten 47)

red 0,681 0,319 (Wratten 25)

9-255 Reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the
chromaticity is assumed to be that corresponding to colour_primaries having the value 5.

ISO/IEC 14496-2 Committee Draft

96

transfer_characteristics -- This 8-bit integer describes the opto-electronic transfer characteristic of
the source picture, and is defined in Table 6-8.

Table 6-8. Transfer Characteristics

Value Transfer Characteristic

0 (forbidden)

1 Recommendation ITU-R BT.709

V = 1,099 Lc
0,45 - 0,099

for 1≥ Lc ≥ 0,018

V = 4,500 Lc

for 0,018> Lc ≥ 0

2 Unspecified Video

Image characteristics are unknown.

3 reserved

4 Recommendation ITU-R BT.470-2 System M

Assumed display gamma 2,2

5 Recommendation ITU-R BT.470-2 System B, G

Assumed display gamma 2,8

6 SMPTE 170M

V = 1,099 Lc
0,45 - 0,099

for 1≥ Lc ≥ 0,018

V = 4,500 Lc

for 0,018> Lc ≥ 0

7 SMPTE 240M (1987)

V = 1,1115 Lc
0,45 - 0,1115

for Lc≥ 0,0228

V = 4,0 Lc

for 0,0228> Lc

8 Linear transfer characteristics

i.e. V = Lc

9 Logarithmic transfer characteristic (100:1 range)

V = 1.0-Log10(Lc)/2

 for 1= Lc = 0.01

V= 0.0

 for 0.01> Lc

10 Logarithmic transfer characteristic (316.22777:1
range)

V = 1.0-Log10(Lc)/2.5

 for 1= Lc = 0.0031622777

V= 0.0

 for 0.0031622777> Lc

 ISO/IEC 14496-2 Committee Draft

97

11-255 reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the
transfer characteristics are assumed to be those corresponding to transfer_characteristics having the
value 5.

ISO/IEC 14496-2 Committee Draft

98

matrix_coefficients -- This 8-bit integer describes the matrix coefficients used in deriving luminance
and chrominance signals from the green, blue, and red primaries, and is defined in Table 6-9.

video_range -- This one-bit flag indicates the black level and range of the luminance and
chrominance signals.

In this table:

E’Y is analogue with values between 0 and 1

E’PB and E’PR are analogue between the values -0,5 and 0,5

E’R, E’G and E’B are analogue with values between 0 and 1

White is defined as E’y=1, E’PB=0, E’PR=0; E’R =E’G =E’B=1.

Y, Cb and Cr are related to E’Y, E’PB and E’PR by the following formulae:

if video_range=0:

Y = (219 * 2n-8 * E’Y) + 2n-4.

Cb = (224 * 2n-8 * E’PB) + 2n-1

Cr = (224 * 2n-8 * E’PR) + 2n-1

if video_range=1:

Y = (2n * E’Y)

Cb = (2n * E’PB) + 2n-1

Cr = (2n * E’PR) + 2n-1

for n bit video.

For example, for 8 bit video,

video_range=0 gives a range of Y from 16 to 235, Cb and Cr from -112 to +112;

video_range=1 gives a range of Y from 0 to 255, Cb and Cr from -128 to +127.

Table 6-9. Matrix Coefficients

Value Matrix

0 (forbidden)

1 Recommendation ITU-R BT.709

E¢Y = 0,7154 E¢G + 0,0721 E¢B + 0,2125 E¢R

E¢PB = -0,386 E¢G + 0,500 E¢B -0,115 E¢R

E¢PR = -0,454 E¢G - 0,046 E¢B + 0,500 E¢R

2 Unspecified Video

Image characteristics are unknown.

3 reserved

4 FCC

E¢Y = 0,59 E¢G + 0,11 E¢B + 0,30 E¢R

E¢PB = -0,331 E¢G + 0,500 E¢B -0,169 E¢R

E¢PR = -0,421 E¢G - 0,079 E¢B + 0,500 E¢R

 ISO/IEC 14496-2 Committee Draft

99

5 Recommendation ITU-R BT.470-2 System B, G

E¢Y = 0,587 E¢G + 0,114 E¢B + 0,299 E¢R

E¢PB = -0,331 E¢G + 0,500 E¢B -0,169 E¢R

E¢PR = -0,419 E¢G - 0,081 E¢B + 0,500 E¢R

6 SMPTE 170M

E¢Y = 0,587 E¢G + 0,114 E¢B + 0,299 E¢R

E¢PB = -0,331 E¢G + 0,500 E¢B -0,169 E¢R

E¢PR = -0,419 E¢G - 0,081 E¢B + 0,500 E¢R

7 SMPTE 240M (1987)

E¢Y = 0,701 E¢G + 0,087 E¢B + 0,212 E¢R

E¢PB = -0,384 E¢G + 0,500 E¢B -0,116 E¢R

E¢PR = -0,445 E¢G - 0,055 E¢B + 0,500 E¢R

8-255 reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the
matrix coefficients are assumed to be those corresponding to matrix_coefficients having the value 5.

In the case that video_signal_type() is not present in the bitstream, video_range is assumed to have
the value 0 (a range of Y from 16 to 235 for 8-bit video).

6.3.2.1 User data

user_data_start_code -- The user_data_start_code is the bit string ‘000001B2’ in hexadecimal. It
identifies the beginning of user data. The user data continues until receipt of another start code.

user_data -- This is an 8 bit integer, an arbitrary number of which may follow one another. User data
is defined by users for their specific applications. In the series of consecutive user_data bytes there
shall not be a string of 23 or more consecutive zero bits.

6.3.3 Video Object

video_object_start_code -- The video_object_start_code is a string of 32 bits. The first 27 bits are
‘0000 0000 0000 0000 0000 0001 000‘ in binary and the last 5-bits represent one of the values in the
range of ‘00000’ to ‘11111’ in binary. The video_object_start_code marks a new video object.

video_object_id -- This is given by the last 5-bits of the video_object_start_code. The video_object_id
uniquely identifies a video object.

6.3.4 Video Object Layer

video_object_layer_start_code -- The video_object_layer_start_code is a string of 32 bits. The first
28 bits are ‘0000 0000 0000 0000 0000 0001 0010‘ in binary and the last 4-bits represent one of the
values in the range of ‘0000’ to ‘1111’ in binary. The video_object_layer_start_code marks a new
video object layer.

ISO/IEC 14496-2 Committee Draft

100

short_video_header – The short_video_header bit is a flag which is set when an abbreviated header
format is used for video content. This indicates video data which begins with a
short_video_start_marker rather than a longer start code such as visual_object_ start_code. The short
header format is included herein to provide forward compatibility with video codecs designed using
the earlier video coding specification ITU-T Recommendation H.263. All decoders which support
video objects shall support both header formats (short_video_header equal to 0 or 1) for the subset of
video tools that is expressible in either form.

video_plane_with_short_header() – This is a syntax layer encapsulating a video plane which has
only the limited set of capabilities available using the short header format.

short_video_start_marker – This is a 22-bit start marker containing the value ‘0000 0000 0000
0000 1000 00’. It is used to mark the location of a video plane having the short header format.
short_video_start_marker shall be byte aligned by the insertion of zero to seven zero-valued bits as
necessary to achieve byte alignment prior to short_video_start_marker.

short_video_end_marker – This is a 22-bit end of sequence marker containing the value ‘0000 0000
0000 0000 1111 11’. It is used to mark the end of a sequence of video_plane_with_short_header().
short_video_end_marker may (and should) be byte aligned by the insertion of zero to seven zero-
valued bits to achieve byte alignment prior to short_video_end_marker.

zero_bit – This is a single bit having the value zero (‘0’).

random_accessible_vol -- This flag may be set to “1” to indicate that every VOP in this VOL is
individually decodable. If all of the VOPs in this VOL are intra-coded VOPs and some more
conditions are satisfied then random_accessible_vol may be set to “1”. random_accessible_vol may be
omitted from the bitstream (by setting random_access_flag to “0”) in which case it shall be assumed
to have the value zero. The flag random_accessible_vol is not used by the decoding process.
random_accessible_vol is intended to aid random access or editing capability. This shall be set to “0”
if any of the VOPs in the VOL are non-intra coded or certain other conditions are not fulfilled.

is_visual_object_identifier – This is a 1-bit code which when set to ‘1’ indicates that version
identification and priority is specified for the visual object layer. When set to ‘0’, no version
identification or priority needs to be specified.

video_object_layer_verid – This is a 4-bit code which identifies the version number of the visual
object layer. It takes values between 1 and 15, a zero value is disallowed. If both visual_object_verid
and video_object_layer_verid exist, the semantics of visual_object_layer_verid supersedes the other.

video_object_layer_priority – This is a 3-bit code which specifies the priority of the video object
layer. It takes values between 1 and 7, with 1 representing the highest priority and 7, the lowest
priority. The value of zero is reserved.

vol_control_parameters – This a one-bit flag which when set to ‘1’ indicates presence of following
vol control parameters: aspect_ratio_info, VOP_rate_code ,bit_rate, vbv_buffer_size , chroma_format
and low_delay.

aspect_ratio_info -- This is a four-bit integer which defines the value of aspect ratio.

VOP_rate_code -- This is a four-bit integer which defines the value of VOP rate.

bit_rate -- This is a 30-bit integer which specifies the bitrate of the bitstream measured in units of
400 bits/second, rounded upwards. The value zero is forbidden.

 ISO/IEC 14496-2 Committee Draft

101

vbv_buffer_size -- The vbv_buffer_size is a 18-bit integer.

chroma_format - This is a two bit integer indicating the chrominance format as defined in the Table
6-5.

Table 6-5 Meaning of chroma_format

chroma_format Meaning

00 reserved

01 4:2:0

10 reserved

11 reserved

low_delay - This flag, when set to 1, indicates that the sequence does not contain any B-VOPs, that
the VOP reordering delay is not present.When set to 0, it indicates that the sequence may contain B-
VOPs, and that the VOP reordering delay is present. This flag is not used during the decoding process
and therefore can be ignored by decoders, but it is necessary to define and verify the compliance of
low-delay bitstreams.

video_object_layer_id -- This is given by the last 4-bits of the video_object_layer_start_code. The
video_object_layer_id uniquely identifies a video object layer.

video_object_layer_shape -- This is a 2-bit integer defined in Table 6-6. It identifies the shape type
of a video object layer.

Table 6-6 Video Object Layer shape type

shape format Meaning

00 rectangular

01 binary

10 binary only

11 grayscale

VOP_time_increment_resolution -- -- This is a 15-bit unsigned integer that indicates the number of
evenly spaced subintervals, call ticks, within one modulo time. One modulo time represents the fixed
interval of one second. The value zero is forbidden.

fixed_VOP_rate -- This is a one-bit flag which when set to ‘1’ indicates that all VOPs are coded with
a fixed frame rate.

video_object_layer_width -- The video_object_layer_width is a 13-bit unsigned integer representing
the width of the displayable part of the luminance component in pixel units. The width of the encoded
luminance component of VOPs in macroblocks is (video_object_layer_width+15)/16. The displayable
part is left-aligned in the encoded VOPs.

video_object_layer_height -- The video_object_layer_height is a 13-bit unsigned integer
representing the height of the displayable part of the luminance component in pixel units. The height
of the encoded luminance component of VOPs in macroblocks is (video_object_layer_height+15)/16.
The displayable part is top-aligned in the encoded VOPs.

obmc_disable -- This is a one-bit flag which when set to ‘1’ disables overlapped block motion
compensation.

ISO/IEC 14496-2 Committee Draft

102

sprite_enable -- This is a one-bit flag which when set to ‘1’ indicates the presence of sprites.

sprite_width – This is a 13-bit unsigned integer which identifies the horizontal dimension of the
sprite.

sprite_height -- This is a 13-bit unsigned integer which identifies the vertical dimension of the
sprite.

sprite_left_coordinate – This is a 13-bit signed integer which defines the left-edge of the sprite.

sprite_top_coordinate – This is a 13-bit signed integer which defines the top edge of the sprite.

no_of_sprite_warping_points – This is a 6-bit unsigned integer which represents the number of
points used in sprite warping. When its value is 0 and when sprite_enable is set to ‘1’, warping is
identity (stationary sprite) and no coordinates need to be coded. When its value is 4, a perspective
transform is used. When its value is 1,2 or 3, an affine transform is used. Further, the case of value 1
is separated as a special case from that of values 2 or 3. Table 6-7 shows the various choices.

Table 6-7 Number of point and implied warping function

Number of points warping function

0 Stationary

1 Translation

2,3 Affine

4 Perspective

sprite_warping_accuracy – This is a 2-bit code which indicates the quantization accuracy of motion
vectors used in the warping process for sprites. Table 6-8 shows the meaning of various codewords

Table 6-8 Meaning of sprite warping accuracy codewords

code sprite_warping_accuracy

00 ½ pixel

01 ¼ pixel

10 1/8 pixel

11 1/16 pixel

sprite_brightness_change – This is a one-bit flag which when set to ‘1’ indicates a change in
brightness during sprite warping, alternatively, a value of ‘0’ means no change in brightness.

low_latency_sprite_enable -- This is a one-bit flag which when set to "1" indicates the presence of
low_latency sprite, alternatively, a value of "0" means basic sprite.

quant_type -- This is a one-bit flag which when set to ‘1’ that the first inverse quantisation method
and when set to ‘0’ indicates that the second inverse quantisation method is used for inverse
quantisation of the DCT coefficients. Both inverse quantisation methods are described in section
7.3.4. For the first inverse quantization method, two matrices are used, one for intra blocks the other
for non-intra blocks.

 ISO/IEC 14496-2 Committee Draft

103

In MPEG-style quantization, two matrices are used, one for intra blocks the other for non-intra
blocks.

The default matrix for intra blocks is:

8 17 18 19 21 23 25 27

17 18 19 21 23 25 27 28

20 21 22 23 24 26 28 30

21 22 23 24 26 28 30 32

22 23 24 26 28 30 32 35

23 24 26 28 30 32 35 38

25 26 28 30 32 35 38 41

27 28 30 32 35 38 41 45

The default matrix for non-intra blocks is:

16 17 18 19 20 21 22 23

17 18 19 20 21 22 23 24

18 19 20 21 22 23 24 25

19 20 21 22 23 24 26 27

20 21 22 23 25 26 27 28

21 22 23 24 26 27 28 30

22 23 24 26 27 28 30 31

23 24 25 27 28 30 31 33

no_gray_quant_update – This is a on-bit flag which is set to ‘1’ when a fixed quantiser is used for
the decoding of grayscale alpha data. When this flag is set to ‘0’, the grayscale alpha quantiser is
updated on every macroblock by generating it anew from the luminance quantiser value, but with an
appropriate scale factor applied. See the description in Section 7.4.4.2.

load_intra_quant_mat_grayscale – This is a one-bit flag which is set to ‘1’ when
intra_quant_mat_grayscale follows. If it is set to ‘0’ then there is no change in the quantisation matrix
values that shall be used.

intra_quant_mat_grayscale – This is a list of 2 to 64 eight-bit unsigned integers defining the
grayscale intra alpha quantisation matrix to be used. The semantics and the default quantisation
matrix are identical to those of intra_quant_mat.

load_nonintra_quant_mat_grayscale – This is a one-bit flag which is set to ‘1’ when
nonintra_quant_mat_grayscale follows. If it is set to ‘0’ then there is no change in the quantisation
matrix values that shall be used.

nonintra_quant_mat_grayscale – This is a list of 2 to 64 eight-bit unsigned integers defining the
grayscale nonintra alpha quantisation matrix to be used. The semantics and the default quantisation
matrix are identical to those of nonintra_quant_mat.

load_intra_quant_mat -- This is a one-bit flag which is set to ‘1’ when intra_quant_mat follows. If it
is set to ‘0’ then there is no change in the values that shall be used.

ISO/IEC 14496-2 Committee Draft

104

intra_quant_mat -- This is a list of 2 to 64 eight-bit unsigned integers. The new values are in zigzag
scan order and replace the previous values. A value of 0 indicates that no more values are transmitted
and the remaining, non-transmitted values are set equal to the last non-zero value. The first value
shall always be 8 and is not used in the decoding process.

load_nonintra_quant_mat -- This is a one-bit flag which is set to ‘1’ when nonintra_quant_mat
follows. If it is set to ‘0’ then there is no change in the values that shall be used.

nonintra_quant_mat -- This is a list of 2 to 64 eight-bit unsigned integers. The new values are in
zigzag scan order and replace the previous values. A value of 0 indicates that no more values are
transmitted and the remaining, non-transmitted values are set equal to the last non-zero value. The
first value shall not be 0.

complexity_estimation_disable – This is a one-bit flag which disables complexity estimation header
in each VOP.

estimation_method -- Setting of the of the estimation method,it is „00“ for Version 1.

shape_complexity_estimation_disable -- Flag to disable setting of shape parameters.

texture_complexity_estimation_set_1_disable -- Flag to disable texture parameter set 1.

intra_blocks -- Flag enabling transmission of the number of luminance and chrominance Intra or
Intra+Q coded blocks in % of the total number of blocks (bounding box).

inter_blocks -- Flag enabling transmission of the number of luminance and chrominance Inter and
Inter+Q coded blocks in % of the total number of blocks (bounding box).

inter4v_blocks -- Flag enabling transmission of the number of luminance and chrominance Inter4V
coded blocks in % of the total number of blocks (bounding box).

not_coded_blocks -- Flag enabling transmission of the number of luminance and chrominance Non
Coded blocks in % of the total number of blocks (bounding box).

texture_complexity_estimation_set_2_disable -- Flag to disable texture parameter set 2.

dct_coefs -- Flag enabling transmission of the number of DCT coefficients % of the maximum
number of coefficients (coded blocks).

dct_lines -- Flag enabling transmission of the number of DCT8x1 in % of the maximum number of
DCT8x1 (coded blocks).

vlc_symbols -- Flag enabling transmission of the average number of VLC symbols for macroblock.

vlc_bits -- Flag enabling transmission of the average number of bits for each symbol.

motion_compensation_complexity_disable -- Flag to disable motion compensation parameter set.

apm (Advanced Prediction Mode) -- Flag enabling transmission of the number of luminance block
predicted using APM in % of the total number of blocks for VOP (bounding box).

 ISO/IEC 14496-2 Committee Draft

105

npm (Normal Prediction Mode) -- Flag enabling transmission of the number of luminance and
chrominance blocks predicted using NPM in % of the total number of luminance and chrominance for
VOP (bounding box).

interpolate_mc_q -- Flag enabling transmission of the number of luminance and chrominance
interpolated blocks in % of the total number of blocks for VOP (bounding box).

forw_back_mc_q -- Flag enabling transmission of the number of luminance and chrominance
predicted blocks in % of the total number of blocks for VOP (bounding box).

halfpel2 -- Flag enabling transmission of the number of luminance and chrominance block predicted
by a half-pel vector on one dimension (horizontal or vertical) in % of the total number of blocks
(bounding box).

halfpel4 -- Flag enabling transmission of the number of luminance and chrominance block predicted
by a half-pel vector on two dimensions (horizontal and vertical) in % of the total number of blocks
(bounding box).

opaque -- Flag enabling transmission of the number of luminance and chrominance blocks coded
using opaque coding mode in % of the total number of blocks (bounding box).

transparent -- Flag enabling transmission of the number of luminance and chrominance blocks coded
using transparent mode in % of the total number of blocks (bounding box).

intra_cae -- Flag enabling transmission of the number of luminance and chrominance blocks coded
using IntraCAE coding mode in % of the total number of blocks (bounding box).

inter_cae -- Flag enabling transmission of the number of luminance and chrominance blocks coded
using InterCAE coding mode in % of the total number of blocks (bounding box).

no_update -- Flag enabling transmission of the number of luminance and chrominance blocks coded
using no update coding mode in % of the total number of blocks (bounding box).

upsampling -- Flag enabling transmission of the number of luminance and chrominance blocks which
need upsampling from 4-4- to 8-8 block dimensions in % of the total number of blocks (bounding
box).

data_partitioned -- This is a one-bit flag which when set to ‘1’ indicates that the macroblock data is
rearranged differently, specifically, motion vector data is separated from the texture data (i.e., DCT
coefficients).

reversible_vlc -- This is a one-bit flag which when set to ‘1’ indicates that the reversible variable
length tables (Table 11-22, Table 11-23 and Table 11-24) should be used when decoding DCT
coefficients. These tables can only be used when data_partition flag is enabled.

scalability -- This is a one-bit flag which when set to ‘1’ indicates that the current layer uses scalable
coding. If the current layer is used as base-layer then this flag is set to ‘0’.

ref_layer_id -- This is a 4-bit unsigned integer with value between 0 and 15. It indicates the layer to
be used as reference for prediction(s) in the case of scalability.

ISO/IEC 14496-2 Committee Draft

106

ref_layer_sampling_direc -- This is a one-bit flag which when set to ‘1’ indicates that the resolution
of the reference layer (specified by reference_layer_id) is higher than the resolution of the layer being
coded. If it is set to ‘0’ then the reference layer has the same or lower resolution then the resolution of
the layer being coded.

hor_sampling_factor_n -- This is a 5-bit unsigned integer which forms the numerator of the ratio
used in horizontal spatial resampling in scalability. The value of zero is forbidden.

hor_sampling_factor_m -- This is a 5-bit unsigned integer which forms the denominator of the ratio
used in horizontal spatial resampling in scalability. The value of zero is forbidden.

vert_sampling_factor_n -- This is a 5-bit unsigned integer which forms the numerator of the ratio
used in vertical spatial resampling in scalability. The value of zero is forbidden.

vert_sampling_factor_m -- This is a 5-bit unsigned integer which forms the denominator of the ratio
used in vertical spatial resampling in scalability. The value of zero is forbidden.

enhancement_type -- This is a 1-bit flag which is set to ‘1’ when the current layer enhances the
partial region of the reference layer. If it is set to ‘0’ then the current layer enhances the entire region
of the reference layer. The default value of this flag is ‘0’.

random_accessible_vol -- This flag may be set to “1” to indicate that every VOP in this VOL is
individually decodable. If all of the VOPs in this VOL are intra-coded VOPs and some more
conditions are satisfied then random_accessible_vol may be set to “1”. random_accessible_vol may be
omitted from the bitstream (by setting random_access_flag to “0”) in which case it shall be assumed
to have the value zero. The flag random_accessible_vol is not used by the decoding process.
random_accessible_vol is intended to aid random access or editing capability. This shall be set to “0”
if any of the VOPs in the VOL are non-intra coded or certain other conditions are not fulfilled.

not_8_bit -- This one bit flag is set when the video data precision is not 8 bits per pixel.

quant_precision -- This field specifies the number of bits used to represent quantiser parameters.
Values between 3 and 9 are allowed. When not_8_bit is zero, and therefore quant_precision is not
transmitted, it takes a default value of 5.

bits_per_pixel -- This field specifies the video data precision in bits per pixel. It may take different
values for different video object layers within a single video object. A value of 12 in this field would
indicate 12 bits per pixel. This field may take values between 4 and 12. When not_8_bit is zero and
bits_per_pixel is not present, the video data precision is always 8 bits per pixel, which is equivalent to
specifying a value of 8 in this field.

6.3.5 Group of Video Object Plane

group_VOP_start_code -- The group_start_code is the unique code of length of 32bit. It identifies the
beginning of a GOV header.

time_code -- This is a 18-bit integer containing the following: time_code_hours, time_code_minutes,
marker_bit and time_code_seconds as shown in Table 6-9. The parameters correspond to those
defined in the IEC standard publication 461 for “time and control codes for video tape recorders”. The
time code refers to the first plane (in display order) after the GOV header.

Table 6-9 Meaning of time_code

 ISO/IEC 14496-2 Committee Draft

107

time_code range of value No. of bits Mnemonic

time_code_hours 0 - 23 5 uimsbf

time_code_minutes 0 - 59 6 uimsbf

marker_bit 1 1 bslbf

time_code_seconds 0 - 59 6 uimsbf

closed_gov -- This is a one-bit flag which indicates the nature of the predictions used in the first
consecutive B-VOPs (if any) immediately following the first coded I-VOP after the GOV header .The
closed_gov is set to ‘1’ to indicate that these B-VOPs have been encoded using only backward
prediction or intra coding. This bit is provided for use during any editing which occurs after encoding.
If the previous pictures have been removed by editing, broken_link may be set to ‘1’ so that a decoder
may avoid displaying these B-VOPs following the first I-VOP following the group of plane header.
However if the closed_gov bit is set to ‘1’, then the editor may choose not to set the broken_link bit as
these B-VOPs can be correctly decoded.

broken_link -- This is a one-bit flag which shall be set to ‘0’ during encoding. It is set to ‘1’ to
indicate that the first consecutive B-VOPs (if any) immediately following the first coded I-VOP
following the group of plane header may not be correctly decoded because the reference frame which
is used for prediction is not available (because of the action of editing). A decoder may use this flag to
avoid displaying frames that cannot be correctly decoded.

6.3.6 Video Object Plane and Video Plane with Short Header

VOP_start_code -- This is the bit string ‘000001B6’ in hexadecimal. It marks the start of a video
object plane.

VOP_coding_type -- The VOP_coding_type identifies whether a VOP is an intra-coded VOP (I),
predictive-coded VOP (P), bidirectionally predictive-coded VOP (B) or sprite coded VOP (S). The
meaning of VOP_coding_type is defined in Table 6-10.

Table 6-10 Meaning of VOP_coding_type

VOP_coding_type coding method

00 intra-coded (I)

01 predictive-coded (P)

10 bidirectionally-predictive-coded (B)

11 sprite (S)

modulo_time_base -- This velue represents the local time base in one second resolution units (1000
milliseconds). It consists of a number of consecutive ‘1’ followed by a ‘0’. Each ‘1’ represents a
duration of one second that have elapsed. For I- and P-VOPs, the number of ‘1’s indicate the number
of seconds elapsed since the synchronization point marked by the modulo_time_base of the previously
decoded I- or P-VOP in decoding order. For B-VOP, the number of ‘1’s indicate the number of
seconds elapsed since the synchronization point marked by the modulo_time_base of the previously
decoded I- or P-VOP in display order.

VOP_time_increment – This value represents the absolute VOP_time_increment from the
synchronization point marked by the modulo_time_base measured in the number of clock ticks. It can
take a value in the range of [0,VOP_time_increment_resolution). The number of bits representing the
value is calculated as the minimum number of unsigned integer bits required to represent the above
range. The local time base in the units of seconds is recovered by dividing this value by the
VOP_time_increment_resolution.

ISO/IEC 14496-2 Committee Draft

108

VOP_coded -- This is a 1-bit flag which when set to ‘0’ indicates that no subsequent data exists for
the VOP. In this case, the following decoding rule applies: For an arbitrarily shaped VO (i.e. when the
shape type of the VO is either ‘binary’ or ‘binary only’), the alpha plane of the reconstructed VOP
shall be completely transparent. For a rectangular VO (i.e. when the shape type of the VO is
‘rectangular’), the corresponding rectangular alpha plane of the VOP, having the same size as its
luminance component, shall be completely transparent. If there is no alpha plane being used in the
decoding and composition process of a rectangular VO, the reconstructed VOP is filled with the
respective content of the immediately preceeding VOP for which VOP_coded!=0.

VOP_rounding_type -- This is a one-bit flag which signals the value of the parameter
rounding_control used for pixel value interpolation in motion compensation for P-VOPs. When this
flag is set to ‘0’, the value of rounding_control is 0, and when this flag is set to ‘1’, the value of
rounding_control is 1. When VOP_rounding_type is not present in the VOP header, the value of
rounding_control is 0.

The encoder should control VOP_rounding_type so that each P-VOP have a different value for this
flag from its reference VOP for motion compensation. VOP_rounding_type can have an arbitrary
value if the reference picture is an I-VOP.

sprite_transmit_mode – This is a 2-bit code which signals the transmission mode of the sprite
object. At video object layer initialization, the code is set to “piece” mode. When all object and
quality update pieces are sent for the entire video object layer, the code is set to the “stop”mode. When
an object piece is sent, the code is set to “piece” mode. When an update piece is being sent, the code
is set to the “update” mode. When all sprite object pieces andquality update pieces for the current
VOP are sent, the code is set to “pause” mode. Table 6-11 shows the different sprite transmit modes.

Table 6-11 Meaning of sprite transmit modes

code sprite_transmit_mode

00 stop

01 piece

10 update

11 pause

VOP_width -- This is a 13-bit unsigned integer which specifies the horizontal size, in pixel units, of
the rectangle that includes the VOP. The width of the encoded luminance component of VOP in
macroblocks is (VOP_width+15)/16. The rectangle part is left-aligned in the encoded VOP. A zero
value is forbidden.

VOP_height -- This is a 13-bit unsigned integer which specifies the vertical size, in pixel units, of the
rectangle that includes the VOP. The height of the encoded luminance component of VOP in
macroblocks is (VOP_height+15)/16. The rectangle part is top-aligned in the encoded VOP. A zero
value is forbidden.

VOP_horizontal_mc_spatial_ref -- This is a 13-bit signed integer which specifies, in pixel units, the
horizontal position of the top left of the rectangle defined by horizontal size of VOP_width. This is
used for decoding and for picture composition.

marker_bit -- This is one-bit that shall be set to 1. This bit prevents emulation of start codes.

VOP_shape_coding_type – This is a 1 bit flag which specifies whether inter shape decoding is to be
carried out for the current P VOP. If VOP_shape_coding_type is equal to ‘0’, intra shape decoding is
carried out, otherwise inter shape decoding is carried out.

 ISO/IEC 14496-2 Committee Draft

109

VOP_vertical_mc_spatial_ref -- This is a 13-bit signed integer which specifies, in pixel units, the
vertical position of the top left of the rectangle defined by vertical size of VOP_width. This is used for
decoding and for picture composition.

background_composition -- This flag only occurs when scalability flag has a value of “1. This flag is
used in conjunction with enhancement_type flag. If enhancement_type is “1” and this flag is “1”,
background composition specified in section 8.1 is performed. If enhancement type is “1” and this flag
is “0”, any method can be used to make a background for the enhancement layer.

change_conv_ratio_disable – This is a 1-bit flag which when set to ‘1’ indicates that conv_ratio is
not sent at the macroblock layer and is assumed to be 1 for all the macroblocks of the VOP. When set
to ‘0’, the conv_ratio is coded at macroblock layer.

intra_dc_vlc_thr -- This is a 3-bit code allows a mechanism to switch between two VLC’s for coding
of Intra DC coefficients as per Table 6-12.

Table 6-12 Meaning of intra_dc_vlc_thr

index meaning of intra_dc_vlc_thr code

0 Use Intra DC VLC for entire VOP 000

1 Switch to Intra AC VLC at running Qp >=13 001

2 Switch to Intra AC VLC at running Qp >=15 010

3 Switch to Intra AC VLC at running Qp >=17 011

4 Switch to Intra AC VLC at running Qp >=19 100

5 Switch to Intra AC VLC at running Qp >=21 101

6 Switch to Intra AC VLC at running Qp >=23 110

7 Use Intra AC VLC for entire VOP 111

Where running Qp is defined as Qp value used for immediately previous coded macroblock.

interlaced -- This is a 1-bit flag which being set to “1” indicates that the VOP may contain interlaced
video. When this flag is set to “0”, the VOP is of non-interlaced (or progressive) format.

top_field_first -- This is a 1-bit flag which when set to “1” indicates that the top field (i.e., the field
containing the top line) of reconstructed VOP is the first field to be displayed (output by the decoding
process). When top_field_first is set to “0” it indicates that the bottom field of the reconstructed VOP
is the first field to be displayed.

alternate_vertical_scan_flag -- This is a 1-bit flag which when set to “1” indicates the use of
alternate vertical scan for interlaced VOPs.

VOP_quant -- This is an unsigned integer which specifies the absolute value of quant to be used for
dequantizing the next macroblock. The length of this field is specified by the value of the parameter
quant_precision. The default length is 5-bits which carries the binary representation of quantizer
values from 1 to 31 in steps of 1.

VOP_alpha_quant – This is a an unsigned integer which specifies the absolute value of the initial
alpha plane quantiser to be used for dequantising macroblock grayscale alpha data. The alpha plane
quantiser cannot be less than 1.

VOP_constant_alpha – This bit is used to indicate the presence of VOP_constant_alpha_value.
When this is set to one, VOP_constant_alpha_value is included in the bitstream.

ISO/IEC 14496-2 Committee Draft

110

VOP_constant_alpha_value – This is an unsigned integer which indicates the scale factor to be
applied as a post processing phase of binary or grayscale shape decoding. See Section 7.4.4.2.

VOP_fcode_forward -- This is a 3-bit unsigned integer taking values from 1 to 7; the value of zero is
forbidden. It is used in decoding of motion vectors.

VOP_fcode_backward -- This is a 3-bit unsigned integer taking values from 1 to 7; the value of zero
is forbidden. It is used in decoding of motion vectors.

VOP_shape_coding_type -- This is a 1-bit flag which when set to ‘0’ indicates the shape coding is
INTRA. When inter_prediction_shape is set to ‘1’ indicates the shape coding is INTER.

resync_marker -- This is a binary string of at least 16 zero’s followed by a one‘0 0000 0000 0000
0001’. For an I-VOP, the resync marker is 16 zeros followed by a one. The length of this resync
marker is dependent on the value of VOP_fcode_forward, for a P-VOP, and the larger value of either
VOP_fcode_forward and VOP_fcode_backward. The relationship between the length of the
resync_marker and appropriate fcode is given by 16 + fcode. The resync_marker is (15+fcode) zeros
followed by a one. A resync marker shall only be located immediately before a macroblock and
aligned with a byte

Coded data for the top-left macroblock of the bounding box of a VOP shall immediately follow the
VOP header, followed by the remaining macroblocks in the bounding box in the conventional left-to-
right, top-to-bottom scan order. Video packets shall also be transmitted following the conventional
left-to-right, top-to-bottom macroblock scan order. The last MB of one video packet is guaranteed to
immediately precede the first MB of the following video packet in the MB scan order.

macroblock_number -- This is a variable length code with length between 1 and 14 bits and is only
present when error_resilient_disable flag is set to ‘0’. It identifies the macroblock number within a
VOP. The number of the top-left macroblock in a VOP shall be zero. The macroblock number
increases from left to right and from top to bottom. The actual length of the code depends on the total
number of macroblocks in the VOP calculated according to Table 6-13, the code itself is simply a
binary representation of the macroblock number.

Table 6-13 Length of macroblock_number code

 ISO/IEC 14496-2 Committee Draft

111

length of
macroblock_number
code

((VOP_width+15)/16) *
((VOP_height+15)/16)

1 1-2

2 3-4

3 5-8

4 9-16

5 17-32

6 33-64

7 65-128

8 129-256

9 257-512

10 513-1024

11 1025-2048

12 2049-4096

13 4097-8192

14 8193-16384

15 16385-32768

16 32769-65536

17 65537-131072

18 131073-262144

quant_scale – This is an unsigned integer which specifies the absolute value of quant to be used for
dequantizing the next macroblock. The length of this field is specified by the value of the parameter
quant_precision. The default length is 5-bits.

motion_marker -- This is a 17-bit binary string ‘1 1111 0000 0000 0001’. It is only present when
the data_partitioning flag is set to ‘1’. It is used in conjunction with the resync_marker fields,
macroblock_number, quant_scale and header_extension_code, a motion_marker is inserted after the
motion data (prior to the texture data). The motion_marker is unique from the motion data and
enables the decoder to determine when all the motion information has been received correctly.

dc_marker -- This is a 19 bit binary string ‘110 1011 0000 0000 0001’. It is present when the
data_partitioning flag is set to ‘1’. It is used for I-VOPs only, in conjunction with the resync_marker
field, macroblock_number, quant_scale and header_extension_code. A dc_marker is inserted into the
bitstream after the mcbpc, dquant and dc data but before the ac_pred flag and remaining texture
information.

header_extension_code -- This is a 1-bit flag which when set to ‘1’ indicates the prescence of
additional fields in the header. When header_extension_code is is se to ‘1’, modulo_time_base,
VOP_time_increment and VOP_coding_type are also included in the video packet header.
Furthermore, if the VOP_coding_type is equal to either a P or B VOP, the appropriate fcodes are also
present.

ISO/IEC 14496-2 Committee Draft

112

load_backward_shape -- This is a one-bit flag which when set to ‘1’ implies that the backward shape
of the previous VOP in the same layer is copied to the forward shape for the current VOP and the
backward shape of the current VOP is decoded from the bitstream. When this flag is set to ‘0’, the
forward shape of the previous VOP is copied to the forward_shape of the current VOP and the
backward shape of the previous VOP in the same layer is copied to the backward shape of the current
VOP. This flag shall be ‘1’ when (1) background_composition is ‘1’ and VOP_coded of the previous
VOP in the same layer is ‘0’ or (2) background_composition is ‘1’ and the current VOP is the first
VOP in the current layer.

backward_shape_width -- This is a 13-bit unsigned integer which specifies the horizontal size, in
pixel units, of the rectangle that includes the backward shape. A zero value is forbidden.

backward_shape_height -- This is a 13-bit unsigned integer which specifies the vertical size, in pixel
units, of the rectangle that includes the backward shape. A zero value is forbidden.

backward_shape_horizontal_mc_spatial_ref -- This is a 13-bit signed integer which specifies, in
pixel units, the horizontal position of the top left of the rectangle that includes the backward shape.
This is used for decoding and for picture composition.

marker_bit -- This is one-bit that shall be set to 1. This bit prevents emulation of start codes.

backward_shape_vertical_mc_spatial_ref -- This is a 13-bit signed integer which specifies, in pixel
units, the vertical position of the top left of the rectangle that includes the backward shape. This is
used for decoding and for picture composition.

backward_shape() -- The decoding process of the backward shape is identical to the decoding process
for the shape of I-VOP with binary only mode (video_object_layer_shape = “10”).

load_forward_shape -- This is a one-bit flag which when set to ‘1’ implies that the forward shape is
decoded from the bitstream. This flag shall be ‘1’ when (1) background_composition is ‘1’ and
VOP_coded of the previous VOP in the same layer is ‘0’ or (2) background_composition is ‘1’ and the
current VOP is the first VOP in the current layer.

forward_shape_width -- This is a 13-bit unsigned integer which specifies the horizontal size, in
pixel units, of the rectangle that includes the forward shape. A zero value is forbidden.

forward_shape_height -- This is a 13-bit unsigned integer which specifies the vertical size, in pixel
units, of the rectangle that includes the forward shape. A zero value is forbidden.

forward_shape_horizontal_mc_spatial_ref -- This is a 13-bit signed integer which specifies, in
pixel units, the horizontal position of the top left of the rectangle that includes the forward shape. This
is used for decoding and for picture composition.

marker_bit -- This is one-bit that shall be set to 1. This bit prevents emulation of start codes.

forward_shape_vertical_mc_spatial_ref -- This is a 13-bit signed integer which specifies, in pixel
units, the vertical position of the top left of the rectangle that includes the forward shape. This is used
for decoding and for picture composition.

forward_shape() -- The decoding process of the backward shape is identical to the decoding process
for the shape of I-VOP with binary only mode (video_object_layer_shape = “10”).

 ISO/IEC 14496-2 Committee Draft

113

ref_select_code -- This is a 2-bit unsigned integer which specifies prediction reference choices for P-
and B-VOPs in enhancement layer with respect to decoded reference layer identified by ref_layer_id.
The meaning of allowed values is specified in Table 7-14 and Table 7-15.

6.3.6.1 Definition of DCECS variable values

The semantic of all complexity estimation parameters is defined at the VO syntax level. DCECS
variables represent % values. The actual % values have been converted to 8 bit words by
normalization to 256. To each 8 bit word a binary 1 is added to prevent start code emulation (i.e 0% =
‘00000001’, 99.5% = ‘11111111’ and is conventionally considered equal to). The binary ‘00000000’
string is a forbidden value. The only parameter expressed in their absolute value is the dcecs_vlc_bits
parameter expressed as a 4 bit word.

dcecs_intra_blocks -- 8 bit number representing the % of luminance and chrominance Intra or
Intra+Q coded blocks on the total number of blocks (bounding box).

dcecs_inter_blocks -- 8 bit number representing the % of luminance and chrominance Inter and
Inter+Q coded blocks on the total number of blocks (bounding box).

dcecs_inter4v_blocks -- 8 bit number representing the % of luminance and chrominance Inter4V
coded blocks on the total number of blocks (bounding box).

dcecs_not_coded_blocks -- 8 bit number representing the % of luminance and chrominance Non
Coded blocks on the total number of blocks (bounding box).

dcecs_dct_coefs -- 8 bit number representing the % of the number of DCT coefficients on the
maximum number of coefficients (coded blocks).

dcecs_dct_lines -- 8 bit number representing the % of the number of DCT8x1 on the maximum
number of DCT8x1 (coded blocks).

dcecs_vlc_symbols -- 8 bit number representing the average number of VLC symbols for macroblock.

dcecs_vlc_bits -- 4 bit number representing the average number of bits for each symbol.

dcecs_apm (Advanced Prediction Mode) -- 8 bit number representing the % of the number of
luminance block predicted using APM on the total number of blocks for VOP (bounding box).

dcecs_npm (Normal Prediction Mode) -- 8 bit number representing the % of luminance and
chrominance blocks predicted using NPM on the total number of luminance and chrominance blocks
for VOP (bounding box).

dcecs_interpolate_mc_q -- 8 bit number representing the % of luminance and chrominance
interpolated blocks in % of the total number of blocks for VOP (bounding box).

dcecs_forw_back_mc_q -- 8 bit number representing the % of luminance and chrominance predicted
blocks on the total number of blocks for VOP (bounding box).

dcecs_halfpel2 -- 8 bit number representing the % of luminance and chrominance blocks predicted by
a half-pel vector on one dimension (horizontal or vertical) on the total number of blocks (bounding
box).

dcecs_halfpel4 -- 8 bit number representing the % of luminance and chrominance blocks predicted by
a half-pel vector on two dimensions (horizontal and vertical) on the total number of blocks (bounding
box).

ISO/IEC 14496-2 Committee Draft

114

dcecs_opaque -- 8 bit number representing the % of luminance and chrominance blocks using opaque
coding mode on the total number of blocks (bounding box).

dcecs_transparent -- 8 bit number representing the % of luminance and chrominance blocks using
transparent coding mode on the total number of blocks (bounding box).

dcecs_intra_cae -- 8 bit number representing the % of luminance and chrominance blocks using
IntraCAE coding mode on the total number of blocks (bounding box).

dcecs_inter_cae -- 8 bit number representing the % of luminance and chrominance blocks using
InterCAE coding mode on the total number of blocks (bounding box).

dcecs_no_update -- 8 bit number representing the % of luminance and chrominance blocks using no
update coding mode on the total number of blocks (bounding box).

dcecs_upsampling -- 8 bit number representing the % of luminance and chrominance blocks which
need upsampling from 4-4- to 8-8 block dimensions on the total number of blocks (bounding box).

6.3.6.2 Video Plane with Short Header

video_plane_with_short_header() – This data structure contains a video plane using an abbreviated
header format. Certain values of parameters shall have pre-defined and fixed values for any
video_plane_with_short_header, due to the limited capability of signaling information in the short
header format. These parameters having fixed values are shown in Table 6-14.

Table 6-14-Fixed Settings for video_plane_with_short_header()

Parameter Value

video_object_layer_shape “rectangular”

obmc_disable 1

quant_type 0

error_resilient_disable 1

data_partitioned 0

block_count 6

reversible_vlc 0

vop_rounding_type 0

vop_fcode_forward 1

vop_coded 1

interlaced 0

complexity_estimation_disable 1

use_intra_dc_vlc 0

scalability 0

not_8_bit 0

bits_per_pixel 8

temporal_reference – This is an 8-bit number which can have 256 possible values. It is formed by
incrementing its value in the previously transmitted video_plane_with_short_header() by one plus the
number of non-transmitted pictures (at 30000/1001 Hz) since the previously transmitted picture. The
arithmetic is performed with only the eight LSBs.

zero_bit – This is a single bit having the value zero (0).

 ISO/IEC 14496-2 Committee Draft

115

split_screen_indicator – This is a boolean signal that indicates that the upper and lower half of the
decoded picture could be displayed side by side. This bit has no direct effect on the encoding or
decoding of the video plane.

document_camera_indicator – This is a boolean signal that indicates that the video content of the
vop is sourced as a representation from a document camera or graphic representation, as opposed to a
view of natural video content. This bit has no direct effect on the encoding or decoding of the video
plane.

full_picture_freeze_release – This is a boolean signal that indicates that resumption of display
updates should be activated if the display of the video content has been frozen due to errors, packet
losses, or for some other reason such as the receipt of a external signal. This bit has no direct effect
on the encoding or decoding of the video plane.

source_format – This is an indication of the width and height of the rectangular video plane
represented by the video_plane_with_short_header. The meaning of this field is shown in Table 6-15.
Each of these source formats has the same vop time increment resolution which is equal to
30000/1001 (approximately 29.97) Hz and the same width:height pixel aspect ratio (288/3):(352/4),
which equals 12:11 in relatively prime numbers and which defines a CIF picture as having a
width:height picture aspect ratio of 4:3.

Table 6-15 Parameters Defined by source_format Field

source_format
value

Source Format
Meaning

vop_width vop_height num_macroblocks_in_gob num_gobs_in_vop

000 reserved reserved reserved reserved reserved

001 sub-QCIF 128 96 8 6

010 QCIF 176 144 11 9

011 CIF 352 288 22 18

100 4CIF 704 576 88 18

101 16CIF 1408 1152 352 18

110 reserved reserved reserved reserved reserved

111 reserved reserved reserved reserved reserved

picture_coding_type – This bit indicates the vop_coding_type. When equal to zero, the
vop_coding_type is “I”, and when equal to one, the vop_coding_type is “P”.

four_reserved_zero_bits – This is a four-bit field containing bits which are reserved for future use
and equal to zero.

pei – This is a single bit which, when equal to one, indicates the presence of a byte of psupp data
following the pei bit.

psupp — This is an eight bit field which is present when pei is equal to one. The pei + psupp
mechanism provides for a reserved method of later allowing the definition of backward-compatible
data to be added to the bitstream. Decoders shall accept and discard psupp when pei is equal to one,
with no effect on the decoding of the video data. The pei and psupp combination pair may be repeated
if present. The ability for an encoder to add pei and psupp to the bitstream is reserved for future use.

gob_number – This is a five-bit number which indicates the location of video data within the video
plane. A group of blocks (or GOB) contains a number of macroblocks in raster scanning order within
the picture. For a given gob_number, the GOB contains the num_macroblocks_per_gob macroblocks
starting with macroblock_number = gob_number * num_macroblocks_per_gob. The gob_number can
either be read from the bitstream or inferred from the progress of macroblock decoding as shown in
the syntax description pseudo-code.

ISO/IEC 14496-2 Committee Draft

116

num_macroblocks_in_gob – This is the number of macroblocks in each group of blocks (GOB) unit.
This parameter is derived from the source_format as shown in Table 6-15.

num_gobs_in_vop – This is the number of GOBs in the vop. This parameter is derived from the
source_format as shown in Table 6-15-1.

gob_layer() – This is a layer containing a fixed number of macroblocks in the vop. Which
macroblocks which belong to each gob can be determined by gob_number and
num_macroblocks_in_gob.

gob_resync_marker – This is a fixed length code of 17 bits having the value ‘0000 0000 0000 0000
1’ which may optionally be inserted at the beginning of each gob_layer(). Its purpose is to serve as a
type of resynchronization marker for error recovery in the bitstream. The gob_resync_marker codes
may (and should) be byte aligned by inserting zero to seven zero-valued bits in the bitstream just prior
to the gob_resync_marker in order to obtain byte alignment. The gob_resync_marker shall not be
present for the first GOB (for which gob_number = 0).

gob_number – This is a five-bit number which indicates which GOB is being processed in the vop.
Its value may either be read following a gob_resync_marker or may be inferred from the progress of
macroblock decoding. All GOBs shall appear in the bitstream of each
video_plane_with_short_header(), and the GOBs shall appear in a strictly increasing order in the
bitstream. In other words, if a gob_number is read from the bitstream after a gob_resync_marker, its
value must be the same as the value that would have been inferred in the absence of the
gob_resync_marker.

gob_frame_id – This is a two bit field which is intended to help determine whether the data following
a gob_resync_marker can be used in cases for which the vop header of the
video_plane_with_short_header() may have been lost. gob_frame_id shall have the same value in
every GOB header of a given video_plane_with_short_header(). Moreover, if any field among the
split_screen_indicator or document_camera_indicator or full_picture_freeze_release or source_format
or picture_coding_type as indicated in the header of a video_plane_with_short_header() is the same as
for the previous transmitted picture in the same video object, gob_frame_id shall have the same value
as in that previous video_plane_with_short_header(). However, if any of these fields in the header of a
certain video_plane_with_short_header() differs from that in the previous transmitted
video_plane_with_short_header() of the same video object, the value for gob_frame_id in that picture
shall differ from the value in the previous picture.

6.3.6.3 Shape coding

bab_type – This is a variable length code between 1 and 6 bits. It indicates the coding mode used for
the bab. There are seven bab_types as depicted in Table 6-16 . The VLC tables used depend on the
decoding context i.e. the bab_types of blocks already received. For I-VOPs, the context-switched VLC
table of Table 11-26 is used. For P-VOPs and B-VOPs, the context switched table of Table 11-27 is
used.

Table 6-16 List of bab_types and usage

bab_type Semantic Used in

0 MVDs==0 && No Update P,B VOPs

1 MVDs!=0 && No Update P,B VOPs

2 transparent All VOP types

3 opaque All VOP types

4 intraCAE All VOP types

 ISO/IEC 14496-2 Committee Draft

117

5 MVDs==0 && interCAE P,B VOPs

6 MVDs!=0 && interCAE P,B VOPs

The bab_type determines what other information fields will be present for the bab shape. No further
shape information is present if the bab_type = 0, 2 or 3. opaque means that all pixels of the bab are
part of the object. transparent means that none of the bab pixels belong to the object. IntraCAE means
the intra-mode CAE decoding will be required to reconstruct the pixels of the bab. No_update means
that motion compensation is used to copy the bab from the previous VOP’s binary alpha map.
InterCAE means the motion compensation and inter_mode CAE decoding are used to reconstruct the
bab. MVDs refers to the motion vector difference for shape.

mvds_x – This is a VLC code between 1 and 18 bits. It represents the horizontal element of the
motion vector difference for the bab. The motion vector difference is in full integer precision. The
VLC table is shown is Table 11-28.

mvds_y -- This is a VLC code between 1 and 18 bits. It represents the vertical element of the motion
vector difference for the bab. The motion vector difference is in full integer precision. If mvds_x is
‘1’, then the VLC table of Table 11-29 , otherwise the VLC table of Table 11-29 is used.

conv_ratio – This is VLC code of length 1-2 bits. It specifies the factor used for sub-sampling the
16x16 pixel bab. The decoder must up-sample the decoded bab by this factor. The possible values for
this factor are 1, 2 and 4 and the VLC table used is given in Table 11-30.

scan_type– This is a 1-bit flag where a value of ‘0’ implies that the bab is in transposed form i.e. the
BAB has been transposed prior to coding. The decoder must then transpose the bab back to its original
form following decoding. If this flag is ‘1’, then no transposition is performed.

binary_arithmetic_code() – This is a binary arithmetic decoder representing the pixel values of the
bab. This code may be generated by intra cae or inter cae depending on the bab_type. Cae decoding
relies on the knowledge of intra_prob[] and inter_prob[], probability tables given in Annex B.

6.3.6.4 Sprite coding

warping_mv_code(dmv) -- The codeword for each differential motion vector consists of a VLC
indicating the length of the dmv code (dmv_length) and a FLC, dmv_code-, with dmv_length bits.
The codewords are listed in Table 11-32 Code table for the first trajectory point.

brightness_change_factor () -- The codeword for brightness_change_factor consists of a variable
length code denoting brightness_change_factor_size and a fix length code, brightness_change_factor,
of brightness_change_factor_size bits (sign bit included). The codewords are listed in Table 11-33
The codewords are listed in Table 11-33

send_mb() -- This function returns 1 if the current macroblock has already been sent previously and
“not coded”. Otherwise it returns 0.

piece_quant -- This is a 5-bit unsigned interger which indicates the quant to be used for a sprite-piece
until updated by a subsequent dquant. The piece_quant carries the binary representation of quantizer
values from 1 to 31 in steps of 1.

piece_width -- This value specifies the width of the sprite piece measured in macroblock units.

piece_height -- This value specifies the height of the sprite piece measured in macroblock units.

ISO/IEC 14496-2 Committee Draft

118

piece_xoffset -- This value specifies the horizontal offset location, measured in macroblock units from
the left edge of the sprite object, for the placement of the sprite piece into the sprite object buffer at the
decoder.

piece_yoffset -- This value specifies the vertical offset location, measured in macroblock units from
the top edge of the sprite object.

decode_sprite_piece () -- It decodes a selected region of the sprite object or its update. It also decodes
the parameters required by the decoder to properly incorporate the pieces. All the static-sprite-object
pieces will be encoded using a subset of the I-VOP syntax. And the static-sprite-update pieces use a
subset of the P-VOP syntax. The sprite update is defined as the difference between the original sprite
texture and the reconstructed sprite assembled from all the sprite object pieces.

sprite_shape_texture() -- For the static-sprite-object pieces, shape and texture are coded using the
macroblock layer structure in I-VOPs. And the static-sprite-update pieces use the P-VOP inter-
macroblock syntax -- except that there are no motion vectors and shape information included in this
syntax structure. Macroblocks raster scanning is employed to encode a sprite piece; however,
whenever the scan encounters a macroblock which has been part of some previously sent sprite piece,
then the block is not coded and the corresponding macroblock layer is empty.

6.3.7 Macroblock related

not_coded -- This is a 1-bit flag which signals if a macroblock is coded or not. When set to’1’ it
indicates that a macroblock is not coded and no further data is included in the bitstream for this
macroblock; decoder shall treat this macroblock as ‘inter’ with motion vector equal to zero and no
DCT coefficient data. When set to ‘0’ it indicates that the macroblock is coded and its data is included
in the bitstream.

mcbpc -- This is a variable length code that is used to derive the macroblock type and the coded block
pattern for chrominance . It is always included for coded macroblocks. Table 11-6 and Table 11-7 list
all allowed codes for mcbpc in I- and P-VOPs respectively. The values of the column “MB type” in
these tables are used as the variable “derived_mb_type” which is used in the respective syntax part for
motion and texture decoding. In P-vops using the short video header format (i.e., when
short_video_header is 1), mcbpc codes indicating macroblock type 2 shall not be used.

ac_pred_flag -- This is a 1-bit flag which when set to ‘1’ indicates that either the first row or the first
column of ac coefficients are differentially coded for intra coded macroblocks.

modb -- This is a variable length code present only in coded macroblocks of B-VOPs. It indicates
whether mb_type and/or cbpb information is present for a macroblock. The codes for modb are listed
in Table 11-3.

mb_type -- This variable length code is present only in coded macroblocks of B-VOPs. Further, it is
present only in those macroblocks for which one motion vector is included. The codes for mb_type are
shown in Table 11-4 for B-VOPs for no scalability and in Table 11-5 for B-VOPs with scalability.
When mb_type is not present (i.e. modb=='0') for a macroblock in a B-VOP, the macroblock type is
set to the default type. The default macroblock type for the enhancement layer of spatially scalable
bitstreams (i.e. ref_select_code == '00' && scalability = '1') is "forward mc + Q". Otherwise, the
default macroblock type is "direct".

cbpb -- This is a 3 to 6 bit code representing coded block pattern in B-VOPs, if indicated by modb.
Each bit in the code represents a coded/no coded status of a block; the leftmost bit corresponds to the
top left block in the macroblock. For each non-transparent blocks with coefficients, the corresponding
bit in the code is set to ‘1’. When cbpb is not present (i.e. modb=='0' or '10') for a macroblock in a B-
VOP, no coefficients are coded for all the non-transparent blocks in this macroblock.

 ISO/IEC 14496-2 Committee Draft

119

cbpy -- This variable length code represents a pattern of non-transparent luminance blocks with at
least one non intra DC transform coefficient, in a macroblock. Table 11-8 – 11-10 indicate the codes
and the corresponding patterns they indicate for the respective cases of intra- and inter-MBs. If there
is only one non transparent block in the macroblock, a single bit cbpy is used (1:coded, 0:not coded).

dquant -- This is a 2-bit code which specifies the change in the quantizer, quant, for I- and P-VOPs.
Table 6-17 lists the codes and the differential values they represent. The value of quant lies in range of
1 to 31; if the value of quant after adding dquant value is less than 1 or exceeds 31, it shall be
correspondingly clipped to 1 and 31.

Table 6-17 dquant codes and corresponding values

dquant code value

00 -1

01 -2

10 1

11 2

dbquant -- This is a variable length code which specifies the change in quantizer for B-VOPs. Table
6-18 lists the codes and the differential values they represent. If the value of quant after adding
dbquant value is less than 1 or exceeds 31, it shall be correspondingly clipped to 1 and 31.

Table 6-18 dbquant codes and corresponding values

dbquant code value

10 -2

0 0

11 2

CODA_I – This is a one-bit flag which is set to “1” to indicate that all the values in the grayscale
alpha macroblock are equal to 255 (AlphaOpaqueValue). When set to “0”, this flag indicates that one
or more 8x8 blocks are coded according to CBPA.

ac_pred_flag_alpha – This is a one-bit flag which when set to ‘1’ indicates that either the first row or
the first column of ac coefficients are to be differentially decoded for intra alpha macroblocks. It has
the same effect for alpha as the corresponding luminance flag.

CODA_PB – This is a VLC indicating the coding status for P or B alpha macroblocks. The semantics
are given in the table below (Table 6-19). When this VLC indicates that the alpha macroblock is all
opaque, this means that all values are set to 255 (AlphaOpaqueValue).

Table 6-19: CODA_PB codes and corresponding values

CODA_PB Meaning

1 alpha residue all zero

01 alpha macroblock all opaque

00 alpha residue coded

CBPA – This is the coded block pattern for grayscale alpha texture data. For I, P and B VOPs, this
VLC is exactly the same as the INTER (P) CBPY VLC described by Tables 11-8 thru 11-10. CBPA is
followed by the alpha block data which is coded in the same way as texture block data. Note that
grayscale alpha blocks with alpha all equal to zero (transparent) are not included in the bitstream.

ISO/IEC 14496-2 Committee Draft

120

6.3.7.1 MB Binary Shape Coding

babtype – This defines the coding type of the current bab according to Table 11-26 and Table 11-27
for intra and inter mode, respectively.

mvds_x –This defines the size of the x-component of the differential motion vector for the current bab
according to Table 11-28.

mvds_y -- This defines the size of the y-component of the differential motion vector for the current
bab according to Table 11-28 if mvds_x!=0 and according to Table 11-29 if mvds_x==0.

conv_ratio –This defines the upsampling factor according to Table 11-30 to be applied after decoding
the current shape information

scan_type –This defines according to Table 6-20 whether the current bordered to be decoded bab and
the eventual bordered motion compensated bab need to be transposed

Table 6-20 scan_type

scan_type meaning

0 transpose bab as in matrix transpose

1 do not transpose

binary_arithmetic_code() –This is a binary arithmetic decoder that defines the context dependent
arithmetically to be decoded binary shape information. The meaning of the bits is defined by the
arithmetic decoder according to Section 7.4.3

6.3.7.2 Motion vector

horizontal_mv_data — This is a variable length code, as defined in Table 11-9, which is used in
motion vector decoding as described in section 7.5.3.

horizontal_mv_residual — This is an unsigned integer which is used in motion vector decoding as
described in section 7.5.3. The number of bits in the bitstream for horizontal_mv_residual, r_size, is
derived from either VOP_fcode_forward or VOP_fcode_backward as follows;

r_size = VOP_fcode_forward - 1 or r_size = VOP_fcode_backward - 1

vertical_mv_data — This is a variable length code, as defined in Table 11-9, which is used in motion
vector decoding as described in section 7.5.3.

vertical_mv_residual — This is an unsigned integer which is used in motion vector decoding as
described in section 7.5.3. The number of bits in the bitstream for vertical_mv_residual, r_size, is
derived from either VOP_fcode_forward or VOP_fcode_backward as follows;

 ISO/IEC 14496-2 Committee Draft

121

r_size = VOP_fcode_forward - 1 or r_size = VOP_fcode_backward - 1

6.3.7.3 Interlaced Information

dct_type – This is a 1-bit flag indicating whether the macroblock is frame DCT coded or field DCT
coded. If this flag is set to “1”, the macroblock is field DCT coded; otherwise, the macroblock is
frame DCT coded. This flag is only present in the bitstream if the interlaced flag is set to “1” and the
macroblock is coded (coded blcok pattern is non-zero) or intra-coded. Boundary blocks are always
coded in frame-based mode.

field_prediction – This is a 1-bit flag indicating whether the macroblock is field predicted or frame
predicted. This flag is set to ‘1’ when the macroblock is predicted using field motion vectors. If it is
set to ‘0’ then frame prediction (16x16 or 8x8) will be used. This flag is only present in the bitstream
if the interlaced flag is set to “1” and the derived_mb_type is “0” or “1” in the P-VOP or an non-direct
mode macroblock in the B-VOP.

forward_top_field_reference – This is a 1-bit flag which indicates the reference field for the forward
motion compensation of the top field. When this flag is set to ‘0’, the top field is used as the reference
field. If it is set to ‘1’ then the bottom field will be used as the reference field. This flag is only present
in the bitstream if the field_prediction flag is set to “1” and the macroblock is not backward predicted.

forward_bottom_field_reference – This is a 1-bit flag which indicates the reference field for the
forward motion compensation of the bottom field. When this flag is set to ‘0’, the top field is used as
the reference field. If it is set to ‘1’ then the bottom field will be used as the reference field. This flag
is only present in the bitstream if the field_prediction flag is set to “1” and the macroblock is not
backward predicted.

backward_top_field_reference – This is a 1-bit flag which indicates the reference field for the
backward motion compensation of the top field. When this flag is set to ‘0’, the top field is used as the
reference field. If it is set to ‘1’ then the bottom field will be used as the reference field. This flag is
only present in the bitstream if the field_prediction flag is set to “1” and the macroblock is not
forward predicted.

backward_bottom_field_reference – This is a 1-bit flag which indicates the reference field for the
backward motion compensation of the bottom field. When this flag is set to ‘0’, the top field is used as
the reference field. If it is set to ‘1’ then the bottom field will be used as the reference field.. This flag
is only present in the bitstream if the field_prediction flag is set to “1” and the macroblock is not
forward predicted.

6.3.8 Block related

dct_dc_size_luminance -- This is a variable length code as defined in Table 11-12 that is used to
derive the value of the differential dc coefficients of luminance values in blocks in intra macroblocks.
This value categorizes the coefficients according to their size.

dct_dc_size_chrominance -- This is a variable length code as defined in Table 11-13 that is used to
derive the value of the differential dc coefficients of chrominance values in blocks in intra
macroblocks. This value categorizes the coefficients according to their size.

dct_dc_differential -- This is a variable length code as defined in Table 11-14 that is used to derive
the value of the differential dc coefficients in blocks in intra macroblocks. After identifying the
category of the dc coefficient in size from dct_dc_size_luminance or dct_dc_size_chrominance, this
value denotes which actual difference in that category occurred.

ISO/IEC 14496-2 Committee Draft

122

6.3.8.1 Alpha block related

dct_dc_size_alpha – This is a variable length code for coding the alpha block dc coefficient. Its
semantics are the same as dct_dc_size_luminance in Section 6.3.8.

6.3.9 Still texture object

still_texture_object_start_code -- The still_texture_object_start_code is a string of 32 bits. The first
24 bits are ‘0000 0000 0000 0000 0000 0001’ and the last 8 bits are defined in Table 6-3.

texture_object_id -- This is given by 16-bits representing one of the values in the range of ‘0000
0000 0000 0000’ to ‘1111 1111 1111 1111’ in binary. The texture_object_layer_id uniquely identifies
a texture object layer.

wavelet_filter_type -- This field indicates the arithmetic precision which is used for the wavelet
decomposition as the following:

Table 6-21 Wavelet type

wavelet_filter_type Meaning

0 integer

1 Double float

wavelet_download – This field indicates if the 2-band filter bank is specificed in the bitstream:

Table 6-22 Wavelet downloading flag

wavelet_download meaning

0 default filters

1 specified in bitstream

The default filter banks are described in the 11.2.2.

max_bitplanes -- This field indicates the number of maximum bitplanes in bilevel_quant mode.

wavelet_decomposition_levels -- This field indicates the number of levels in the wavelet
decomposition of the texture.

texture_spatial_layer_start_code -- The texture_spatial_layer_start_code is a string of 32 bits. The
32 bits are ‘0000 0000 0000 0000 0000 0001 1011 1111’ in binary. The
texture_spatial_layer_start_code marks the start of a new spatial layer.

texture_spatial_layer_id -- This is given by 5-bits representing one of the values in the range of
‘00000’ to ‘11111’ in binary. The texture_spatial_layer_id uniquely identifies a spatial layer.

texture_snr_layer_start_code -- The texture_snr_layer_start_code is a string of 32 bits. The 32 bits
are ‘0000 0000 0000 0000 0000 0001 1100 0000’ in binary. The texture_snr_layer_start_code marks
the start of a new snr layer.

texture_snr_layer_id -- This is given by 5-bits representing one of the values in the range of ‘00000’
to ‘11111’ in binary. The texture_snr_layer_id uniquely identifies an SNR layer.

Note: All the start codes start at the byte boundary. Appropriate number of bits is stuffed before any
start code to byte-align the bitstream.

 ISO/IEC 14496-2 Committee Draft

123

texture_object_layer_shape -- This is a 2-bit integer defined in Table 6-23. It identifies the shape
type of a texture object layer.

Table 6-23 Texture Object Layer Shape type

shape_format Meaning

00 rectangular

01 binary

10 reserved

11 reserved

scan_direction -- This field indicates the scan order of AC coefficients. In single-quant and multi-
quant mode, if this flag is `0’, then the coefficients are scanned in the tree-depth fashion. If it is `1’,
then they are scanned in the subband by subband fashion. In bilevel_quant mode, if the flag is `0’,
then they are scanned in bitplane by bitplane fashion. Within each bitplane, they are scanned in a
subband by subband fashion. If it is “1”, they are scanned from the low wavelet decomposition layer to
high wavelet decomposition layer. Within each wavelet decomposition layer, they are scanned from
most significant bitplane down to the least significant bitplane.

wavelet_stuffing -- These 3 stuffing bits are reserved for future expansion. It is currently defined to be
‘111’.

spatial_layers -- This field indicates the number of spatial layers. It is equivalent to the maximum
number of the wavelet decomposition layers in that scalability layer.

texture_object_layer_width -- The texture_object_layer_width is a 15-bit unsigned integer
representing the width of the displayable part of the luminance component in pixel units. A zero value
is forbidden.

texture_object_layer_height -- The texture_object_layer_width is a 15-bit unsigned integer
representing the height of the displayable part of the luminance component in pixel units. A zero
value is forbidden.

horizontal_ref -- This is a 15-bit integer which specifies, in pixel units, the horizontal position of the
top left of the rectangle defined by horizontal size of object_width. This is used for decoding and for
picture composition.

vertical_ref -- This is a 15-bit integer which specifies, in pixel units, the vertical position of the top
left of the rectangle defined by vertical size of object_height. This is used for decoding and for picture
composition.

object_width -- This is a 15-bit unsigned integer which specifies the horizontal size, in pixel units, of
the rectangle that includes the object. A zero value is forbidden.

object_height -- This is a 15-bit unsigned integer which specifies the vertical size, in pixel units, of
the rectangle that includes the object. A zero value is forbidden.

lowpass_filter_length – This field defines the length of the low pass filter in binary ranging from
“0001” (length of 1) to “1111” (length of 15.)

highpass_filter_length – This field defines the length of the high pass filter in binary ranging from
“0001” (length of 1) to “1111” (length of 15.)

ISO/IEC 14496-2 Committee Draft

124

filter_tap_integer – This field defines an integer filter coefficient in 16bit signed integer. The filter
coefficients are decoded from the left most tap to the right most tap order.

filter_tap_float_high– This field defines the left 16 bits of a floating filter coefficient which is
defined in 32-bit IEEE floating format. The filter coefficients are decoded from the left most tap to
the right most tap order.

filter_tap_float_low– This field defines the right 16 bits of a floating filter coefficient which is
defined in 32-bit IEEE floating format. The filter coefficients are decoded from the left most tap to
the right most tap order.

integer_scale – This field defines the scaling factor of the integer wavelet, by which the output of
each composition level is divided by // operation. A zero value is forbidden.

mean -- This field indicates the mean value of one color component of the texture.

quant_dc_byte -- This field indicates the quantization step size for one color component of the DC
subband. A zero value is forbidden. The quantization step size parameter, quant_dc, is decoded using
the function get_param(): quant = get_param(7);

spatial_scalability_levels -- This field indicates the number of spatial scalability layers supported in
the bitstream. This number can be from 1 to wavelet_decomposition_levels. For single_quant mode,
the only valid value of spatial_scalability_levels is 1.

quantization_type -- This field indicates the type of quantization as shown in Table 6-24

Table 6-24 The quantization type

Quantization_type Code

 single quantizer 01

 multi quantizer 10

bi-level quantizer 11

snr_start_code_enable -- If this flag is enabled (disable =0; enabled = 1), the start code followed by
an id to be inserted in to each spatial scalability layer and/or each SNR scalability layer.

quant_byte -- This field defines one byte of the quantization step size for each scalability layer. A
zero value is forbidden. The quantization step size parameter, quant, is decoded using the function
get_param(): quant = get_param(7);

snr_scalability_levels -- This field indicates the number of levels of SNR scalability supported in this
spatial scalability level.

snr_all_zero -- This flag indicates whether all the coefficients in the SNR layer are zero or not. The
value ‘0’ for this flag indicates that the SNR layer contains some nonzero coefficients which are coded
after this flag. The value ‘1’ for this flag indicates that the current SNR layer only contains zero
coefficients and therefore the layer is skipped.

band_offset_byte-- This field defines one byte of the absolute value of the parameter band_offset.
This parameter is added to each DC band coefficient obtained by arithmetic decoding. The parameter
band_offset is decoded using the function get_param():

band_offset = -get_param(7);

 ISO/IEC 14496-2 Committee Draft

125

where function get_param() is defined as

 int get_param(int nbit)

 {

int count = 0;

int word =0;

int value = 0;

int module = 1<<(nbit);

 do{

word= get_next_word_from_bitstream(nbit+1);

value += (word & (module-1)) << (count * nbit);

count ++;

 } while(word>> nbit);

 return value;

 }

The function get_next_word_from_bitstream(x) reads the next x bits from the input bitstream.

band_max_byte -- This field defines one byte of the maximum value of the DC band. The parameter
band_max_value is decoded using function get_param():

band_max_value = get_param(7);

root_max_alphabet_byte-- This field defines one byte of the maximum absolute value of the
quantized coefficients of the three lowest AC bands. This parameter is decoded using the function
get_param():

 root_max_alphabet = get_param (7);

valz_max_alphabet_byte-- This field defines one byte of the maximum absolute value of the
quantized coefficients of the 3 highest AC bands. The parameter valz_max is decoded using the
function get_param():

 valz_max_alphabet = get_param (7);

valnz_max_alphabet_byte-- This field defines one byte of the maximum absolute value of the
quantized coefficients which belong to the middle AC bands (the bands between the 3 lowest and the
3 highest AC bands). The parameter valnz_max_alphabet is decoded using the function get_param(
):

 valnz_max_alphabet = get_param (7);

arith_decode_dc() – This is an arithmetic decoder for decoding the quantized coefficient values of
DC band. This bitstream is generated by an adaptive arithmetic encoder. The arithmetic decoding
relies on the initialization of a uniform probability distribution model described in 11.2.2. The
decoding procedure is same as arith_decode_highbands(). The arith_decode_dc() function uses the
same arithmetic decoder as described in arith_decode_highbands() but it uses different scanning, and
a different probability model (DC).

ISO/IEC 14496-2 Committee Draft

126

arith_decode_highbands() -- This is an arithmetic decoder for decoding the quantized coefficient
values of the higher bands (all bands except DC band). The bitstream is generated by an adaptive
arithmetic encoder. The arithmetic decoding relies on the initialization of the uniform probability
distribution models described in 11.2.2. This decoder uses only integer arithmetic. It also uses an
adaptive probability model based on the frequency counts of the previously decoded symbols. The
maximum range (or precision) specified is (2^16) - 1 (16 bits). The maximum frequency count is
(2^14) - 1 (14 bits).

arith_decode_highbands_bilevel() -- This is an arithmetic decoder for decoding the quantized
coefficient values of the higher bands in the bilevel_quant mode (all bands except DC band). The
bitstream is generated by an adaptive arithmetic encoder. The arithmetic decoding relies on the
initialization of the uniform probability distribution models described The decoding procedure is the
same as arith_decode_highbands(). The arith_decode_highbands_bilevel()function uses the same
arithmetic decoder as described in arith_decode_highbands(), but it uses bitplane scanning, and a
different probability model as described in 11.2.2. In this mode, The maximum range (or precision)
specified is (2^16) - 1 (16 bits). The maximum frequency count is 127.

6.3.9.1 Shape Object decoding

change_conv_ratio_disable –This specifies whether conv_ratio is encoded at the shape object
decoding function. If it is set to “1” when disable.

STO_constant_alpha -- This is a 1-bit flag when set to ‘1’, the opaque alpha values of the binary
mask are replaced with the alpha value specified by STO_constant_alpha_value.

STO_constant_alpha_value -- This is an 8-bit code that gives the alpha value to replace the opaque
pixels in the binary alpha mask. Value ‘0’ is forbidden.

bab_type – This is a variable length code of 1-2 bits. It indicates the coding mode used for the bab.
There are three bab_types as depicted in Table 6-16 . The VLC tables used depend on the decoding
context i.e. the bab_types of blocks already received.

Table 6-25 List of bab_types and usage

bab_type Semantic code

2 transparent 10

3 opaque 0

4 intraCAE 11

The bab_type determines what other information fields will be present for the bab shape. No further
shape information is present if the bab_type = 2 or 3. opaque means that all pixels of the bab are part
of the object. transparent means that none of the bab pixels belong to the object. IntraCAE means the
intra-mode CAE decoding will be required to reconstruct the pixels of the bab.

conv_ratio – This is VLC code of length 1-2 bits. It specifies the factor used for sub-sampling the
16x16 pixel bab. The decoder must up-sample the decoded bab by this factor. The possible values for
this factor are 1, 2 and 4 and the VLC table used is given in Table 11-30.

scan_type– This is a 1-bit flag where a value of ‘0’ implies that the bab is in transposed form i.e. the
bab has been transposed prior to coding. The decoder must then transpose the bab back to its original
form following decoding. If this flag is ‘1’, then no transposition is performed.

binary_arithmetic_decode() – This is a binary arithmetic decoder representing the pixel values of the
bab. Cae decoding relies on the knowledge of intra_prob[], probability tables given in Annex B.

 ISO/IEC 14496-2 Committee Draft

127

6.3.10 Mesh related

mesh_object_start_code – The mesh_object_start_code is the bit string ‘000001BC’ in hexadecimal.
It initiates a mesh object.

6.3.10.1 Mesh object plane

mesh_object_plane_start_code – The mesh_object_plane_start_code is the bit string ‘000001BD’ in
hexadecimal. It initiates a mesh object plane.

new_mesh_flag -- This is a 1-bit flag which when set to ‘1’ indicates that a new mesh is following in
the bitstream. When set to ‘0’ it indicates that the current mesh is coded with respect to the previous
mesh by using node motion vectors

6.3.10.2 Mesh geometry

mesh_type_code -- This is a 2-bit integer defined in Table 6-26. It indicates the type of initial mesh
geometry being encoded.

Table 6-26 Mesh type code

mesh type code mesh geometry

00 uniform

01 Delaunay

10 reserved

11 reserved

nr_of_mesh_nodes_hor -- This is a 10-bit unsigned integer specifying the number of nodes in one
row of a uniform mesh.

nr_of_mesh_nodes_vert -- This is a 10-bit unsigned integer specifying the number of nodes in one
column of a uniform mesh.

mesh_rect_size_hor -- This is a 8-bit unsigned integer specifying the width of a rectangle of a
uniform mesh (containing two triangles) in half pixel units.

mesh_rect_size_vert -- This is a 8-bit unsigned integer specifying the height of a rectangle of a
uniform mesh (containing two triangles) in half pixel units.

triangle_split_code - This is a 2-bit integer defined in Table 6-27. It specifies how rectangles of a
uniform mesh are split to form triangles.

Table 6-27 Specification of the triangulation type

triangle split code Split

00 top-left to right bottom

01 bottom-left to top right

10 alternately top-left to bottom-right and bottom-left to top-right

11 alternately bottom-left to top-right and top-left to bottom-right

nr_of_mesh_nodes -- This is a 16-bit unsigned integer defining the total number of nodes (vertices)
of a (non-uniform) Delaunay mesh. These nodes include both interior nodes as well as boundary
nodes.

ISO/IEC 14496-2 Committee Draft

128

nr_of_boundary_nodes -- This is a 10-bit unsigned integer defining the number of nodes (vertices)
on the boundary of a (non-uniform) Delaunay mesh.

node0_x -- This is a 10-bit integer specifying the x-coordinate of the first boundary node (vertex) of a
mesh in half-pixel units with respect to a local coordinate system.

node0_y -- This is a 10-bit integer specifying the y-coordinate of the first boundary node (vertex) of a
mesh in half-pixel units with respect to a local coordinate system.

delta_x_len_vlc - This is a variable-length code specifying the length of the delta_x code that follows.
The delta_x_len_vlc and delta_x codes together specify the difference between the x-coordinates of a
node (vertex) and the previously encoded node (vertex). The definition of the delta_x_len_vlc and
delta_x codes are given in Table 11-32, the table for sprite motion trajectory coding.

delta_x -- This is an integer that defines the value of the difference between the x-coordinates of a
node (vertex) and the previously encoded node (vertex) in half pixel units.

delta_y_len_vlc -- This is a variable-length code specifying the length of the delta_y code that
follows. The delta_y_len_vlc and delta_y codes together specify the difference between the y-
coordinates of a node (vertex) and the previously encoded node (vertex). The definition of the
delta_y_len_vlc and delta_y codes are given in Table 11-32, the table for sprite motion trajectory
coding.

delta_y -- This is an integer defines the value of the difference between the y-coordinates of a node
(vertex) and the previously encoded node (vertex) in half pixel units.

6.3.10.3 Mesh motion

motion_range_code -- This is a 2-bit integer defined in Table 6-28. It specifies the dynamic range of
motion vectors in half pel units.

Table 6-28 motion range code

motion range code motion vector range

1 [-32, 31]

2 [-64, 63]

3 [-128, 127]

node_motion_vector_flag -- This is a 1 bit code specifying whether a node has a zero motion vector.
When set to ‘1’ it indicates that a node has a zero motion vector, in which case the motion vector is
not encoded. When set to ‘0’, it indicates the node has a nonzero motion vector and that motion vector
data shall follow.

delta_mv_x_vlc -- This is a variable-length code defining (together with delta_mv_x_res) the value of
the difference in the x-component of the motion vector of a node compared to the x-component of a
predicting motion vector. The definition of the delta_mv_x_vlc codes are given in Table 11-11, the
table for motion vector coding (MVD). The value delta_mv_x_vlc is given in half pixel units.

delta_mv_x_res -- This is an integer which is used in motion vector decoding as described in the
section on video motion vector decoding, section 7.5.3. The number of bits in the bitstream for
delta_mv_x_res is motion_range_code-1.

 ISO/IEC 14496-2 Committee Draft

129

delta_mv_y_vlc -- This is a variable-length code defining (together with delta_mv_y_res) the value of
the difference in the y-component of the motion vector of a node compared to the y-component of a
predicting motion vector. The definition of the delta_mv_y_vlc codes are given in Table 11-11, the
table for motion vector coding (MVD). The value delta_mv_y_vlc is given in half pixel units.

delta_mv_y_res -- This is an integer which is used in motion vector decoding as described in the
section on video motion vector decoding, section 7.5.3. The number of bits in the bitstream for
delta_mv_y_res is motion_range_code-1.

6.3.11 Face object

face_object_start_code -- The face_object_start_code is the bit string ‘000001BA’ in hexadecimal. It
initiates a face object.

Face_object_coding_type – This is a 2-bit integer indicating which coding method is used. Its
meaning is described in Table 6-29.

Table 6-29 Face_object_coding_type

type value Meaning

00 predictive coding

01 DCT (face_object_plane_group)

10 reserved

11 reserved

6.3.11.1 Face object plane

face_paramset_mask -- This is a 2-bit integer defined in Table 6-30. It indicates whether FAP data
are present in the face_frame.

Table 6-30 Face parameter set mask

mask value Meaning

00 unused

01 FAP present

10 reserved

11 reserved

face_object_plane_start_code -- The face_frame_start_code is the bit string ‘000001BB’ in
hexadecimal. It initiates a face object plane.

is_frame_rate – This is a 1-bit flag which when set to ‘1’ indicates that frame rate information
follows this bit field. When set to ‘0’ no frame rate information follows this bit field.

is_time_code -- This is a 1-bit flag which when set to ‘1’ indicates that time code information follows
this bit field. When set to ‘0’ no time code information follows this bit field.

time_code -- This is a 18-bit integer containing the following: time_code_hours, time_code_minutes,
marker_bit and time_code_seconds as shown in Table 6-31. The parameters correspond to those
defined in the IEC standard publication 461 for “time and control codes for video tape recorders”. The
time code refers to the first plane (in display order) after the GOV header. Table 6-31 shows the
meaning of time_code.

Table 6-31 Meaning of time_code

ISO/IEC 14496-2 Committee Draft

130

time_code range of value No. of bits Mnemonic

time_code_hours 0 - 23 5 uimsbf

time_code_minutes 0 - 59 6 uimsbf

marker_bit 1 1 bslbf

time_code_seconds 0 - 59 6 uimsbf

skip_frames – This is a 1-bit flag which when set to ‘1’ indicates that information follows this bit
field that indicates the number of skipped frames. When set to ‘0’ no such information follows this bit
field.

fap_mask_type -- This is a 2-bit integer. It indicates if the group mask will be present for the
specified fap group, or if the complete faps will be present; its meaning is described in Table 6-32. In
the case the type is ‘10’ the ‘0’ bit in the group mask indicates interpolate fap.

Table 6-32 fap mask type

mask type Meaning

00 no mask nor fap

01 group mask

10 group mask’

11 fap

fap_group_mask[group_number] - This is a variable length bit entity that indicates, for a particular
group_number which fap is represented in the bitstream. The value is interpreted as a mask of 1-bit
fields. A 1-bit field in the mask that is set to ‘1’ indicates that the corresponding fap is present in the
bitstream. When that 1-bit field is set to ‘0’ it indicates that the fap is not present in the bitstream. The
number of bits used for the fap_group_mask depends on the group_number, and is given in Table 6-
33.

Table 6-33 fap group mask bits

group_number No. of bits

1 2

2 16

3 12

4 8

5 4

6 5

7 3

8 10

9 4

10 4

NFAP[group_number] - This indicates the number of FAPs in each FAP group. Its values are
specified in the following table:

Table 6-34 NFAP definition

 ISO/IEC 14496-2 Committee Draft

131

group_number NFAP[group_number]

1 2

2 16

3 12

4 8

5 4

6 5

7 3

8 10

9 4

10 4

fap_quant – This is a 5-bit unsigned integer which is the quantization scale factor used to compute
the FAPi table step size.

is_i_new_max – This is a 1-bit flag which when set to ‘1’ indicates that a new set of maximum range
values for I frame follows these 4, 1-bit fields.

is_i_new_min – This is a 1-bit flag which when set to ‘1’ indicates that a new set of minimum range
values for I frame follows these 4, 1-bit fields.

is_p_new_max – This is a 1-bit flag which when set to ‘1’ indicates that a new set of maximum range
values for P frame follows these 4, 1-bit fields.

is_p_new_min – This is a 1-bit flag which when set to ‘1’ indicates that a new set of minimum range
values for P frame follows these 4, 1-bit fields.

6.3.11.2 Face Object Prediction

skip_frames – This is a 1-bit flag which when set to ‘1’ indicates that information follows this bit
field that indicates the number of skipped frames. When set to ‘0’ no such information follows this bit
field.

6.3.11.3 Decode frame rate and frame skip

frame_rate – This is an 8 bit unsigned integer indicating the reference frame rate of the sequence.

seconds – This is a 4 bit unsigned integer indicating the fractional reference frame rate. The frame
rate is computed as follows frame rate = (frame_rate + seconds/16).

frequency_offset -- This is a 1-bit flag which when set to ‘1’ indicates that the frame rate uses the
NTSC frequency offset of 1000/1001. This bit would typically be set when frame_rate = 24, 30 or 60,
in which case the resulting frame rate would be 23.97, 29.94 or 59.97 respectively. When set to ‘0’ no
frequency offset is present. I.e. if (frequency_offset ==1) frame rate = (1000/1001) * (frame_rate +
seconds/16).

number_of_frames_to_skip – This is a 4-bit unsigned integer indicating the number of frames
skipped. If the number_of_frames_to skip is equal to 15 (pattern “1111”) then another 4-bit word
follows allowing to skip up to 29 frames(pattern “11111110”). If the 8-bits pattern equals
“11111111”, then another 4-bits word will follow and so on, and the number of frames skipped is
incremented by 30. Each 4-bit pattern of ‘1111’ increments the total number of frames to skip with
15.

ISO/IEC 14496-2 Committee Draft

132

6.3.11.4 Decode new minmax

i_new_max[j] – This is a 5-bit unsigned integer used to scale the maximum value of the arithmetic
decoder used in the I frame.

i_new_min[j] – This is a 5-bit unsigned integer used to scale the minimum value of the arithmetic
decoder used in the I frame.

p_new_max[j] – This is a 5-bit unsigned integer used to scale the maximum value of the arithmetic
decoder used in the P frame.

p_new_min[j] – This is a 5-bit unsigned integer used to scale the minimum value of the arithmetic
decoder used in the P frame.

6.3.11.5 Decode viseme and expression

viseme_def -- This is a 1-bit flag which when set to ‘1’ indicates that the mouth FAPs sent with the
viseme FAP may be stored in the decoder to help with FAP interpolation in the future.

expression_def - This is a 1-bit flag which when set to ‘1’ indicates that the FAPs sent with the
expression FAP may be stored in the decoder to help with FAP interpolation in the future.

6.3.11.6 Face object plane group

face_object_plane_start_code – Defined in Section 6.3.11.1.

is_intra -- This is a 1-bit flag which when set to ‘1’ indicates that the face object is coded in intra
mode. When set to ‘0’ it indicates that the face object is coded in predictive mode.

face_paramset_mask – Defined in Section 6.3.11.1.

is_frame_rate – Defined in Section 6.3.11.1.

is_time_code – Defined in Section 6.3.11.1.

time_code – Defined in Section 6.3.11.1.

skip_frames – Defined in Section 6.3.11.1

Fap_quant_index – This is a 5-bit unsigned integer used as the index to a fap_scale table for
computing the quantization step size of DCT coefficients. The value of fap_scale is specified in the
following list:

fap_scale[0 - 31] = { 1, 1, 2, 3, 5, 7, 8, 10, 12, 15, 18, 21, 25, 30, 35, 42,

 50, 60, 72, 87, 105, 128, 156, 191, 234, 288, 355, 439, 543, 674, 836,
1039}

fap_mask_type -- Defined in Section 6.3.11.1

fap_group_mask[group_number] - Defined in Section 6.3.11.1

 ISO/IEC 14496-2 Committee Draft

133

6.3.11.7 Face Object Group Prediction

skip_frames – See the definition in Section 6.3.11.1.

6.3.11.8 Decode frame rate and frame skip

frame_rate – See the definition in Section 6.3.11.3.

frequency_offset -- See the definition in Section 6.3.11.3.

number_of_frames_to_skip – See the definition in Section 6.3.11.3.

6.3.11.9 Decode viseme_segment and expression_segment

viseme_segment_select1Q[k] – This is the quantized value of viseme_select1 at frame k of a viseme
FAP segment.

viseme_segment_select2Q[k] – This is the quantized value of viseme_select2 at frame k of a viseme
FAP segment.

viseme_segment_blendQ[k] – This is the quantized value of viseme_blend at frame k of a viseme
FAP segment.

viseme_segment_def[k] – This is a 1-bit flag which when set to ‘1’ indicates that the mouth FAPs
sent with the viseme FAP at frame k of a viseme FAP segment may be stored in the decoder to help
with FAP interpolation in the future.

viseme_segment_select1Q_diff[k] -- This is the prediction error of viseme_select1 at frame k of a
viseme FAP segment.

viseme_segment_select2Q_diff[k] – This is the prediction error of viseme_select2 at frame k of a
viseme FAP segment.

viseme_segment_blendQ_diff[k] – This is the prediction error of viseme_blend at frame k of a
viseme FAP segment.

expression_segment_select1Q[k] – This is the quantized value of expression_select1 at frame k of an
expression FAP segment.

expression_segment_select2Q[k] – This is the quantized value of expression_select2 at frame k of an
expression FAP segment.

expression_segment_intensity1Q[k] – This is the quantized value of expression_intensity1 at frame
k of an expression FAP segment

expression_segment_intensity2Q[k] – This is the quantized value of expression_intensity2 at frame
k of an expression FAP segment

expression_segment_select1Q_diff[k] -- This is the prediction error of expression_select1 at frame k
of an expression FAP segment.

expression_segment_select2Q_diff[k] – This is the prediction error of expression_select2 at frame k
of an expression FAP segment.

ISO/IEC 14496-2 Committee Draft

134

expression_segment_intensity1Q_diff[k] – This is the prediction error of expression_intensity1 at
frame k of an expression FAP segment.

expression_segment_intensity2Q_diff[k] – This is the prediction error of expression_intensity2 at
frame k of an expression FAP segment.

expression_segment_init_face[k] - This is a 1-bit flag which indicates the value of init_face at frame
k of an expression FAP segment.

expression_segment_def[k] - This is a 1-bit flag which when set to ‘1’ indicates that the FAPs sent
with the expression FAP at frame k of a viseme FAP segment may be stored in the decoder to help
with FAP interpolation in the future.

 6.3.11.10 Decode i_dc, p_dc, and ac

dc_Q - This is the quantized DC component of the DCT coefficients. For an intra FAP segment, this
component is coded as a signed integer of either 16 bits or 31 bits. The DCT quantization parameters
of the 68 FAPs are specified in the following list:

DCTQP[1 - 68] = {1, 1, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5,

 7.5, 7.5, 7.5, 15, 15, 15, 15, 5, 10, 10,

 10, 10, 425, 425, 425, 425, 5, 5, 5, 5,

 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 20, 20,

 20, 20, 10, 10, 10, 10, 255, 170, 255, 255,

 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5,

 15, 15, 15, 15, 10, 10, 10, 10}

For DC coefficients, the quantization stepsize is obtained as follows:

qstep[i] = fap_scale[fap_quant_inex] * DCTQP[i] ÷ 3.0

dc_Q_diff - This is the quantized prediction error of a DC coefficient of an inter FAP segment. Its
value is computed by subtracting the decoded DC coefficient of the previous FAP segment from the
DC coefficient of the current FAP segment. It is coded by a variable length code if its value is within
[-255, +255]. Outside this range, its value is coded by a signed integer of 16 or 32 bits.

count_of_runs - This is the run length of zeros preceding a non-zero AC coefficient.

ac_Q[i][next] - This is a quantized AC coefficients of a segment of FAPi. For AC coefficients, the
quantization stepsize is three times larger than the DC quantization stepsize and is obtained as
follows:

qstep[i] = fap_scale[fap_quant_inex] * DCTQP[i]

 ISO/IEC 14496-2 Committee Draft

135

7. The visual decoding process

This clause specifies the decoding process that the decoder shall perform to recover visual data from
the coded bit-stream. As shown in Figure 7-1, the visual decoding process includes several decoding
processes such as shape-motion-texture decoding, still texture decoding, mesh decoding, and face
decoding processes. After decoding the coded bit stream, it is then sent to the compositor to integrate
various visual objects.

Texture
Decoding

Mesh
Decoding

Motion
Compensation
Decoding

Shape
Decoding

Face
Decoding

Still Texture
Decoding

Entropy
Decoding
and Visual
Demux

To
Composition

 Figure 7-1 A high level view of basic visual decoding; specialized decoding such as scalable,
sprite and error resilient decoding are not shown

In clauses 7.1 through 7.6 the VOP decoding process is specified in which shape, motion, texture
decoding processes are the major contents. The still texture object decoding process along with view
dependent object decoding are described in clauses 7.7 and 7.8, respectively. Clause 7.9 includes the
mesh decoding process, and clause 7.10 features the face object decoding process. The output of the
decoding process is explained at the end of clause 7.

7.1 Video decoding process

This clause specifies the decoding process that a decoder shall perform to recover VOP data from the
coded video bitstream.

With the exception of the Inverse Discrete Cosine Transform (IDCT) the decoding process is defined
such that all decoders shall produce numerical identical results. Any decoding process that produces
identical results to the process described here, by definition, complies with this specification.

The IDCT is defined statistically such that different implementations for this function are allowed.
The IDCT specification is given in Annex A.

ISO/IEC 14496-2 Committee Draft

136

Figure 7-2 is a diagram of the Video Decoding Process without any scalability feature. The diagram is
simplified for clarity. The same decoding scheme is applied when decoding all the VOPs of a given
session

Note: Throughout this specification two dimensional arrays are represented as name[q][p] where
‘q’ is the index in the vertical dimension and ‘p’ the index in the horizontal dimension.

Coded Bit Stream
(Shape)

Coded
Bit Stream

(Texture)

Shape
Decoding

Motion
Decoding

Coded Bit Stream
(Motion)

Variable
Length

Decoding

Inverse
Scan

Inverse

Quantization
IDCT

Motion
Compen-

sation

Previous
Reconstructed

VOP

Demultiplexer

video_object_layer_shape

Texture Decoding

VOP
Recon-

struction

Inverse
DC & AC

Prediction

Figure 7-2 Simplified Video Decoding Process

The decoder is mainly composed of three parts : the shape decoder, motion decoder and texture
decoder. The reconstructed VOP is obtained by combining the decoded shape, texture and motion
information.

7.2 Higher syntactic structures

The various parameters and flags in the bitstream for VideoObjectLayer(),
Group_of_VideoObjectPlane(), VideoObjectPlane(),video_plane_with_short_header(), macroblock()
and block(), as well as other syntactic structures related to them shall be interpreted as discussed
earlier. Many of these parameters and flags affect the decoding process. Once all the macroblocks in a
given VOP have been processed, the entire VOP will have been reconstructed. In case the bitstream
being decoded contains B-VOPs, reordering of VOPs may be needed as discussed in sec. 6.1.1.7.

 ISO/IEC 14496-2 Committee Draft

137

7.3 Texture decoding

This clause describes the process used to decode the texture information of a VOP. The process of
video texture is given in Figure 7-3.

Variable
Length
Decoding

Inverse Scan

Inverse DC &
AC Prediction

Inverse
Quantization

Inverse DCT Motion
Compensation

VOP Memory

Coded Data

Decoded Pels

QFS[n]

QF[v][u] f[y][x] d[y][x]

Reconstructed VOP

f[y][x]F[v][u]

PQF[v][u]

Figure 7-3 Video Texture Decoding Process

7.3.1 Variable length decoding

This section explains the decoding process. Section 7.3.1.1 specifies the process used for the DC
coefficients (n=0) in an intra coded block. (n is the index of the coefficient in the appropriate zigzag
scan order). Section 7.3.1.2 specifies the decoding process for all other coefficients; AC coefficients
(0≠n) and DC coefficients in non-intra coded blocks.

Let cc denote the color component. It is related to the block number as specified in Table 7-1; thus cc
is zero for the Y component, one and two for the first and second chrominance components
respectively.

Table 7-1 Color component identification

Block Number cc

4:2:0

0 0

1 0

2 0

3 0

4 1

5 2

ISO/IEC 14496-2 Committee Draft

138

7.3.1.1 DC coefficients decoding in intra blocks

Differential dc coefficients in blocks in intra macroblocks are encoded as variable length code
denoting dct_dc_size as defined in Table 11-12 and Table 11-13 in Annex B, and a fixed length code
dc_dct_differential (Table 11-14). The dct_dc_size categorizes the c coefficients according to their
“size”. For each category additional bits are appended to the dct_dc_size code to uniquely identify
which difference in that category actually occurred (Table 11-14). This is done by appending a fixed
length code, dc_dct_differential, of dct_dc_size bits. The final value of the decoded dc coefficient is
the sum of this latter differential dc value and the predicted value.

When short_video_header is 1, the dc coefficient of an intra block is not coded differentially. It is
instead transmitted as a fixed length unsigned integer code of size 8 bits, unless this integer has the
value 255. The values 0 and 128 shall not be used – they are reserved. If the integer value is 255, this
is interpreted as a signalled value of 128.

7.3.1.2 Other coefficients

The ac coefficients are obtained by decoding the variable length codes to produce EVENTs. An
EVENT is a combination of a last non-zero coefficient indication (LAST; “0”: there are more nonzero
coefficients in this block, “1”: this is the last nonzero coefficient in this block), the number of
successive zeros preceding the coded coefficient (RUN), and the non-zero value of the coded
coefficient (LEVEL).

The most commonly occurring EVENTs for the luminance and chrominance components of intra
blocks are decoded by referring to Table 11-15. The most commonly occurring EVENTs for the
luminance and chrominance components of inter blocks are decoded be referring to Table 11-16. The
last bit “s” denotes the sign of level, “0” for positive and “1” for negative. The remaining
combinations of (LAST, RUN, LEVEL) are decoded as described in clause 7.3.1.3.

When short_video_header is 1, the most commonly occurring EVENTS are coded with the variable
length codes given in Table 11-16 (for all coefficients other than intra DC whether in intra or inter
blocks). The last bit “s” denotes the sign of level, “0” for positive and “1” for negative.

When short_video_header is 0, the variable length code table is different for intra blocks and inter
blocks.

7.3.1.3 Escape code

Many possible combinations of runs and levels have no variable length code to represent them. In
order to encode these statistically rare combinations an Escape Coding method is used. The escape
codes of DCT coefficients are encoded in four modes. The first three of these modes are used when
short_video_header is 0, and the fourth is used when short_video_header is 1. Their decoding process
is specified below.

Type 1 : ESC is followed by “0”, and the code following ESC + ”0” is decoded as a variable length
code using the standard Tcoef VLC codes given in Tables 11-15 and 11-16, but the values of LEVEL
are modified following decoding to give the restored value LEVELS, as follows:

LEVELS= sign(LEVEL+) x [abs(LEVEL+) + LMAX]

where LEVEL+ is the value after variable length decoding and LMAX is obtained from Table 11-18
and Table 11-19 as a function of the decoded values of RUN and LAST.

 ISO/IEC 14496-2 Committee Draft

139

Type 2 : ESC is followed by “10”, and the code following ESC + “10” is decoded as a variable length
code using the standard Tcoef VLC codes given in Table 11-15 and Table 11-16, but the values of
RUN are modified following decoding to give the restored value RUNS, as follows:

RUNS= RUN+ + (RMAX + 1)

where RUN+ is the value after variable length decoding. RMAX is obtained from Table 11-20 and
Table 11-21 as a function of the decoded values of LEVEL and LAST.

Type 3 : ESC is followed by “11”, and the code following ESC + “11” is decoded as fixed length
codes. This type of escape codes are represented by 1-bit LAST, 6-bit RUN and 12-bit LEVEL. Use of
this escape sequence for encoding the combinations listed in Table 11-15 and Table 11-16 prohibited.
The codes for RUN and LEVEL are given in Table 11-17.

Type 4: The fourth type of escape code is used if and only if short_video_header is 1. In this case, the
15 bits following ESC are decoded as fixed length codes represented by 1-bit LAST, 6-bit RUN and 8-
bit LEVEL. The values 0000 0000 and 1000 000 for LEVEL are not used (they are reserved).

7.3.1.4 Intra dc coefficient decoding for the case of switched vlc encoding

At the VOP layer, using quantizer value as the threshold, a 3 bit code (intra_dc_vlc_thr) allows
switching between 2 VLCs (DC Intra VLC and AC Intra VLC) when decoding DC coefficients of
Intra macroblocks, see Table 6-12.

Note: When the intra AC VLC is turned on, Intra DC coefficients are not handled separately any
more, but treated the same as all other coefficients. That means that a zero Intra DC coefficient will
not be coded but will simply increase the run for the following AC coefficients. The definitions of
MCBPC and CBPY in Section 6.3.7 6.3.6 are changed accordingly.

7.3.2 Inverse scan

This clause specifies the way in which the one dimensional data, QFS[n] is converted into a two-
dimensional array of coefficients denoted by PQF[v][u] where u and v both lie in the range of 0 to 7.
Let the data at the output of the variable length decoder be denoted by QFS[n] where n is in the range
of 0 to 63. Three scan patterns are defined as shown in Figure 7-4. The scan that shall be used is
determined by the following method. For intra blocks, if acpred_flag=0, zigzag scan is selected for all
blocks in a macroblock. Otherwise, DC prediction direction is used to select a scan on block basis.
For instance, if the DC prediction refers to the horizontally adjacent block, alternate-vertical scan is
selected for the current block. Otherwise (for DC prediction referring to vertically adjacent block),
alternate-horizontal scan is used for the current block. For all other blocks, the 8x8 blocks of
transform coefficients are scanned in the “zigzag” scanning direction.

0 1 2 3 10 11 12 13 0 4 6 20 22 36 38 52 0 1 5 6 14 15 27 28

4 5 8 9 17 16 15 14 1 5 7 21 23 37 39 53 2 4 7 13 16 26 29 42

6 7 19 18 26 27 28 29 2 8 19 24 34 40 50 54 3 8 12 17 25 30 41 43

20 21 24 25 30 31 32 33 3 9 18 25 35 41 51 55 9 11 18 24 31 40 44 53

22 23 34 35 42 43 44 45 10 17 26 30 42 46 56 60 10 19 23 32 39 45 52 54

36 37 40 41 46 47 48 49 11 16 27 31 43 47 57 61 20 22 33 38 46 51 55 60

38 39 50 51 56 57 58 59 12 15 28 32 44 48 58 62 21 34 37 47 50 56 59 61

52 53 54 55 60 61 62 63 13 14 29 33 45 49 59 63 35 36 48 49 57 58 62 63

Figure 7-4 (a) Alternate-Horizontal scan (b) Alternate-Vertical scan (c)
Zigzag scan

ISO/IEC 14496-2 Committee Draft

140

7.3.3 Intra dc and ac prediction for intra macroblocks

This clause specifies the prediction process for decoding of coefficients. When short_video_header is
“0”. When short_video_header is “1”, this prediction process is not performed.

7.3.3.1 DC and AC Prediction Direction

This adaptive selection of the DC and AC prediction direction is based on comparison of the
horizontal and vertical DC gradients around the block to be decoded. Figure 7-5 shows the three
blocks surrounding the block to be decoded. Block ‘X’, ‘A’, ‘B’ and ‘C’ respectively refer to the
current block, the previous block, the above-left block, and the block immediately above, as shown.

A

B C D

X MacroblockY

or or

Figure 7-5 Previous neighboring blocks used in DC prediction

The inverse quantized DC values of the previous decoded blocks, F[0][0], are used to determine the
direction of the DC and AC prediction as follows.

if (|FA[0][0] – FB[0][0]| < |FB[0][0] – FC[0][0]|)

predict from block C

else

predict from block A

If any of the blocks A, B or C are outside of the VOP boundary, or the video packet boundary, or they
do not belong to an intra coded macroblock, their F[0][0] values are assumed to take a value of
2(bits_per_pixel+2) and are used to compute the prediction values.

7.3.3.2 Adaptive DC Coefficient Prediction

The adaptive DC prediction method involves selection of either the F[0][0] value of immediately
previous block or that of the block immediately above it (in the previous row of blocks) depending on
the prediction direction determined above.

if (predict from block C)

QFX[0][0] = PQFX[0][0] + FC[0][0] // dc_scaler

else

QFX[0][0] = PQFX[0][0] + FA[0][0] // dc_scaler

Dc_scalar is define in Table 7-2. This process is independently repeated for every block of a
macroblock using appropriate immediately horizontally adjacent block ‘A’ and immediately vertically
adjacent block ‘C’.

DC predictions are performed similarly for the luminance and each of the two chrominance
components.

 ISO/IEC 14496-2 Committee Draft

141

7.3.3.3 Adaptive ac coefficient prediction

This process is used when ac_pred_flag = ‘1’, which indicates that AC prediction is performed when
decoding the coefficients.

Either coefficients from the first row or the first column of a previous coded block are used to predict
the co-sited coefficients of the current block. On a block basis, the best direction (from among
horizontal and vertical directions) for DC coefficient prediction is also used to select the direction for
AC coefficients prediction; thus, within a macroblock, for example, it becomes possible to predict
each block independently from either the horizontally adjacent previous block or the vertically
adjacent previous block. The AC coefficients prediction is illustrated in Figure 7-6.

A

B

X

DC

or

Macroblock

Y

or

Figure 7-6 Previous neighboring blocks and coefficients used in AC prediction

To compensate for differences in the quantization of previous horizontally adjacent or vertically
adjacent blocks used in AC prediction of the current block, scaling of prediction coefficients becomes
necessary. Thus the prediction is modified so that the predictor is scaled by the ratio of the current
quantisation stepsize and the quantisation stepsize of the predictor block. The definition is given in
the equations below.

If block ‘A’ was selected as the predictor for the block for which coefficient prediction is to be
performed, we calculate the horizontal AC prediction as follows.

X

AAi
Xi QP

QPQAC
QAC

×
= 0

'0

QFX[0][i] = PQFX[0][i] + (QFA[0][i] * QPA) // QPX

If block ‘C’ was selected as the predictor for the block for which coefficient prediction is to be
performed, we calculate the vertical AC prediction as follows.

ISO/IEC 14496-2 Committee Draft

142

X

CjC
jX QP

QPQAC
QAC

×
= 0

'0

QFX[j][0] = PQFX[j][0] + (QFC[j][0] * QPC) // QPX

If the prediction block (block 'A' or block 'C') is outside of the boundary of the VOP or video packet,
then all the prediction coefficients of that block are assumed to be zero.

7.3.4 Inverse quantisation

The two-dimensional array of coefficients, QF[v][u], is inverse quantised to produce the reconstructed
DCT coefficients. This process is essentially a multiplication by the quantiser step size. The
quantiser step size is modified by two mechanisms; a weighting matrix is used to modify the step size
within a block and a scale factor is used in order that the step size can be modified at the cost of only a
few bits (as compared to encoding an entire new weighting matrix).

Inverse
Quantisation
Arithmetic

Saturation

QF[v][u] F''[v][u] F'[v][u] F[v][u]

quant_scale_code

W[w][v][u]

Mismatch
Control

Figure 7-7 Inverse quantisation process

Figure 7-7 illustrates the overall inverse quantisation process. After the appropriate inverse
quantisation arithmetic the resulting coefficients, F''[v][u], are saturated to yield F'[v][u] and then a
mismatch control operation is performed to give the final reconstructed DCT coefficients, F[v][u].

NOTE - Attention is drawn to the fact that the method of achieving mismatch control in this
specification is identical to that employed by ISO/IEC 13818-2.

7.3.4.1 First inverse quantisation method

This clause specifies the first of the two inverse quantisation methods. . The method described here is
used when „quant_type==1“

7.3.4.1.1 Intra dc coefficient

The DC coefficients of intra coded blocks shall be inverse quantised in a different manner to all other
coefficients.

In intra blocks F’’[0][0] shall be obtained by multiplying QF[0][0] by a constant multiplier,

The reconstructed DC values are computed as follows.

 ISO/IEC 14496-2 Committee Draft

143

F’’[0][0] = dc_scaler* QF[0][0]

When short_video_header is 1, dc_scaler is 8, otherwise dc_scaler is defined in Table 7-2.

7.3.4.1.2 Other coefficients

All coefficients other than the DC coefficient of an intra block shall be inverse quantised as specified
in this clause. Two weighting matrices are used. One shall be used for intra macroblocks and the
other for non-intra macroblocks. Each matrix has a default set of values which may be overwritten by
down-loading a user defined matrix.

Let the weighting matrices be denoted by W[w][v][u] where w takes the values 0 to 1 indicating which
of the matrices is being used. W[0][v][u] is for intra macroblocks, and W[1][v][u] is for non-intra
macroblocks. The following equation specifies the arithmetic to reconstruct F''[v][u] from QF[v][u]
(for all coefficients except intra DC coefficients).

F ' ' [v][u] = ((2 × QF[v][u] + k) × W[w][v][u] × quantiser _ scale) 32

where :

k =
0 intra blocks

Sign(QF[v][u]) non - intra blocks




NOTE - The above equation uses the “/” operator as defined in 4.1.

7.3.4.2 Second inverse quantisation method

This clause specifies the second of the two inverse quantisation methods. . The method described here
is used when „quant_type==0“. The quantization parameter quantiser_scale may take integer values
from 1 to 31. The quantization stepsize is 2x quantiser_scale.

7.3.4.2.1 Dequantisation

F v u"[][] =

QF v u, [][] =0 0if

QF v u quantiser scale quantiser scale QF v u quantiser scale[][] _ _ , [][] , _× × + ≠2 0if is odd .

QF v u quantiser scale quantiser scale QF v u quantiser scale[][] _ _ , [][] , _× × + − ≠2 1 0if is even

The sign of QF[v][u] is then added to obtain F"[v][u]´: F"[v][u]= Sign(QF[v][u])x|F"[v][u]|

Clipping to [-2N_bit+3 : 2N_bit+3 +1] is performed before IDCT.

7.3.4.3 Optimised nonlinear inverse quantisation

Note: This section is valid for both quantization methods.

Within an Intra macroblock for which short_video_header is 0, luminance blocks are called type 1
blocks, chroma blocks are classified as type 2. When short_video_header is 1, the inverse quantization
of DC intra coefficients is equivalent to using a fixed value of dc_scaler = 8, as described above in
clause 7.3.4.1.1

• DC coefficients of Type 1 blocks are quantized by Nonlinear Scaler for Type 1
• DC coefficients of Type 2 blocks are quantized by Nonlinear Scaler for Type 2

Table 7-2 specifies the nonlinear dc_scaler expressed in terms of piece-wise linear characteristics.

Table 7-2 Non linear scaler for DC coefficients of DCT blocks, expressed in terms of relation
with quantizer_scale

ISO/IEC 14496-2 Committee Draft

144

Component:Type dc_scaler for quantiser_scale range

1 through 4 5 through 8 9 through 24 >= 25

Luminance: Type1 8 2x quantiser_scale quantiser_scale +8 2 x quantiser_scale -
16

Chrominance: Type2 8 (quantiser_scale +13)/2 quantiser_scale -6

The reconstructed DC values are computed as follows.

F"[0][0]= QF[0][0]x dc_scaler

7.3.4.4 Saturation

The coefficients resulting from the Inverse Quantisation Arithmetic are saturated to lie in the range
[−2bits_per_pixel + 3 , 2bits_per_pixel + 3 − 1]. Thus:

F ' [v][u] =

2047 F ' ' [v][u] > 2047

F ' ' [v][u] −2048 ≤ F ' ' [v][u] ≤ 2047

−2048 F ' ' [v][u] < −2048








7.3.4.5 Mismatch control

This mismatch control is only applicable to the first inverse quantization method. Mismatch control
shall be performed by any process equivalent to the following. Firstly all of the reconstructed,
saturated coefficients, F'[v][u] in the block shall be summed. This value is then tested to determine
whether it is odd or even. If the sum is even then a correction shall be made to just one coefficient;
F[7][7]. Thus:

sum = F ' [v][u]
u =0

u <8

∑
v=0

v <8

∑
F[v][u] = F ' [v][u] for all u , v except u = v = 7

F[7][7] =
F ' [7][7] if sum is odd

F ' [7][7] − 1 if F ' [7][7] is odd

F ' [7][7] + 1 if F ' [7][7] is even








if sum is even





 

NOTE 1 It may be useful to note that the above correction for F[7][7] may simply be implemented
by toggling the least significant bit of the twos complement representation of the
coefficient. Also since only the “oddness” or “evenness” of the sum is of interest an
exclusive OR (of just the least significant bit) may be used to calculate “sum”.

NOTE 2 Warning. Small non-zero inputs to the IDCT may result in zero output for compliant
IDCTs. If this occurs in an encoder, mismatch may occur in some pictures in a decoder
that uses a different compliant IDCT. An encoder should avoid this problem and may
do so by checking the output of its own IDCT. It should ensure that it never inserts any
non-zero coefficients into the bitstream when the block in question reconstructs to zero
through its own IDCT function. If this action is not taken by the encoder, situations can
arise where large and very visible mismatches between the state of the encoder and
decoder occur.

 ISO/IEC 14496-2 Committee Draft

145

7.3.4.6 Summary of quantiser process for method 1

In summary the inverse quantisation process is any process numerically equivalent to:

for (v=0; v<8;v++) {
for (u=0; u<8;u++) {

if (QF[v][u] == 0)
F’’[v][u] = 0;

else if ((u==0) && (v==0) && (macroblock_intra)) {
F''[v][u] = dc_scaler * QF[v][u];

} else {
if (macroblock_intra) {

F''[v][u] = (QF[v][u] * W[0][v][u] * quantiser_scale * 2) / 32;
} else {

F''[v][u] = (((QF[v][u] * 2) + Sign(QF[v][u])) * W[1][v][u]
* quantiser_scale) / 32;

}
}

}
}

sum = 0;
for (v=0; v<8;v++) {

for (u=0; u<8;u++) {
if (F’'[v][u] > 2 bits_per_pixel + 3 − 1) {

F’[v][u] = 2 bits_per_pixel + 3 − 1;
} else {

if (F’'[v][u] < -2 bits_per_pixel + 3) {
F’[v][u] = -2 bits_per_pixel + 3 ;

} else {
F’[v][u] = F'‘[v][u];

}
}

sum = sum + F’[v][u];
F[v][u] = F’[v][u];
}

}

if ((sum & 1) == 0) {
if ((F[7][7] & 1) != 0) {

F[7][7] = F'[7][7] - 1;
} else {

F[7][7] = F'[7][7] + 1;
}

}

7.3.5 Inverse DCT

Once the DCT coefficients, F[u][v] are reconstructed, the inverse DCT transform defined in Annex A

shall be applied to obtain the inverse transformed values, [][]xyf .These values shall be saturated so

that: -2N_bit ≤ f[y][x] ≤ 2N_bit – 1 , for all x, y.

ISO/IEC 14496-2 Committee Draft

146

7.4 Shape decoding

Binary shape decoding is based on a block-based representation. The primary coding methods are
block-based context-based binary arithmetic decoding and block-based motion compensation. The
primary data structure used is denoted as the binary alpha block (bab). The bab is a square block of
binary valued pixels representing the opacity/transparency for the pixels in a specified block-shaped
spatial region of size 16x16 pels. In fact, each bab is co-located with each texture macroblock.

7.4.1 Higher syntactic structures

7.4.1.1 Vol decoding

If video_object_layer_shape is equal to ‘00’ then no binary shape decoding is required. Otherwise,
binary shape decoding is carried out.

7.4.1.2 VOP decoding

If video_object_layer_shape is not equal to ‘00’ then, for each subsequent VOP, the dimensions of the
bounding box of the reconstructed VOP are obtained from:

• VOP_width
• VOP_height

 If these decoded dimensions are not multiples of 16, then the values of VOP_width and VOP_height
are rounded up to the nearest integer, which is a multiple of 16.

 Additionally, in order to facilitate motion compensation, the horizontal and spatial position of the
VOP are obtained from:

• VOP_horizontal_mc_spatial_ref
• VOP_vertical_mc_spatial_ref

 These spatial references may be different for each VOP but the same coordinate system must be used
for all VOPs within a vol. Additionally, the decoded spatial references must have an even value.

• VOP_shape_coding_type

This flag is used in error resilient mode and enables the use of intra shape codes in P-VOPs. Finally,
in the VOP class, it is necessary to decode

• change_conv_ratio_disable

This specifies whether conv_ratio is encoded at the macroblock layer.

Once the above elements have been decoded, the binary shape decoder may be applied to decode the
shape of each macroblock within the bounding box.

7.4.2 Macroblock decoding

The shape information for each macroblock residing within the bounding box of the VOP is decoded
into the form of a 16x16 bab.

7.4.2.1 Mode decoding

Each bab belongs to one of seven types listed in Table 7-3. The type information is given by the
bab_type field which influences decoding of further shape information. For I-VOPs only three out of
the seven modes are allowed as shown in Table 7-3.

Table 7-3 List of bab types

 ISO/IEC 14496-2 Committee Draft

147

bab_type Semantic Used in

0 MVDs==0 && No Update P- ,B-VOPs

1 MVDs!=0 && No Update P- ,B-VOPs

2 Transparent All VOP types

3 Opaque All VOP types

4 IntraCAE All VOP types

5 MVDs==0 && interCAE P- ,B-VOPs

6 MVDs!=0 && interCAE P- ,B-VOPs

7.4.2.1.1 I-VOPs

Suppose that f(x,y) is the bab_type of the bab located at (x,y), where x is the BAB column
number and y is the BAB row number. The code word for the bab_type at the position (i,j) is
determined as follows. A context C is computed from previously decoded bab_type’s.

C = 27*(f(i-1,j-1)-2) + 9*(f(i,j-1)-2) + 3*(f(i+1,j-1)-2) + (f(i-1,j)-2)

If f(x,y) references a bab outside the current VOP, bab_type is assumed to be transparent for that bab
(i.e. f(x,y)=2). The bab_type of babs outside the current video packet is also assumed to be
transparent. The VLC used to decode bab_type for the current bab is switched according to the value
of the context C. This context-switched VLC table is given in Table 11-26.

7.4.2.1.2 P- and B-VOPs

The decoding of the current bab_type is dependent on the bab_type of the co-located bab in the
reference VOP. The reference VOP is either a forward reference VOP or a backward reference VOP.
The forward reference VOP is defined as the most recent non-empty (i.e. VOP_coded != 0) I- or P-
VOP in the past, while the backward VOP is defined as the most recently decoded I- or P-VOP in the
future. If the current VOP is a P-VOP, the forward reference VOP is selected as the reference VOP. If
the current VOP is a B-VOP the following decision rules are applied:

1. If one of the reference VOPs is empty, the non-empty one (forward/backward) is selected as the
reference VOP for the current B-VOP.

2. If both reference VOPs are non-empty, the forward reference VOP is selected if its temporal
distance to the current B-VOP is not larger than that of the backward reference VOP, otherwise, the
backward one is chosen.

In the special cases when closed_GOV == 1 and the forward reference VOP belongs to the previous
GOV, the current B-VOP takes the backward VOP as reference.

If the sizes of the current and reference VOPs are different, some babs in the current VOP may not
have a co-located equivalent in the previous VOP. Therefore the bab_type matrix of the previous VOP
is manipulated to match the size of the current VOP. Two rules are defined for that purpose, namely a
cut rule and a copy rule:

• cut rule. If the number of lines (respectively columns) is smaller in the current VOP than in the
previous one, the bottom lines (respectively rightmost columns) are eliminated from the reference
VOP such that both VOP sizes match.

• copy rule. If the number of lines (respectively columns) is larger in the current VOP than in the
previous one, the bottom line (respectively rightmost column) is replicated as many times as
needed in the reference VOP such that both VOP sizes match.

ISO/IEC 14496-2 Committee Draft

148

An example is shown in Figure 7-8 where both rules are applied.

2 112 21 2
2 012 21 2
2 011 10 2
2 011 10 2
2 001 00 1
3 030 00 3
0 000 30 1

2 112 21
2 012 21
2 011 10
2 011 10
2 001 00
3 030 00
0 000 30

2 112 22
2 012 21
2 011 11
2 011 10
1 001 00
3 003 00
0 000 00
0 000 00

2 112 21
2 012 21
2 011 10
2 011 10
2 001 00
3 030 00
0 000 30
0 000 30

(a) (b) (c)

(d)

Previous
VOP

cut
copy

Current
VOP

Figure 7-8 Example of size fitting between current VOP and reference VOP. The numbers
represent the type of each bab.

The VLC to decode the current bab_type is switched according to the value of bab_type of the co-
located bab in the reference VOP. This context-switched VLC tables for I, P and B VOPs are given
in.Table 11-26 and Table 11-27. If the type of the bab is transparent, then the current bab is filled
with zero (transparent) values. A similar procedure is carried out if the type is opaque, where the
reconstructed bab is filled with values of 255 (opaque). For both transparent and opaque types, no
further decoding of shape-related data is required for the current bab. Otherwise further decoding
steps are necessary, as listed in Table 7-4. Decoding for motion compensation is described in Section
7.4.2.2, and cae decoding in Section 7.4.2.5.

Table 7-4 Decoder components applied for each type of bab

bab_type Motion compensation CAE decoding

0 yes no

1 yes no

2 no no

3 no no

4 no yes

5 yes yes

 ISO/IEC 14496-2 Committee Draft

149

6 yes yes

7.4.2.2 Binary alpha block motion compensation

Motion Vector of shape (MVs) is used for motion compensation (MC) of shape. The value of MVs is
reconstructed as described in section 7.4.2.3. Integer pixel motion compensation is carried out on a
16x16 block basis according to section 7.4.2.4. Overlapped MC, half sample MC and 8x8 MC are not
carried out.

If bab_type is MVDs==0 && No Update or MVDs!=0 && No Update then the motion compensated
bab is taken to be the decoded bab, and no further decoding of the bab is necessary. Otherwise, cae
decoding is required.

7.4.2.3 Motion vector decoding

If bab_type indicates that MVDs!=0, then mvds_x and mvds_y are VLC decoded. For decoding
mvds_x, the VLC given in Table 11-28 is used. The same table is used for decoding mvds_y, unless
the decoded value of mvds_x is zero. If MVDs = 0, the VLC given in Table 11-29 is used for decoding
mvds_y. If bab_type indicates that MVDs==0, then both mvds_x and mvds_y are set to zero.

The integer valued shape motion vector MVs=(MVs_x,MVs_y) is determined as the sum of a
predicted motion vector MVPs and MVDs = (MVDs_x,MVDs_y), where MVPs is determined as
follows.

MVPs is determined by analysing certain candidate motion vectors of shape (MVs) and motion
vectors of selected texture blocks (MV) around the MB corresponding to the current bab. They are
located and denoted as shown in Figure 7-9 where MV1, MV2 and MV3 are rounded up to integer
values towards 0. If the selected texture block is a field predicted macroblock, then MV1, MV2 or
MV3 are generated by averaging the two field motion vectors and rounding toward zero. Regarding
the texture MVs, the convention is that a MB possessing only 1 MV is considered the same as a MB
possessing 4 MVs, where the 4 MVs are equal. By traversing MVs1, MVs2, MVs3, MV1, MV2 and
MV3 in this order, MVPs is determined by taking the first encountered MV that is defined. That is,
for INTER coded MBs, there will exist a defined motion vector for texture. For BABs, with bab_type
= 0,1,5 or 6, there will exist a defined motion vector of shape. No valid motion vectors will exist in
INTRA coded MBs and BABs. If no candidate motion vectors is defined, MVPs = (0,0).

In the case that video_object_layer_shape is “binary_only” or VOP_coding_type indicates B-VOP,
MVPs is determined by considering the motion vectors of shape (MVs1, MVs2 and MVs3) only. The
following sections explain the definition of MVs1, MVs2, MVs3, MV1, MV2 and MV3 of in more
detail.

ISO/IEC 14496-2 Committee Draft

150

Defining candidate predictors from texture motion vectors:

One shape motion vector predictor MVi (i =1,2,3) is defined for each block located around the
current bab according to Figure 7-9. The definition only depends on the transparency of the reference
MB. MVi is set to the corresponding block vector as long as it is in a non-transparent reference MB,
otherwise, it is not defined. Note that if a reference MB is outside the current VOP or video packet, it
is treated as a transparent MB.

Defining candidate predictors from shape motion vectors:

The candidate motion vector predictors MVsi are defined by the shape motion vectors of neighbouring
bab located according to Figure 7-9 (1). The MVsi are defined according to Table 7-5.

Table 7-5 Definition of candidate shape motion vector predictors MVs1, MVs2, and MVs3 from
shape motion vectors for P and B-VOPs. Note that interlaced modes are not included

Shape mode of reference MB MVsi for each reference shape block-i (a shape block is 16x16)

MVDs == 0 or MVDs !=0

bab_type 0, 1, 5,6

The retrieved shape motion vector of the said reference MB is
defined as MVsi . Note that MVsi is defined, and hence valid, even if
the reconstructed shape block is transparent.

all_0, bab_type 2 MVsi is undefined

all=255, bab_type 3 MVsi is undefined

Intra, bab_type 4 MVsi is undefined

If the reference MB is outside of the current video packet, MVi and MVsi are undefined.

7.4.2.4 Motion compensation

For inter mode babs (bab_type = 0,1,5 or 6), motion compensation is carried out by simple MV
displacement according to the MVs.

Specifically, when bab_type is equal to 0 or 1 i.e. for the no-update modes, a displaced block of 16x16
pixels is copied from the binary alpha map of the previously decoded I or P VOP for which
VOP_coded is not equal to ‘0’. When the bab_type is equal to 5 or 6 i.e. when interCAE decoding is
required, then the pixels immediately bordering the displaced block (to the left, right, top and bottom)
are also copied from the most recent valid reference VOP’s (as defined in Section 6.3.6) binary alpha
map into a temporary shape block of 18x18 pixels size (see Figure 7-12). If the displaced position is
outside the bounding box, then these pixels are assumed to be “transparent”.

(1) MV for shape (2) MV for texture

Corresponding texture
macroblock (16x16)

Current shape
macroblock

MVs1

MVs2 MVs3

MV1

MV2 MV3
Block (8x8)

Figure 7-9 Candidates for MVPs

 ISO/IEC 14496-2 Committee Draft

151

7.4.2.5 Context based arithmetic decoding

Before decoding the binary_arithmetic_code field, border formation (see Section 7.4.2.5.2) needs to be
carried out. Then, if the scan_type field is equal to 0, the bordered to-be decoded bab and the eventual
bordered motion compensated bab need to be transposed (as for matrix transposition). If
change_conv_rate_disable is equal to 0, then conv_ratio is decoded to determine the size of the sub-
sampled BAB, which is 16/conv_ratio by 16/conv_ratio pixels large. If change_conv_rate_disable is
equal to 1, then the decoder assumes that the bab is not subsampled and thus the size is simply 16x16
pixels. Binary_arithmetic_code is then decoded by a context-based arithmetic decoder as follows. The
arithmetic decoder is firstly initialised (see Section 7.4.3.3). The pixels of the sub-sampled bab are
decoded in raster order. At each pixel,

1. A context number is computed based on a template, as described in Section 7.4.2.5.1.

2. The context number is used to access the probability table (Table 11-28).

3. Using the accessed probability value, the next bits of binary_arithmetic_code are decoded by the
arithmetic decoder to give the decoded pixel value.

When all pixels in sub-sampled BAB have been decoded, the arithmetic decoder is terminated (see
Section 7.4.3.6).

If the scan_type field is equal to 0, the decoded bab is transposed. Then up-sampling is carried out if
conv_ratio is different from 1, as described in Section 7.4.2.5.3. Then the decoded bab is copied into
the decoded shape map.

7.4.2.5.1 Context computation

For INTRA coded BABs, a 10 bit context ∑ ⋅=
k

k
kcC 2 is built for each pixel as illustrated in Figure

7-10 (a), where ck==0 for transparent pixels and ck==1 for opaque pixels.

c6 c5

c7

 ?

c9 c8

c4

c1

c3 c2

c0

c3

 ?

c2 c1

c0 c7

c4

c6 c5

c8

Current BAB
Motion compensated

BAB

(a) (b)

Figure 7-10 (a) The INTRA template (b) The INTER template where c6 is aligned with the pixel
to be decoded. The pixel to be decoded is marked with ‘?’.

For INTER coded BABs, temporal redundancy is exploited by using pixels from the bordered motion
compensated BAB (depicted in Figure 7-12) to make up part of the context. Specifically, a 9 bit

context C = ck ⋅2 k

k
∑ is built as illustrated in Figure 7-10 (b).

ISO/IEC 14496-2 Committee Draft

152

There are some special cases to note.

• When building contexts, any pixels outside the bounding box of the current VOP to the left and
above are assumed to be zero (transparent).

• When building contexts, any pixels outside the space of the current video packet to the left and
above are assumed to be zero (transparent).

• The template may cover pixels from BABs which are unknown at decoding time. Unknown pixels
are defined as area U in Figure 7-11. The values of these unknown pixels are defined by the
following procedure:

• When constructing the INTRA context, the following steps are taken in the sequence

1. if (c7 is unknown) c7=c8,

2. if (c3 is unknown) c3=c4,

3. if (c2 is unknown) c2=c3.

• When constructing the INTER context, the following conditional assignment is
performed.

if (c1 is unknown) c1=c2

7.4.2.5.2 Border formation

When decoding a BAB, pixels from neighbouring BABs can be used to make up the context. For both
the INTRA and INTER cases, a 2 pixel wide border about the current BAB is used where pixels
values are known, as depicted in Figure 7-11.

 A

 D

 C B

Current BAB

 U

Figure 7-11 Bordered BAB. A: TOP_LEFT_BORDER. B: TOP_BORDER. C:
TOP_RIGHT_BORDER. D: LEFT_BORDER. U: pixels which are unknown when decoding the

current BAB.

If the value of conv_ratio is not equal to 1, a sub-sampling procedure is further applied to the BAB
borders for both the current BAB and the motion compensated BAB.

The border of the current BAB is partitioned into 4:

 ISO/IEC 14496-2 Committee Draft

153

• TOP_LEFT_BORDER, which contains pixels from the BAB located to the upper-left of the
current BAB and which consists of 2 lines of 2 pixels

• TOP_BORDER, which contains pixels from the BAB located above the current BAB and which
consists of 2 lines of 16 pixels

• TOP_RIGHT_BORDER, which contains pixels from the BAB located to the upper-right of the
current BAB and which consists of 2 lines of 2 pixels

• LEFT_BORDER, which contains pixels from the BAB located to the left of the current BAB and
which consists of 2 columns of 16 pixels

 The TOP_LEFT_BORDER and TOP_RIGHT_BORDER are not sub-sampled, and kept as they are.
The TOP_BORDER and LEFT_BORDER are sub-sampled such as to obtain 2 lines of 16/conv_ratio
pixels and 2 columns of 16/conv_ratio pixels, respectively.

 The sub-sampling procedure is performed on a line-basis for TOP_BORDER, and a column-basis for
LEFT_BORDER. For each line (respectively column), the following algorithm is applied: the line
(respectively column) is split into groups of conv_ratio pixels. For each group of pixels, one pixel is
associated in the sub-sampled border. The value of the pixel in the sub-sampled border is OPAQUE if
half or more pixels are OPAQUE in the corresponding group. Otherwise the pixel is
TRANSPARENT.

A

 D

 C B Motion compensated
BAB

 Figure 7-12 Bordered motion compensated BAB. A: TOP_BORDER. B: LEFT_BORDER. C:
RIGHT_BORDER. D: BOTTOM_BORDER.

 In the case of a motion compensated BAB, the border is also partitioned into 4, as shown Figure 7-12:

• TOP_BORDER, which consists of a line of 16 pixels
• LEFT_BORDER, which consists of a column of 16 pixels
• RIGHT_BORDER, which consists of a column of 16 pixels
• BOTTOM_BORDER, which consists of a line of 16 pixels

The very same sub-sampling process as described above is applied to each of these borders.

ISO/IEC 14496-2 Committee Draft

154

7.4.2.5.3 Upsampling

When conv_ratio is different from 1, up-sampling is carried out for the BAB. This is illustrated in
Figure 7.13 where “O” in this figure is the coded pixel and “X” is the interpolated pixel. To compute
the value of the interpolated pixel, a filter context from the neighboring pixels is first calculated. For
the pixel value calculation, the value of “0” is used for a transparent pixel, and “1” for an opaque
pixel. The values of the interpolated pixels (Pi, i=1,2,3,4, as shown in Figure 7-14) can then be
determined by the following equation:

P1 : if(4*A + 2*(B+C+D) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

P2 : if(4*B + 2*(A+C+D) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

P3 : if(4*C + 2*(B+A+D) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

P4 : if(4*D + 2*(B+C+A) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

The 8-bit filter context, Cf, is calculated as follows:

C cf k
k

k

= ⋅∑ 2

Based on the calculated Cf, the threshold value (Th[Cf]) can be obtained from the look-up table as
follows:

Th[256] = {
 3, 6, 6, 7, 4, 7, 7, 8, 6, 7, 5, 8, 7, 8, 8, 9,
 6, 5, 5, 8, 5, 6, 8, 9, 7, 6, 8, 9, 8, 7, 9, 10,
 6, 7, 7, 8, 7, 8, 8, 9, 7, 10, 8, 9, 8, 9, 9, 10,
 7, 8, 6, 9, 6, 9, 9, 10, 8, 9, 9, 10, 11, 10, 10, 11,
 6, 9, 5, 8, 5, 6, 8, 9, 7, 10, 10, 9, 8, 7, 9, 10,
 7, 6, 8, 9, 8, 7, 7, 10, 8, 9, 9, 10, 9, 8, 10, 9,
 7, 8, 8, 9, 6, 9, 9, 10, 8, 9, 9, 10, 9, 10, 10, 9,
 8, 9, 11, 10, 7, 10, 10, 11, 9, 12, 10, 11, 10, 11, 11, 12,
 6, 7, 5, 8, 5, 6, 8, 9, 5, 6, 6, 9, 8, 9, 9, 10,
 5, 8, 8, 9, 6, 7, 9, 10, 6, 7, 9, 10, 9, 10, 10, 11,
 7, 8, 6, 9, 8, 9, 9, 10, 8, 7, 9, 10, 9, 10, 10, 11,
 8, 9, 7, 10, 9, 10, 8, 11, 9, 10, 10, 11, 10, 11, 9, 12,
 7, 8, 6, 9, 8, 9, 9, 10, 10, 9, 7, 10, 9, 10, 10, 11,
 8, 7, 7, 10, 7, 8, 8, 9, 9, 10, 10, 11, 10, 11, 11, 12,
 8, 9, 9, 10, 9, 10, 10, 9, 9, 10, 10, 11, 10, 11, 11, 12,
 9, 10, 10, 11, 10, 11, 11, 12, 10, 11, 11, 12, 11, 12, 12, 13 };

TOP_LEFT_BORDER, TOP_RIGHT_BORDER, sub-sampled TOP_BORDER and sub-sampled
LEFT_BORDER described in the previous section are used. The other pixels outside the BAB are
extended from the outermost pixels inside the BAB as shown in Figure 7-13.

In the case that conv_ratio=4, the interpolation is processed twice. The above mentioned borders of
4x4 BAB are used for the interpolation from 4x4 to 8x8, and top-border (resp. left-border) for the
interpolation from 8x8 to 16x16 are up-sampled from the 4x4 BAB top-border (resp. left-border) by
simple repetition.

When the BAB is on the left (and/or top) border of VOP, the borders outside VOP are set to zero
value. The upsampling filter should be constrained to avoid using pixel values outside of the current
video packet.

 ISO/IEC 14496-2 Committee Draft

155

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

BAB

X

X

X

X

P1 P2

P4 P3

A

CD

B

Figure 7-13 Upsampling

A B

D C

E(C1) F(C0)

G(C7)

H(C6)

I(C5)J(C4)

K(C3)

L(C2)

P 1

A B

D C

E(C3) F(C2)

G(C1)

H(C0)

I(C7)J(C6)

K(C5)

L(C4)

P 2

A B

D C

E(C7) F(C6)

G(C5)

H(C4)

I(C3)J(C2)

K(C1)

L(C0)

P 4

A B

D C

E(C5) F(C4)

G(C3)

H(C2)

I(C1)J(C0)

K(C7)

L(C6)

P 3

(a) P1 (b) P2

(c) P3 (d) P4

ISO/IEC 14496-2 Committee Draft

156

Figure 7-14 Interpolation filter and interpolation construction.

7.4.2.5.4 Down-sampling process in inter case

If bab_type is ‘5’ or ‘6’ (see Table 7.3), downsampling of the motion compensated bab is needed for
calculating the 9 bit context in the case that conv_ratio is not 1. The motion compensated bab of size
16x16 pixels is down sampled to bab of size 16/conv_ratio by 16/conv_ratio pixels by the following
rules:

• conv_ratio==2

 If the average of pixel values in 2 by 2 pixel block is equal to or greater than 127.5 the pixel value
of the downsampled bab is set to 255 otherwise it is set to 0.

• conv_ratio==4

 If the average of pixel values in 4 by 4 pixel block is equal to or greater than 127.5 the pixel value
of the downsampled bab is set to 255 otherwise it is set to 0.

7.4.3 Arithmetic decoding

Arithmetic decoding consists of four main steps:

• Removal of stuffed bits
• Initialization which is performed prior to the decoding of the first symbol
• Decoding of the symbol themselves. The decoding of each symbol may be followed by a re-

normalization step.
• Termination which is performed after the decoding of the last symbol

7.4.3.1 Registers, symbols and constants

Several registers, symbols and constants are defined to describe the arithmetic decoder.

• HALF: 32-bit fixed point constant equal to ½ (0x80000000)
• QUARTER: 32-bit fixed point constant equal to ¼ (0x40000000)
• L: 32-bit fixed point register. Contains the lower bound of the interval
• R: 32-bit fixed point register. Contains the range of the interval.
• V: 32-bit fixed point register. Contains the value of the arithmetic code. V is always larger than

or equal to L and smaller than L+R.
• p0: 16-bit fixed point register. Probability of the ‘0’ symbol.
• p1: 16-bit fixed point register. Probability of the ‘1’ symbol.
• LPS: boolean. Value of the least probable symbol (‘0’ or ‘1’).
• bit: boolean. Value of the decoded symbol.
• pLPS: 16-bit fixed point register. Probability of the LPS.
• rLPS: 32-bit fixed point register. Range corresponding to the LPS.

7.4.3.2 Bit stuffing

In order to avoid start code emulation, 1’s are stuffed into the bitstream whenever there are too many
successive 0’s. If the first MAX_HEADING bits are 0’s, then a 1 is transmitted after the
MAX_HEADING-th 0. If more than MAX_MIDDLE 0’s are sent successively a 1 is inserted after the
MAX_MIDDLE-th 0. If the number of trailing 0’s is larger than MAX_TRAILING, then a 1 is
appended to the stream. The decoder shall properly skip these inserted 1’s when reading data into the
V register (see Section 7.4.3.3 and 7.4.3.5).

MAX_HEADING equals 3, MAX_MIDDLE equals 10, and MAX_TRAILIING equals 2.

 ISO/IEC 14496-2 Committee Draft

157

7.4.3.3 Initialization

The lower bound L is set to 0, the rangeR to HALF-0x1 (0x7fffffff) and the first 31 bits are read in
register V.

7.4.3.4 Decoding a symbol

When decoding a symbol, the probability p0 of the ‘0’ symbol is provided according to the context
computed in Section 7.4.2.5.1 and using Table 11-32. p0 uses a 16-bit fixed-point number
representation. Since the decoder is binary, the probability of the ‘1’ symbol is defined to be 1 minus
the probability of the ‘0’ symbol, i.e. p1 = 1-p0.

The least probable symbol LPS is defined as the symbol with the lowest probability. If both
probabilities are equal to ½ (0x8000), the ‘0’ symbol is considered to be the least probable.

The range rLPS associated with the LPS may simply be computed as R*pLPS: The 16 most
significant bits of register R are multiplied by the 16 bits of pLPS to obtain the 32 bit rLPS number.

The interval [L,L+R) is split into two intervals [L,L+R-rLPS) and [L+R-rLPS,L+R). If V is in the
latter interval then the decoded symbol is equal to LPS. Otherwise the decoded symbol is the opposite
of LPS. The interval [L,L+R) is then reduced to the sub-interval in which V lies.

After the new interval has been computed, the new range R might be smaller than QUARTER. If so,
re-normalization is carried out, as described below.

7.4.3.5 Re-normalization

As long as R is smaller than QUARTER, re-normalization is performed.

• If the interval [L,L+R) is within [0,HALF), the interval is scaled to [2L,2L+2R). V is scaled to
2V.

• If the interval [L,L+R) is within [HALF,1) the interval is scaled to [2(L-HALF),2(L-HALF)+2R).
V is scaled to 2(V-HALF).

• Otherwise the interval is scaled to [2(L-QUARTER),2(L-QUARTER)+2R). V is scaled to 2(V-
QUARTER).

After each scaling, a bit is read and copied into the least significant bit of register V.

7.4.3.6 Termination

After the last symbol has been decoded, additional bits need to be “consumed”. They were introduced
by the encoder to guarantee decodability.

In general 3 further bits need to be read. However, in some cases, only two bits need to be read. These
cases are defined by:

• if the current interval covers entirely [QUARTER,HALF)
• if the current interval covers entirely [HALF, 3QUARTER)

After these additional bits have been read, 32 bits shall be “unread”, i.e. put the content of register V
back into the bit buffer.

7.4.3.7 Software

The example software for arithmetic decoding for binary shape decoding is included in Annex B.

ISO/IEC 14496-2 Committee Draft

158

7.4.3.8 7.4.4.6 Method to be used when blending with greyscale alpha signal

The following explains the blending method to be applied to the video object in the compositor, which
is controlled by the composition_method flag and the linear_composition flag. The
linear_composition flag is informative only, and the decoder may ignore it and proceed as if it had
the value 0. However, it is normative that the composition_method flag be acted upon.

The descriptions below show the processing taking place in YUV space; note that the processing can
of course be implemented in RGB space to obtain equivalent results.

composition_method=0 (cross-fading)

If layer N, with an n-bit alpha signal, is overlaid over layer M to generate a new layer P, the
composited Y, U, V and alpha values are:

 Pyuv = ((2n-1 - Nalpha) * Myuv + (Nalpha * Nyuv)) / (2n-1)

 Palpha = (2n-1)

composition_method=1 (Additive mixing)

If layer N, with an n-bit alpha signal, is overlaid over layer M to generate a new layer P, the
composited Y, U, V and alpha values are:

{ Myuv Nalpha = 0

Pyuv = {

{ (Myuv - BLACK) - ((Myuv - BLACK) * Nalpha) / (2n-1)+ Nyuv Nalpha > 0

(this is equivalent to Pyuv = Myuv*(1-alpha) + Nyuv, taking account of black level and the fact that
the video decoder does not produce an output in areas where alpha=0)

Palpha = Nalpha + Malpha - (Nalpha*Malpha) / (2n-1)

where

BLACK is the common black value of foreground and background objects.

NOTE The compositor must convert foreground and background objects to the same black value and
signal range before composition. The black level of each video object is specified by the video_range
bit in the video_signal_type field, or by the default value if the field is not present. (The RGB values
of synthetic objects are specified in a range from 0 to 1, as described in ISO/IEC 14496-1).

• linear_composition = 0: The compositing process is carried out using the video signal in the
format from which it is produced by the video decoder, that is, without converting to linear
signals. Note that because video signals are usually non-linear (“gamma-corrected”), the
composition will be approximate.

• linear_composition = 1: The compositing process is carried out using linear signals, so the
output of the video decoder is converted to linear if it was originally in a non-linear form, as
specified by the video_signal_type field. Note that the alpha signal is always linear, and therefore
requires no conversion.

7.4.4 Grayscale Shape Decoding

Grayscale alpha plane decoding is achieved by the separate decoding of a support region and the
values of the alpha channel. The support function is transmitted by using the binary shape as
described above. The alpha values are transmitted as texture data with arbitrary shape, using almost
the same coding method as is used for the luminance texture channel.

 ISO/IEC 14496-2 Committee Draft

159

Gray-Level
Alpha

Support Texture

Binary
Shape Coder

Texture Coder

All samples which are indicated to be transparent by the binary shape data, must be set to zero in the
decoded grayscale alpha plane. Within the VOP, alpha samples have the values produced by the
grayscale alpha decoding process. Decoding of binary shape information is not dependent on the
decoding of grayscale alpha. The alpha values are decoded into 16x16 macroblocks in the same way
as the luminance channel (see sections 7.3 and 7.5). The 16x16 blocks of alpha values are referred to as
alpha macroblocks hereafter. The data for each alpha macroblock is present in the bitstream
immediately following the texture data for the corresponding texture macroblock. Any aspect of alpha
decoding that is not covered in this document should be assumed to be the same as for the decoding of
luminance.

7.4.4.1 Grayscale Alpha COD Modes

When decoding grayscale alpha macroblocks, CODA is first encountered and indicates the coding
status for alpha. It is important to understand that the macroblock syntax elements for alpha are still
present in the bitstream for P or B macroblocks even if the texture syntax elements indicate “not-
coded” (not_coded=’1’). In this respect, the decoding of the alpha and texture data are independent.
The only exception is for BVOPs when the colocated PVOP texture macroblock is skipped. In this
case, no syntax is transmitted for texture or grayscale alpha, as both types of macroblock are skipped.

For macroblocks which are completely transparent (indicated by the binary shape coding), no alpha
syntax elements are present and the grayscale alpha samples must all be set to zero (transparent). If
CODA=”all opaque” (I, P or B macroblocks) or CODA=”not coded” (P or B macroblocks) then no
more alpha data is present. Otherwise, other alpha syntax elements follow, including the coded block
pattern (CBPA), followed by alpha texture data for those 8x8 blocks which are coded and non-
transparent, as is the case for regular luminance macroblock texture data.

When CODA=”all opaque”, the corresponding decoded alpha macroblock is filled with a constant
value of 255. This value will be called AlphaOpaqueValue.

7.4.4.2 Alpha Plane Scale Factor

For both binary and grayscale shape, the VOP header syntax element “VOP_constant_alpha” can be
used to scale the alpha plane. If this bit is equal to ‘1’, then each pixel in the decoded VOP is scaled
before output, using VOP_constant_alpha_value. The scaling formula is:

scaled_pixel = (original_pixel * (VOP_constant_alpha_value + 1)) / 256

Scaling is applied at the output of the decoder, such that the decoded original values, not the scaled
values are used as the source for motion compensation.

ISO/IEC 14496-2 Committee Draft

160

7.4.4.3 Gray Scale Quantiser

When no_gray_quant_update is equal to “1”, the grayscale alpha quantiser is fixed for all
macroblocks to the value indicated by VOP_alpha_quant. Otherwise, the grayscale quantiser is reset
at each new macroblock to a value that depends on the current texture quantiser (after any update by
dquant). The relation is:

current_alpha_quant = (current_texture_quant * VOP_alpha_quant) / VOP_quant

The resulting value of current_alpha_quant must then be clipped so that it never becomes less than 1.

7.4.4.4 Intra Macroblocks

When the texture mb_type indicates an intra macroblock in IVOPs or PVOPs, the grayscale alpha
data is also decoded using intra mode.

The intra dc value is decoded in the same way as for luminance, using the same non-linear transform
to convert from alpha_quant to DCScalarA. However, intra_dc_vlc_thr is not used for alpha, and
therefore AC coeffiecient VLCs are never used to code the differential intra dc coefficient.

DC prediction is used in the same way as for luminance. However, when CODA_I indicates that a
macroblock is all opaque, a synthetic intra dc value is created for each block in the current macroblock
so that adjacent macroblocks can correctly obtain intra dc prediction values. The synthetic intra dc
value is given as:

BlockIntraDC = (((AlphaOpaqueValue * 8) + (DcScalerA>>1)) / DcScalerA) * DcScalerA

AlphaOpaqueValue is described in Section 7.4.4.1.

The intra CBPA VLC makes use of the inter CBPY VLC table, but the intra alpha block DCT
coefficients are decoded in the same manner as with luminance intra macroblocks.

7.4.4.5 Inter Macroblocks and Motion Compensation

Motion compensation is carried out for PVOPs and BVOPs, using the 8x8 or 16x16 luminance motion
vectors, in the same way as for luminance data, except that regular motion compensation is used
instead of OBMC. Forward, backward, bidirectional and direct mode motion compensation are used
for BVOPs. Where the luminance motion vectors are not present because the texture macroblock is
skipped, the exact same style of non-coded motion compensation used for luminance is applied to the
alpha data (but without OBMC). Note that this does not imply that the alpha macroblock is skipped,
because an error signal to update the resulting motion compensated alpha macroblock may still be
present if indicated by CODA_PB. When the colocated PVOP texture macroblock is skipped for
BVOPs, then the alpha macroblock is assumed to be skipped with no syntax transmitted.

CBPA and the alpha inter DCT coefficients are decoded in the same way as with luminance CBPY
and inter DCT cofficients

7.5 Motion compensation decoding

In order to perform motion compensated prediction on a per VOP basis, a special padding technique,
i.e. the macroblock-based repetitive padding, is applied for the reference VOP. The details of these
techniques are described in the following sections.

Since a VOP may have arbitrary shape, and this shape can change from one instance to another,
conventions are necessary to ensure the consistency of the motion compensation process.

 ISO/IEC 14496-2 Committee Draft

161

The absolute (frame) coordinate system is used for referencing every VOP. At every given instance, a
bounding rectangle that includes the shape of that VOP, as described in section 7.4, is defined. The
left and top corner, in the absolute coordinates, of the bounding box is decoded from VOP spatial
reference. Thus, the motion vector for a particular feature inside a VOP, e.g. a macroblock, refers to
the displacement of the feature in absolute coordinates. No alignment of VOP bounding boxes at
different time instances is performed.

In addition to the above motion compensation processing, two additional processes are supported,
namely, unrestricted motion compensation and four MV motion compensation. Also, an optimal, an
overlapped motion compensation can be performed. Note that in all three modes, macroblock-based
padding of the arbitrarily shaped reference VOP is performed for motion compensation.

7.5.1 Padding process

The padding process defines the values of luminance and chrominance samples outside the VOP for
prediction of arbitrarily shaped objects. Figure 7-15 shows a simplified diagram of this process.

Vertical
Repetitive
Padding

Extended
Padding

Horizontal
Repetitive
Padding

Saturation

Σ

Predictions

Framestores

f [y][x]

d [y][x]

s [y][x]

s’ [y][x]

hor_pad [y][x] hv_pad [y][x]

d’ [y][x]

Figure 7-15 Simplified padding process

A decoded macroblock d[y][x] is padded by referring to the corresponding decoded shape block
s[y][x]. The luminance component is padded per 16 x 16 samples, while the chrominance
components are padded per 8 x 8 samples. A macroblock that lies on the VOP boundary (hereafter
referred to as a boundary macroblock) is padded by replicating the boundary samples of the VOP
towards the exterior. This process is divided into horizontal repetitive padding and vertical repetitive
padding. The remaining macroblocks that are completely outside the VOP (hereafter referred to as
exterior macroblocks) are filled by extended padding.

Note - The padding process is applied to all macroblocks inside the bounding rectangle of a VOP. The
bounding rectangle of the luminance component is defined by VOP_width and VOP_height extended
to multiple of 16, while that of the chrominance components is defined by (VOP_width>>1) and
(VOP_height>>1) extended to multiple of 8.

ISO/IEC 14496-2 Committee Draft

162

7.5.1.1 Horizontal repetitive padding

Each sample at the boundary of a VOP is replicated horizontally to the left and/or right direction in
order to fill the transparent region outside the VOP of a boundary macroblock. If there are two
boundary sample values for filling a sample outside of a VOP, the two boundary samples are averaged
(//2).

hor_pad[y][x] is generated by any process equivalent to the following example. For every line with at
least one shape sample s[y][x] == 1(inside the VOP) :

for (x=0; x<N; x++) {
if (s[y][x] == 1) { hor_pad[y][x] = d[y][x]; s’[y][x] = 1; }
else {

if (s[y][x’] == 1 && s[y][x”] == 1) {
hor_pad[y][x] = (d[y][x’]+ d[y][x”])//2;
s’[y][x] = 1;

} else if (s[y][x’] == 1) {
hor_pad[y][x] = d[y][x’]; s’[y][x] = 1;

} else if (s[y][x”] == 1) {
hor_pad[y][x] = d[y][x”]; s’[y][x] = 1;

}
}

}

where x’ is the location of the nearest valid sample (s[y][x’] == 1) at the VOP boundary to the left of
the current location x, x” is the location of the nearest boundary sample to the right, and N is the
number of samples of a line. s’[y][x] is initialized to 0.

7.5.1.2 Vertical repetitive padding

The remaining unfilled transparent horizontal samples (where s’[y][x] == 0) from Section 7.5.1.1 are
padded by a similar process as the horizontal repetitive padding but in the vertical direction. The
samples already filled in Section 7.5.1.1 are treated as if they were inside the VOP for the purpose of
this vertical pass.

hv_pad[y][x] is generated by any process equivalent to the following example. For every column of
hor_pad[y][x] :

for (y=0; y<M; y++) {
if (s’[y][x] == 1)

hv_pad[y][x] =hor_pad[y][x];
else {

if (s’[y’][x] == 1 && s’[y”][x] == 1)
hv_pad[y][x] = (hor_pad[y’][x] +

hor_pad[y”][x])//2;
else if (s’[y’][x] == 1)

hv_pad[y][x] = hor_pad[y’][x];
else if (s’[y”][x] == 1)

hv_pad[y][x] = hor_pad[y”][x];
}

}

where y’ is the location of the nearest valid sample (s’[y’][x] == 1) above the current location y at the
boundary of hv_pad, y” is the location of the nearest boundary sample below y, and M is the number
of samples of a column.

 ISO/IEC 14496-2 Committee Draft

163

7.5.1.3 Extended padding

Exterior macroblocks immediately next to boundary macroblocks are filled by replicating the samples
at the border of the boundary macroblocks. Note that the boundary macroblocks have been completely
padded in Section 7.5.1.1 and Section 7.5.1.2. If an exterior macroblock is next to more than one
boundary macroblocks, one of the macroblocks is chosen, according to the following convention, for
reference.

The boundary macroblocks surrounding an exterior macroblock are numbered in priority according to
Figure 7-16. The exterior macroblock is then padded by replicating upwards, downwards, leftwards,
or rightwards the row of samples from the horizontal or vertical border of the boundary macroblock
having the largest priority number.

The remaining exterior macroblocks (not located next to any boundary macroblocks) are filled with
2bits_pixel-1. For 8-bit luminance component and associated chrominance this implies filling with 128.

Exterior
macroblock

Boundary
macroblock 3

Boundary
macroblock 0

Boundary
macroblock 1

Boundary
macroblock 2

Figure 7-16 Priority of boundary macroblocks surrounding an exterior macroblock

7.5.1.4 Padding for chrominance components

Chrominance components are padded according to clauses 7.5.1.1 through 7.5.1.3 for each 8 x 8
block. The padding is performed by referring to a shape block generated by decimating the shape
block of the corresponding luminance component. The similar rule is applied to interlaced video based
on field to enhance subjective quality of display in 4:2:0 format. For each 2 x 2 adjacent luminance
shape samples of the same fields, the corresponding chrominance shape sample is set to 1 if any of the
four luminance samples are 1. Otherwise the chrominance shape sample is set to 0. For each 2 x 2
adjacent luminance shape samples, the corresponding chrominance shape sample is set to 1 if any of
the four luminance shape samples are 1. Otherwise the chrominance shape sample is set to 0.

7.5.1.5 Padding of interlaced macroblocks

Macroblocks of interlaced VOP (interlaced = 1) are padded according to clauses 7.5.1.1 through
7.5.1.3. The vertical padding of the luminance component, however, is performed for each field
independently. A sample outside of a VOP is therefore filled with the value of the nearest boundary
sample of the same field. Completely transparent blocks are padded with 128.

ISO/IEC 14496-2 Committee Draft

164

7.5.1.6 Vector padding technique

The vector padding technique is applied to generate the vectors for the transparent blocks within a
non-transparent macroblock, for an INTRA-coded macroblock and for a skipped macroblock. It
works in a similar way as the horizontal followed by the vertical repetitive padding, and can be simply
regarded as the repetitive padding performed on a 2x2 block except that the padded values are two
dimensional vectors. A macroblock has four 8x8 luminance blocks, let {MVx[i], MVy[i], i=0,1,2,3}
and {Transp[i], i=0,1,2,3} be the vectors and the transparencies of the four 8x8 blocks, respectively,
the vector padding is any process numerically equivalent to:

if (the macroblock is INTRA-coded, skipped) {
MVx[0] = MVx[1] = MVx[2] = MVx[3] = 0
MVy[0] = MVy[1] = MVy[2] = MVy[3] = 0

} else {
if(Transp[0] == TRANSPARENT) {

 MVx[0]=(Transp[1] != TRANSPARENT) ? MVx[1] :((Transp[2]!=TRANSPARENT) ?
MVx[2]:MVx[3]));

 MVy[0]=(Transp[1] != TRANSPARENT) ? MVy[1]:((Transp[2]!=TRANSPARENT) ?
MVy[2]:MVy[3]));

 }
if(Transp[1] == TRANSPARENT) {
 MVx[1]=(Transp[0] != TRANSPARENT) ? MVx[0] :((Transp[3]!=TRANSPARENT) ?

MVx[3]:MVx[2]));
 MVy[1]=(Transp[0] != TRANSPARENT) ? MVy[0]:((Transp[3]!=TRANSPARENT) ?

MVy[3]:MVy[2]));
}
if(Transp[2] == TRANSPARENT) {
 MVx[2]=(Transp[3] != TRANSPARENT) ? MVx[3] :((Transp[0]!=TRANSPARENT) ?

MVx[0]:MVx[1]));
 MVy[2]=(Transp[3] != TRANSPARENT) ? MVy[3]:((Transp[0]!=TRANSPARENT) ?

MVy[0]:MVy[1]));
}
if(Transp[3] == TRANSPARENT) {
 MVx[3]=(Transp[2] != TRANSPARENT) ? MVx[2] :((Transp[1]!=TRANSPARENT) ?

MVx[1]:MVx[0]));
 MVy[3]=(Transp[2] !=TRANSPARENT) ? MVy[2]:((Transp[1]!=TRANSPARENT) ?

MVy[1]:MVy[0]));
 }
}

Vector padding is only used in I- and P-VOPs, it is applied on a macroblock directly after it is
decoded. The block vectors after padding are used in the P-VOP vector decoding and binary shape
decoding, and in the B-VOP direct mode decoding.

7.5.2 Half sample interpolation

Pixel value interpolation for block matching when rounding is used corresponds to bilinear
interpolation as depicted in Figure 7-17. The value of rounding_control is defined using the
VOP_rounding_type bit in the VOP header (see clause 6.3.6). Note that the samples outside the
padded region cannot be used for interpolation.

+ +

+ +

+ Integer pixel position

Half pixel position

A B

C D

a b

c d

 ISO/IEC 14496-2 Committee Draft

165

a = A,
b = (A + B + 1 - rounding_control) / 2
c = (A + C + 1 - rounding_control) / 2,
d = (A + B + C + D + 2 - rounding_control) / 4

Figure 7-17 Interpolation scheme for half sample search.

7.5.3 General motion vector decoding process

To decode a motion vector (MVx, MVy), the differential motion vector (MVDx, MVDy) is extracted
from the bitstream by using the variable length decoding. Then it is added to a motion vector predictor
(Px, Py) component wise to form the final motion vector. The general motion vector decoding process
is any process that is equivalent to the following one. All calculations are carried out in halfpel units
in the following. This process is generic in the sense that it is valid for the motion vector decoding in
interlaced/progressive P- and B-VOPs except that the generation of the predictor (Px, Py) may be
different.

ISO/IEC 14496-2 Committee Draft

166

r_size = VOP_fcode - 1
f = 1 << r_size
high = (32 * f) - 1;
low = ((-32) * f);
range = (64 * f);

if ((f == 1) || (horizontal_mv_data == 0))
MVDx = horizontal_mv_data;

else {
MVDx = ((Abs(horizontal_mv_data) - 1) * f) + horizontal_mv_residual + 1;
if (horizontal_mv_data < 0)

MVDx = - MVDx;
}

if ((f == 1) || (vertical_mv_data == 0))
MVDy = vertical_mv_data;

else {
MVDy = ((Abs(vertical_mv_data) - 1) * f) + vertical_mv_residual + 1;
if (vertical_mv_data < 0)

MVDy = - MVDy;
}

MVx = Px + MVDx;
if (MVx < low)

MVx = MVx + range;
if (MVx > high)

MVx = MVx - range;

MVy = Py + MVDy;
if (MVy < low)

MVy = MVy + range;
if (MVy > high)

MVy = MVy - range;

The parameters in the bitstream shall be such that the components of the reconstructed differential
motion vector, MVDx and MVDy, shall lie in the range [low:high]. In addition the components of the
reconstructed motion vector, MVx and MVy, shall also lie in the range [low : high]. The allowed range
[low : high] for the motion vectors depends on the parameter VOP_fcode; it is shown in Table 7-6.

The variables r_size, f, MVDx, MVDy, high , low and range are temporary variables that are not used
in the remainder of this specification. The parameters horizontal_mv_data, vertical_mv_data,
horizontal_mv_residual and vertical_mv_residual are parameters recovered from the bitstream.

The variable VOP_fcode refers either to the parameter VOP_fcode_forward or to the parameter
VOP_fcode_backward which have been recovered from the bitstream, depending on the respective
prediction mode. In the case of P-VOP prediction only forward prediciton applies. In the case of B-
VOP prediction, forward as well as backward prediction may apply.

 ISO/IEC 14496-2 Committee Draft

167

VOP_fcode_forward
or
VOP_fcode_backwar
d

motion vector range
in halfsample units

[low:high]

1 [-32,31]

2 [-64,63]

3 [-128,127]

4 [-256,255]

5 [-512,511]

6 [-1024,1023]

7 [-2048,2047]

Table 7-6 Range for motion vectors

If the current macroblock is a field motion compensated macroblock, then the same prediction motion
vector (Px, Py) is used for both field motion vectors. Because the vertical component of a field motion
vector is integral, the vertical differential motion vector encoded in the bitstream is

MVy = MVDyfield + PY / 2

7.5.4 Unrestricted motion compensation

Motion vectors are allowed to point outside the decoded area of a reference VOP. For an arbitrary
shape VOP, the decoded area refers to the area within the bounding box, padded as described in
clause Section 7.5.1. A bounding box is defined by VOP_width and VOP_height extended to multiple
of 16. When a sample referenced by a motion vector stays outside the decoded VOP area, an edge
sample is used. This edge sample is retrieved by limiting the motion vector to the last full pel position
inside the decoded VOP area. Limitation of a motion vector is performed on a sample basis and
separately for each component of the motion vector.

The coordinates of a reference sample in the reference VOP, (yref, xref) is determined as follows :

xref = MIN (MAX (x+dx, vhmcsr), xdim+vhmcsr-1))

yref = MIN (MAX (y+dy, vvmcsr), ydim+vvmcsr-1))

where vhmcsr = VOP_horizontal_mc_spatial_reference, vvmcsr =
VOP_vertical_mc_spatila_reference, (y, x) are the coordinates of a sample in the current VOP, (yref,
xref) are the coordinates of a sample in the reference VOP, (dy, dx) is the motion vector, and (ydim,
xdim) are the dimensions of the bounding box of the reference VOP. Note that for rectangular VOP, a
reference VOP is defined by video_object_layer_width and video_object_layer_height. For an
arbitrary shape VOP, a reference VOP of luminance is defined by VOP_width and VOP_height
extended to multiple of 16, while that of chrominance is defined by (VOP_width>>1) and
(VOP_height>>1) extended to multiple of 8.

7.5.5 Vector decoding processing and motion-compensation in progressive P-VOP

An inter-coded macroblock comprises either one motion vector for the complete macroblock or K (
1< K<=4) motion vectors, one for each non-transparent 8x8 pel blocks forming the 16x16 pel
macroblock, as is indicated by the MCBPC code.

ISO/IEC 14496-2 Committee Draft

168

For decoding a motion vector, the horizontal and vertical motion vector components are decoded
differentially by using a prediction, which is formed by a median filtering of three vector candidate
predictors (MV1, MV2, MV3) from the spatial neighbourhood macroblocks or blocks already
decoded. The spatial position of candidate predictors for each block vector is depicted in Figure 7-18.
In the case of only one motion vector present for the complete macroblock, the top-left case in
Figure 7-18 is applied

.

Figure 7-18 Definition of the candidate predictors MV1, MV2 and MV3 for each of the
luminance blocks in a macroblock

The following four decision rules are applied to obtain the value of the three candidate predictors:

1. If a candidate predictor MVi is in a transparent spatial neighbourhood macroblock or in a
transparent block of the current macroblock it is not valid, otherwise, it is set to the corresponding
block vector.

2. If one and only one candidate predictor is not valid, it is set to zero.
3. If two and only two candidate predictors are not valid, they are set to the third candidate

predictor.
4. If all three candidate predictors are not valid, they are set to zero.

Note that any neighbourhood macroblock outside the current VOP or video packet is treated as
transparent in the above sense. The median value of the three candidates for the same component is
computed as predictor, denoted by Px and Py:

Px Median MV x MV x MV x

Py Median MV y MV y MV y

=
=

(, ,)

(, ,)

1 2 3

1 2 3

For instance, if MV1=(-2,3), MV2=(1,5) and MV3=(-1,7), then Px = -1 and Py = 5. The final motion
vector is then obtained by using the general decoding process defined in the section 7.5.3.

 ISO/IEC 14496-2 Committee Draft

169

If four vectors are used, each of the motion vectors is used for all pixels in one of the four luminance
blocks in the macroblock. The numbering of the motion vectors is equivalent to the numbering of the
four luminance blocks as given in Figure 6-5. Motion vector MVDCHR for both chrominance blocks is
derived by calculating the sum of the K luminance vectors, that corresponds to K 8x8 blocks that do
not lie outside the VOP shape and dividing this sum by 2*K; the component values of the resulting
sixteenth/twelfth/eighth/fourth sample resolution vectors are modified towards the nearest half sample
position as indicated below.

Table 7-7 Modification of sixteenth sample resolution chrominance vector components

sixteenth pixel
position

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 //16

resulting
position

0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 //2

Table 7-8 Modification of twelfth sample resolution chrominance vector components

twelfth pixel position 0 1 2 3 4 5 6 7 8 9 10 11 //12

resulting position 0 0 0 1 1 1 1 1 1 1 2 2 //2

Table 7-9 Modification of eighth sample resolution chrominance vector components

eighth pixel position 0 1 2 3 4 5 6 7 //8

resulting position 0 0 1 1 1 1 1 2 //2

Table 7-10 Modification of fourth sample resolution chrominance vector components

fourth pixel position 0 1 2 3 //4

resulting position 0 1 1 1 //2

Half sample values are found using bilinear interpolation as described in clause 7.5.2. The prediction
for luminance is obtained by overlapped motion compensation as described in clause 7.5.6 if indicated
by obmc_disable==0. The prediction for chrominance is obtained by applying the motion vector
MVDCHR to all pixels in the two chrominance blocks.

7.5.6 Overlapped motion compensation

This clause specifies the overlapped motion compensation process. This process is performed when
the flag obmc_disable=0.

Each pixel in an 8*8 luminance prediction block is a weighted sum of three prediction values, divided
by 8 (with rounding). In order to obtain the three prediction values, three motion vectors are used: the
motion vector of the current luminance block, and two out of four "remote" vectors:

ISO/IEC 14496-2 Committee Draft

170

• the motion vector of the block at the left or right side of the current luminance block;

• the motion vector of the block above or below the current luminance block.

For each pixel, the remote motion vectors of the blocks at the two nearest block borders are used. This
means that for the upper half of the block the motion vector corresponding to the block above the
current block is used, while for the lower half of the block the motion vector corresponding to the
block below the current block is used. Similarly, for the left half of the block the motion vector
corresponding to the block at the left side of the current block is used, while for the right half of the
block the motion vector corresponding to the block at the right side of the current block is used.

The creation of each pixel, p i j(,), in an 8*8 luminance prediction block is governed by the

following equation:

p i j q i j H i j r i j H i j s i j H i j(,) ((,) (,) (,) (,) (,) (,)) / /8,= × + × + × +0 1 2 4

where q i j r i j(,), (,), and s i j(,) are the pixels from the referenced picture as defined by

q i j p i MV j MV

r i j p i MV j MV

s i j p i MV j MV

x y

x y

x y

(,) (,),

(,) (,),

(,) (,).

= + +

= + +

= + +

0 0

1 1

2 2

Here, (,)MV MVx y
0 0 denotes the motion vector for the current block, (,)MV MVx y

1 1 denotes the

motion vector of the block either above or below, and (,)MV MVx y
2 2 denotes the motion vector

either to the left or right of the current block as defined above.

The matrices H i j H i j0 1(,), (,) and H i j2 (,) are defined in Figure 7-19, Figure 7-20, and Figure 7-

21, where (,)i j denotes the column and row, respectively, of the matrix.

If one of the surrounding blocks was not coded, the corresponding remote motion vector is set to zero.
If one of the surrounding blocks was coded in intra mode, the corresponding remote motion vector is
replaced by the motion vector for the current block. If the current block is at the border of the VOP
and therefore a surrounding block is not present, the corresponding remote motion vector is replaced
by the current motion vector. In addition, if the current block is at the bottom of the macroblock, the
remote motion vector corresponding with an 8*8 luminance block in the macroblock below the
current macroblock is replaced by the motion vector for the current block.

4 5 5 5 5 5 5 4

5 5 5 5 5 5 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

5 5 5 5 5 5 5 5

4 5 5 5 5 5 5 4

Figure 7-19 Weighting values, H0 , for prediction with motion vector of current luminance block

 ISO/IEC 14496-2 Committee Draft

171

2 2 2 2 2 2 2 2

1 1 2 2 2 2 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 2 2 2 2 1 1

2 2 2 2 2 2 2 2

Figure 7-20 Weighting values, H1 , for prediction with motion vectors of the luminance blocks
on top or bottom of current luminance block

2 1 1 1 1 1 1 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 1 1 1 1 1 1 2

Figure 7-21 Weighting values, H2 , for prediction with motion vectors of the luminance blocks to
the left or right of current luminance block

7.5.7 Temporal prediction structure

1. A target P-VOP shall make reference for prediction to the most recently decoded I- or P-VOP. If
the VOP_coded of the most recently decoded I- or P-VOP is ”0”, the target P-VOP shall make
reference to a decoded I- or P-VOP which immediately precedes said most recently decoded I- or
P-VOP, and whose VOP_coded is not zero.

2. A target B-VOP shall make reference for prediction to the most recently decoded forward and/or
backward reference VOPs. The target B-VOP shall only make reference to said forward or
backward reference VOPs whose VOP_coded is not zero. If the VOP_coded flags of both most
recently decoded forward and backward reference VOPs are zero, the following rules applies.

• for texture, the predictor of the target B-VOP shall be a gray macroblock of (Y, U, V) =
(2bits_pixel-1,. 2bits_pixel-1, 2bits_pixel-1).

• for binary alpha planes, the predictor shall be zero (transparent block)

Note that, binary alpha shape in B-VOP shall make reference for prediction to the most recently
decoded forward reference VOP.

ISO/IEC 14496-2 Committee Draft

172

1. For arbitrarily shape objects, a decoded VOP whose VOP_coded is not zero but who’s shape is
completely transparent (shape of all 0) shall be padded by (2n-bits-1, 2n-bits-1, 2n-bits-1) for (Y, U, V).

The temporal prediction structure is depicted in Figure 7-22.

Object disappears
(vop_coded = 0)I0 P1 P2 P3 B4 B6P5 P7

Figure 7-22 Temporal Prediction Structure.

7.5.8 Vector decoding process of non-scalable progressive B-VOPs

In B-VOPs there are three kinds of vectors, namely, 16x16 forward vector, 16x16 backward vector
and the delta vector for the direct mode. The vectors are decoded with respect to the corresponding
vector predictors. The basic decoding process of a differential vector is the exactly same as defined in
P-VOPs except that for the delta vector of the direct mode the f_code is always one. The vector is then
reconstructed by adding the decoded differential vector to the corresponding vector predictor. The
vector predictor for the delta vector is always set to zero, while the forward and backward vectors have
their own vector predictors, which are reset to zero only at the beginning of each macroblock row. The
vector predictors are updated in the following three cases:

• after decoding a macroblock of forward mode only the forward predictor is set to the decoded
forward vector

• after decoding a macroblock of backward mode only the backward predictor is set to the decoded
backward vector.

• after decoding a macroblock of bi-directional mode both the forward and backward predictors are
updated separately with the decoded vectors of the same type (forward/backward).

7.5.9 Motion compensation in non-scalable progressive B-VOPs

In B-VOPs the overlapped motion compensation (OBMC) is not employed. The motion-compensated
prediction of B-macroblock is generated by using the decoded vectors and taking reference to the
padded forward/backward reference VOPs as defined below. Arbitrarily shaped reference VOPs shall
be padded accordingly.

7.5.9.1 Basic motion compensation procedure

All of the MPEG-4 motion compensation techniques are based on the formation of a prediction block,
pred[i][j] of dimension (width, height), from a reference image, ref[x][y]. The coordinates of the
current block (or macroblock) in the reference VOP is (x,y), the motion half-pel resolution motion
vector is (dx_halfpel, dy_halfpel). The pseudo-code for this procedure is given below.

The component_width() and component_height() function give the coded VOP dimensions for the
current component. For luminance, component_width() is video_object_layer_width for a rectangular
VOP or VOP_width otherwise rounded up to the next multiple of 16. The luminance
component_height() is defined similarly. The chrominance dimensions are one half of the
corresponding luminance dimension.

 ISO/IEC 14496-2 Committee Draft

173

clip_ref(ref, x, y)
{
 return(ref[MIN(MAX(x, 0), component_width(ref) - 1)]
 [MIN(MAX(y, 0), component_height(ref) - 1)]);
}

mc(pred, /* prediction block */
 ref, /* reference component */
 x, y, /* ref block coords for MV=(0, 0) */
 width, height, /* reference block dimensions */
 dx_halfpel, dy_halfpel, /* half-pel resolution motion vector */
 rounding, /* rounding control (0 or 1) */
 pred_y0, /* field offset in pred blk (0 or 1) */
 ref_y0, /* field offset in ref blk (0 or 1) */
 y_incr) /* vertical increment (1 or 2) */
{
 dx = dx_halfpel >> 1;
 dy = y_incr * (dy_halfpel >> y_incr);
 if (dy_halfpel & y_incr) {
 if (dx_halfpel & 1) {
 for (iy = 0; iy < height; iy += y_incr) {
 for (ix = 0; ix < width; ix++) {
 x_ref = x + dx + ix;
 y_ref = y + dy + iy + ref_y0;
 pred[dx][dy + pred_y0] =
 (clip_ref(ref, x_ref + 0, y_ref + 0) +
 clip_ref(ref, x_ref + 1, y_ref + 0) +
 clip_ref(ref, x_ref + 0, y_ref + y_incr) +
 clip_ref(ref, x_ref + 1, y_ref + y_incr) +
 2 - rounding) >> 2;
 }
 }
 } else {
 for (iy = 0; iy < height; iy += y_incr) {
 for (ix = 0; ix < width; ix++) {
 x_ref = x + dx + ix;
 y_ref = y + dy + iy + ref_y0;
 pred[dx][dy + pred_y0] =
 (clip_ref(ref, x_ref, y_ref + 0) +
 clip_ref(ref, x_ref, y_ref + y_incr) +
 1 - rounding) >> 1;
 }
 }
 }
 } else {
 if (dx_halfpel & 1) {
 for (iy = 0; iy < height; iy += y_incr) {
 for (ix = 0; ix < width; ix++) {
 x_ref = x + dx + ix;
 y_ref = y + dy + iy + ref_y0;
 pred[dx][dy + pred_y0] =
 (clip_ref(ref, x_ref + 0, y_ref) +
 clip_ref(ref, x_ref + 1, y_ref) +
 1 - rounding) >> 1;
 }
 }
 } else {
 for (iy = 0; iy < height; iy += y_incr) {
 for (ix = 0; ix < width; ix++) {
 x_ref = x + dx + ix;
 y_ref = y + dy + iy + ref_y0;
 pred[dx][dy + pred_y0] =
 clip_ref(ref, x_ref, y_ref);
 }
 }
 }
 }
}

ISO/IEC 14496-2 Committee Draft

174

7.5.9.2 Forward mode

Only the forward vector (MVFx,MVFy) is applied in this mode. The prediction blocks Pf_Y, Pf_U,
and Pf_V are generated from the forward reference VOP, ref_Y_for for luminance component and
ref_U_for and ref_V_for for chrominance components, as follows:

mc(Pf_Y, ref_Y_for, x, y, 16, 16, MVFx, MVFy, 0, 0, 0, 1);

mc(Pf_U, ref_U_for, x/2, y/2, 8, 8, MVFx_chro, MVFy_chro, 0, 0, 0,1);

mc(Pf_V, ref_V_for, x/2, y/2, 8, 8, MVFx_chro, MVFy_chro, 0, 0, 0,1);

where (MVFx_chro, MVFy_chro) is motion vector derived from the luminance motion vector by
dividing each component by 2 then rounding on a basis of Table 1.4. Here (and hereafter) the function
MC is defined in section 7.5.9.

7.5.9.3 Backward mode

Only the backward vector (MVBx,MVBy) is applied in this mode. The prediction blocks Pb_Y,
Pb_U, and Pb_V are generated from the backward reference VOP, ref_Y_back for luminance
component and ref_U_back and ref_V_back for chrominance components, as follows:

mc(Pb_Y, ref_Y_back, x, y, 16, 16, MVBx, MVBy, 0, 0, 0, 1);

mc(Pb_U, ref_U_back, x/2, y/2, 8, 8, MVBx_chro, MVBy_chro, 0, 0, 0,1);

mc(Pb_V, ref_V_back, x/2, y/2, 8, 8, MVBx_chro, MVBy_chro, 0, 0, 0,1);

where (MVBx_chro, MVBy_chro) is motion vector derived from the luminance motion vector by
dividing each component by 2 then rounding on a basis of Table 1.4.

7.5.9.4 Bi-directional mode

Both the forward vector (MVFx,MVFy) and the backward vector (MVBx,MVBy) are applied in this
mode. The prediction blocks Pi_Y, Pi_U, and Pi_V are generated from the forward and backward
reference VOPs by doing the forward prediction, the backward prediction and then averaging both
predictions pixel by pixel as follows.

mc(Pf_Y, ref_Y_for, x, y, 16, 16, MVFx, MVFy, 0, 0, 0, 1);

mc(Pf_U, ref_U_for, x/2, y/2, 8, 8, MVFx_chro, MVFy_chro, 0, 0, 0,1);

mc(Pf_V, ref_V_for, x/2, y/2, 8, 8, MVFx_chro, MVFy_chro, 0, 0, 0,1);

mc(Pb_Y, ref_Y_back, x, y, 16, 16, MVBx, MVBy, 0, 0, 0, 1);

mc(Pb_U, ref_U_back, x/2, y/2, 8, 8, MVBx_chro, MVBy_chro, 0, 0, 0,1);

mc(Pb_V, ref_V_back, x/2, y/2, 8, 8, MVBx_chro, MVBy_chro, 0, 0, 0,1);

Pi_Y[i][j] = (Pf_Y[i][j] + Pb_Y[i][j] + 1)>>1; i,j=0,1,2…15;

Pi_U[i][j] = (Pf_U[i][j] + Pb_U[i][j] + 1)>>1; i,j=0,1,2…8;

Pi_V[i][j] = (Pf_V[i][j] + Pb_V[i][j] + 1)>>1; i,j=0,1,2…8;

where (MVFx_chro, MVFy_chro) and (MVBx_chro, MVBy_chro) are motion vectors derived from
the forward and backward luminance motion vectors by dividing each component by 2 then rounding
on a basis of Table 1.4, respectively.

 ISO/IEC 14496-2 Committee Draft

175

7.5.9.5 Direct mode

This mode uses direct bi-directional motion compensation derived by employing I- or P-VOP
macroblock motion vectors and scaling them to derive forward and backward motion vectors for
macroblocks in B-VOP. This is the only mode which makes it possible to use motion vectors on 8x8
blocks. Only one delta motion vector is allowed per macroblock.

7.5.9.5.1 Formation of motion vectors for the direct mode

The direct mode utilises the motion vectors (MVs) of the co-located macroblock in the most recently
decoded I- or P-VOP. The co-located macroblock is defined as the macroblock which has the same
horizontal and vertical index with the current macroblock in the B-VOP. The MV vectors are the
block vectors of the co-located macroblock after applying the vector padding defined in section
7.5.1.6. If the co-located macroblock is transparent and thus the MVs are not available, the direct
mode is still enabled by setting MV vectors to zero vectors.

7.5.9.5.2 Calculation of vectors

MVF = MV/3 + MVD
MVB = -(2MV)/3 if MVD is zero

Note: MVD is the delta vector given by MVDB

MVB = MVF-MV if MVD is nonzero

0 1 2 3

MV

Figure 7-23 Direct Bi-directional Prediction

Figure 7-23 shows scaling of motion vectors. The calculation of forward and backward motion
vectors involves linear scaling of the collocated block in temporally next I- or P-VOP, followed by
correction by a delta vector (MVDx,MVDy). The forward and the backward motion vectors are
{(MVFx[i],MVFy[i]), (MVBx[i],MVBy[i]), i = 0,1,2,3} and are given in half sample units as follows.

MVFx[i] = (TRB x MVx[i]) / TRD + MVDx

MVBx[i] = (MVDx==0)? ((TRB - TRD) x MVx[i]) / TRD : MVFx[i] - MVx[i]

MVFy[i] = (TRB x MVy[i]) / TRD + MVDy

MVBy[i] = (MVDy==0)? ((TRB - TRD) x MVy[i]) / TRD : MVFy[i] - MVy[i]

i = 0,1,2,3.

where {(MVx[i],MVy[i]), i = 0,1,2,3} are the MV vectors of the co-located macroblock, TRD is the
difference in temporal reference of the B-VOP and the previous reference VOP. TRD is the difference
in temporal reference of the temporally next reference VOP with temporally previous reference VOP,
assuming B-VOPs or skipped VOPs in between. The calculation of TRB and TRD is defined in
section 7.4.12.4.1.

7.5.9.5.3 Generation of prediction blocks

Motion compensation for luminance is performed individually on 8x8 blocks to generate a
macroblock. The process of generating a prediction block simply consists of using computed forward
and backward motion vectors {(MVFx[i],MVFy[i]), (MVBx[i],MVBy[i]), i = 0,1,2,3} to obtain
appropriate blocks from reference VOPs and averaging these blocks, same as the case of bi-directional
mode except that motion compensation is performed on 8x8 blocks.

ISO/IEC 14496-2 Committee Draft

176

For the motion compensation of both chrominance blocks, the forward motion vector (MVFx_chro,
MVFy_chro) is calculated by the sum of K forward luminance motion vectors dividing by 2K and
then rounding toward the nearest half sample position as defined in Table 7-7 to Table 7-10. The
backward motion vector (MVBx_chro, MVBy_chro) is derived in the same way. The rest process is
the same as the chrominance motion compensation of the bi-directional mode described in section
7.5.12.3.

7.5.9.5.4 Motion compensation in skipped macroblocks

If the co-located macroblock in the most recently decoded I- or P-VOP is skipped, the current B-
macroblock is treated as the forward mode with the zero motion vector (MVFx,MVFy). If the MODB
equals zero the current B-macroblock is reconstructed by using the direct mode with zero delta vector.

7.6 Interlaced video decoding

This clause specifies the additional decoding process that a decoder shall perform to recover VOP data
from the coded bitstream when the interlaced flag in the VOP header is set to “1”. Interlaced
information (Sec. 6.3.7.2) specifies the method to decode bitstream of interlaced VOP.

7.6.1 Field DCT and DC and AC Prediction

When dct_type flag is set to ‘1’ (field DCT coding), DCT coefficients of luminance data are formed
such that each 8x8 block consists of data from one field as being shown in Figure 6-7. DC and
optional AC (see “ac_pred_flag”) prediction will be performed for a intra-coded macroblock. For the
intra macroblocks which have dct_type flag being set to “1”, DC/AC prediction are performed to field
blocks shown in Figure 7-24. After taking inverse DCT, all luminance blocks will be inverse
permuted back to (frame) macroblock. Chrominance (block) data are not effected by dct_type flag.

B

X YA

DC

Field-Coded
Macroblock

Top field blocks

Bottom field
blocks

Figure 7-24 Previous neighboring blocks used in DC/AC prediction for interlaced intra blocks.

7.6.2 Motion compensation

For non-intra macroblocks in P- and B-VOPs, motion vectors are extracted syntactically following
Section 6.2.7 “Macroblock”. The motion vector decoding is performed separately on the horizontal
and vertical components.

 ISO/IEC 14496-2 Committee Draft

177

7.6.2.1 Motion vector decoding in P-VOP

For each component of motion vector in P-VOPs, the median value of the candidate predictor vectors
for the same component is computed and add to corresponding component of the motion vector
difference obtained from the bitstream. To decode the motion vectors in a P-VOP, the decoder shall
first extract the differential motion vectors ((,)MVDx MVDyf f1 1 and (,)MVDx MVDyf f2 2 for top

and bottom fields of a field predicted macroblock, respectively) by a use of variable length decoding
and then determine the predictor vector from three candidate vectors. These candidate predictor
vectors are generated from the three motion vectors of three spatial neighborhood decoded
macroblocks or blocks as follows.

CASE 1 :

If the current macroblock is a field predicted macroblock and none of the coded spatial neighborhood
macroblocks is a field predicted macroblock, then candidate predictor vectors MV1, MV2, and MV3
are defined by Figure 7-25. If the candidate block i is not in four MV motion (8x8) mode, MVi
represents the motion vector for the macroblock. If the candidate block i is in four MV motion (8x8)
mode, the 8x8 block motion vector closest to the upper left block of the current MB is used. The
predictors for the horizontal and vertical components are then computed by

P Median MV x MV x MV x

P Median MV y MV y MV y
x

y

=

=

(, ,)

(, ,).

1 2 3

1 2 3

For differential motion vectors both fields use the same predictor and motion vectors are recovered by

MVx MVDx P

MVy MVDy P

MVx MVDx P

MVy MVDy P

f f x

f f y

f f x

f f y

1 1

1 1

2 2

2 2

2 2

2 2

= +

= +

= +

= +

* ((/))

* ((/))

where “/” is integer division with truncation toward 0. Note that all motion vectors described above
are specified as integers with one LSB representing a half-pel displacement. The vertical component
of field motion vectors always even (in half-pel frame coordinates). Vertical half-pel interpolation
between adjacent lines of the same field is denoted by MVy fi be an odd multiple of 2 (e.g. -2,2,6,..)

No vertical interpolation is needed when MVy fi is an multiple of 4 (it is a full pel value).

ISO/IEC 14496-2 Committee Draft

178

MV f 1

MV1

MV2 MV3

8

8

16

16

or MV f 2

Figure 7-25 Example of motion vector prediction for field predicted macroblocks (Case1)

CASE 2 :

If the current macroblock or block is frame predicted macroblock or block and if at least one of the
coded spatial neighborhood macroblocks is a field predicted macroblock, then the candidate predictor
vector for each field predicted macroblock will be generated by averaging two field motion vectors
such that all fractional pel offsets are mapped into the half-pel displacement. Each component (Px or

Py) of the final predictor vector is the median value of the candidate predictor vectors for the same

component. The motion vector is recovered by

MVx MVDx P

MVy MVDy P
x

y

= +

= + .
.

where

()
()

P Median MV x Div Round MVx MVx MV x

P Median MV y Div Round MVy MVy MV y

x f f

y f f

= +

= +

1 2 3

1 2 3

1 2

1 2

, (), ,

, (), ,

Div2Round(x) make the use of Table 7-10 as follows : Div2Round(x)=((x>>1)&~1)+Table7_1b[x&3].

 ISO/IEC 14496-2 Committee Draft

179

MV1 MV

MV3

8

8

16

16

a field predicted
MB Div2Round(

MV2f1 +MV2f2)

Figure 7-26 Example of motion vector prediction for field predicted macroblocks (Case 2)

CASE 3 :

Assume that the current macroblock is a field predicted macroblock and at least one of the coded
spatial neighborhood macroblocks is a field predicted macroblock. If the candidate block i is field
predicted, the candidate predictor vector MVi will be generated by averaging two field motion vectors
such that all fractional pel offsets are mapped into the half-pel displacement as discribed in CASE 2.
If the candidate block i is neither in four MV motion (8x8) mode nor in field prediction mode, MVi
represents the frame motion vector for the macroblock. If the candidate block i is in four MV motion
(8x8) mode, the 8x8 block motion vector closest to the upper left block of the current MB is used. The
predictors for the horizontal and vertical components are then computed by

P Median MV x MV x MV x

P Median MV y MV y MV y
x

y

=

=

(, ,)

(, ,)

1 2 3

1 2 3

where

MVi x Div Round MVx MVx

MVi y Div Round MVy MVy

f f

f f

= +

= +

2

2
1 2

1 2

(),

(),

for some i in {1,2,3}.

For differential motion vectors both fields use the same predictor and motion vectors are recovered by
(see both Figure 7-25 and Figure 7-26)

MVx MVDx P

MVy MVDy P

MVx MVDx P

MVy MVDy P

f f x

f f y

f f x

f f y

1 1

1 1

2 2

2 2

2 2

2 2

= +

= +

= +

= +

* ((/))

* ((/))

ISO/IEC 14496-2 Committee Draft

180

The motion compensated prediction macroblock is calculated calling the
“field_compensate_one_reference” using the motion vectors calculated above. The top_field_ref,
bottom_field_ref, and rounding type come directly from the syntax as forward_top_field_reference,
forward_bottom_field_reference and VOP_rounding_type respectively. The reference VOP is defined
such the the even lines (0, 2, 4, ...) are the top field and the odd lines (1, 3, 5, ...) are the bottom field.

field_motion_compensate_one_reference(
 luma_pred, cb_pred, cr_pred, /* Prediction component pel array */
 luma_ref, cb_ref, cr_ref, /* Reference VOP pel arrays */
 mv_top_x, mv_top_y, /* top field motion vector */
 mv_bot_x, mv_bot_y, /* bottom field motion vector */
 top_field_ref, /* top field reference */
 bottom_field_ref, /* bottom field reference */
 x, y, /* current luma macroblock coords */
 rounding_type) /* rounding type */
{
 mc(luma_pred, luma_ref, x, y, 16, 16, mv_top_x, mv_top_y,
 rounding_type, 0, top_field_ref, 2);
 mc(luma_pred, luma_ref, x, y, 16, 16, mv_bot_x, mv_bot_y,
 rounding_type, 1, bottom_field_ref, 2);
 mc(cb_pred, cb_ref, x/2, y/2, 8, 8,
 Div2Round(mv_top_x), Div2Round(mv_top_y),
 rounding_type, 0, top_field_ref, 2);
 mc(cr_pred, cr_ref, x/2, y/2, 8, 8,
 Div2Round(mv_top_x), Div2Round(mv_top_y),
 rounding_type, 0, top_field_ref, 2);
 mc(cb_pred, cb_ref, x/2, y/2, 8, 8,
 Div2Round(mv_bot_x), Div2Round(mv_bot_y),
 rounding_type, 0, top_field_ref, 2);
 mc(cr_pred, cr_ref, x/2, y/2, 8, 8,
 Div2Round(mv_bot_x), Div2Round(mv_bot_y),
 rounding_type, 0, top_field_ref, 2);
}

In the case that OBMC flag is set to “1”, the OBMC is not applied if the current MB is field-
predicted. If the current MB is frame-predicted (including 8x8 mode) and some adjacent MBs are
field-predicted, the motion vectors of those field-predicted MBs for OBMC are computed in the same
manner as the candidate predictor vectors for field-predicted MBs are.

7.6.2.2 Motion vector decoding in B-VOP

For interlaced B-VOPs, a macroblock can be coded using (1) direct coding, (2) 16x16 motion
compensation (includes forward, backward & bidirectional modes), or (3) field motion compensation
(includes forward, backward & bidirectional modes). Forward, backward and bidirectional coding
modes work in the same manner as in MPEG-1 / 2 with the difference that a VOP is used for
prediction instead of a picture. Motion vector in half sample accuracy will be employed for a 16x16
macroblock being coded. Chrominance vectors are derived by scaling of luminance vectors using the
rounding tables described in Table 7-10 (i.e. by applying Div2Round to the luminance motion
vectors). These coding modes except direct coding mode allow switching of quantizer from the one
previously in use. Specification of DQUANT, a differential quantizer involves a 2-bit overhead as
discussed earlier. In direct coding mode, the quantizer value for previous coded macroblock is used.

For interlaced B-VOP motion vector predictors, four prediction motion vectors (PMVs) are used:

Table 7-11 Prediction motion vector allocation for interlaced P-VOPs

Function PMV

Top field forward 0

 ISO/IEC 14496-2 Committee Draft

181

Bottom field forward 1

Top field backward 2

Bottom field backward 3

These PMVs are used as follows for the different macroblock prediction modes:

Table 7-12 Prediction motion vectors for interlaced B-VOP decoding

Macroblock mode PMVs used PMVs updated

Direct none none

Frame forward 0 0,1

Frame backward 2 2,3

Frame bidirectional 0,2 0,1,2,3

Field forward 0,1 0,1

Field backward 2,3 2,3

Field bidirectional 0,1,2,3 0,1,2,3

The PMVs used by a macroblock are set to the value of current macroblock motion vectors after being
used.

When a frame macroblock is decoded, the two field PMVs (top and bottom field) for each prediction
direction are set to the same frame value. The PMVs are reset to zero at the beginning of each row of
macroblocks. The predictors are not zeroed by skipped macroblocks or direct mode macroblocks.

The frame based motion compensation modes are described in section 7.5. The field motion
compensation modes are calculated using the “field_motion_compensate_one_reference()” pseudo
code function described above. The field forward mode is denoted by mb_type == “0001” and
field_prediction == “1”. The PMV update and calculation of the motion compensated prediction is
shown below. The luma_fwd_ref_VOP[][], cb_fwd_ref_VOP[][], cr_fwd_ref_VOP[][] denote the
entire forward (past) anchor VOP pixel arrays. The coordinates of the upper left corner of the
luminance macroblock is given by (x, y) and MVD[].x and MVD[].y denote an array of the motion
vector differences in the order they occur in the bitstream for the current macroblock.

 PMV[0].x = PMV[0].x + MVD[0].x;
 PMV[0].y = 2 * (PMV[0].y / 2 + MVD[0].y);
 PMV[1].x = PMV[1].x + MVD[1].x;
 PMV[1].y = 2 * (PMV[1].y / 2 + MVD[1].y);
 field_motion_compensate_one_reference(
 luma_pred, cb_pred, cr_pred,
 luma_fwd_ref_VOP, cb_fwd_ref_VOP, cr_fwd_ref_VOP,
 PMV[0].x, PMV[0].y, PMV[1].x, PMV[1].y,
 forward_top_field_reference,
 forward_bottom_field_reference,
 x, y, 0);

The field backward mode is denoted by mb_type == “001” and field_prediction == “1”. The PMV
update and prediction calculation is outlined the following pseudo code. The luma_bak_ref_VOP[][],
cb_bak_ref_VOP[][], cr_bak_ref_VOP[][] denote the entire forward (past) anchor VOP pixel arrays.

 PMV[2].x = PMV[2].x + MVD[0].x;

ISO/IEC 14496-2 Committee Draft

182

 PMV[2].y = 2 * (PMV[2].y / 2 + MVD[0].y);
 PMV[3].x = PMV[1].x + MVD[1].x;
 PMV[3].y = 2 * (PMV[3].y / 2 + MVD[1].y);
 field_motion_compensate_one_reference(
 luma_pred, cb_pred, cr_pred,
 luma_bak_ref_VOP, cb_bak_ref_VOP, cr_bak_ref_VOP,
 PMV[2].x, PMV[2].y, PMV[3].x, PMV[3].y,
 backward_top_field_reference,
 backward_bottom_field_reference,
 x, y, 0);

The bidirectional field prediction is used when mb_type == “01” and field_prediction == “1”. The
prediction macroblock (in luma_pred[][], cb_pred[][], and cr_pred[][]) is calculated by:

for (mv = 0; mv < 4; mv++) {
 PMV[mv].x = PMV[mv].x + MVD[mv].x;
 PMV[mv].y = 2 * (PMV[mv].y / 2 + MVD[mv].y);
 }
 field_motion_compensate_one_reference(
 luma_pred_fwd, cb_pred_fwd, cr_pred_fwd,
 luma_fwd_ref_VOP, cb_fwd_ref_VOP, cr_fwd_ref_VOP,
 PMV[0].x, PMV[0].y, PMV[1].x, PMV[1].y,
 forward_top_field_reference,
 forward_bottom_field_reference,
 x, y, 0);
 field_motion_compensate_one_reference(
 luma_pred_bak, cb_pred_bak, cr_pred_bak,
 luma_bak_ref_VOP, cb_bak_ref_VOP, cr_bak_ref_VOP,
 PMV[2].x, PMV[2].y, PMV[3].x, PMV[3].y,
 backward_top_field_reference,
 backward_bottom_field_reference,
 x, y, 0);
 for (iy = 0; iy < 16; iy++) {
 for (ix = 0; ix < 16; ix++) {
 luma_pred[ix][iy] = (luma_pred_fwd[ix][iy] +
 luma_pred_bak[ix][iy] + 1) >> 1;
 }
 }
 for (iy = 0; iy < 8; iy++) {
 for (ix = 0; ix < 8; ix++) {
 cb_pred[ix][iy] = (cb_pred_fwd[ix][iy] +
 cb_pred_bak[ix][iy] + 1) >> 1;
 cr_pred[ix][iy] = (cr_pred_fwd[ix][iy] +
 cr_pred_bak[ix][iy] + 1) >> 1;
 }
 }

The direct mode prediction can be either progressive (see section 7.5.9.5) or interlaced as described
below. Interlaced direct mode is used when ever the co-located macroblock (macroblock with the
same coordinates) of the future anchor VOP has field_predition flag is “1”. Note that if the future
macroblock is skipped, or intra, the direct mode prediction is progressive. Otherwise, interlaced
direct mode prediction is used.

 ISO/IEC 14496-2 Committee Draft

183

Interlaced direct coding mode is an extension of progressive direct coding mode. Four derived field
motion vectors are calculated from the forward field motion vectors of the co-located future anchor
VOP, a single differential motion vector and the temporal position of the B-VOP fields with respect to
the fields of the past and future anchor VOPs. The four derived field motion vectors are denoted
mvf[0] (top field forward) mvf[1], (bottom field forward), mvb[0] (top field backward), and mvb[1]
(bottom field backward). MV[i] is the future anchor picture motion vector for the top (i == 0) and
bottom (i == 1) fields. Only one delta motion vector (used for both field), MVD[0], occurs in the
bitstream for the field direct mode predicted macroblock. MVD[0] is decoded assuming f_code == 1
regardless of the number in VOP header. The interlaced direct mode prediction (in luma_pred[][],
cb_pred[][] and cr_pred[][]) is calculated as shown below.

 for (i = 0; i < 2; i++) {
 mvf[i].x = (TRB[i] * MV[i].x) / TRD[i] + MVD[0].x;
 mvf[i].y = (TRB[i] * MV[i].y) / TRD[i] + MVD[0].y;
 mvb[i].x = (MVD[i].x == 0) ?
 (((TRB[i] - TRD[i]) * MV[i].x) / TRD[i]) :
 mvf[i].x - MV[i].x);
 mvb[i].y = (MVD[i].y == 0) ?
 (((TRB[i] - TRD[i]) * MV[i].y) / TRD[i]) :
 mvf[i].y - MV[i].y);
 field_motion_compensate_one_reference(
 luma_pred_fwd, cb_pred_fwd, cr_pred_fwd,
 luma_fwd_ref_VOP, cb_fwd_ref_VOP, cr_fwd_ref_VOP,
 mvf[0].x, mvf[0].y, mvf[1].x, mvf[1].y,
 colocated_future_mb_top_field_reference,
 colocated_future_mb_bottom_field_reference,
 x, y, 0);
 field_motion_compensate_one_reference(
 luma_pred_bak, cb_pred_bak, cr_pred_bak,
 luma_bak_ref_VOP, cb_bak_ref_VOP, cr_bak_ref_VOP,
 mvb[1].x, mvb[1].y, mvb[1].x, mvb[1].y,
 0, 1, x, y, 0);
 for (iy = 0; iy < 16; iy++) {
 for (ix = 0; ix < 16; ix++) {
 luma_pred[ix][iy] = (luma_pred_fwd[ix][iy] +
 luma_pred_bak[ix][iy] + 1) >> 1;
 }
 }
 for (iy = 0; iy < 8; iy++) {
 for (ix = 0; ix < 8; ix++) {
 cb_pred[ix][iy] = (cb_pred_fwd[ix][iy] +
 cb_pred_bak[ix][iy] + 1) >> 1;
 cr_pred[ix][iy] = (cr_pred_fwd[ix][iy] +
 cr_pred_bak[ix][iy] + 1) >> 1;
 }
 }

The temporal references (TRB[i] and TRD[i]) are distances in time expressed in field periods. Figure
7-27 shows how they are defined for the case where i is 0 (top field of the B-VOP). The bottom field
is analogously.

ISO/IEC 14496-2 Committee Draft

184

Figure 7-27 Interlaced direct mode

The calculation of TRD[i] and TRB[i] depends not only on the current field, reference field, and frame
temporal references, but also on whether the current video is top field first or bottom field first.

TRD[i] = 2*(T(future)//Tframe - T(past)//Tframe) + δ[i]

TRB[i] = 2*(T(current)//Tframe - T(past)//Tframe) + δ[i]

where T(future), T(current) and T(past) are the cumulative VOP times calculated from
modulo_time_base and VOP_time_increment of the future, current and past VOPs in display order.
Tframe is the frame period determined by

Tframe = T(first_B_VOP) - T(past_anchor_of_first B_VOP)

where first_B_VOP denotes the first B-VOP following the Video Object Layer syntax. The important
thing about Tframe is that the period of time between consecutive fields which constitute an interlaced
frame is assuemed to be 0.5 * Tframe for purposes of scaling the motion vectors.

The value of δ is determined from Table 7-13; it is a function of the current field parity (top or
bottom), the reference field of the co-located macroblock (macroblock at the same coordinates in the
furture anchor VOP), and the value of top_field_first in the B-VOP’s video object plane syntax.

Table 7-13 Selection of the parameter δ

future anchor VOP reference fields
of the co-located macroblock

top_field_first == 0 top_field_first == 1

Top field
reference

Bottom field
reference

Top field,
δ[0]

Bottom
field, δ[1]

Top field,
δ[0]

Bottom
field, δ[1]

0 0 0 -1 0 1

0 1 0 0 0 0

TRD[i]
TRB[i]

MV[i]

mvf[i] mvb[i]

Past
Anchor

Current
VOP

Future
Anchor

 ISO/IEC 14496-2 Committee Draft

185

future anchor VOP reference fields
of the co-located macroblock

top_field_first == 0 top_field_first == 1

Top field
reference

Bottom field
reference

Top field,
δ[0]

Bottom
field, δ[1]

Top field,
δ[0]

Bottom
field, δ[1]

1 0 1 -1 -1 1

1 1 1 0 -1 0

The top field prediction is based on the top field motion vector of the P-VOP macroblock of the future
anchor picture. The past reference field is the reference field selected by the co-located macroblock of
the future anchor picture for the top field. Analogously, the bottom field predictor is the average of
pixels obtained from the future anchor’s bottom field and the past anchor field referenced by the
bottom field motion vector of the corresponding macroblock of the future anchor picture. When
interlaced direct mode is used, VOP_time_increment_resolution must be the smallest integer greater
than or equal to the number of frames per second. In each VOP, VOP_time_increment counts
individual frames within a second.

7.7 Sprite decoding

The clause specifies the additional decoding process for a sprite video object. The sprite decoding can
operate in three modes: basic sprite decoding, low-latency sprite decoding and scalable sprite
decoding. Figure 7-28 is a diagram of the sprite decoding process. It is simplified for clarity.

Shape/Texture
Decoding

Shape/Texture
Decoding

Warping Vector
Decoding

Warping

Sprite BufferVOL
Bitstream

VOP
Bitstream

Reconstructed
Samples

Figure 7-28 The sprite decoding process.

ISO/IEC 14496-2 Committee Draft

186

7.7.1 Higher syntactic structures

The various parameters in the VOL and VOP bitstreams shall be interpreted as described in clause 6.
When sprite_enable == ‘1’, VOP_coding_type shall be “I” only for the initial VOP in a VOL for basic
sprites (i.e. low_latency_sprite_enable == ‘0’), and all the other VOPs shall be S-VOPs (i.e.
VOP_coding_type == “S”). The reconstructed I-VOP in a VOL for basic sprites is not displayed but
stored in a sprite memory, and will be used by all the remaining S-VOPs in the same VOL. An S-VOP
is reconstructed by applying warping to the VOP stored in the sprite memory, using the warping
parameters (i.e. a set of motion vectors) embedded in the VOP bitstream. Alternatively, in a VOL for
low-latency sprites (i.e. low_latency_sprite_enable == ‘1’), these S-VOPs can update the
VOPVOPinformation stored in the sprite memory before applying warping.

7.7.2 Sprite Reconstruction

The luminance and chrominance data of a sprite are stored in two-dimensional arrays. The width and
height of the luminance array are specified by sprite_width and sprite_height respectively. The
samples in the sprite luminance and chrominance arrays are addressed by two-dimensional integer
pairs (i’, j’) and (ic’, jc’) as defined in the following:

• Top left luminance sample
(i’, j’) = (sprite_left_coordinate, sprite_top_coordinate)

• Bottom right luminance sample
(i’, j’) = ((sprite_left_coordinate + sprite_width − 1),

((sprite_top_coordinate + sprite_height − 1))
• Top left chrominance sample

(ic’, jc’) = (sprite_left_coordinate / 2, sprite_top_coordinate / 2)
• Bottom right chrominance sample

(ic’, jc’) = (((sprite_left_coordinate + sprite_width) / 2 − 1),
((sprite_top_coordinate + sprite_height) / 2 − 1)).

 Likewise, the addresses of the luminance and chrominance samples of the VOP currently being
decoded are defined in the following:

• Top left sample of luminance
(i, j) = (0, 0) for rectangular VOPs, and
(i, j) = (VOP_horizontal_mc_spatial_ref, VOP_vertical_mc_spatial_ref) for non-
rectangular VOPs

• Bottom right sample of luminance
(i, j) = (video_object_layer_width - 1, video_object_layer_height - 1) for rectangular VOPs,
and
(i, j) = (VOP_horizontal_mc_spatial_ref + VOP_width - 1,

VOP_vertical_mc_spatial_ref + VOP_height - 1) for non-rectangular VOPs
• Top left sample of chrominance

(ic, jc) = (0, 0) for rectangular VOPs, and
(ic, jc) = (VOP_horizontal_mc_spatial_ref / 2, VOP_vertical_mc_spatial_ref / 2) for non-
rectangular VOPs

• Bottom right sample of chrominance
(ic, jc) = (video_object_layer_width / 2 - 1, video_object_layer_height / 2 - 1) for rectangular
VOPs, and
(ic, jc) = ((VOP_horizontal_mc_spatial_ref + VOP_width) / 2 - 1,

(VOP_vertical_mc_spatial_ref + VOP_height) / 2 - 1) for non-rectangular VOPs

7.7.3 Low-latency sprite reconstruction

This section allows a large static sprite to be reconstructed at the decoder by properly incorporating its
corresponding pieces. There are two types of pieces recognized by the decoder—object and update.
The

 ISO/IEC 14496-2 Committee Draft

187

decoded sprite object-piece (i.e., embedded in a sprite-VOP with low_latence_sprite_enable==1 and
sprite_transmit_mode=="piece") is a highly quantized version of the original sprite piece while the
sprite update-piece (i.e., sprite_transmit_mode=="update") is a residual designed to improve upon the
quality of decoded object-piece. Sprite pieces are rectangular pieces of texture (and shape for the
object-piece) and can contain “holes,” corresponding to macroblocks, that do not need to be decoded.
Five parameters are required by the decoder to properly incorporate the pieces: piece_quant,
piece_width, piece_height, piece_xoffset, and piece_yoffset.

Macroblocks raster scanning is employed to decode each piece. However, whenever the scan
encounters a macroblock which has been part of some previously sent sprite piece, then the
macroblock is not decoded and its corresponding macroblock layer is empty. In that case, the decoder
treats the macroblock as a hole in the current sprite piece. Since a macroblock can be refined as long
as there is some available bandwidth, more than one update may be decoded per macroblock and the
holes for a given refinement step have no relationship to the holes of later refinement steps.
Therefore, the decoding process of a hole for an update piece is different than that for the object-piece.
For the object-piece, no information is decoded at all and the decoder must “manage” where “holes”
lie. (see clause 7.8.3.1). For the update-piece, the not_coded bit is decoded to indicate whether or not
one more refinement should be decoded for this given macroblock. (see clause 7.8.3.2). Note that a
hole could be non-transparent and have had shape information decoded previously. Multiple
intermingled object-pieces and update-pieces may be decoded at the same current VOP. Part of a
sequence could consist for example of rapidly showing a zooming out effect, a panning to the right, a
zooming in, and finally a panning to the left. In this case, the first decoded object-piece covers
regions on all four sides of the previous VOP transmitted piece, which is now treated as a hole and not
decoded again. The second decoded object-piece relates to the right panning, and the third object-
piece is a smaller left-panning piece due to the zooming-in effect. Finally, the last piece is different;
instead of an object, it contains the update for some previous object-piece of zooming-in (thus, the
need to update to refine for higher quality). All four pieces will be decoded within the same VOP.
When sprite_transmit_mode = =”pause,” the decoder recognizes that all sprite object-pieces and
update-pieces for the current VOP session have been sent. However, when sprite_transmit_mode =
“stop,” the decoder understands that all object and update-pieces have been sent for the entire video
object layer, not just for the current VOP. session. In addition, once all object-pieces or update-pieces
have been decoded during a VOP session (i.e., signaled by sprite_transmit_mode == “pause” or
sprite_transmit_mode == “stop”), the static sprite is padded (as defined in section 7.5.1), then the
portion to be displayed is warped, to complete the current VOP session.

For the S-VOPs (i.e., VOP_coding_type == “S”), the macroblock layer syntax of object-pieces is the
same as those of I-VOP. Therefore, shape and texture are decoded using the macroblock layer
structure in I-VOPs with the quantization of intra macroblocks. The syntax of the update-pieces is
similar to the P-VOP inter-macroblock syntax with the quantization of non-intra macroblocks);
however, the differences are indicated in Table 11-1, specifically that there are no motion vectors and
shape information included in this decoder syntax structure. In summary, this decoding process
supports the construction of any large sprite image progressively, both spatially and in terms of
quality.

7.7.3.1 Decoding of holes in sprite object-piece

Implementation of macroblock scanning must account for the possibility that a macroblock uses
prediction based on some macroblock sent in a previous piece. When an object-piece with holes is
decoded, the decoder in the process of reconstruction acts as if the whole original piece were decoded,
but actually only the bitstream corresponding to the “new macroblock” is received. Whenever
macroblocks raster scanning encounters a hole, the decoder needs to manage the retrieval of relevant
information (e.g. DCT quantization parameters, AC and DC prediction parameters, and BAB
bordering values) from the corresponding macroblock decoded earlier.

ISO/IEC 14496-2 Committee Draft

188

7.7.3.2 Decoding of holes in sprite update-pieces

In contrast to the send_mb() used by the object-pieces, the update-pieces use the not_coded bit. When
not_coded = 1 in the P-VOP syntax, the decoder recognizes that the corresponding macroblock is not
refined by the current sprite update-piece. When not_coded = 0 in the P-VOP syntax, the decoder
recognizes that this macroblock is refined. The prediction for the update piece is obtained by
extracting the "area" of the static sprite defined by (piece_width, piece_height, piece_xoffset,
piece_yoffset). This area is then padded and serves as prediction for the update pieces. Since there is
no shape information included in an update-piece, the result of its transparent_mb() is retrieved from
the corresponding macroblock in the object-piece decoded earlier. In addition, an update macroblock
cannot be transmitted before its corresponding object macroblock. As a result, the very first sprite
piece transmitted in the low-latency mode shall be an object-piece.

7.7.4 Sprite reference point decoding

The syntatic elements in encode_sprite_trajectory () and below shall be interpreted as specified in
clause 6. du[i] and dv[i] (0 =< i < no_sprite_point) specifies the mapping between indexes of some
reference points in the VOP and the corresponding reference points in the sprite. These points are
referred to as VOP reference points and sprite reference points respectively in the rest of the
specification.

The index values for the VOP reference points are defined as:

(i0, j0) = (0, 0) when video_object_layer_shape == ‘rectangle’, and
(VOP_horizontal_mc_spatial_ref, VOP_vetical_mc_spatial_ref) otherwise,

(i1, j1) = (i0+W, j0),
(i2, j2) = (i0, j0 + H),
(i3, j3) = (i0+W, j0+H)

where W = video_object_layer_width and H = video_object_layer_height when
video_object_layer_shape == ‘rectangle’ or W = VOP_width and H = VOP_height otherwise. Only
the index values with subscripts less than no_sprite_point shall be used for the rest of the decoding
process.

The index values for the sprite reference points shall be calculated as follows:

(i0’, j0’) = (s / 2) (2 i0 + du[0], 2 j0 + dv[0])
(i1’, j1’) = (s / 2) (2 i1 + du[1] + du[0], 2 j1 + dv[1] + dv[0])
(i2’, j2’) = (s / 2) (2 i2 + du[2] + du[0], 2 j2 + dv[2] + dv[0])
(i3’, j3’) = (s / 2) (2 i3 + du[3] + du[2] + du[1] + du[0], 2 j3 + dv[3] + dv[2] + dv[1] + dv[0])

where i0’, j0’, etc are integers in
1

s
 pel accuracy, where s is specified by sprite_warping_accuracy.

Only the index values with substcripts less than no_sprite_point need to be calculated.

When no_of_sprite_warping_points == 2 or 3, the index values for the virtual sprite points are
additionally calculated as follows:

(i1’’, j1’’) = (16 (i0 + W’) + ((W − W’) (r i0’ − 16 i0) + W’ (r i1’ − 16 i1)) // W,
16 j0 + ((W − W’) (r j0’ − 16 j0) + W’ (r j1’ − 16 j1)) // W)

(i2’’, j2’’) = (16 i0 + ((H − H’) (r i0’ − 16 i0) + H’ (r i2’ − 16 i2)) // H,
16 (j0 + H’) + ((H − H’) (r j0’ − 16 j0) + H’ (r j2’ − 16 j2)) // H)

where i1’’, j1’’, i2’’, and j2’’ are integers in
1

16
 pel accuracy, and r = 16/s. W’ and H’ are defined as

the smallest integers that satisfy the following condition::

W’ = 2α, H’ = 2β, W’ ≥ W, H’ ≥ H, α > 0, β > 0, both α and β are integers.

The calculation of i2’’, and j2’’ is not necessary when no_of_sprite_warping_points == 2.

 ISO/IEC 14496-2 Committee Draft

189

7.7.5 Warping

For any pixel (i, j) inside the VOP boundary, (F(i, j), G(i, j)) and (Fc(ic, jc), Gc(ic, jc)) are computed
as described in the following. These quantities are then used for sample reconstruction as specified in
clause 7.7.6. The following notations are used to simplify the description:

I = i - i0,
J = j - j0,
Ic = 4 ic - 2 i0 + 1,
Jc = 4 jc - 2 i0 + 1,

When no_of_sprite_warping_point == 0,

 (F(i, j), G(i, j)) = (s i, s j),
(Fc(ic, jc), Gc(ic, jc)) = (s ic, s jc).

When no_of_sprite_warping_point == 1,

 (F(i, j), G(i, j)) = (i0’ + s i, j0’ + s j),
(Fc(ic, jc), Gc(ic, jc)) = (s ic + i0’ /// 2, s jc + j0’ /// 2).

When no_of_sprite_warping_points == 2,

(F(i, j), G(i, j)) = (i0’ + ((−r i0’ + i1’’) I + (r j0’ − j1’’) J) /// (W’ r) ,
j0’ + ((−r j0’ + j1’’) I + (−r i0’ + i1’’) J) /// (W’ r)),

(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1 ’’) Ic + (r j0’ − j1’’) Jc + 2 W’ r i0’ − 16W’) /// (4 W’
r),

((−r j0’ + j1’’) Ic + (−r i0’ + i1’’) Jc + 2 W’ r j0’ − 16W’) /// (4 W’
r)).

According to the definition of W’ and H’ (i.e. W’ = 2α and H’ = 2β), the divisions by “///” in these
functions can be replaced by binary shift operations. By this replacement, the above equations can be
rewritten as:

(F(i, j), G(i, j)) = (i0’ + (((−r i0’ + i1’’) I + (r j0’ − j1’’) J + 2α+ρ-1) >> (α+ρ)) ,
 j0’ + (((−r j0’ + j1’’) I + (−r i0’ + i1’’) J + 2α+ρ-1) >> (α+ρ)),

(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1 ’’) Ic + (r j0’ − j1’’) Jc + 2 W’ r i0’ − 16W’ +
2α+ρ+1) >> (α+ρ+2),

((−r j0’ + j1’’) Ic + (−r i0’ + i1’’) Jc + 2 W’ r j0’ − 16W’ + 2α+ρ+1)
>> (α+ρ+2)),

where 2ρ=r.

When no_of_sprite_warping_points == 3,

(F(i, j), G(i, j)) = (i0’ + ((−r i0’ + i1’’) H’ I + (−r i0’+ i2’’)W’ J) /// (W’H’r),
j0’ + ((−r j0’ + j1’’) H’ I + (−r j0’+ j2’’)W’ J) /// (W’H’r)),

(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1’’) H’ Ic + (−r i0’+ i2’’)W’ Jc + 2 W’H’r i0’ −
16W’H’) /// (4W’H’r),

((−r j0’ + j1’’) H’ Ic + (−r j0’+ j2’’)W’ Jc + 2 W’H’r j0’ −
16W’H’) /// (4W’H’r)).

ISO/IEC 14496-2 Committee Draft

190

According to the definition of W’ and H’, the computation of these functions can be simplified by
dividing the denominator and numerator of division beforehand by W’ (when W’ < H’) or H’ (when
W’ ≥ H’). As in the case of no_of_sprite_warping_points == 2, the divisions by “///” in these functions
can be replaced by binary shift operations. For example, when W’ ≥ H’ (i.e. α ≥ β) the above
equations can be rewritten as:

(F(i, j), G(i, j)) = (i0’ +(((−r i0’ + i1’’) I + (−r i0’+ i2’’) 2α-β J + 2α+ρ-1) >> (α+ρ)),
j0’ + (((−r j0’ + j1’’) I + (−r j0’+ j2’’) 2α-β J + 2α+ρ-1) >> (α+ρ))),

(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1’’) Ic + (−r i0’+ i2’’) 2α-β Jc + 2W’r i0’ − 16W’ +
2α+ρ+1) >> (α+ρ+2),

((−r j0’ + j1’’) Ic + (−r j0’+ j2’’) 2α-β Jc + 2W’r j0’ − 16W’ +
2α+ρ+1) >> (α+ρ+2)).

When no_of_sprite_warping_point == 4,

 (F(i, j), G(i, j)) = ((a i + b j + c) /// (g i + h j + D W H),
(d i + e j + f) /// (g i + h j + D W H)),

(Fc(ic, jc), Gc(ic, jc)) = ((2 a Ic + 2 b Jc + 4 c − (g Ic + h Jc + 2 D W H) s) /// (4gIc +4 hJc
+8D W H),

(2 d Ic + 2 e Jc + 4 f − (g Ic + h Jc + 2 D W H) s) /// (4 g Ic +4 hJc
+8D W H))

where

g = ((i0’ − i1’ − i2’ + i3’) (j2’ − j3’) − (i2’ − i3’) (j0’ − j1’ − j2’ + j3’)) H ,
h = ((i1’ − i3’) (j0’ − j1’ − j2’ + j3’) − (i0’ − i1’ − i2’ + i3’) (j1’ − j3’)) W ,
D = (i1’ − i3’) (j2’ − j3’) − (i2’ − i3’) (j1’ − j3’),
a = D (i1’ − i0’) H + g i1’ ,
b = D (i2’ − i0’) W + h i2’,
c = D i0’ W H,
d = D (j1’ − j0’) H + g j1’,
e = D (j2’ − j0’) W + h j2’,
f = D j0’ W H.

The implementor should be aware that a 32bit register may not be sufficient for representing the
denominator or the numerator in the above transform functions for affine and perspective transform.
The usage of a 64 bit floating point representation should be sufficient in such case.

7.7.6 Sample reconstruction

The reconstructed value Y of the luminance sample (i, j) in the currently decoded VOP shall be
defined as

Y = ((s - rj)((s –ri) Y00 + ri Y01) + rj ((s - ri) Y10 + ri Y11)) // s
2,

where Y00, Y01, Y10, Y11 represent the sprite luminance sample at (F(i, j)////s, G(i, j)////s), (F(i, j)////s +
1,G(i, j)////s), (F(i, j)////s, G(i, j)////s + 1), and (F(i, j)////s + 1,G(i, j)////s + 1) respectively, and ri =F(i,
j) –(F(i, j)////s)s and rj =G(i, j) – (G(i, j)////s)s. Figure 7-29 illustrates this process.

In case any of Y00, Y01, Y10 and Y11 lies outside the sprite luminance binary mask, it shall be obtained
by the padding process as defined in section 7.5.1.

When brightness_change_in_sprite == 1, the final reconstructed luminance sample (i, j) is further
computed as Y = Y * (brightness_change_factor * 0.01 + 1), clipped to the range of [0, 255].

Similarly, the reconstructed value C of the chrominance sample (ic, jc) in the currently decoded VOP
shall be define as

 ISO/IEC 14496-2 Committee Draft

191

C = ((s - rj)((s –ri) C00 + ri C01) + rj ((s - ri) C10 + ri C11)) // s
2,

where C00, C01, C10, C11 represent the sprite chrominance sample at (Fc(ic, jc)////s, Gc(ic, jc)////s),
(Fc(ic, jc)////s + 1, Gc(ic, jc)////s), (Fc(ic, jc)////s, Gc(ic, jc)////s + 1), and (Fc(ic, jc)////s + 1, Gc(ic, jc)////s +
1) respectively, and ri = Fc(ic, jc) – (Fc(ic, jc))////s)s and rj = Gc(ic, jc) – (Gc(ic, jc)////s)s. In case any of
C00, C01, C10 and C11 lies outside the sprite chrominance binary mask, it shall be obtained by the
padding process as defined in section 7.5.1.

The reconstructed value of luminance binary mask sample BY(i,j) shall be computed following the
identical process for the luminance sample. However, corresponding binary mask sample values shall
be used in place of luminance samples Y00, Y01, Y10, Y11. Assume the binary mask sample opaque is
equal to 255 and the binary mask sample transparent is equal to 0. If the computed value is bigger or
equal to 128, BY(i, j) is defined as opaque. Otherwise, BY (i, j) is defined as transparent. The
chrominance binary mask samples shall be reconstructed by downsampling of the luminance binary
mask samples as specified in 7.5.2.

Y00

Y11Y10

Y01

×

×

×

×

°

r

s
i

Y

1

r

s
j

1

Figure 7-29 Pixel value interpolation (it is assumed that sprite samples are located on an integer
grid).

7.7.7 Scalable sprite decoding

The reconstruction of a temporal enhancement VOP follows the clause 7.8.1. If sprite has already
been reconstructed for the lower layers, it needs not to be done again. Otherwise, sprite shall be
reconstructed from lower layer bitstream following clause 7.8.1.

Spatial enhancement to sprite shall be decoded as described in the clause for spatial scalability. Sprite
reference points decoded from lower layer bitstream shall be upsampled according to the spatial
enhancement factor. The reconstruction of VOPs follows clause 7.8.2.

ISO/IEC 14496-2 Committee Draft

192

7.8 Generalized scalable decoding

This clause specifies the additional decoding process required for decoding scalable coded video.

The scalability framework is referred to as generalized scalability which includes the spatial and the
temporal scalabilities. The temporal scalability offers scalability of the temporal resolution, and the
spatial scalability offers scalability of the spatial resolution. Each type of scalability involves more
than one layer. In the case of two layers, consisting of a lower layer and a higher layer; the lower layer
is referred to as the base layer and the higher layer is called the enhancement layer.

In the case of temporal scalability, both rectangular VOPs as well as arbitrary shaped VOPs are
supported. In the case of spatial scalability, only rectangular VOPs are supported. Figure 7-30 shows a
high level decoder structure for generalized scalability.

Scalability
Post Processor1

Mid Processor1

Enhancement
Layer1 Decoder

Base Layer
Decoder

bit_1

bit_0

outp_1

outp_0

out_1

out_0

Figure 7-30 High level decoder structure for generalized scalability.

The base layer and enhancement layer bitstreams are input for decoding by the corresponding base
layer decoder and enhancement layer decoder.

When spatial scalability is to be performed, mid processor 1 performs spatial up or down sampling of
input. The scalability post processor performs any necessary operations such as spatial up or down
sampling of the decoded base layer for display resulting at outp_0 while the enhancement layer
without resolution conversion may be output as outp_1.

When temporal scalability is to be performed, the decoding of base and enhancement layer bitstreams
occurs in the corresponding base and enhancement layer decoders as shown. In this case, mid
processor 1 does not perform any spatial resolution conversion. The post processor simply outputs the
base layer VOPs without any conversion, but temporally multiplexes the base and enhancement layer
VOPs to produce higher temporal resolution enhancement layer.

The reference VOPs for prediction are selected by reference_select_code as specified in Table 7-14
and Table 7-15. In coding of P-VOPs belonging to an enhancement layer, the forward reference is one
of the following four: the most recently decoded VOP of enhancement layer, the most recent VOP of
the reference layer in display order, the next VOP of the lower layer in display order, or the
temporally coincident VOP in the reference layer.

 ISO/IEC 14496-2 Committee Draft

193

In B-VOPs, the forward reference is one of the following two: the most recently decoded enhancement
VOP or the most recent lower layer VOP in display order. The backward reference is one of the
following three: the temporally coincident VOP in the lower layer, the most recent lower layer VOP in
display order, or the next lower layer VOP in display order.

Table 7-14 Prediction reference choices in enhancement layer P-VOPs for scalability

ref_select_code forward prediction reference

00 Most recently decoded enhancement VOP
belonging to the same layer.

01 Most recently VOP in display order
belonging to the reference layer.

10 Next VOP in display order belonging to
the reference layer.

11 Temporally coincident VOP in the
reference layer (no motion vectors)

Table 7-15 Prediction reference choices in enhancement layer B-VOPs for scalability

ref_select_code forward temporal reference backward temporal reference

00 Most recently decoded enhancement VOP
of the same layer

Temporally coincident VOP in the
reference layer (no motion vectors)

01 Most recently decoded enhancement VOP
of the same layer.

Most recent VOP in display order
belonging to the reference layer.

10 Most recently decoded enhancement VOP
of the same layer.

Next VOP in display order belonging
to the reference layer.

11 Most recently VOP in display order
belonging to the reference layer.

Next VOP in display order belonging
to the reference layer.

ISO/IEC 14496-2 Committee Draft

194

7.8.1 Temporal scalability

Temporal scalability involves two layers, a lower layer and an enhancement layer. Both the lower and
the enhancement layers process the same spatial resolution. The enhancement layer enhances the
temporal resolution of the lower layer and if temporally remultiplexed with the lower layer provides
full temporal rate.

7.8.1.1 Base layer and enhancement layer

In the case of temporal scalability, the decoded VOPs of the enhancement layer are used to increase
the frame rate of the base layer. Figure 7-31 shows a simplified diagram of the motion compensation
process for the enhancement layer using temporal scalability.

Framestore
Addressing

Vector
Decoding

Σ

Framestores

Half-pel
Prediction
Filtering

Saturation

Vector
Predictors

From
Bitstream

Decoded
samples

f[y][x] d[y][x]

p[y][x]

vector[r][s][t]

Half-Pel
Info.

Scaling
for Colour

Components

vector'[r][s][t]

Lower Layer Decoder

Lower Layer
Bitstream

Figure 7-31 Simplified motion compensation process for temporal scalability.

 ISO/IEC 14496-2 Committee Draft

195

Predicted samples p[y][x] are formed either from frame stores of base layer or from frame stores of
enhancement layer. The difference data samples f[y][x] are added to p[y][x] to form the decoded
samples d[y][x].

There are two types of enhancement structures indicated by the “enhancement_type” flag. When the
value of enhancement_type is “1”, the enhancement layer increases the temporal resolution of a
partial region of the base layer. When the value of enhancement_type is “0”, the enhancement layer
increases the temporal resolution of an entire region of the base layer.

7.8.1.2 Base layer

The decoding process of the base layer is the same as non-scalable decoding process.

7.8.1.3 Enhancement layer

The VOP of the enhancement layer is decoded as either I-VOP, P-VOP or B-VOP. The shape of the
VOP is either rectangular (video_object_layer_id is “00”) or arbitrary (video_object_layer_id is “01”).

7.8.1.3.1 Decoding of I-VOPs

The decoding process of I-VOPs in enhancement layer is the same as non-scalable decoding process.

7.8.1.3.2 Decoding of P-VOPs

The reference layer is indicated by ref_layer_id in Video Object Layer class. Other decoding process is
the same as non-scalable P-VOPs except the process specified in 7.8.1.3.4 and 7.8.1.3.5.

For P-VOPs, the ref_select_code is either “00”, “01” or “10”.

When the value of ref_select_code is “00”, the prediction reference is set by the most recently decoded
VOP belonging to the same layer.

When the value of ref_select_code is “01”, the prediction reference is set by the previous VOP in
display order belonging to the reference layer.

When the value of ref_select_code is “10”, the prediction reference is set by the next VOP in display
order belonging to the reference layer.

7.8.1.3.3 Decoding of B-VOPs

The reference layer is indicated by ref_layer_id in Video Object Layer class. Other decoding process is
the same as non-scalable B-VOPs except the process specified in 7.8.1.3.4 and 7.8.1.3.5.

For B-VOPs, the ref_select_code is either “01”, “10” or “11”.

When the value of ref_select_code is “01”, the forward prediction reference is set by the most recently
decoded VOP belonging to the same layer and the backward prediction reference is set by the previous
VOP in display order belonging to the reference layer.

When the value of ref_select_code is “10”, the forward prediction reference is set by the most recently
decoded VOP belonging to the same layer, and the backward prediction reference is set by the next
VOP in display order belonging to the reference layer.

ISO/IEC 14496-2 Committee Draft

196

When the value of ref_select_code is “11”, the forward prediction reference is set by the previous VOP
in display order belonging to the reference layer and the backward prediction reference is set by the
next VOP in display order belonging to the reference layer. The picture type of the reference VOP
shall be either I or P (VOP_coding_type = “00” or “01”).

When the value of ref_select_code is “01” or “10”, direct mode is not allowed. MODB shall always
exist in each macroblock, i.e. the macroblock is not skipped even if the co-located macroblock is
skipped.

7.8.1.3.4 Decoding of arbitrary shaped VOPs

Prediction for arbitrary shape in P-VOPs or in B-VOPs is formed from a forward reference VOP
defined by the value of ref_select_code.

For arbitrary shaped VOPs with the value of enhancement_type being “1”, the shape of the reference
VOP is defined as an all opaque rectangle whose size is the same as the reference layer when the
shape of reference layer is rectangular (video_object_layer_shape = “00”).

When the value of ref_select_code is “11” and the value of enhancement_type is “1”, MODB shall
always exist in each macroblock, i.e. the macroblock is not skipped even if the co-located macroblock
is skipped.

7.8.1.3.5 Decoding of backward and forward shape

Backward shape and forward shape are used in the background composition process specified in
section 8.1. The backward shape is the shape of the enhanced object at the next VOP in display order
belonging to the reference layer. The forward shape is the shape of the enhanced object at the previous
VOP in display order belonging to the reference layer.

For the VOPs with the value of enhancement_type being “1”, backward shape is decoded when the
load_backward_shape is “1” and forward shape is decoded when load_forward_shape is “1”.

When the value of load_backward_shape is “1” and the value of load_forward_shape is “0”, the
backward shape of the previous VOP is copied to the forward shape for the current VOP. When the
value of load_backward_shape is “0”, the backward shape of the previous VOP is copied to the
backward shape for the current VOP and the forward shape of the previous VOP is copied to the
forward shape for the current VOP.

The decoding process of backward and forward shape is the same as the decoding process for the
shape of I-VOP with binary only mode (video_object_layer_shape = “10”).

 ISO/IEC 14496-2 Committee Draft

197

7.8.2 Spatial scalability

7.8.2.1 Base Layer and Enhancement Layer

In the case of spatial scalability, the enhancement bitstream is used to increase the resolution of the
image. When the output with lower resolution is required, only the base layer is decoded. When the
output with higher resolution is required, both the base layer and the enhancement layer are decoded.

Figure 7-32 is a diagram of the video decoding process with spatial scalability.

Framestore
Addressing

Vector
Decoding

Σ

Framestores

Half-pel
Prediction
Filtering

Sa
tu

ra
tio

n

Vector
Predictors

From
Bitstream

Decoded
samples

f[y][x] d[y][x]

p[y][x]

vector[r][s][t]

Half-Pel
Info.

Combine
Predictions

Scaling
for Colour

Components

vector'[r][s][t]

Upsampler

Lower Layer Decoder

Lower Layer
Bitstream

pel_pred_temp[y][x]

lowerd [y][x]

pel_pred_spat[y][x]

Figure 7-32 Simplified motion compensation process for spatial scalability

7.8.2.2 Decoding of Base Layer

The decoding process of the base layer is the same as nonscalable decoding process.

ISO/IEC 14496-2 Committee Draft

198

7.8.2.3 Prediction in the enhancement layer

A motion compensated temporal prediction is made from reference VOPs in the enhancement layer.
In addition, a spatial prediction is formed from the lower layer decoded frame (dlower[y][x]). These
predictions are selected individually or combined to form the actual prediction.

In the enhancement layer, the forward prediction in P-VOP and the backward prediction in B-VOP
are used as the spatial prediction. The reference VOP is set to the temporally coincident VOP in the
base layer. The forward prediction in B-VOP is used as the temporal prediction from the enhancement
layer VOP. The reference VOP is set to the most recently decoded VOP of the enhancement layer. The
interpolate prediction in B-VOP is the combination of these predictions.

In the case that a macroblock is not coded, either because the entire macroblock is skipped or the
specific macroblock is not coded there is no coefficient data. In this case f[y][x] is zero, and the
decoded samples are simply the prediction, p[y][x].

7.8.2.4 Formation of spatial prediction

Forming the spatial prediction requires definition of the spatial resampling process. The formation is
performed at the mid-processor. The resampling process is defined for a whole VOP, however, for
decoding of a macroblock, only the 16x16 region in the upsampled VOP, which corresponds to the
position of this macroblock, is needed.

The spatial prediction is made by resampling the lower layer reconstructed VOP to the same sampling
grid as the enhancement layer. In the first step, the lower layer VOP is subject to vertical resampling.
Then, the vertically resampled image is subject to horizontal resampling.

7.8.2.5 Vertical resampling

The image subject to vertical resampling, d y xlower [][] , is resampled to the enhancement layer

vertical sampling grid using linear interpolation between the sample sites according to the following
formula, where vert_pic is the resulting image:

vert_pic[yh][x] = (16 - phase) * d lower [y1][x] + phase * d lower [y2][x]

where
yh = output sample coordinate in vert_pic

y1 = (yh * vertical_sampling_factor_m) / vertical_sampling_factor_n

y2 = y1 + 1 if y1 < video_object_layer_height - 1
y1 otherwise

phase = (16 * ((yh * vertical_sampling_factor_m)

vertical_sampling_factor_n))
// vertical_sampling_factor_n

where video_object_layer_width is the width of the reference VOL.

Samples which lie outside the lower layer reconstructed frame which are required for upsampling are
obtained by border extension of the lower layer reconstructed frame.

NOTE - The calculation of phase assumes that the sample position in the enhancement layer at
yh = 0 is spatially coincident with the first sample position of the lower layer. It is

recognised that this is an approximation for the chrominance component if the
chroma_format == 4:2:0.

 ISO/IEC 14496-2 Committee Draft

199

7.8.2.6 Horizontal resampling

The image subject to horizontal resampling, vert pict y x_ [][] , is resampled to the enhancement

layer horizontal sampling grid using linear interpolation between the sample sites according to the
following formula, where hor_pic is the resulting image:

hor_pic[y][xh] = ((16 - phase) * vert_pic[y][x1] + phase * vert_pic[y][x2]) // 256
where

xh = output sample coordinate in hor_pic
x1 = (xh * horizontal_sampling_factor_m) / horizontal_sampling_factor_n
x2 = x1 + 1 if x1 < video_object_layer_width - 1

x1 otherwise
phase = (16 * ((xh * horizontal_sampling_factor_m) %

horizontal_sampling_factor_n)) // h_subs_n

where video_object_layer_width is the width of the reference VOL.

Samples which lie outside the lower layer reconstructed frame which are required for upsampling are
obtained by border extension of the lower layer reconstructed frame.

7.8.2.7 Selection and combination of spatial and temporal predictions

The spatial and temporal predictions can be selected or combined to form the actual prediction in B-
VOP. The spatial prediction is referred to as “backward prediction”, while the temporal prediction is
referred to as “forward prediction”. The combination of these predictions can be used as “interpolate
prediction”. In the case of P-VOP, only the spatial prediction (prediction from the lower layer) can be
used as the forward prediction. The prediction in the enhancement layer is defined in the following
formulae.

pel_pred[y][x] = pel_pred_temp[y][x] (forward in B-VOP)
pel_pred[y][x] = pel_pred_spat[y][x] = hor_pict[y][x] (forward in P-VOP and

backward in B-VOP)
pel_pred[y][x] = (pel_pred_temp[y][x] + pel_pred_spat[y][x])//2 (Interpolate in B-VOP)

pel_pred_temp[y][x] is used to denote the temporal prediction (formed within the enhancement layer).
pel_pred_spat[y][x] is used to denote the prediction formed from the lower layer. pel_pred[y][x] is
denoted the resulting prediction.

7.8.2.8 Decoding process of enhancement layer

The VOP in the enhancement layer is decoded as either I-VOP, P-VOP or B-VOP.

7.8.2.9 Decoding of I-VOPs

The decoding process of the I-VOP in the enhancement layer is the same as the non_scalable
decoding process.

7.8.2.10 Decoding of P-VOPs

In P-VOP, the ref_select_code shall be “11”, i.e., the prediction reference is set to the temporally
coincident VOP in the base layer. The reference layer is indicated by ref_layer_id in
VideoObjectLayer class. In the case of spatial prediction, the motion vector shall be set to 0 at the
decoding process and is not encoded in the bitstream.

A variable length codeword giving information about the macroblock type and the coded block pattern
for chrominance is MCBPC. The codewords for MCBPC in the enhancement layer are the same as the
base layer and shown in Table 11-6. MCBPC shall be included in coded macroblocks.

ISO/IEC 14496-2 Committee Draft

200

The macroblock type gives information about the macroblock and which data elements are present.
Macroblock types and included elements in the enhancement layer bitstream are listed in Table 11-1-
2.

In the case of the enhancement layer of spatial scalability, INTER4V shall not be used. The
macroblock of INTER or INTER+Q is encoded using the spatial prediction.

7.8.2.11 Decoding of B-VOPs

In B-VOP, the ref_select_code shall be “00”, i.e., the backward prediction reference is set to the
temporally coincident VOP in the base layer, and the forward prediction reference is set to the most
recently decoded VOP in the enhancement layer. In the case of spatial prediction, the motion vector
shall be set to 0 at the decoding process and is not encoded in the bitstream.

 MODB shall be present in coded macroblocks belonging to B-VOPs. The codeword is the same as the
base layer and is shown in Table 11-2. In case MBTYPE does not exist the default shall be set to
"Forward MC" (prediction from the last decoded VOP in the same reference layer). MODB shall be
encoded in all macroblocks. If its value is equal to ‘0’, further information is not transmitted for this
macroblock. The decoder treats the prediction of this macroblock as forward MC with motion vector
equal to zero.

MBTYPE is present only in coded macroblocks belonging to B-VOPs. The MBTYPE gives
information about the macroblock and which data elements are present. MBTYPE and included
elements in the enhancement layer bitstream are listed in Table 11-4.

In the case of the enhancement layer of spatial scalability, direct mode shall not be used. The decoding
process of the forward motion vectors are the same as the base layer.

 ISO/IEC 14496-2 Committee Draft

201

7.9 Still texture object decoding

The block diagram of the decoder is shown in Figure 7-33.

ZeroTree
Decoding

 Inverse
Quantization

 Inverse
Quantization

Arithmetic
 Decoding

Other Bands

Coded Data

Prediction
Lowest Band

Output
Inverse
 DWT

Figure 7-33 Block diagram of the encoder.

The basic modules of a zero-tree wavelet based decoding scheme are as follows:

1. Decoding of the DC subband using a predictive scheme.

2. Arithmetic decoding of the bitstream into quantized wavelet coefficients and the significance map
for AC subbands.

3. Zero-tree decoding of the higher subband wavelet coefficients.

4. Inverse quantization of the wavelet coefficients.

5. Composition of the texture using inverse discrete wavelet transform (IDWT).

7.9.1 Decoding of the DC subband

The wavelet coefficients of DC band are decoded independently from the other bands. First the
magnitude of the minimum value of the coefficients “band_offset” and the maximum value of the
coefficients “band_max_value” are decoded from bitstream. The parameter “band_offset” is negative
or zero integer and the parameter “band_max” is a positive integer, so only the magnitude of these
parameters are read from the bitstream.

The arithmetic coder model is initialized with a uniform distribution of “band_max_value-
band_offset +1” number of symbols. Then, the quantized wavelet coefficients are decoded using the
arithmetic decoder in a raster scan order, starting from the upper left coefficient and ending to the
lowest right one. The model is updated with decoding of each predicted wavelet coefficient to adopt
the probability model to the statistics of DC band.

 The “band_offset” is added to all the decoded values, and an inverse predictive scheme is applied.
Each of the current coefficients wX is predicted from three other quantized coefficients in its
neighborhood, i.e. wA, wB, and wC (see Figure 7-34), and the predicted value is added to the current
decoded coefficient. That is,

ISO/IEC 14496-2 Committee Draft

202

if (|wA-wB|) < | wB-wC|)
$w wx C=

else
$w wx A=

wx = wx + $wx

If any of nodes A, B or C is not in the image, its value is set to zero for the purpose of the inverse
prediction. Finally, the inverse quantization scheme is applied to all decoded values to obtain the
wavelet coefficients of DC band.

B C

A X

Figure 7-34 DPCM decoding of DC band coefficients

7.9.2 ZeroTree Decoding of the Higher Bands

The zero-tree algorithm is based on the strong correlation between the amplitudes of the wavelet
coefficients across scales, and on the idea of partial ordering of the coefficients. The coefficient at the
coarse scale is called the parent, and all coefficients at the same spatial location, and of similar
orientation, at the next finer scale are that parent’s children. Figure 7-35 shows a wavelet tree where
the parents and the children are indicated by dots and connected by lines. Since the DC subband
(shown at the upper left in Figure 7-35) is coded separately using a DPCM scheme, the wavelet trees
start from the adjacent higher bands.

Figure 7-35 Parent-child relationship of wavelet coefficients

 ISO/IEC 14496-2 Committee Draft

203

In transform-based coding, it is typically true that a large percentage of the transform coefficients are
quantized to zero. A substantial number of bits must be spent either encoding these zero-valued
quantized coefficients, or else encoding the location of the non-zero-valued quantized coefficients.
ZeroTree Coding uses a data structure called a zerotree, built on the parent-child relationships
described above, and used for encoding the location of non-zero quantized wavelet coefficients. The
zerotree structure takes advantage of the principle that if a wavelet coefficient at a coarse scale is
“insignificant” (quantized to zero), then all wavelet coefficients of the same orientation at the same
spatial location at finer wavelet scales are also likely to be “insignificant”. Zerotrees exist at any tree
node where the coefficient is zero and all its descendents are also zero.

The wavelet trees are efficiently represented and coded by scanning each tree from the root in the 3
lowest AC bands through the children, and assigning one of four symbols to each node encountered:
zerotree root (ZTR), value zerotree root (VZTR), isolated zero (IZ) or value (VAL). A ZTR denotes a
coefficient that is the root of a zerotree. Zerotrees do not need to be scanned further because it is
known that all coefficients in such a tree have amplitude zero. A VZTR is a node where the coefficient
has a nonzero amplitude, and all four children are zerotree roots. The scan of this tree can stop at this
symbol. An IZ identifies a coefficient with amplitude zero, but also with some nonzero descendant. A
VAL symbol identifies a coefficient with amplitude nonzero, and with some nonzero descendant. The
symbols and quantized coefficients are losslessly encoded using an adaptive arithmetic coder. Table 7-
16 shows the mapping of indices of the arithmetic decoding model into the zerotree symbols:

Table 7-16 The indexing of zerotree symbols

index Symbol

0 IZ

1 VAL

2 ZTR

3 VZTR

In order to achieve a wide range of scalability levels efficiently as needed by different applications,
three different zerotree scaaning and associated inverse quantization methods are employed. The
encoding mode is speficied in bitstream with quantization_type field as one of 1) single_quant, 2)
multi_quant or 3) bilevel_quant:

Table 7-17 The quantization types

code quantization_type

01 single_quant

10 multi _quant

11 bilevel_quant

In single_quant mode, the bitstream contains only one zero-tree map for the wavelet coefficients.
After arithmetic decoding, the inverse quantization is applied to obtain the reconstructed wavelet
coefficients and at the end, the inverse wavelet transform is applied to those coefficients.

In multi_quant mode, a multiscale zerotree decoding scheme is employed. Figure 7-36 shows the
concept of this technique.

Buffer

+ Inverse
Quantization

 Zerotree
Decoding

ISO/IEC 14496-2 Committee Draft

204

Figure 7-36. Multiscale Zerotree decoding

The wavelet coefficients of the first spatial (and/or SNR) layer are read from the bitstream and
decoded using the arithmetic decoder. Zerotree scanning is used for decoding the significant maps and
quantized coefficients and locating them in their corresponding positions in trees.. These values are
saved in the buffer to be used for quantization refinement at the next scalability layer. Then, an
inverse quantization is applied to these indices to obtain the quantized wavelet coefficients. An
inverse wavelet transform can also be applied to these coefficients to obtain the first decoded image.
The above procedure is applied for the next spatial/SNR layers.

The bilevel_quant mode enables fine granular SNR scalability by encoding the wavelet coefficients in
a bitplane by bitplane fashion. This mode uses the same zerotree symbols as the multi_quant mode. In
this mode, a zero-tree map is decoded for each bitplane, indicating which wavelet coefficients are
nonzero relative to that bitplane. The inverse quantization is also performed bitplane by bitplane.
After the zero-tree map, additional bits are decoded to refine the accuracy of the previously decoded
coefficients.

7.9.2.1 Zerotree Scanning

In single_quant mode, the wavelet coefficients are scanned in the tree-depth fashion, meaning that all
coefficients of each tree is decoded before starting decoding of the next tree. In single_quant mode, the
wavelet coefficients are scanned in the tree-depth fashion, meaning that all coefficients of each tree is
decoded before starting decoding of the next tree.

Figure 7-37 shows the scanning order for a 16x16 image, with 3 levels of decomposition. In this
figure, the indecis 0,1,2,3 represent the DC band coefficients which are decoded separately. The
remaining coefficients are decoded in the order shown in this figure. As an example, indices 4,5,..., 24
represent one tree. At first, coefficients in this tree are decoded starting from index 4 and ending at
index 24. Then, the coefficients in the second tree are decoded starting from index 25 and ending at
45. The third tree is decoded starting from index 46 and ending at index 66 and so on.

0 1 4 67 5 10 68 73 6 7 11 12 69 70 74 75

2 3 130 193 15 20 78 83 8 9 13 14 71 72 76 77

25 88 46 109 131 136 194 199 16 17 21 22 79 80 84 85

151 214 172 235 141 146 204 209 18 19 23 24 81 82 86 87

26 31 89 94 47 52 110 115 132 133 137 138 195 196 200 201

36 41 99 104 57 62 120 125 134 135 139 140 197 198 202 203

152 157 215 220 173 178 236 241 142 143 147 148 205 206 210 211

162 167 225 230 183 188 246 251 144 145 149 150 207 208 212 213

27 28 32 33 90 91 95 96 48 49 53 54 111 112 116 117

29 30 34 35 92 93 97 98 50 51 55 56 113 114 118 119

 ISO/IEC 14496-2 Committee Draft

205

37 38 42 43 100 101 105 106 58 59 63 64 121 122 126 127

39 40 44 45 102 103 107 108 60 61 65 66 123 124 128 129

153 154 158 159 216 217 221 222 174 175 179 180 237 238 242 243

155 156 160 161 218 219 223 224 176 177 181 182 239 240 244 245

163 164 168 169 226 227 231 232 184 185 189 190 247 248 252 253

165 166 170 171 228 229 233 234 186 187 191 192 249 250 254 255

Figure 7-37 Scanning order of a wavelet block in the single_quant mode

In multi_quant mode, the wavelet coefficients are decoded in multi scalability layers. In this mode, the
wavelet coefficients are scanned in the subband by subband fashion, from the lowest to the highest
frequency subbands. Figure 7-38 shows an example of decoding order for a 16x16 image with 3 levels
of decomposition..The DC band is located at upper left corner (with indices 0, 1,2, 3) and is decoded
separately as described in DC band decoding. The remainig coeffcinets are decoded on the order
which is shown in the figure, starting from index 4 and ending at index 255. At first scalability layer,
the zerotree symbols and the corresponding values are decoded for the wavelet coefficients of that
scalability layer. For the next scalability layers, the zerotree map is updated along with the
corresponding value refinements. In each scalability layer, a new zerotree symbol is decoded for a
coefficient only if it was decoded as ZTR, VZTR or IZ in previous scalability layer. If the coefficient
was decoded as VAL in previous layer, a VAL symbol is also assigned to it at the current layer and
only its refinement value is decoded from bitstream.

0 1 4 5 16 17 18 19 64 65 66 67 68 69 70 71

2 3 6 7 20 21 22 23 72 73 74 75 76 77 78 79

8 9 12 13 24 25 26 27 80 81 82 83 84 85 86 87

10 11 14 15 28 29 30 31 88 89 90 91 92 93 94 95

32 33 34 35 48 49 50 51 96 97 98 99 100 101 102 103

36 37 38 39 52 53 54 55 104 105 106 107 108 109 110 111

40 41 42 43 56 57 58 59 112 113 114 115 116 117 118 119

44 45 46 47 60 61 62 63 120 121 122 123 124 125 126 127

128 129 130 131 132 133 134 135 192 193 194 195 196 197 198 199

136 137 138 139 140 141 142 143 200 201 202 203 204 205 206 207

144 145 146 147 148 149 150 151 208 209 210 211 212 213 214 215

ISO/IEC 14496-2 Committee Draft

206

152 153 154 155 156 157 158 159 216 217 218 219 220 221 222 223

160 161 162 163 164 165 166 167 224 225 226 227 228 229 230 231

168 169 170 171 172 173 174 175 232 233 234 235 236 237 238 239

176 177 178 179 180 181 182 183 240 241 242 243 244 245 246 247

184 185 186 187 188 189 190 191 248 249 250 251 252 253 254 255

Figure 7-38 Scanning order for multi_qaunt and bilevel_quant modes

In bilevel_quant mode, the band by band scanning is also employed, similar to the multi_quant mode.
When bi-level quantization is applied, the coefficients that are already found significant are replaced
with zero symbols for the purpose of zero-tree forming in later scans.

7.9.2.2 Entropy Decoding

The zero-tree symbols and quantized coefficient values are all decoded using an adaptive arithmetic
decoder and a given symbol alphabet. The arithmetic decoder adaptively tracks the statistics of the
zerotree symbols and decoded values. The arithmetic decoder and all models are initialized in the
beginning of each color loop. In order to avoid start code emulation, the arithmetic encoder always
starts with stuffing one bit ‘1’ at the beginning of the entropy encoding. It also stuffs one bit ‘1’
immediately after it encodes every 22 successive ‘0’s. It stuffs one bit ‘1’ to the end of bitstream in the
case in which the last output bit of arithmetic encoder is ‘0’. Thus, the arithmetic decoder reads and
discards one bit before starts entropy decoding. During the decoding, it also reads and discards one bit
after receiving every 22 successive ‘0’s. The arithmetic decoder reads one bit and discards it if the last
input bit to the arithmetic decoder is ‘0’.

In single_quant mode, four adaptive probability models are used to decode the coefficients of the
higher bands. These models are: 1) type to decode the zero-tree symbols, 2) root to decode the values
of the nonzero quantized coefficients of the first three AC bands, 3) valnz to decode the values of the
nonzero quantized coefficients of the all other bands except the ones which are leaves (have no
children), and finally 4) valz to decode the values of the quantized coefficients of the three highest
bands, i.e. the coefficients that have no children. If the number of wavelet decomposition level is one,
valz is used. If it is two, then root and valz are used. All above models are initialized with the uniform
probability distribution at the beginning and are updated with decoding of each corresponding
coefficient by appropriately switching between the models. For each model, the alphabet range is read
from bitstream before decoding the wavelet coefficients. This value, max_alphabet, is read from the
bitstream in the following format:

extension (1 bit) value (7 bits)

.

.

.

.

.

.

The following scripts shows how max_alphabet is decoded:

 ISO/IEC 14496-2 Committee Draft

207

 max_alphabet = 0;
 count=0;
 read (byte);
 while (byte/128){
 max_alphabet += (byte-128) <<(count*7);
 read (byte);
 count++;
 }
 max_alphabet += (byte-128) <<(count*7);

Note that the quantized coefficients which are decoded using root or valnz models, can not be zero. At
the encoder, to increase the coding efficiency, all the values which are coded using these models are
decremented by one before encoding.Therefore, at the decoder, after decoding these coefficients, all
are incremented by one.The wavelet coefficients are decoded in the order which described in previous
section. For each coefficient except the one in the leaf-bands, its zerotree symbol is decoded first and
if necessary, then its value is decoded. The value is decoded in two steps. First, its sign is decoded
using a binary probability model with ‘0’ meaning positive and ‘1’ meaning negative sign. Then, the
absolute value is decoded using the appropriate probability model. The sign model is initialized to the
uniform probability distribution. The sign model is initialized to the uniform probability distribution.

For the coefficients which are leaves and are descendent of a VAL or IZ, only a value is decoded using
valz model. The value is decoded in two steps. First, the absolute value is decoded. Then, if the
absolute value is non-zero, its sign is decoded.

In multi_quant mode, one additional probability model, residual, is used for decoding the refinements
of the coefficients that were decoded with VAL or VZTR symbol in any previous scalability layers. If a
node is currently not in SKIP mode then we have the following: If in the previous layer, a VAL
symbol was assigned, the same symbol is kept for the current pass and no zerotree symbol is decoded.
If in the previous layer, a VZTR symbol was assigned, a new symbol is decoded for the current layer,
but it can only be VAL or VZTR. Similarly, if the nonzero value of a leaf coefficient was decoded in
any previous scalability layer, the residual model is used to decode the coefficient refinements. The
residual model, same as the other probability models, is also initialized to the uniform probability
distribution at the beginning of each scalability layer and color. The numbers of bins for the residual
model is calculated based on the ratio of the quantization step sizes of the current and previous
scalability layers (defined in the inverse quantization section). When a residual model is used, only
the magnitude of the refinement are decoded as these values are always zero or positive integers. If the
number of wavelet decomposition levels is one, then only models valz and residual are used. If it is
two, then models root, valz and residual are used . If a node is in SKIP mode, then its new significant
symbol is decoded from bitstream, but no value is decoded for the node and its value in the current
scalability layer is assumed to be zero.

For the bi-level quantization mode, the zero-tree map is decoded for each bitplane, indicating which
wavelet coefficients are zeros relative to the current quantization step size. Different probability
models for the arithmetic decoder are used and updated according to the local contexts. For instance,
if a coefficient is a descendant of ZTR in the previous pass, then its probability of being zero in the
current layer is significantly higher than in the case where it is the descendant of VZTR. The
additional symbols DZ and DV are used for switching the models only, where DZ refers to the
descendant of a ZTR symbol, DV refers to the descendant of a VZTR symbol.

After the zero-tree map, additional bits are received to refine the accuracy of the coefficients that are
already marked significant by previously received information at the decoder. For each significant
coefficient, the 1-bit bi-level quantized refinement values are entropy coded using the arithmetic
coder.

ISO/IEC 14496-2 Committee Draft

208

In order to avoid start code emulation, the arithmetic encoder stuffs one bit ‘1’ immediately after it
encodes 22 successive ‘0’s. It also stuffs one bit ‘1’ to the end of bitstream in the case in which the last
output bit of arithmetic encoder is ‘0’. Thus, the arithmetic decoder reads and discards one bit if it
receives 22 successive ‘0’s. For the same reason, the arithmetic decoder reads one bit and discards it if
the last input bit to the arithmetic decoder is ‘0’.

7.9.3 Inverse Quantization

Different quantization step sizes (one for each color component) are specified for each level of
scalability.

The quantizer of the DC band is a uniform mid-rise quantizer with a dead zone equal to the
quantization step size. The quantization index is a signed integer number and the quantization
reconstructed value is obtained using the following equation:

V= id * Qdc,

where V is the reconstructed value, id is the decoded index and Qdc is the quantization step size.

All the quantizers of the higher bands (in all quantization modes) are uniform mid-rise quantizer with
a dead zone 2 times the quantization step size. For the single quantization mode, the quantization
index is an signed integer. The reconstructed value is obtained using the following algorithm:

if (id == 0)
 V =0;

 else if (id > 0)
 V = id*Q+Q/2;
 else
 V = id*Q-Q/2;

where V is the reconstructed value, id is the decoded index and Q is the quantization step size.

In the multi quantization mode, when the quantization index of a nonzero coefficient is decoded for
the first time, it is used to reconstruct the coefficients exactly in same procedure as in single
quantization mode (as described above). For successive scalability layers, the reconstructed value is
refined. The refinement information are called residuals and are calculated by calculating the number
of refinement levels

m=ROUND(prevQ/curQ)

where, prevQ is the previous layer’s Q value, which may have been revised from the Q value
extracted from the bitstream, and curQ is the current layer’s Q value which was extracted from the
bitstream, ROUND rounds to the nearest integer except in the case where the nearest integer is zero in
which case it is one (i.e. ROUND(x) = MAX(nearest integer of x, 1)). The revision formula for the Q
values is:

revisedQ = CEIL(prevQ ÷ m)

where CEIL rounds up to the nearest integer. This revisedQ becomes prevQ in the next scalability
layer.

 ISO/IEC 14496-2 Committee Draft

209

For m larger than 1, the inverse range of the quantized value is partitioned from the previous layer in
such a way that makes the partitions as uniform as possible based on the previously calculated number
of quantization refinement levels, m. This partitioning always leaves a discrepancy of zero between
the partition sizes if prevQ is evenly divisible by curQ (e.g. prevQ = 20 and curQ = 10). If prevQ is
not evenly divisible by curQ (e.g. prevQ = 20 and curQ = 7) then a maximum discrepancy of 1 occurs
between partitions (in this case, 7, 7, 6). The larger partitions are always the ones closer to zero. The
partitions are indexed from 0 to m-1, starting from the partition closer to zero (in this case, 0, 1, 2 for
7, 7, 6 partitions). These indices are decoded from the bitstream. At the decoder, the midpoint of any
partition is assigned as the reconstruction level of that partition (in this example, 23 for the 20-26
partition, 30 for 26-33 partition, and 37 for the 34-39). For m=1, no refinement is decoded from the
bitstream.

The reconstruction formula is:

PrevLevStart + (sign)(revisedQ)//2

Where PrevLevStart is the value of lowest magnitude of the previous quantization level, sign is the
polarity of the value being quantized, revisedQ is the value described above, and // is integer division.
Note: PrevLevStart and sign are known from previous scalability layers.

In the bilevel_quant mode, quant and SNR_scalability_levels are also defined in the bitstream. The
initial quantization step size is calculated using the following equation:

Q0 = quant * (1<< SNR_scalability_levels)

The quantization step size at each successive bitplane is half of that at previous bitplane. These
quantizers are also uniform mid-rise quantizers with dead zones 2 times the quantization step sizes.
The wavelet coefficients are reconstructed as described in the mulit_quant mode for the case in which
m=2.

7.9.3.1 Shape adaptive zerotree decoding

Decoding shape adaptive wavelet coefficients is the same as decoding regular wavelet coefficients
except keep track of the locations of where to put the decoded wavelet coefficients according to the
shape information. Similar to decoding of regular wavelet coefficients, the decoded zerotree symbols
at a lower subband are used to determine whether decoding is needed at higher subbands. The
difference is now that some zerotree nodes correspond to the pixel locations outside the shape
boundary and no bits are to be decoded for these out_nodes. Root layer is defined as the lowest three
AC subbands, leaf layer is defined as the highest three AC subbands. For decomposition level of one,
the overlapped root layer and leaf laver shall be treated as leaf layer. The following description for
shape adaptive zerotree decoding is the decoding process in the single quantization mode.

7.9.3.1.1 Root layer

At the root layer (the lowest 3 AC bands), the shape information is examined for every node to
determine whether a node is an out_node.

If it is an out_node,

• no bits are decoded for this node;
• the four children nodes of this node are marked “to_be_decoded” (TBD);

 otherwise,

• a zerotree symbol is decoded for this node using an adaptive arithmetic decoder.

 If the decoded symbol for the node is either isolated_zero (IZ) or value (VAL),

• the four children nodes of this node are marked TBD;

ISO/IEC 14496-2 Committee Draft

210

 otherwise,

• the symbol is either zerotree_root (ZTR) or valued_zerotree_root (VZTR) and the four children
nodes of this node are marked “no_code” (NC).

 If the symbol is VAL or VZTR,

• a non-zero wavelet coefficient is decoded for this node by root model;

 otherwise,

• the symbol is either IZ or ZTR and the wavelet coefficient is set to zero for this node.

7.9.3.1.2 Between root and leaf layer

 At any layer between the root layer and the leaf layer, the shape information is examined for every
node to determine whether a node is an out_node.

 If it is an out_node,

• no bits are decoded for this node;
• the four children nodes of this node are marked as either TBD or NC depending on whether this

node itself is marked TBD or NC respectively;

 otherwise, if it is marked NC,

• no bits are decoded for this node;
• the wavelet coefficient is set to zero for this node;
• the four children nodes are marked NC;

 otherwise,

• a zerotree symbol is decoded for this node using an adaptive arithmetic decoder.

 If the decoded symbol for the node is either isolated_zero (IZ) or value (VAL),

• the four children nodes of this node are marked TBD;

 otherwise,

• the symbol is either zerotree_root (ZTR) or valued_zerotree_root (VZTR) and the four nodes of
this node are marked “no_code” (NC).

 If the symbol is VAL or VZTR,

• a non-zero wavelet coefficient is decoded for this node by valnz model;

 otherwise,

• the symbol is either IZ or ZTR and the wavelet coefficient is set to zero for this node.

7.9.3.1.3 Leaf layer

 At the leaf layer, the shape information is examined for every node to determine whether a node is an
out_node.

 If it is an out_node,

• no bits are decoded for this node;

 otherwise, if it is marked NC,

• no bits are decoded for this node;
• the wavelet coefficient is set to zero for this node;

 ISO/IEC 14496-2 Committee Draft

211

otherwise,

• * a wavelet coefficient is decoded for this node by valz adaptive arithmetic model;

7.9.3.2 Shape decomposition

The shape information for both shape adaptive zerotree decoding and the inverse shape adaptive
wavelet transform is obtained by decomposing the reconstructed shape from the shape decoder.
Assuming binary shape with 0 or 1 indicating a pixel being outside or inside the arbitrarily shaped
object, the shape decomposition procedure can be described as follows:

1. For each horizontal line, collect all even-indexed shape pixels together as the shape information
for the horizontal low-pass band and collect all odd-indexed shape pixels together as the shape
information for the horizontal high-pass band, except for the special case where the number of
consecutive 1’s is one.

2. For an isolated 1 in a horizontal line, whether at an even-indexed location or at an odd-indexed
location, it is always put together with the shape pixels for the low-pass band and a 0 is put at the
corresponding position together with the shape pixels for the high-pass band.

3. Perform the above operations for each vertical line after finishing all horizontal lines.
4. Use the above operations to decompose the shape pixels for the horizontal and vertical low-pass

band further until the number of decomposition levels is reached.

ISO/IEC 14496-2 Committee Draft

212

7.10 Mesh object decoding

An overview of the decoding process is show in Figure 7-39.

Mesh
Geometry
Decoding

Mesh
Motion

Decoding

Mesh
Data

Memory

Variable
Length

Decoding

 Coded
 Data

 Decoded
 Mesh

 dxn
 dyn

 exn

 eyn

 xn

 yn

 tm

Figure 7-39 Simplified 2D Mesh Object Decoding Process

Variable length decoding takes the coded data and decodes either node point location data or node
point motion data. Node point location data is denoted by dxn, dyn and node point motion data is
denoted by exn, eyn, where n is the node point index (n = 0, ..., N-1). Next, either mesh geometry
decoding or mesh motion decoding is applied. Mesh geometry decoding computes the node point
locations from the location data and reconstructs a triangular mesh from the node point locations.
Mesh motion decoding computes the node point motion vectors from the motion data and applies
these motion vectors to the node points of the previous mesh to reconstruct the current mesh.

The reconstructed mesh is stored in the mesh data memory, so that it may be used by the motion
decoding process for the next mesh. Mesh data consists of node point locations (xn, yn) and triangles
tm, where m is the triangle index (m = 0, ..., M-1) and each triangle tm contains a triplet <i, j, k> which
stores the indices of the node points that form the three vertices of that triangle.

After the mesh_object_start_code has been decoded, a sequence of mesh object planes is decoded,
until a mesh_object_end_code is detected. The new_mesh_flag of the mesh object plane class
determines whether the data that follows specifies the initial geometry of a new dynamic mesh, or that
it specifies the motion of the previous mesh to the current mesh, in a sequence of meshes. Firstly, the
decoding of mesh geometry is described; then, the decoding of mesh motion is described. In this
specification, a pixel-based coordinate system is assumed, with the x-axis points to the right from the
origin, and the y-axis points down from the origin.

 ISO/IEC 14496-2 Committee Draft

213

7.10.1 Mesh geometry decoding

Since the initial 2D triangular mesh is either a uniform mesh or a Delaunay mesh, the mesh
triangular structure (i.e. the connections between node points) is not coded explicitly. Only a few
parameters are coded for the uniform mesh; only the 2D node point coordinates

r
p x yn n n= (,) are

coded for the Delaunay mesh. In each case, the coded information defines the triangular structure of
the mesh implicitly, such that it can be computed uniquely by the decoder. The mesh_type_code
specifies whether the initial mesh is uniform or Delaunay.

7.10.1.1 Uniform mesh

In the case of a uniform mesh, five parameters are used to specify the complete triangular structure
and node point locations. A 2D uniform mesh can be thought of as consisting of a set of rectangles,
where each rectangle in turn consists of two triangles. An example of a 2D uniform mesh is given in
Figure 7-40; in this example, the nr_mesh_nodes_hor is equal to 5 and nr_mesh_nodes_vert is equal
to 4 and triangle_split_code equal to ‘00’. The meaning of mesh_rect_size_hor and mesh_rect_size
vert is indicated by the arrows.

mesh_rect_size_hor

mesh_rect_size_vert

Figure 7-40 Specification of a uniform 2D mesh

In the case of a uniform mesh, the top-left node point of the initial mesh coincides with the origin of a
local coordinate system. The first two decoded parameters specify the number of nodes in the
horizontal, resp. vertical direction of the uniform mesh. The next two decoded parameters specify the
horizontal, resp. vertical size of each rectangle (containing two triangles) in half pixel units. This
specifies the layout and dimensions of the mesh. The last parameter specifies how each rectangle is
split to form two triangles; four types are allowed as illustrated in Figure 7-41.

ISO/IEC 14496-2 Committee Draft

214

 triangle_split_code == ‘00’ triangle_split_code == ‘01’

 triangle_split_code == ‘10’ triangle_split_code == ‘11’

Figure 7-41 Illustration of the types of uniform meshes defined.

7.10.1.2 Delaunay mesh

First, the total number of node points in the mesh N is decoded; then, the number of node points that
are on the boundary of the mesh Nb is decoded. Note that N is the sum of the number of nodes in the
interior of the mesh, Ni and the number of nodes on the boundary, Nb,

N = N i + N b .

Now, the locations of boundary and interior node points are decoded, where we assume the origin of
the local coordinate system is at the top left of the bounding box surrounding the initial mesh. The x-,
resp. y-coordinate of the first node point,

r
p 0 = (x 0 , y0) , is decoded directly, where x0

 and y0
 are

specified w.r.t. to the origin of the local coordinate system. All the other node point coordinates are
computed by adding a dx n

, resp. dy n
 value to, resp. the x- and y-coordinate of the previously

decoded node point. Thus, the coordinates of the initial node point
r
p 0 = (x 0 , y0) is decoded as is,

whereas the coordinates of all other node points ,
r
p n = (x n , yn) , n = 1, ..., N - 1, are obtained by

adding a decoded value to the previously decoded node point coordinates:

x x dxn n n= +−1 and y y dyn n n= +−1 .

The ordering in the sequence of decoded locations is such that the first Nb locations correspond to
boundary nodes. Thus, after receiving the first Nb locations, the decoder is able to reconstruct the
boundary of the mesh by connecting each pair of successive boundary nodes, as well as the first and
the last, by straight-line edge segments. The next N - Nb values in the sequence of decoded locations
correspond to interior node points. Thus, after receiving N nodes, the locations of both the boundary
and interior nodes can be reconstructed, in addition to the polygonal shape of the boundary. This is
illustrated with an example in Figure 7-42.

 ISO/IEC 14496-2 Committee Draft

215

 p 6
 p 8

 p 14

 p 1 p 3

 p 7

 p 0

 p 11

 p 5

 p 2

 p 4

 p 9

 p 10

 p 12
 p 13

Figure 7-42 Decoded node points and mesh boundary edge.

The mesh is finally obtained by applying constrained Delaunay triangulation to the set of decoded
node points, where the polygonal mesh boundary is used as a constraint. A constrained triangulation
of a set of node points

r
p n contains the line segments between successive node points on the boundary

as edges and contains triangles only in the interior of the region defined by the boundary. Each

triangle
t k p l ,

r
,
r
p n

t k
 does not contain in its interior any node point

r
p r visible from all three

vertices of t k
. A node point is visible from another node point if a straight line drawn between them

falls entirely inside or exactly on the constraining polygonal boundary. The Delaunay triangulation
process is defined as any algorithm that is equivalent to enumerating all Delaunay triangles as defined
above and inserting them into the mesh. An example of a mesh obtained by constrained triangulation
of the node points of Figure 7-42 is shown in Figure 7-43.

 p 6
 p 8

 p 14

 p 1 p 3

 p 7

 p 0

 p 11

 p 5

 p 2

 p 4

 p 9

 p 10

 p 12
 p 13

Figure 7-43 Decoded triangular mesh obtained by constrained Delaunay triangulation

ISO/IEC 14496-2 Committee Draft

216

7.10.2 Decoding of mesh motion vectors

Each node point
r
p n of a 2D Mesh Object Plane numbered k in the sequence of Mesh Object Planes

has a 2D motion vector

r
v n = vx n , vy n

(), defined from Mesh Object Plane k to k+1. By decoding these

motion vectors, one is able to reconstruct the locations of node points in Mesh Object Plane numbered
k+1. The triangular topology of the mesh remains the same throughout the sequence. Node point
motion vectors are decoded according to a predictive method, i.e., the components of each motion
vector are predicted using the components of already decoded motion vectors of other node points.

7.10.2.1 Motion vector prediction

To decode the motion vector of a node point
r
p n that is part of a triangle

t k =
r
p l ,

r
p m ,

r
p n , where the

two motion vectors vectors
r
v l and

r
v m of the nodes

r
p l and

r
p m have already been decoded, one can

use the values of
r
v l and

r
v m to predict

r
v n and add the prediction vector to a decoded prediction error

vector. Starting from an initial triangle t k
 of which all three node motion vectors have been decoded,

there must be at least one other, neighboring, triangle t w
 that has two nodes in common with t k

.

Since the motion vectors of the two nodes that t k
 and t w

 have in common have already been decoded,

one can use these two motion vectors to predict the motion vector of the third node in t w
. The actual

prediction vector
r

w n is computed by averaging of the two prediction motion vectors and the

components of the prediction vector are rounded to half-pixel accuracy, as follows:

r

w n = 0.5 ×
r
v m +

r
v l + 0.5 ()

 ,

r
v n =

r
w n +

r
e n .

Here,
r
e n = ex n , eyn

() denotes the prediction error vector, the components of which are decoded from

variable length codes. This procedure is repeated while traversing the triangles and nodes of the mesh,
as explained below. While visiting all triangles of the mesh, the motion vector data of each node is
decoded from the bitstream one by one. Note that no prediction is used to code the first motion vector,

r
v n 0

=
r
e n0 ,

and that only the first coded motion vector is used as a predictor to code the second motion vector,

r
v n 1

=
r
v n 0

+
r
e n 1 .

Note further that the prediction error vector is specified only for node points with a nonzero motion
vector. For all other node points, the motion vector is simply

r
v n = 0,0().

7.10.2.2 Mesh traversal

We use a breadth-first traversal to order all the triangles and nodes in the mesh numbered k, and to
decode the motion vectors defined from mesh k to k+1. The breadth-first traversal is determined
uniquely by the topology and geometry of the mesh. The breadth-first traversal of the mesh triangles is
defined as follows (see for an illustration).

 ISO/IEC 14496-2 Committee Draft

217

First, define the initial triangle as follows. Define the top left mesh node as the node n with minimum
xn + y n , assuming the origin of the local coordinate system is at the top left. If there is more than one

node with the same value of xn + y n , then choose the node point among these with minimum y. The

initial triangle is the triangle that contains the edge between the top-left node of the mesh and the next
clockwise node on the boundary. Label the initial triangle with the number 0.

Next, all other triangles are iteratively labeled with numbers 1, 2, ..., M - 1, where M is the number of
triangles in the mesh, as follows.

Among all labeled triangles that have adjacent triangles which are not yet labeled, find the
triangle with the lowest number label. This triangle is referred to in the following as the
current triangle. Define the base edge of this triangle as the edge that connects this triangle
to the already labeled neighboring triangle with the lowest number. In the case of the initial
triangle, the base edge is defined as the edge between the top-left node and the next clockwise
node on the boundary. Define the right edge of the current triangle as the next
counterclockwise edge of the current triangle with respect to the base edge; and define the
left edge as the next clockwise edge of the current triangle with respect to the base edge. That

is, for a triangle
t k =

r
p l ,

r
p m ,

r
p n , where the vertices are in clockwise order, if

r
p l
r
p m is

the base edge, then
r
p l
r
p n is the right edge and

r
p m

r
p n is the left edge.

Now, check if there is an unlabeled triangle adjacent to the current triangle, sharing the right
edge. If there is such a triangle, label it with the next available number. Then check if there
is an unlabeled triangle adjacent to the current triangle, sharing the left edge. If there is such
a triangle, label it with the next available number.

This process is continued iteratively until all triangles have been labeled with a unique number m.

The ordering of the triangles according to their assigned label numbers implicitly defines the order in
which the motion vector data of each node point is decoded, as described in the following. Initially,
motion vector data for the top-left node of the mesh is retrieved from the bitstream. No prediction is
used for the motion vector of this node, hence this data specifies the motion vector itself. Then,
motion vector data for the second node, which is the next clockwise node on the boundary w.r.t. the
top-left node, is retrieved from the bitstream. This data contains the prediction error for the motion
vector of this node, where the motion vector of the top-left node is used as a prediction. Mark these
first two nodes (that form the base edge of the initial triangle) with the label ‘done’.

Next, process each triangle as determined by the label numbers. For each triangle, the base edge is
determined as defined above. The motion vectors of the two nodes of the base edge of a triangle are
used to form a prediction for the motion vector of the third node of that triangle. If that third node is
not yet labeled ‘done’, motion vector data is retrieved and used as prediction error values, i.e. the
decoded values are added to the prediction to obtain the actual motion vector. Then, that third node is
labeled ‘done’. If the third note is already labeled ‘done’, then it is simply ignored and no data is
retrieved. Note that due to the ordering of the triangles as defined above, the two nodes on the base
edge of a triangle are guaranteed to be labeled ‘done’ when that triangle is processed, signifying that
their motion vectors have already been decoded and may be used as predictors.

ISO/IEC 14496-2 Committee Draft

218

 0

2

1

 3

 4

 r

 b l

 8 1

 2

 3 5

 4

 0 6

 9

 7

Figure 7-44 Breadth-first traversal of a 2D triangular example mesh.

In Figure 7-44 an example is shown of breadth-first traversal. On the left, the traversal is halfway
through the mesh - five triangles have been labeled (with numbers) and the motion vectors of six
node points have been decoded (marked with a box symbol). The triangle which has been labeled ‘3’
is the ‘current triangle’; the base edge is ‘b’; the right and left edge are ‘r’ and ‘l’. The triangles that
will be labeled next are the triangles sharing the right, resp. left edge with the current triangle. After
those triangles are labeled, the triangle which has been labeled ‘4’ will be the next ‘current triangle’
and another motion vector will be decoded. On the right, the traversed 2D triangular mesh is shown,
illustrating the transitions between triangles and final order of node points according to which
respective motion vectors are decoded.

 ISO/IEC 14496-2 Committee Draft

219

7.11 Face object decoding

7.11.1 Frame based face object decoding

This clause specifies the additional decoding process required for face object decoding.

The coded data is decoded by an arithmetic decoding process. The arithmetic decoding process is
described in detail in Annex B. Following the arithmetic decoding, the data is de-quantized by an
inverse quantization process. The FAPs are obtained by a predictive decoding scheme as shown in
Figure 7-45.

The base quantization step size QP for each FAP is listed in Table 12-1. The quantization parameter
FAP_QUANT is applied uniformly to all FAPs. The magnitude of the quantization scaling factor
ranges from 1 to 8. The value of FAP_QUANT == 0 has a special meaning, it is used to indicate
lossless coding mode, so no dequantization is applied. The quantization stepsize is obtained as
follows:

if (FAP_QUANT)
qstep = QP * FAP_QUANT

else
qstep = 1

The dequantized FAP’(t) is obtained from the decoded coefficient FAP’’(t) as follows:

FAP’(t) = qstep * FAP’’(t)

FAP(t)
Coded
Data +

Decoding
Arithmetic Inverse

Quantization

Frame
delay

Figure 7-45 FAP decoding

7.11.1.1 Decoding of faps

For a given frame FAPs in the decoder assume one of three of the following states:

1. set by a value transmitted by the encoder
2. retain a value previously sent by the encoder
3. interpolated by the decoder

FAP values which have been initialized in an intra coded FAP set are assumed to retain those values if
subsequently masked out unless a special mask mode is used to indicate interpolation by the decoder.
FAP values which have never been initialized must be estimated by the decoder. For example, if only
FAP group 2 (inner lip) is used and FAP group 8 (outer lip) is never used, the outer lip points must be
estimated by the decoder. In a second example the FAP decoder is also expected to enforce symmetry
when only the left or right portion of a symmetric FAP set is received (e.g. if the left eye is moved and
the right eye is subject to interpolation, it is to be moved in the same way as the left eye).

ISO/IEC 14496-2 Committee Draft

220

7.11.2 DCT based face object decoding

The bitstream is decoded into segments of FAPs, where each segment is composed of a temporal
sequence of 16 FAP object planes. The block diagram of the decoder is shown in Figure 7-46.

Huffman
Decoding

Inverse
Quantization

Inverse
DCT

Memory
Buffer

DC

Huffman
Decoding

Run-Length
Decoding

Inverse
Quantization

AC

FAPs

Figure 7-46 Block diagram of the DCT-based decoding process.

The DCT-based decoding process consists of the following three basic steps:

1. Differential decoding the DC coefficient of a segment.
2. Decoding the AC coefficients of the segment
3. Determining the 16 FAP values of the segment using inverse discrete cosine transform (IDCT).

A uniform quantization step size is used for all AC coefficients. The quantization step size for AC
coefficients is obtained as follows:

qstep[i] = fap_scale[fap_quant_inex] * DCTQP[i]

where DCTQP[i] is the base quantization step size and its value is defined in Section 6.3.11.10. The
quantization step size of the DC coefficient is one-third of the AC coefficients. Different quantization
step sizes are used for different FAPs.

The DCT-based decoding process is applied to all FAP segments except the viseme (FAP #1) and
expression (FAP #2) parameters. The latter two parameters are differential decoded without
transform. The decoding of viseme and expression segments are described at the end of this section.

For FAP #3 to FAP #68, the DC coefficient of an intra coded segment is stored as a 16-bit signed
integer if its value is within the 16-bit range. Otherwise, it is stored as a 31-bit signed integer. For an
inter coded segment, the DC coefficient of the previous segment is used as a prediction of the current
DC coefficient. The prediction error is decoded using a Huffman table of 512 symbols. . An "ESC"
symbol, if obtained, indicates that the prediction error is out of the range [-255, 255]. In this case, the
next 16 bits extracted from the bitstream are represented as a signed 16-bit integer for the prediction
error. If the value of the integer is equal to -256*128, it means that the value of the prediction error is
over the 16-bit range. Then the following 32 bits from the bitstream are extracted as a signed 32-bit
integer, in twos complement format and the most significant bit first

 ISO/IEC 14496-2 Committee Draft

221

The AC coefficients, for both inter and intra coded segments, are decoded using Huffman tables. The
run-length code indicates the number of leading zeros before each non-zero AC coefficient. The run-
length ranges from 0 to 14 and proceeds the code for the AC coefficient. The symbol 15 in the run
length table indicates the end of non-zero symbols in a segment. Therefore, the Huffman table of the
run-length codes contains 16 symbols. The values of non-zero AC coefficients are decoded in a way
similar to the decoding of DC prediction errors but with a different Huffman table.

The bitstreams corresponding to viseme and expression segments are basically differential decoded
without IDCT. For an intra coded segment, the quantized values of of the first viseme_select1,
viseme_select2, viseme_blend, expression_select1, expression_select2, expression_intensity1, and
expression_intensity2 within the segment are decoded using fixed length code. These first values are
used as the prediction for the second viseme_select1, viseme_select2, … etc of the segment and the
prediction error are differential decoded using Huffman tables. For an inter coded segment, the last
viseme_select1, for example, of the previous decoded segment is used to predict the first
viseme_select1 of the current segment. In general, the decoded values (before inverse quantization) of
differential coded viseme and expression parameter fields are obtained

byviseme_segment_select1Q[k] = viseme_segment_select1Q[k-1] +
viseme_segment_select1Q_diff[k] - 14

viseme_segment_select2Q[k] = viseme_segment_select2Q[k-1] +
viseme_segment_select2Q_diff[k] - 14

viseme_segment_blendQ[k] = viseme_segment_blendQ[k-1] +
viseme_segment_blendQ_diff[k] - 63

expression_segment_select1Q[k] = expression_segment_select1Q[k-1] +
expression_segment_select1Q_diff[k] - 6

expression_segment_select2Q[k] = expression_segment_select2Q[k-1] +
expression_segment_select2Q_diff[k] - 6

expression_segment_intensity1Q[k] = expression_segment_intensity1Q[k-1] +
expression_segment_intensity1Q_diff[k] - 63

expression_segment_intensity2Q[k] = expression_segment_intensity2Q[k-1] +
expression_segment_intensity2Q_diff[k] - 63

7.11.3 Decoding of the viseme parameter fap 1

Fourteen visemes have been defined for selection by the Viseme Parameter FAP 1, the definition is
given in Annex C. The viseme parameter allows two visemes from a standard set to be blended
together. The viseme parameter is composed of a set of values as follows.

viseme () { Range

viseme_select1 0-14

viseme_select2 0-14

viseme_blend 0-63

viseme_def 0-1

}

Viseme_blend is quantized (step size = 1) and defines the blending of viseme1 and viseme2 in the
decoder by the following symbolic expression where viseme1 and 2 are graphical interpretations of
the given visemes as suggested in the non-normative annex.

final viseme = (viseme 1) * (viseme_blend / 63) + (viseme 2) * (1 - viseme_blend / 63)

The viseme can only have impact on FAPs that are currently allowed to be interpolated.

ISO/IEC 14496-2 Committee Draft

222

If the viseme_def bit is set, the current mouth FAPs can be used by the decoder to define the selected
viseme in terms of a table of FAPs. This FAP table can be used when the same viseme is invoked
again later for FAPs which must be interpolated.

7.11.4 Decoding of the viseme parameter fap 2

The expression parameter allows two expressions from a standard set to be blended together.The
expression parameter is composed of a set of values as follows.

expression () { Range

expression_select1 0-6

expression_intensity1 0-63

expression_select2 0-6

expression_intensity2 0-63

init_face 0-1

expression_def 0-1

}

Expression_intensity1 and expression_intensity2 are quantized (step size = 1) and define excitation of
expressions 1 and 2 in the decoder by the following equations where expressions 1 and 2 are
graphical interpretations of the given expression as suggested by the non-normative reference:

final expression = expression1 * (expression_intensity1 / 63)+ expression2 *
(expression_intensity2 / 63)

The decoder displays the expressions according to the above fomula as a superposition of the 2
expressions.

The expression can only have impact on FAPs that are currently allowed to be interpolated. If the
init_face bit is set, the neutral face may be modified within the neutral face constraints of mouth
closure, eye opening, gaze direction, and head orientation before FAPs 3-68 are applied. If the
expression_def bit is set, the current FAPs can be used to define the selected expression in terms of a
table of FAPs. This FAP table can then be used when the same expression is invoked again later.

7.11.5 Fap masking

The face is animated by sending a stream of facial animation parameters. FAP masking, as indicated
in the bitstream, is used to select FAPs. FAPs are selected by using a two level mask hierarchy. The
first level contains two bit code for each group indicating the following options:

1. no FAPs are sent in the group.
2. a mask is sent indicating which FAPs in the group are sent. FAPs not selected by the group mask

retain their previous value if any previously set value (not interpolated by decoder if previously
set)

3. a mask is sent indicating which FAPs in the group are sent. FAPs not selected by the group mask
retain must be interpolated by the decoder.

4. all FAPs in the group are sent.

 ISO/IEC 14496-2 Committee Draft

223

7.12 Output of the decoding process

This section describes the output of the theoretical model of the decoding process that decodes
bitstreams conforming to this specification.

The visual decoding process input is one or more coded visual bitstreams (one for each of the layers).
The visual layers are generally multiplexed by the means of a system stream that also contains timing
information.

7.12.1 Video data

The output of the video decoding process is a series of VOPs that are normally the input of a display
process. The order in which fields or VOPs are output by the decoding process is called the display
order, and may be different from the coded order (when B-VOPs are used).

7.12.2 2D Mesh data

The output of the decoding process is a sequence of meshes, defined for each time instant, a series of
one or more mesh object planes. The meshes are normally inpout to a compositor that maps the
texture of a related video object onto the mesh. The coded order and the displayed order of the mesh
are identical. Mesh object planes can be used to deform a video object plane or still texture object by
piece-wise warping.

7.12.3 Face animation parameter data

The output of the decoding process is a sequence of facial animation parameters. They are input to a
display process that uses the parameters to animate a face object.

ISO/IEC 14496-2 Committee Draft

224

8. Visual-Systems Composition Issues

8.1 Temporal Scalability Composition

Background composition is used in forming the background region for objects at the enhancement
layer of temporal scalability when the value of both enhancement_type and background_composition
is one. This process is useful when the enhancement VOP corresponds to the partial region of the
VOP belonging to the reference layer. In this process, the background of a current enhancement VOP
is composed using the previous and the next VOPs in display order belonging to the reference layer.

 Figure 8-1 shows the background composition for the current frame at the enhancement layer. The
dotted line represents the shape of the selected object at the previous VOP in the reference layer
(called “forward shape”). As the object moves, its shape at the next VOP in the reference layer is
represented by a broken line (called “backward shape”).

For the region outside these shapes, the pixel value from the nearest VOP at the reference layer is used
for the composed background. For the region occupied only by the forward shape, the pixel value from
the next VOP at the reference layer is used for the composed frame. This area is shown as lightly
shaded in Figure 8-1. On the other hand, for the region occupied only by the backward shape, pixel
values from the previous VOP in the reference layer are used. This is the area shaded dark in Figure
8-1. For the region where the areas enclosed by these shapes overlap, the pixel value is given by
padding from the surrounding area. The pixel value which is outside of the overlapped area should be
filled before the padding operation.

selected object at the
previous VOP : “forward
shape” selected object at

the next VOP :
“backward shape”

pixel value from
the next VOP

pixel value is given by
padding from the
surrounding area after the
other area is filled.

pixel value from the
previous VOP

pixel value from the
previous VOP

Figure 8-1– Background composition

The following process is a mathematical description of the background composition method.

 ISO/IEC 14496-2 Committee Draft

225

If s(x,y,ta)=0 and s(x,y,td)=0
fc(x,y,t) = f(x,y,td) (|t-ta|>|t-td|)
fc(x,y,t) = f(x,y,ta) (otherwise),

if s(x,y,ta)=1 and s(x,y,td)=0
fc(x,y,t) = f(x,y,td)

if s(x,y,ta)=0 and s(x,y,td)=1
fc(x,y,t) = f(x,y,ta)

if s(x,y,ta)=1 and s(x,y,td)=1
The pixel value of fc(x,y,t) is given by repetitive padding from the surrounding area.

where

fc composed background
f decoded VOP at the reference layer
s shape information (alpha plane) , 0: transparent, 1: opaque
(x,y) the spatial coordinate
t time of the current VOP
ta time of the previous VOP
td time of the next VOP

Two types of shape information, s(x, y, ta) and s(x, y, td), are necessary for the background
composition. s(x, y, ta) is called a “forward shape” and s(x, y, td) is called a “backward shape”. If f(x,
y, td) is the last VOP in the bitstream of the reference layer, it should be made by copying f(x, y, ta).
In this case, two shapes s(x, y, ta) and s(x, y, td) should be identical to the previous backward shape.

8.2 Sprite Composition

The static sprite technology enables to encode very efficiently video objects which content is expected
not to vary in time along a video sequence. For example, it is particularly well suited to represent
backgrounds of scenes (decor, landscapes) or logos.

A static sprite (sometimes referred as mosaic in the literature) is a frame containing spatial
information for a single object, obtained by gathering information for this object throughout the
sequence in which it appears. A static sprite can be a very large frame: it can correspond for instance
to a wide angle view of a panorama.

The MPEG-4 syntax defines a dedicated coding mode to obtain VOPs from static sprites: the so-called
“Sprite-VOPs”. Sprite-VOPs are extracted from a static sprite using a warping operation consisting in
a global spatial transformation driven by few motion parameters (0,2,4 or 8).

For composition with other VOPs, there are no special rules for Sprite-VOPs. However, it is classical
to use Sprite-VOPs as background objects over which “classical” objects are superimposed.

ISO/IEC 14496-2 Committee Draft

226

9. Profiles and Levels

NOTE - In this Specification the word “profile” is used as defined below. It should not be
confused with other definitions of “profile” and in particular it does not have the
meaning that is defined by JTC1/SGFS.

Profiles and levels provide a means of defining subsets of the syntax and semantics of this
Specification and thereby the decoder capabilities required to decode a particular bitstream. A profile
is a defined sub-set of the entire bitstream syntax that is defined by this Specification. A level is a
defined set of constraints imposed on parameters in the bitstream. Conformance tests will be carried
out against defined profiles at defined levels.

The purpose of defining conformance points in the form of profiles and levels is to facilitate bitstream
interchange among different applications. Implementers of this Specification are encouraged to
produce decoders and bitstreams which correspond to those defined conformance regions. The
discretely defined profiles and levels are the means of bitstream interchange between applications of
this Specification.

In this clause the constrained parts of the defined profiles and levels are described. All syntactic
elements and parameter values which are not explicitly constrained may take any of the possible
values that are allowed by this Specification. In general, a decoder shall be deemed to be conformant
to a given profile at a given level if it is able to properly decode all allowed values of all syntactic
elements as specified by that profile at that level.

9.1 Visual Object Profiles

The following table lists the tools included in each of the Object Profiles. Bitstreams that represent a
particular object corresponding to an Object Profile shall not use any of the tools for which the table
does not have an ‘X’.

 ISO/IEC 14496-2 Committee Draft

227

Visual Object Profiles

Visual Tools

Simple Core Main Simple
Scalable

12-Bit Basic
Anim.

2D
Texture

Anim.
2D

Mesh

Simple
Face

Simple
Scalable
Texture

Core
Scalable
Texture

Intra Coding Mode (I-VOP) X X X X X X

Inter Prediction Mode (P-VOP) X X X X X X

AC/DC Prediction X X X X X X

Slice Resynchronization X X X X X X

Data Partitioning X X X X X X

Reversible VLC X X X X X X

4MV, Unrestricted MV X X X X X X

Binary Shape Coding X X X X X

H.263/MPEG-2 Quantization
Tables

X X X X

P-VOP based temporal
scalability Rectangular Shape

X X X X X

P-VOP based temporal
scalability Arbitrary Shape

X X X X

Bi-directional Pred. Mode (B-
VOP)

X X X X

OBMC X

Temporal Scalability
Rectangular Shape

X

Temporal Scalability Arbitrary
Shape

Spatial Scalability Rectangular
Shape

X

Static Sprites (includes low
latency mode)

X

Interlaced tools X

Grayscale Alpha Shape Coding X

4- to 12-bit pixel depth X

2D Dynamic Mesh with uniform
topology

X X

2D Dynamic Mesh with
Delaunay topology

X

Facial Animation Parameters X

Scalable Wavelet Texture
(rectangular, Spatial & SNR
Scalable)

X X X

Scalable Wavelet Texture
(spatial scaleable)

X X X

Scalable Wavelet Texture (all
tools, including Shape Adaptive)

X X

Table 9-1: Object Profiles

ISO/IEC 14496-2 Committee Draft

228

9.2 Visual Combination Profiles

Decoders that conform to a combination Profile shall be able to decode all objects that comply to the
Object Profiles for which the table lists an ‘X’.

Object

Profiles

Combination

Profiles

Simple Core Main Simple
Scale.

12-
Bit

Basic
Anim.

2D
Texture

Anim.
2D

Mesh

Simple
Face

Simple
Scalable
Texture

Core

Scalable
Texture

1. Simple X

2. Simple B-VOP Scaleable X X

3. Core X X

4. Main X X X X X

5. 12-Bit X X X

6. Simple Scaleable Texture X

7. Simple FA X

8. Hybrid X X X X X X X

9. Basic Animated 2D
Texture

X X X X

Table 9-2 -Visual Combination Profiles

Note that the Combination Profiles can be grouped into three categories: Natural Visual (Combination
Profile numbers 1-5), Synthetic Visual (Combination Profile numbers 6 and 7), and Synthetic/Natural
Hybrid Visual (Combination Profile numbers 8 and 9).

9.3 Visual Combination Profiles@Levels

9.3.1 Natural Visual

The table that describes the natural visual combination profiles is given in Annex M.

9.3.2 Synthetic Visual

9.3.2.1 Simple Texture CP

Level 1:

• Quantization modes: restricted to mode 1
• Default Integer wavelet;
• number of objects = t.b.d.
• Maximum number of pixels: 414720 (note: although this corresponds to the amount pixels in

an ITU-R Rec. BT.601 frame, i.e. 576 * 720 pixels, there are no restrictions on the aspect
ratio)

 ISO/IEC 14496-2 Committee Draft

229

• Maximum decoding time: 1 second

 Level 2:

• t.b.d.

 2.4.2.2 Simple Face Animation CP

 Level 1:

• number of objects: 1
• The total FAP decode frame-rate in the bitstream shall not exceed 72 Hz
• The decoder shall be capable of a face model rendering update of at least 15 Hz;
• maximum bitrate 16 kbit/s;

 Level 2:

• maximum number of objects: 4
• The FAP decode frame-rate in the bitstream shall not exceed 72 Hz (this means that the FAP

decode framerate is to be shared among the objects);
• The decoder shall be capable of rendering the face models with the update rate of at least

60Hz, sharable between faces, with the constraint that the update rate for each individual face
is not required to exceed 30Hz.

• Maximum bitrate 32 kbit/s;

 2.4.3 Synthetic/Natural Hybrid Visual

 The Levels of the Combination Profiles which support both Natural Visual Object Profiles and
Synthetic Visual Object Profiles are specified by giving bounds for the natural objects and for the
synthetic objects. Parameters like bitrate can be combined across natural and synthetic objects.

 2.4.3.1 Basic Animated 2D Texture

 Level 1 = Facial Animation CP @ Level 1 + restrictions on Texture objects: t.b.d.

 Level 2= Facial Animation CP @ Level 2 + restrictions on Texture objects: t.b.d.

 2.4.3.2 Hybrid CP

 Level 1 = Core Visual Combination Profile @ Level 1 + Basic Animated 2D Texture @ Level 1 +

• Max number of Mesh objects tbd
• Number of nodes in the Meshes (4 times # of macroblocks in the visual session) = t.b.d.

(proposal: 792);
• max. frame-rate of the mesh - 30 Hz;
• max. bitrate t.b.d.

 Level 2 = Core Visual Combination Profile @ Level 2 + Basic Animated 2D Texture @ Level 2 +

• max number of Mesh objects tbd
• Number of nodes in the Meshes (4 times # of macroblocks in the visual session) = t.b.d.

(proposal: 3168);
• max. frame-rate of the mesh: t.b.d.
• Max. bitrate: t.b.d.
• Restrictions on texture t.b.d.

ISO/IEC 14496-2 Committee Draft

230

10. Annex A

Coding Transforms

(This annex forms an integral part of the International Standard)

10.1 Discrete cosine transform for video texture

The NxN two dimensional DCT is defined as:

F(u, v) = 2

N
C(u)C(v)

x = 0

N −1

∑ f (x,y)cos
(2x +1)uπ

2Ny =0

N−1

∑ cos
(2y +1)vπ

2N

with u, v, x, y = 0, 1, 2, … N-1

where x, y are spatial coordinates in the sample domain

u, v are coordinates in the transform domain

C(u), C(v) =
1

2
for u,v = 0

1 otherwise





The inverse DCT (IDCT) is defined as:

f (x, y) =
2

N u =0

N −1

∑ C(u)C(v)F(u,v)cos
(2x +1)uπ

2Nv = 0

N −1

∑ cos
(2y +1)vπ

2N

The input to the forward transform and output from the inverse transform is represented with 9 bits.
The coefficients are represented in 12 bits. The dynamic range of the DCT coefficients is [-
2048:+2047].

The N by N inverse discrete transform shall conform to IEEE Standard Specification for the
Implementations of 8 by 8 Inverse Discrete Cosine Transform, Std 1180-1990, December 6, 1990.

NOTES -

1 Clause 2.3 Std 1180-1990 “Considerations of Specifying IDCT Mismatch Errors”
requires the specification of periodic intra-picture coding in order to control the
accumulation of mismatch errors. Every macroblock is required to be refreshed before it
is coded 132 times as predictive macroblocks. Macroblocks in B-pictures (and skipped
macroblocks in P-pictures) are excluded from the counting because they do not lead to
the accumulation of mismatch errors. This requirement is the same as indicated in 1180-
1990 for visual telephony according to ITU-T Recommendation H.261.

 ISO/IEC 14496-2 Committee Draft

231

2 Whilst the IEEE IDCT standard mentioned above is a necessary condition for the
satisfactory implementation of the IDCT function it should be understood that this is not
sufficient. In particular attention is drawn to the following sentence from 5.4 of this
specification: “Where arithmetic precision is not specified, such as the
calculation of the IDCT, the precision shall be sufficient so that significant errors do not
occur in the final integer values.”

10.2 Discrete wavelet transform for still texture

10.2.1 Adding the mean

Before applying the inverse wavelet transform, the mean of each color component (“mean_y”,
“mean_u”, and “mean_v”) is added to the all wavelet coefficients of dc band.

10.2.2 wavelet filter

A 2-D separable inverse wavelet transfrom is used to synthesize the still texture. The default wavelet
composition is performed using Daubechies (9,3) tap biorthogonal filter bank. The inverse DWT is
performed either in floating or integer operations depending on the field “wavelet_filter_type”,
defined in the syntax.

The floating filter coefficients are:

Lowpass g[] =
[0.35355339059327 0.70710678118655 0.35355339059327]

Highpas h[] =
[0.03314563036812 0.06629126073624 -0.17677669529665
-0.41984465132952 0.99436891104360 -0.41984465132952
-0.17677669529665 0.06629126073624 0.03314563036812]

The integer filter coefficients are:
Lowpass g[] =
32 64 32

Highpass h[] =
3 6 -16
-38 90 -38
-16 6 3

The synthesis filtering operation is defined as follows:

 1 4

y[n] = ∑ L[n+i]*g[i+1] + ∑ H[n+i]*h[i+4]
 i=-1 i=-4

where

• n = 0, 1, ... N-1, and N is the number of output points;
• L[2*i] = xl[i] and L[2*i+1] = 0 for i=0,1,...,N/2-1, and {xl[i]} are the N/2 input wavelet

coefficients in the low-pass band;
• H[2*i+1] = xh[i] and H[2*i] = 0 for i=0,1,...,N/2-1, and {xh[i]} are the N/2 input wavelet

coefficients in the high-pass band.

Note:

• the index range for h[] is from 0 to 8;
• the index range for g[] is from 0 to 2;

ISO/IEC 14496-2 Committee Draft

232

• the index range for L[] is from -1 to N;
• the index range for H[] is from -4 to N+3; and
• the values of L[] and H[] for indexes less than 0 or greater than N-1 are obtained by symmetric

extension described in the following section.

In the case of integer wavelet, the outputs at each composition level are scaled down with dividing by
8096 with rounding to the nearest integer.

10.2.3 Symmetric extension

A symmetric extension of the input wavelet coefficients is performed before up-sampling and applying
the wavelet composition at each level. Two types of symmetric extensions are needed, both mirror the
boundary pixels. Type A replicates the edge pixel and Type B does not replicate the edge pixel. This is
illustrated in Figure 10-1 and Figure 10-2, where the edge pixel is indicated by z. The types of
extension for the input data to the wavelet filters are shown in Table 10-1.

Type A …v w x y z | z y x w v…

Type B …...v w x y | z y x w v…

Figure 10-1 Symmetrical extensions at leading boundary

Type A …v w x y z | z y x w v…

 Type B …v w x y z | y x w v…

Figure 10-2 Symmetrical extensions at the trailing boundary

Table 10-1Extension method for the input data to the synthesis filters

boundary Extension

lowpass input xl[] leading TypeB

to 3-tap filter g[] trailing TypeA

highpass input xh[] leading TypeA

to 9-tap filter h[] trailing TypeB

10.2.4 Decomposition level

The number of decomposition levels of the luminance component is defined in the input bitstream.
The number of decompostion level for the chrominance components is one level less than the
luminance components. If texture_object_layer width or texture_object_layer height cannot be
divisible by (2 ^ decomposition_levels), then shape adaptive wavelet is applied.

 ISO/IEC 14496-2 Committee Draft

233

10.2.5 Shape adaptive wavelet filtering and symmetric extension

10.2.5.1 Shape adaptive wavelet

The 2-D inverse shape adaptive wavelet transform uses the same wavelet filter as specified in Table
10-1. According to the shape information, segments of consecutive output points are reconstructed
and put into the correct locations. The filtering operation of shape adaptive wavelet is a generalization
of that for the regular wavelet. The generalization allows the number of output points to be an odd
number as well as an even number. Relative to the bounding box, the starting point of the output is
also allowed to be an odd number as well as an even number according to the shape information.
Within the generalized wavelet filtering, the regular wavelet filtering is a special case where the
number of output points is an even number and the starting point is an even number (0) too. Another
special case is for reconstruction of rectangular textures with an arbitrary size where the number of
output points may be even or odd and the starting point is always even (0).

The same synthesis filtering is applied for shape-adaptive wavelet composition, i.e:

 1 4

y[n] = ∑ L[n+i]*g[i+1] + ∑ H[n+i]*h[i+4]
 i=-1 i=-4

where

• n = 0, 1, ... N-1, and N is the number of output points;
• L[2*i+s] = xl[i] and L[2*i+1-s] = 0 for i=0,1,...,(N+1-s)/2-1, and {xl[i]} are the (N+1-s)/2 input

wavelet coefficients in the low-pass band;
• H[2*i+1-s] = xh[i] and H[2*i+s] = 0 for i=0,1,...,(N+s)/2-1, and {xh[i]} are the (N+s)/2 input

wavelet coefficients in the high-pass band.

The only difference from the regular synthesis filtering is to introduce a binary parameter s in up-
sampling, where s = 0 if the starting point of the output is an even number and s = 1 if the starting
point of the output is an odd number.

The symmetric extension for the generalized synthesis filtering is specified in Table 10-2 if N is an
even number and in Table 10-3 if N is an odd number.

Table 10-2 Extension method for the data to the synthesis wavelet filters if N is even

Boundary extension (s=0) extension(s=1)

lowpass input xl[] Leading TypeB TypeA

to 3-tap filter g[] Trailing TypeA TypeB

highpass input xh[] Leading TypeA TypeB

to 9-tap filter h[] Trailing TypeB TypeA

Table 10-3 Extension method for the data to the synthesis wavelet filters if N is odd

Boundary extension(s=0) extension(s=1)

lowpass input xl[] Leading TypeB TypeA

to 3-tap filter g[] Trailing TypeB TypeA

highpass input xh[] Leading TypeA TypeB

to 9-tap filter h[] Trailing TypeA TypeB

ISO/IEC 14496-2 Committee Draft

234

11. Annex B

Variable length codes and Arithmetic Decoding

(This annex forms an integral part of the International Standard)

11.1 Variable length codes

11.1.1 Macroblock type

Table 11-1Macroblock types and included data elements for I- and P-VOPs in combined motion-
shape-texture coding

VOP
type

mb type Name not_coded mcbc cbpy dquant mvd mvd2-4

P not coded - 1

P 0 inter 1 1 1 1

P 1 inter+q 1 1 1 1 1

P 2 inter4v 1 1 1 1 1

P 3 intra 1 1 1

P 4 intra+q 1 1 1 1

P stuffing - 1 1

I 3 intra 1 1

I 4 intra+q 1 1 1

I stuffing - 1
S (update) not_coded - 1
S (update) 0 inter 1 1 1
S (update) 1 inter+q 1 1 1 1
S (update) 3 intra 1 1 1
S (update) 4 intra+q 1 1 1 1
S (update) stuffing - 1 1

S (piece) 3 intra 1 1

S (piece) 4 intra+q 1 1 1

S (piece) stuffing - 1

Note: “1” means that the item is present in the macroblock
S (piece) indicates S-VOPs with low_latency_sprite_enable == 1 and sprite_transmit_mode == “piece”
S (update) indicates S-VOPs with low_latency_sprite_enable == 1 and sprite_transmit_mode == “update”

Table 11-2 Macroblock types and included data elements for a P-VOP (scalability &&
ref_select_code == ‘11’)

 ISO/IEC 14496-2 Committee Draft

235

VOP
Type

mb_type Name COD MCBPC CBPY DQUANT MVD MVD2-4

P not
coded

- 1

P 1 INTER 1 1 1

P 2 INTER
+Q

1 1 1 1

P 3 INTRA 1 1 1

P 4 INTRA
+Q

1 1 1 1

P stuffing - 1 1

Note: “1” means that the item is present in the macroblock

Table 11-3 --- VLC table for MODB in combined motion-shape-texture coding

Code cbpb mb_type

0

10 1

11 1 1

Table 11-4 --- MBTYPES and included data elements in coded macroblocks in B-VOPs
(ref_select_code != ‘00’||scalability==’0’) for combined motion-shape-texture coding

Code dquant mvdf mvdb mvdb MBTYPE

1 1 direct

01 1 1 1 interpolate mc+q

001 1 1 backward mc+q

0001 1 1 forward mc+q

Table 11-5 --- MBTYPES and included data elements in coded macroblocks in B-VOPs
(ref_select_code == ‘00’&&scalability!=’0’) for combined motion-shape-texture coding

Code dquant mvdf mvdb MBTYPE

01 1 1 interpolate mc+q

001 1 backward mc+q

1 1 1 forward mc+q

11.1.2 Macroblock pattern

Table 11-6-- VLC table for MCBPC for I-VOPs in combined-motion-shape-texture coding and
sprite-VOPs with low_latence_sprite_enable==1 and sprite_transmit_mode==”piece”

ISO/IEC 14496-2 Committee Draft

236

Code
mbtype cbpc

(56)

1 3 00

001 3 01

010 3 10

011 3 11

0001 4 00

0000 01 4 01

0000 10 4 10

0000 11 4 11

0000 0000 1 Stuffing --

Table 11-7 --- VLC table for MCBPC for P-VOPs in combined-motion-shape-texture and sprite-
VOPs with low_latence_sprite_enable==1 and sprite_transmit_mode==”update”

Code MB type CBPC

(56)

1 0 00

0011 0 01

0010 0 10

0001 01 0 11

011 1 00

0000 111 1 01

0000 110 1 10

0000 0010 1 1 11

010 2 00

0000 101 2 01

0000 100 2 10

0000 0101 2 11

0001 1 3 00

0000 0100 3 01

0000 0011 3 10

0000 011 3 11

0001 00 4 00

0000 0010 0 4 01

0000 0001 1 4 10

0000 0001 0 4 11

0000 0000 1 Stuffing --

 ISO/IEC 14496-2 Committee Draft

237

Table 11-8 --- VLC table for CBPY in the case of four non-transparent macroblocks
Code CBPY(intra-MB)

(12
 34)

CBPY(inter-MB),
(12

 34)

 0011 00

00

0

00

11

11

 0010 1 00

01

11

10

 0010 0 00

10

11

01

 1001 00

11

11

00

 0001 1 01

00

10

11

 0111 01

01

10

10

 0000 10 01

10

10

01

 1011 01

11

10

00

 0001 0 10

00

01

11

 0000 11 10

01

01

10

 0101 10

10

01

01

 1010 10

11

01

00

 0100 11

00

00

11

 1000 11

01

00

10

 0110 11

10

00

01

 11 11

11

00

00

ISO/IEC 14496-2 Committee Draft

238

Table 11-9 VLC table for CBPY in the case of two non transparent blocks.

Code CBPY

(I)(intra-MB)

CBPY (inter-
MB)

0001 00 11

001 01 10

01 10 01

1 11 00

Table 11-10 VLC table for CBPY in the case of three non transparent blocks

Code CBPY

(I)(intra-MB)

CBPY (inter-
MB)

011 000 111

000001 001 110

00001 010 101

010 011 100

00010 100 011

00011 101 010

001 110 001

1 111 000

In the case of a single transparent block then,

Code CBPY

(I)(intra-MB)

CBPY (inter-
MB)

01 0 1

1 1 0

11.1.3 Motion vector

Table 11-11 --- VLC table for MVD

Codes Vector differences

 ISO/IEC 14496-2 Committee Draft

239

 0000 0000 0010 1 -16

 0000 0000 0011 1 -15.5

 0000 0000 0101 -15

 0000 0000 0111 -14.5

 0000 0000 1001 -14

 0000 0000 1011 -13.5

 0000 0000 1101 -13

 0000 0000 1111 -12.5

 0000 0001 001 -12

 0000 0001 011 -11.5

 0000 0001 101 -11

 0000 0001 111 -10.5

 0000 0010 001 -10

 0000 0010 011 -9.5

 0000 0010 101 -9

 0000 0010 111 -8.5

 0000 0011 001 -8

 0000 0011 011 -7.5

 0000 0011 101 -7

 0000 0011 111 -6.5

 0000 0100 001 -6

 0000 0100 011 -5.5

 0000 0100 11 -5

 0000 0101 01 -4.5

 0000 0101 11 -4

 0000 0111 -3.5

 0000 1001 -3

 0000 1011 -2.5

 0000 111 -2

 0001 1 -1.5

 0011 -1

 011 -0.5

 1 0

 010 0.5

 0010 1

 0001 0 1.5

 0000 110 2

 0000 1010 2.5

 0000 1000 3

 0000 0110 3.5

 0000 0101 10 4

 0000 0101 00 4.5

 0000 0100 10 5

 0000 0100 010 5.5

 0000 0100 000 6

 0000 0011 110 6.5

ISO/IEC 14496-2 Committee Draft

240

 0000 0011 100 7

 0000 0011 010 7.5

 0000 0011 000 8

 0000 0010 110 8.5

 0000 0010 100 9

 0000 0010 010 9.5

 0000 0010 000 10

 0000 0001 110 10.5

 0000 0001 100 11

 0000 0001 010 11.5

 0000 0001 000 12

 0000 0000 1110 12.5

 0000 0000 1100 13

 0000 0000 1010 13.5

 0000 0000 1000 14

 0000 0000 0110 14.5

 0000 0000 0100 15

 0000 0000 0011 0 15.5

 0000 0000 0010 0 16

11.1.4 DCT coefficients

Table 11-12 --- Variable length codes for dct_dc_size_luminance

Variable length code dct_dc_size_luminance

011 0

11 1

10 2

010 3

001 4

0001 5

0000 1 6

0000 01 7

0000 001 8

0000 0001 9

0000 0000 1 10

0000 0000 01 11

0000 0000 001 12

Table 11-13 --- Variable length codes for dct_dc_size_chrominance

 ISO/IEC 14496-2 Committee Draft

241

Variable length code dct_dc_size_chrominance

11 0

10 1

01 2

001 3

0001 4

0000 1 5

0000 01 6

0000 001 7

0000 0001 8

0000 0000 1 9

0000 0000 01 10

0000 0000 001 11

0000 0000 0001 12

Table 11-14 --- Differential DC additional codes

ADDITIONAL CODE DIFFERENTIAL DC SIZE

000000000000 to
011111111111

-2048 to -4095 12

00000000000 to 01111111111 -1024 to -2047 11

0000000000 to 0111111111 -512 to -1023 10

000000000 to 011111111 -256 to -511 9

00000000 to 01111111 -255 to -128 8

0000000 to 0111111 -127 to -64 7

000000 to 011111 -63 to -32 6

00000 to 01111 -31 to -16 5

0000 to 0111 -15 to -8 4

000 to 011 -7 to -4 3

00 to 01 -3 to -2 2

0 -1 1

0 0

1 1 1

10 to 11 2 to 3 2

100 to 111 4 to 7 3

1000 to 1111 8 to 15 4

10000 to 11111 16 to 31 5

100000 to 111111 32 to 63 6

1000000 to 1111111 64 to 127 7

ISO/IEC 14496-2 Committee Draft

242

10000000 to 11111111 128 to 255 8

100000000 to 111111111 * 256 to 511 9

1000000000 to 1111111111
*

512 to 1023 10

1000000000 to 1111111111
*

1024 to 2047 11

1000000000 to 1111111111
*

2048 to 4095 12

In cases where dct_dc_size is greater than 8, marked ‘*’ in , a marker bit is inserted after the
dct_dc_additional_code to prevent start code emulations.

Table 11-15 --- VLC Table for Intra Luminance and Chrominance TCOEF

VLC CODE LAST RUN LEVEL VLC CODE LAST RUN LEVEL

10s 0 0 1 0111 s 1 0 1

1111 s 0 0 3 0000 1100 1s 0 11 1

0101 01s 0 0 6 0000 0000 101s 1 0 6

0010 111s 0 0 9 0011 11s 1 1 1

0001 1111 s 0 0 10 0000 0000 100s 1 0 7

0001 0010 1s 0 0 13 0011 10s 1 2 1

0001 0010 0s 0 0 14 0011 01s 0 5 1

0000 1000 01s 0 0 17 0011 00s 1 0 2

0000 1000 00s 0 0 18 0010 011s 1 5 1

0000 0000 111s 0 0 21 0010 010s 0 6 1

0000 0000 110s 0 0 22 0010 001s 1 3 1

0000 0100 000s 0 0 23 0010 000s 1 4 1

110s 0 0 2 0001 1010 s 1 9 1

0101 00s 0 1 2 0001 1001 s 0 8 1

0001 1110 s 0 0 11 0001 1000 s 0 9 1

0000 0011 11s 0 0 19 0001 0111 s 0 10 1

0000 0100 001s 0 0 24 0001 0110 s 1 0 3

0000 0101 0000s 0 0 25 0001 0101 s 1 6 1

1110 s 0 1 1 0001 0100 s 1 7 1

0001 1101 s 0 0 12 0001 0011 s 1 8 1

0000 0011 10s 0 0 20 0000 1100 0s 0 12 1

0000 0101 0001s 0 0 26 0000 1011 1s 1 0 4

0110 1s 0 0 4 0000 1011 0s 1 1 2

0001 0001 1s 0 0 15 0000 1010 1s 1 10 1

0000 0011 01s 0 1 7 0000 1010 0s 1 11 1

0110 0s 0 0 5 0000 1001 1s 1 12 1

0001 0001 0s 0 4 2 0000 1001 0s 1 13 1

0000 0101 0010s 0 0 27 0000 1000 1s 1 14 1

0101 1s 0 2 1 0000 0001 11s 0 13 1

 ISO/IEC 14496-2 Committee Draft

243

0000 0011 00s 0 2 4 0000 0001 10s 1 0 5

0000 0101 0011s 0 1 9 0000 0001 01s 1 1 3

0100 11s 0 0 7 0000 0001 00s 1 2 2

0000 0010 11s 0 3 4 0000 0100 100s 1 3 2

VLC CODE LAST RUN LEVEL VLC CODE LAST RUN LEVEL

0000 0101 0100s 0 6 3 0000 0100 101s 1 4 2

0100 10s 0 0 8 0000 0100 110s 1 15 1

0000 0010 10s 0 4 3 0000 0100 111s 1 16 1

0100 01s 0 3 1 0000 0101 1000s 0 14 1

0000 0010 01s 0 8 2 0000 0101 1001s 1 0 8

0100 00s 0 4 1 0000 0101 1010s 1 5 2

0000 0010 00s 0 5 3 0000 0101 1011s 1 6 2

0010 110s 0 1 3 0000 0101 1100s 1 17 1

0000 0101 0101s 0 1 10 0000 0101 1101s 1 18 1

0010 101s 0 2 2 0000 0101 1110s 1 19 1

0010 100s 0 7 1 0000 0101 1111s 1 20 1

0001 1100 s 0 1 4 0000 011 escape

0001 1011 s 0 3 2

0001 0000 1s 0 0 16

0001 0000 0s 0 1 5

0000 1111 1s 0 1 6

0000 1111 0s 0 2 3

0000 1110 1s 0 3 3

0000 1110 0s 0 5 2

0000 1101 1s 0 6 2

0000 1101 0s 0 7 2

0000 0100 010s 0 1 8

0000 0100 011s 0 9 2

0000 0101 0110s 0 2 5

0000 0101 0111s 0 7 3

Table 11-16--- VLC table for Inter Lumimance and Chrominance TCOEF

VLC CODE LAST RUN LEVEL VLC CODE LAST RUN LEVEL

10s 0 0 1 0111 s 1 0 1

1111 s 0 0 2 0000 1100 1s 1 0 2

0101 01s 0 0 3 0000 0000 101s 1 0 3

0010 111s 0 0 4 0011 11s 1 1 1

0001 1111 s 0 0 5 0000 0000 100s 1 1 2

0001 0010 1s 0 0 6 0011 10s 1 2 1

0001 0010 0s 0 0 7 0011 01s 1 3 1

0000 1000 01s 0 0 8 0011 00s 1 4 1

0000 1000 00s 0 0 9 0010 011s 1 5 1

ISO/IEC 14496-2 Committee Draft

244

0000 0000 111s 0 0 10 0010 010s 1 6 1

0000 0000 110s 0 0 11 0010 001s 1 7 1

0000 0100 000s 0 0 12 0010 000s 1 8 1

110s 0 1 1 0001 1010 s 1 9 1

0101 00s 0 1 2 0001 1001 s 1 10 1

0001 1110 s 0 1 3 0001 1000 s 1 11 1

0000 0011 11s 0 1 4 0001 0111 s 1 12 1

0000 0100 001s 0 1 5 0001 0110 s 1 13 1

0000 0101 0000s 0 1 6 0001 0101 s 1 14 1

1110 s 0 2 1 0001 0100 s 1 15 1

0001 1101 s 0 2 2 0001 0011 s 1 16 1

0000 0011 10s 0 2 3 0000 1100 0s 1 17 1

0000 0101 0001s 0 2 4 0000 1011 1s 1 18 1

0110 1s 0 3 1 0000 1011 0s 1 19 1

0001 0001 1s 0 3 2 0000 1010 1s 1 20 1

0000 0011 01s 0 3 3 0000 1010 0s 1 21 1

0110 0s 0 4 1 0000 1001 1s 1 22 1

0001 0001 0s 0 4 2 0000 1001 0s 1 23 1

0000 0101 0010s 0 4 3 0000 1000 1s 1 24 1

0101 1s 0 5 1 0000 0001 11s 1 25 1

0000 0011 00s 0 5 2 0000 0001 10s 1 26 1

0000 0101 0011s 0 5 3 0000 0001 01s 1 27 1

0100 11s 0 6 1 0000 0001 00s 1 28 1

0000 0010 11s 0 6 2 0000 0100 100s 1 29 1

0000 0101 0100s 0 6 3 0000 0100 101s 1 30 1

0100 10s 0 7 1 0000 0100 110s 1 31 1

0000 0010 10s 0 7 2 0000 0100 111s 1 32 1

0100 01s 0 8 1 0000 0101 1000s 1 33 1

0000 0010 01s 0 8 2 0000 0101 1001s 1 34 1

0100 00s 0 9 1 0000 0101 1010s 1 35 1

0000 0010 00s 0 9 2 0000 0101 1011s 1 36 1

0010 110s 0 10 1 0000 0101 1100s 1 37 1

0000 0101 0101s 0 10 2 0000 0101 1101s 1 38 1

0010 101s 0 11 1 0000 0101 1110s 1 39 1

0010 100s 0 12 1 0000 0101 1111s 1 40 1

0001 1100 s 0 13 1 0000 011 escape

0001 1011 s 0 14 1

0001 0000 1s 0 15 1

0001 0000 0s 0 16 1

0000 1111 1s 0 17 1

0000 1111 0s 0 18 1

0000 1110 1s 0 19 1

0000 1110 0s 0 20 1

0000 1101 1s 0 21 1

0000 1101 0s 0 22 1

0000 0100 010s 0 23 1

 ISO/IEC 14496-2 Committee Draft

245

0000 0100 011s 0 24 1

0000 0101 0110s 0 25 1

0000 0101 0111s 0 26 1

Table 11-17 --- FLC table for RUNS and LEVELS

Code Run Code Level

000 000 0 forbidden -2048

000 001 1 1000 0000 0001 -2047

000 010 2 . .

. . 1111 1111 1110 -2

. . 1111 1111 1111 -1

111 111 63 forbidden 0

0000 0000 0001 1

0000 0000 0010 2

. .

0111 1111 1111 2047

Table 11-18 ESCL(a), LMAX values of intra macroblocks

LAST RUN LMAX LAST RUN LMAX

0 0 27 1 0 8

0 1 10 1 1 3

0 2 5 1 2-6 2

0 3 4 1 7-20 1

0 4-7 3 1 others N/A

0 8-9 2

0 10-14 1

0 others N/A

Table 11-19 ESCL(b), LMAX values of inter macroblocks

LAST RUN LMAX LAST RUN LMAX

0 0 12 1 0 3

0 1 6 1 1 2

0 2 4 1 2-40 1

0 3-6 3 1 others N/A

0 7-10 2

0 11-26 1

0 others N/A

Table 11-20 ESCR(a), RMAX values of intra macroblocks

ISO/IEC 14496-2 Committee Draft

246

LAST LEVEL RMAX LAST LEVEL RMAX

0 1 14 1 1 20

0 2 9 1 2 6

0 3 7 1 3 1

0 4 3 1 4-8 0

0 5 2 1 others N/A

0 6-10 1

0 11-27 0

0 others N/A

Table 11-21 ESCR(b), RMAX values of inter macroblocks

LAST LEVEL RMAX LAST LEVEL RMAX

0 1 26 1 1 40

0 2 10 1 2 1

0 3 6 1 3 0

0 4 2 1 others N/A

0 5-6 1

0 7-12 0

0 others N/A

Table 11-22 RVLC table for TCOEF

ESCAPE code is added at the beginning and the end of these fixed-length codes for realizing two-way
decode as shown below.

ESCAPE LAST RUN LEVEL ESCAPE

00001 0000sx xxxxxx xxxxxxx

Note: There are two types for ESCAPE added at the end of these fixed-length codes, and codewords
are “0000s”. Also, S=0 : LEVEL is positive and S=1 : LEVEL is negative.

intra inter

INDEX LAST RUN LEVEL LAST RUN LEVEL BITS VLC_CODE

0 0 0 1 0 0 1 4 110s

1 0 0 2 0 1 1 4 111s

2 0 1 1 0 0 2 5 0001s

3 0 0 3 0 2 1 5 1010s

4 1 0 1 1 0 1 5 1011s

5 0 2 1 0 0 3 6 00100s

6 0 3 1 0 3 1 6 00101s

7 0 1 2 0 4 1 6 01000s

8 0 0 4 0 5 1 6 01001s

 ISO/IEC 14496-2 Committee Draft

247

9 1 1 1 1 1 1 6 10010s

10 1 2 1 1 2 1 6 10011s

11 0 4 1 0 1 2 7 001100s

12 0 5 1 0 6 1 7 001101s

13 0 0 5 0 7 1 7 010100s

14 0 0 6 0 8 1 7 010101s

15 1 3 1 1 3 1 7 011000s

16 1 4 1 1 4 1 7 011001s

17 1 5 1 1 5 1 7 100010s

18 1 6 1 1 6 1 7 100011s

19 0 6 1 0 0 4 8 0011100s

20 0 7 1 0 2 2 8 0011101s

21 0 2 2 0 9 1 8 0101100s

22 0 1 3 0 10 1 8 0101101s

23 0 0 7 0 11 1 8 0110100s

24 1 7 1 1 7 1 8 0110101s

25 1 8 1 1 8 1 8 0111000s

26 1 9 1 1 9 1 8 0111001s

27 1 10 1 1 10 1 8 1000010s

28 1 11 1 1 11 1 8 1000011s

29 0 8 1 0 0 5 9 00111100s

30 0 9 1 0 0 6 9 00111101s

31 0 3 2 0 1 3 9 01011100s

32 0 4 2 0 3 2 9 01011101s

33 0 1 4 0 4 2 9 01101100s

34 0 1 5 0 12 1 9 01101101s

35 0 0 8 0 13 1 9 01110100s

36 0 0 9 0 14 1 9 01110101s

37 1 0 2 1 0 2 9 01111000s

38 1 12 1 1 12 1 9 01111001s

39 1 13 1 1 13 1 9 10000010s

40 1 14 1 1 14 1 9 10000011s

41 0 10 1 0 0 7 10 001111100s

42 0 5 2 0 1 4 10 001111101s

43 0 2 3 0 2 3 10 010111100s

44 0 3 3 0 5 2 10 010111101s

45 0 1 6 0 15 1 10 011011100s

46 0 0 10 0 16 1 10 011011101s

47 0 0 11 0 17 1 10 011101100s

48 1 1 2 1 1 2 10 011101101s

49 1 15 1 1 15 1 10 011110100s

50 1 16 1 1 16 1 10 011110101s

51 1 17 1 1 17 1 10 011111000s

52 1 18 1 1 18 1 10 011111001s

53 1 19 1 1 19 1 10 100000010s

54 1 20 1 1 20 1 10 100000011s

55 0 11 1 0 0 8 11 0011111100s

56 0 12 1 0 0 9 11 0011111101s

57 0 6 2 0 1 5 11 0101111100s

58 0 7 2 0 3 3 11 0101111101s

59 0 8 2 0 6 2 11 0110111100s

60 0 4 3 0 7 2 11 0110111101s

ISO/IEC 14496-2 Committee Draft

248

61 0 2 4 0 8 2 11 0111011100s

62 0 1 7 0 9 2 11 0111011101s

63 0 0 12 0 18 1 11 0111101100s

64 0 0 13 0 19 1 11 0111101101s

65 0 0 14 0 20 1 11 0111110100s

66 1 21 1 1 21 1 11 0111110101s

67 1 22 1 1 22 1 11 0111111000s

68 1 23 1 1 23 1 11 0111111001s

69 1 24 1 1 24 1 11 1000000010s

70 1 25 1 1 25 1 11 1000000011s

71 0 13 1 0 0 10 12 00111111100s

72 0 9 2 0 0 11 12 00111111101s

73 0 5 3 0 1 6 12 01011111100s

74 0 6 3 0 2 4 12 01011111101s

75 0 7 3 0 4 3 12 01101111100s

76 0 3 4 0 5 3 12 01101111101s

77 0 2 5 0 10 2 12 01110111100s

78 0 2 6 0 21 1 12 01110111101s

79 0 1 8 0 22 1 12 01111011100s

80 0 1 9 0 23 1 12 01111011101s

81 0 0 15 0 24 1 12 01111101100s

82 0 0 16 0 25 1 12 01111101101s

83 0 0 17 0 26 1 12 01111110100s

84 1 0 3 1 0 3 12 01111110101s

85 1 2 2 1 2 2 12 01111111000s

86 1 26 1 1 26 1 12 01111111001s

87 1 27 1 1 27 1 12 10000000010s

88 1 28 1 1 28 1 12 10000000011s

89 0 10 2 0 0 12 13 001111111100s

90 0 4 4 0 1 7 13 001111111101s

91 0 5 4 0 2 5 13 010111111100s

92 0 6 4 0 3 4 13 010111111101s

93 0 3 5 0 6 3 13 011011111100s

94 0 4 5 0 7 3 13 011011111101s

95 0 1 10 0 11 2 13 011101111100s

96 0 0 18 0 27 1 13 011101111101s

97 0 0 19 0 28 1 13 011110111100s

98 0 0 22 0 29 1 13 011110111101s

99 1 1 3 1 1 3 13 011111011100s

100 1 3 2 1 3 2 13 011111011101s

101 1 4 2 1 4 2 13 011111101100s

102 1 29 1 1 29 1 13 011111101101s

103 1 30 1 1 30 1 13 011111110100s

104 1 31 1 1 31 1 13 011111110101s

105 1 32 1 1 32 1 13 011111111000s

106 1 33 1 1 33 1 13 011111111001s

107 1 34 1 1 34 1 13 100000000010s

108 1 35 1 1 35 1 13 100000000011s

109 0 14 1 0 0 13 14 0011111111100s

110 0 15 1 0 0 14 14 0011111111101s

111 0 11 2 0 0 15 14 0101111111100s

112 0 8 3 0 0 16 14 0101111111101s

 ISO/IEC 14496-2 Committee Draft

249

113 0 9 3 0 1 8 14 0110111111100s

114 0 7 4 0 3 5 14 0110111111101s

115 0 3 6 0 4 4 14 0111011111100s

116 0 2 7 0 5 4 14 0111011111101s

117 0 2 8 0 8 3 14 0111101111100s

118 0 2 9 0 12 2 14 0111101111101s

119 0 1 11 0 30 1 14 0111110111100s

120 0 0 20 0 31 1 14 0111110111101s

121 0 0 21 0 32 1 14 0111111011100s

122 0 0 23 0 33 1 14 0111111011101s

123 1 0 4 1 0 4 14 0111111101100s

124 1 5 2 1 5 2 14 0111111101101s

125 1 6 2 1 6 2 14 0111111110100s

126 1 7 2 1 7 2 14 0111111110101s

127 1 8 2 1 8 2 14 0111111111000s

128 1 9 2 1 9 2 14 0111111111001s

129 1 36 1 1 36 1 14 1000000000010s

130 1 37 1 1 37 1 14 1000000000011s

131 0 16 1 0 0 17 15 00111111111100s

132 0 17 1 0 0 18 15 00111111111101s

133 0 18 1 0 1 9 15 01011111111100s

134 0 8 4 0 1 10 15 01011111111101s

135 0 5 5 0 2 6 15 01101111111100s

136 0 4 6 0 2 7 15 01101111111101s

137 0 5 6 0 3 6 15 01110111111100s

138 0 3 7 0 6 4 15 01110111111101s

139 0 3 8 0 9 3 15 01111011111100s

140 0 2 10 0 13 2 15 01111011111101s

141 0 2 11 0 14 2 15 01111101111100s

142 0 1 12 0 15 2 15 01111101111101s

143 0 1 13 0 16 2 15 01111110111100s

144 0 0 24 0 34 1 15 01111110111101s

145 0 0 25 0 35 1 15 01111111011100s

146 0 0 26 0 36 1 15 01111111011101s

147 1 0 5 1 0 5 15 01111111101100s

148 1 1 4 1 1 4 15 01111111101101s

149 1 10 2 1 10 2 15 01111111110100s

150 1 11 2 1 11 2 15 01111111110101s

151 1 12 2 1 12 2 15 01111111111000s

152 1 38 1 1 38 1 15 01111111111001s

153 1 39 1 1 39 1 15 10000000000010s

154 1 40 1 1 40 1 15 10000000000011s

155 0 0 27 0 0 19 16 001111111111100s

156 0 3 9 0 3 7 16 001111111111101s

157 0 6 5 0 4 5 16 010111111111100s

158 0 7 5 0 7 4 16 010111111111101s

159 0 9 4 0 17 2 16 011011111111100s

160 0 12 2 0 37 1 16 011011111111101s

161 0 19 1 0 38 1 16 011101111111100s

162 1 1 5 1 1 5 16 011101111111101s

163 1 2 3 1 2 3 16 011110111111100s

164 1 13 2 1 13 2 16 011110111111101s

ISO/IEC 14496-2 Committee Draft

250

165 1 41 1 1 41 1 16 011111011111100s

166 1 42 1 1 42 1 16 011111011111101s

167 1 43 1 1 43 1 16 011111101111100s

168 1 44 1 1 44 1 16 011111101111101s

169 ESCAPE 5 0000s

Table 11-23 FLC table for RUN

RUN CODE

0 000000

1 000001

2 000010

: :

63 111111

Table 11-24 FLC table for LEVEL

LEVEL CODE

0 FORBIDDEN

1 0000001

2 0000010

: :

127 1111111

11.1.5 Shape Coding

Table 11-25 Meaning of shape mode

Index Shape mode

0 = “MVDs==0 && No Update”

1 = “MVDs!=0 && No Update”

2 transparent

3 opaque

4 “intraCAE”

5 “interCAE && MVDs==0”

6 “interCAE && MVDs!=0”

 Table 11-26 bab_type for I-VOP

Index (2) (3) (4) Index (2) (3) (4)

 0 1 001 01 41 001 01 1

 1 001 01 1 42 1 01 001

 2 01 001 1 43 001 1 01

 ISO/IEC 14496-2 Committee Draft

251

 3 1 001 01 44 001 01 1

 4 1 01 001 45 1 01 001

 5 1 01 001 46 001 01 1

 6 1 001 01 47 01 001 1

 7 1 01 001 48 1 01 001

 8 01 001 1 49 001 01 1

 9 001 01 1 50 01 001 1

10 1 01 001 51 1 001 01

11 1 01 001 52 001 1 01

12 001 01 1 53 01 001 1

13 1 01 001 54 1 001 01

14 01 1 001 55 01 001 1

15 001 01 1 56 01 001 1

16 1 01 001 57 1 01 001

17 1 01 001 58 1 01 001

18 01 001 1 59 1 01 001

19 1 01 001 60 1 01 001

20 001 01 1 61 1 01 001

21 01 001 1 62 01 001 1

22 1 01 001 63 1 01 001

23 001 01 1 64 001 01 1

24 01 001 1 65 001 01 1

25 001 01 1 66 01 001 1

26 001 01 1 67 001 1 01

27 1 01 001 68 001 1 01

28 1 01 001 69 01 001 1

29 1 01 001 70 001 1 01

30 1 01 001 71 001 01 1

31 1 01 001 72 1 001 01

32 1 01 001 73 001 01 1

33 1 01 001 74 01 001 1

34 1 01 001 75 01 001 1

35 001 01 1 76 001 1 01

36 1 01 001 77 001 01 1

37 001 01 1 78 1 001 01

38 001 01 1 79 001 1 01

ISO/IEC 14496-2 Committee Draft

252

39 1 01 001 80 001 01 1

40 001 1 01

Table 11-27 bab_type for P-VOP and B-VOP

bab_type in current VOP (n)

0 1 2 3 4 5 6

0 1 01 00001 000001 0001 0010 0011

bab_type 1 01 1 00001 000001 001 0000001 0001

in previous 2 0001 001 1 000001 01 0000001 00001

VOP(n-1) 3 1 0001 000001 001 01 0000001 00001

4 011 001 0001 00001 1 000001 010

5 01 0001 00001 000001 001 11 10

6 001 0001 00001 000001 01 10 11

Table 11-28 VLC table for MVDs

MVDs Codes

0 0

±1 10s

±2 110s

±3 1110s

±4 11110s

±5 111110s

±6 1111110s

±7 11111110s

±8 111111110s

±9 1111111110s

±10 11111111110s

±11 111111111110s

±12 1111111111110s

±13 11111111111110s

±14 111111111111110s

±15 1111111111111110s

±16 11111111111111110s

Table 11-29 VLC table for MVDs (Horizontal element is 0)

MVDs Codes

±1 0s

 ISO/IEC 14496-2 Committee Draft

253

±2 10s

±3 110s

±4 1110s

±5 11110s

±6 111110s

±7 1111110s

±8 11111110s

±9 111111110s

±10 1111111110s

±11 11111111110s

±12 111111111110s

±13 1111111111110s

±14 11111111111110s

±15 111111111111110s

±16 1111111111111110s

s: sign bit (if MVDs is positive s=”1”, otherwise s=”0”).

Table 11-30 VLC for conv_ratio

conv_ratio Code

1 0

2 10

4 11

These tables contain the probabilities for a binary alpha pixel being equal to 0 for intra and inter
shape coding using CAE. All probabilities are normalised to the range [1,65535].

As an example, given an INTRA context number C, the probability that the pixel is zero is given by
intra_prob[C].

Table 11-31 Probabilities for arithmetic decoding of shape

USInt intra_prob[1024] = {

65267,16468,65003,17912,64573,8556,64252,5653,40174,3932,29789,277,45152,1140,32768,2043,

4499,80,6554,1144,21065,465,32768,799,5482,183,7282,264,5336,99,6554,563,

54784,30201,58254,9879,54613,3069,32768,58495,32768,32768,32768,2849,58982,54613,32768,12892,

31006,1332,49152,3287,60075,350,32768,712,39322,760,32768,354,52659,432,61854,150,

64999,28362,65323,42521,63572,32768,63677,18319,4910,32768,64238,434,53248,32768,61865,13590,

16384,32768,13107,333,32768,32768,32768,32768,32768,32768,1074,780,25058,5461,6697,233,

62949,30247,63702,24638,59578,32768,32768,42257,32768,32768,49152,546,62557,32768,54613,19258,

62405,32569,64600,865,60495,10923,32768,898,34193,24576,64111,341,47492,5231,55474,591,

65114,60075,64080,5334,65448,61882,64543,13209,54906,16384,35289,4933,48645,9614,55351,7318,

49807,54613,32768,32768,50972,32768,32768,32768,15159,1928,2048,171,3093,8,6096,74,

32768,60855,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,55454,32768,57672,

32768,16384,32768,21845,32768,32768,32768,32768,32768,32768,32768,5041,28440,91,32768,45,

ISO/IEC 14496-2 Committee Draft

254

65124,10923,64874,5041,65429,57344,63435,48060,61440,32768,63488,24887,59688,3277,63918,14021,

32768,32768,32768,32768,32768,32768,32768,32768,690,32768,32768,1456,32768,32768,8192,728,

32768,32768,58982,17944,65237,54613,32768,2242,32768,32768,32768,42130,49152,57344,58254,16740,

32768,10923,54613,182,32768,32768,32768,7282,49152,32768,32768,5041,63295,1394,55188,77,

63672,6554,54613,49152,64558,32768,32768,5461,64142,32768,32768,32768,62415,32768,32768,16384,

1481,438,19661,840,33654,3121,64425,6554,4178,2048,32768,2260,5226,1680,32768,565,

60075,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,

16384,261,32768,412,16384,636,32768,4369,23406,4328,32768,524,15604,560,32768,676,

49152,32768,49152,32768,32768,32768,64572,32768,32768,32768,54613,32768,32768,32768,32768,32768,

4681,32768,5617,851,32768,32768,59578,32768,32768,32768,3121,3121,49152,32768,6554,10923,

32768,32768,54613,14043,32768,32768,32768,3449,32768,32768,32768,32768,32768,32768,32768,32768,

57344,32768,57344,3449,32768,32768,32768,3855,58982,10923,32768,239,62259,32768,49152,85,

58778,23831,62888,20922,64311,8192,60075,575,59714,32768,57344,40960,62107,4096,61943,3921,

39862,15338,32768,1524,45123,5958,32768,58982,6669,930,1170,1043,7385,44,8813,5011,

59578,29789,54613,32768,32768,32768,32768,32768,32768,32768,32768,32768,58254,56174,32768,32768,

64080,25891,49152,22528,32768,2731,32768,10923,10923,3283,32768,1748,17827,77,32768,108,

62805,32768,62013,42612,32768,32768,61681,16384,58982,60075,62313,58982,65279,58982,62694,62174,

32768,32768,10923,950,32768,32768,32768,32768,5958,32768,38551,1092,11012,39322,13705,2072,

54613,32768,32768,11398,32768,32768,32768,145,32768,32768,32768,29789,60855,32768,61681,54792,

32768,32768,32768,17348,32768,32768,32768,8192,57344,16384,32768,3582,52581,580,24030,303,

62673,37266,65374,6197,62017,32768,49152,299,54613,32768,32768,32768,35234,119,32768,3855,

31949,32768,32768,49152,16384,32768,32768,32768,24576,32768,49152,32768,17476,32768,32768,57445,

51200,50864,54613,27949,60075,20480,32768,57344,32768,32768,32768,32768,32768,45875,32768,32768,

11498,3244,24576,482,16384,1150,32768,16384,7992,215,32768,1150,23593,927,32768,993,

65353,32768,65465,46741,41870,32768,64596,59578,62087,32768,12619,23406,11833,32768,47720,17476,

32768,32768,2621,6554,32768,32768,32768,32768,32768,32768,5041,32768,16384,32768,4096,2731,

63212,43526,65442,47124,65410,35747,60304,55858,60855,58982,60075,19859,35747,63015,64470,25432,

58689,1118,64717,1339,24576,32768,32768,1257,53297,1928,32768,33,52067,3511,62861,453,

64613,32768,32768,32768,64558,32768,32768,2731,49152,32768,32768,32768,61534,32768,32768,35747,

32768,32768,32768,32768,13107,32768,32768,32768,32768,32768,32768,32768,20480,32768,32768,32768,

32768,32768,32768,54613,40960,5041,32768,32768,32768,32768,32768,3277,64263,57592,32768,3121,

32768,32768,32768,32768,32768,10923,32768,32768,32768,8192,32768,32768,5461,6899,32768,1725,

63351,3855,63608,29127,62415,7282,64626,60855,32768,32768,60075,5958,44961,32768,61866,53718,

32768,32768,32768,32768,32768,32768,6554,32768,32768,32768,32768,32768,2521,978,32768,1489,

58254,32768,58982,61745,21845,32768,54613,58655,60075,32768,49152,16274,50412,64344,61643,43987,

32768,32768,32768,1638,32768,32768,32768,24966,54613,32768,32768,2427,46951,32768,17970,654,

65385,27307,60075,26472,64479,32768,32768,4681,61895,32768,32768,16384,58254,32768,32768,6554,

37630,3277,54613,6554,4965,5958,4681,32768,42765,16384,32768,21845,22827,16384,32768,6554,

65297,64769,60855,12743,63195,16384,32768,37942,32768,32768,32768,32768,60075,32768,62087,54613,

41764,2161,21845,1836,17284,5424,10923,1680,11019,555,32768,431,39819,907,32768,171,

65480,32768,64435,33803,2595,32768,57041,32768,61167,32768,32768,32768,32768,32768,32768,1796,

 ISO/IEC 14496-2 Committee Draft

255

60855,32768,17246,978,32768,32768,8192,32768,32768,32768,14043,2849,32768,2979,6554,6554,

65507,62415,65384,61891,65273,58982,65461,55097,32768,32768,32768,55606,32768,2979,3745,16913,

61885,13827,60893,12196,60855,53248,51493,11243,56656,783,55563,143,63432,7106,52429,445,

65485,1031,65020,1380,65180,57344,65162,36536,61154,6554,26569,2341,63593,3449,65102,533,

47827,2913,57344,3449,35688,1337,32768,22938,25012,910,7944,1008,29319,607,64466,4202,

64549,57301,49152,20025,63351,61167,32768,45542,58982,14564,32768,9362,61895,44840,32768,26385,

59664,17135,60855,13291,40050,12252,32768,7816,25798,1850,60495,2662,18707,122,52538,231,

65332,32768,65210,21693,65113,6554,65141,39667,62259,32768,22258,1337,63636,32768,64255,52429,

60362,32768,6780,819,16384,32768,16384,4681,49152,32768,8985,2521,24410,683,21535,16585,

65416,46091,65292,58328,64626,32768,65016,39897,62687,47332,62805,28948,64284,53620,52870,49567,

65032,31174,63022,28312,64299,46811,48009,31453,61207,7077,50299,1514,60047,2634,46488,235

};

USInt inter_prob[512] = {

65532,62970,65148,54613,62470,8192,62577,8937,65480,64335,65195,53248,65322,62518,62891,38312,

65075,53405,63980,58982,32768,32768,54613,32768,65238,60009,60075,32768,59294,19661,61203,13107,

63000,9830,62566,58982,11565,32768,25215,3277,53620,50972,63109,43691,54613,32768,39671,17129,

59788,6068,43336,27913,6554,32768,12178,1771,56174,49152,60075,43691,58254,16384,49152,9930,

23130,7282,40960,32768,10923,32768,32768,32768,27307,32768,32768,32768,32768,32768,32768,32768,

36285,12511,10923,32768,45875,16384,32768,32768,16384,23831,4369,32768,8192,10923,32768,32768,

10175,2979,18978,10923,54613,32768,6242,6554,1820,10923,32768,32768,32768,32768,32768,5461,

28459,593,11886,2030,3121,4681,1292,112,42130,23831,49152,29127,32768,6554,5461,2048,

65331,64600,63811,63314,42130,19661,49152,32768,65417,64609,62415,64617,64276,44256,61068,36713,

64887,57525,53620,61375,32768,8192,57344,6554,63608,49809,49152,62623,32768,15851,58982,34162,

55454,51739,64406,64047,32768,32768,7282,32768,49152,58756,62805,64990,32768,14895,16384,19418,

57929,24966,58689,31832,32768,16384,10923,6554,54613,42882,57344,64238,58982,10082,20165,20339,

62687,15061,32768,10923,32768,10923,32768,16384,59578,34427,32768,16384,32768,7825,32768,7282,

58052,23400,32768,5041,32768,2849,32768,32768,47663,15073,57344,4096,32768,1176,32768,1320,

24858,410,24576,923,32768,16384,16384,5461,16384,1365,32768,5461,32768,5699,8192,13107,

46884,2361,23559,424,19661,712,655,182,58637,2094,49152,9362,8192,85,32768,1228,

65486,49152,65186,49152,61320,32768,57088,25206,65352,63047,62623,49152,64641,62165,58986,18304,

64171,16384,60855,54613,42130,32768,61335,32768,58254,58982,49152,32768,60985,35289,64520,31554,

51067,32768,64074,32768,40330,32768,34526,4096,60855,32768,63109,58254,57672,16384,31009,2567,

23406,32768,44620,10923,32768,32768,32099,10923,49152,49152,54613,60075,63422,54613,46388,39719,

58982,32768,54613,32768,14247,32768,22938,5041,32768,49152,32768,32768,25321,6144,29127,10999,

41263,32768,46811,32768,267,4096,426,16384,32768,19275,49152,32768,1008,1437,5767,11275,

5595,5461,37493,6554,4681,32768,6147,1560,38229,10923,32768,40960,35747,2521,5999,312,

17052,2521,18808,3641,213,2427,574,32,51493,42130,42130,53053,11155,312,2069,106,

64406,45197,58982,32768,32768,16384,40960,36864,65336,64244,60075,61681,65269,50748,60340,20515,

58982,23406,57344,32768,6554,16384,19661,61564,60855,47480,32768,54613,46811,21701,54909,37826,

32768,58982,60855,60855,32768,32768,39322,49152,57344,45875,60855,55706,32768,24576,62313,25038,

ISO/IEC 14496-2 Committee Draft

256

54613,8192,49152,10923,32768,32768,32768,32768,32768,19661,16384,51493,32768,14043,40050,44651,

59578,5174,32768,6554,32768,5461,23593,5461,63608,51825,32768,23831,58887,24032,57170,3298,

39322,12971,16384,49152,1872,618,13107,2114,58982,25705,32768,60075,28913,949,18312,1815,

48188,114,51493,1542,5461,3855,11360,1163,58982,7215,54613,21487,49152,4590,48430,1421,

28944,1319,6868,324,1456,232,820,7,61681,1864,60855,9922,4369,315,6589,14

};

11.1.6 Sprite Coding

Table 11-32 Code table for the first trajectory point

dmv value SSS VLC dmv_code

-16383 … -8192

8192 … 16383

14 111111111
110

00000000000000...01111111111111,
10000000000000...11111111111111

-8191 … -4096

4096 … 8191

13 111111111
10

0000000000000...0111111111111,
1000000000000...1111111111111

-4095 … -2048

2048 … 4095

12 111111111
0

000000000000...011111111111,
100000000000...111111111111

-2047...-1024,
1024...2047

11 111111110 00000000000...01111111111,
10000000000...11111111111

-1023...-512,
512...1023

10 11111110 0000000000...0111111111,
1000000000...1111111111

-511...-256, 256...511 9 1111110 000000000...011111111, 100000000...111111111

-255...-128, 128...255 8 111110 00000000...01111111, 10000000...11111111

-127...-64, 64...127 7 11110 0000000...0111111, 1000000...1111111

-63...-32, 32...63 6 1110 000000...011111, 100000...111111

-31...-16, 16...31 5 110 00000...01111, 10000...1111

-15...-8, 8...15 4 101 0000...0111, 1000...1111

-7...-4, 4...7 3 100 000...011, 100...111

-3...-2, 2...3 2 011 00...01, 10...11

-1, 1 1 010 0, 1

0 0 00 -

Table 11-33 Code table for scaled brightness change factor

brightness_change_fact
or value

brightne
ss_chan
ge_facto
r_length
value

brightness_cha
nge_factor_len
gth VLC

brightness_change_factor

-16...-1, 1...16 1 0 00000...01111, 10000...11111

-48...-17, 17...48 2 10 000000...011111, 100000...111111

 ISO/IEC 14496-2 Committee Draft

257

112...-49, 49...112 3 110 0000000...0111111, 1000000...1111111

113…624 4 1110 000000000...111111111

625...1648 4 1111 0000000000…1111111111

11.1.7 DCT based facial object decoding

Table 11-34 Viseme_select_table, 29 symbols

symbol bits code symbol bits code symbol bits code

0 6 001000 10 6 010001 20 6 010000
1 6 001001 11 6 011001 21 6 010010
2 6 001011 12 5 00001 22 6 011010
3 6 001101 13 6 011101 23 5 00010
4 6 001111 14 1 1 24 6 011110
5 6 010111 15 6 010101 25 6 010110
6 6 011111 16 6 010100 26 6 001110
7 5 00011 17 6 011100 27 6 001100
8 6 011011 18 5 00000 28 6 001010
9 6 010011 19 6 011000

Table 11-35 Expression_select_table, 13 symbols

symbol bits code symbol bits code symbol bits code

0 5 01000 5 4 0011 10 5 01110
1 5 01001 6 1 1 11 5 01100
2 5 01011 7 4 0001 12 5 01010
3 5 01101 8 4 0000
4 5 01111 9 4 0010

 Table 11-36 Viseme and Expression intensity_table, 127 symbols

sym
bol

bits code sym
bol

bits code sym
bol

bits code

0 17 10010001101010010 43 16 1001000110100111 86 16 1001000110100110
1 17 10010001101010011 44 8 10011100 87 16 1001000110100100
2 17 10010001101010101 45 11 10010001111 88 16 1001000110100010
3 17 10010001101010111 46 9 100100010 89 16 1001000110100000
4 17 10010001101011001 47 10 1110001011 90 16 1001000110011110
5 17 10010001101011011 48 9 100011011 91 16 1001000110011100
6 17 10010001101011101 49 10 1110001001 92 16 1001000110011010
7 17 10010001101011111 50 9 100011010 93 16 1001000110011000
8 17 10010001101100001 51 9 100111010 94 16 1001000110010110
9 17 10010001101100011 52 10 1110001000 95 16 1001000110010100
10 17 10010001101100101 53 7 1000111 96 16 1001000110010010
11 17 10010001101100111 54 7 1000010 97 16 1001000110010000
12 17 10010001101101001 55 8 10010000 98 16 1001000110001110
13 17 10010001101101011 56 7 1001111 99 16 1001000110001100
14 17 10010001101101101 57 7 1110000 100 16 1001000110001010
15 17 10010001101101111 58 6 100000 101 16 1001000110001000
16 17 10010001101110001 59 6 100101 102 16 1001000110000110
17 17 10010001101110011 60 6 111010 103 16 1001000110000100
18 17 10010001101110111 61 5 11111 104 16 1001000110000010

ISO/IEC 14496-2 Committee Draft

258

19 17 10010001101111001 62 3 101 105 16 1001000110000000
20 17 10010001101111011 63 1 0 106 17 10010001101111110
21 17 10010001101111101 64 3 110 107 17 10010001101111100
22 17 10010001101111111 65 5 11110 108 17 10010001101111010
23 16 1001000110000001 66 6 111001 109 17 10010001101111000
24 16 1001000110000011 67 6 111011 110 17 10010001101110110
25 16 1001000110000101 68 6 100010 111 17 10010001101110010
26 16 1001000110000111 69 7 1001100 112 17 10010001101110000
27 16 1001000110001001 70 7 1001001 113 17 10010001101101110
28 16 1001000110001011 71 7 1001101 114 17 10010001101101100
29 16 1001000110001101 72 8 10001100 115 17 10010001101101010
30 16 1001000110001111 73 8 10000111 116 17 10010001101101000
31 16 1001000110010001 74 8 10000110 117 17 10010001101100110
32 16 1001000110010011 75 17 10010001101110100 118 17 10010001101100100
33 16 1001000110010101 76 9 111000110 119 17 10010001101100010
34 16 1001000110010111 77 11 11100010100 120 17 10010001101100000
35 16 1001000110011001 78 11 10011101111 121 17 10010001101011110
36 16 1001000110011011 79 17 10010001101110101 122 17 10010001101011100
37 16 1001000110011101 80 10 1001110110 123 17 10010001101011010
38 16 1001000110011111 81 16 1001000110101000 124 17 10010001101011000
39 16 1001000110100001 82 11 10010001110 125 17 10010001101010110
40 16 1001000110100011 83 10 1110001111 126 17 10010001101010100
41 11 11100010101 84 11 10011101110
42 16 1001000110100101 85 10 1110001110

Table 11-37 Runlength_table, 16 symbols

symbol bits code symbol bits code symbol bits code

0 1 1 6 9 000001011 12 8 00000000

1 2 01 7 9 000001101 13 8 00000010

2 3 001 8 9 000001111 14 9 000001110

3 4 0001 9 8 00000011 15 9 000001100

4 5 00001 10 8 00000001

5 9 000001010 11 8 00000100

Table 11-38 DC_table, 512 symbols

 ISO/IEC 14496-2 Committee Draft

259

sym
bol

bits code sym
bol

bits code sym
bol

bit
s

code

0 17 11010111001101010 171 17 11010111001111001 342 17 11010111001111000

1 17 11010111001101011 172 17 11010111010000001 343 17 11010111001110000

2 17 11010111001101101 173 17 11010111010001001 344 17 11010111001110010

3 17 11010111001101111 174 17 11010111010010001 345 17 11010111001111010

4 17 11010111001110101 175 17 11010111010011001 346 17 11010111010000010

5 17 11010111001110111 176 17 11010111010101001 347 17 11010111010001010

6 17 11010111001111101 177 17 11010111010110001 348 17 11010111010010010

7 17 11010111001111111 178 17 11010111010111001 349 17 11010111010011010

8 17 11010111010000101 179 17 11010111011000001 350 17 11010111010101010

9 17 11010111010000111 180 17 11010111011001001 351 17 11010111010110010

10 17 11010111010001101 181 17 11010111011011001 352 17 11010111010111010

11 17 11010111010001111 182 17 11010111011111001 353 17 11010111011000010

12 17 11010111010010101 183 17 11010111100000001 354 17 11010111011001010

13 17 11010111010010111 184 17 11010111100001001 355 17 11010111011011010

14 17 11010111010011101 185 17 11010111100011001 356 17 11010111011111010

15 17 11010111010011111 186 17 11010111100100001 357 17 11010111100000010

16 17 11010111010101101 187 17 11010111100101001 358 17 11010111100001010

17 17 11010111010101111 188 17 11010111100111001 359 17 11010111100011010

18 17 11010111010110111 189 17 11010111101000001 360 17 11010111100100010

19 17 11010111010111101 190 17 11010111101001001 361 17 11010111100101010

20 17 11010111010111111 191 17 11010111101011001 362 17 11010111100111010

21 17 11010111011000111 192 17 11010111101111001 363 17 11010111101000010

22 17 11010111011001101 193 17 11010111110000001 364 17 11010111101001010

23 17 11010111011001111 194 17 11010111110001001 365 17 11010111101011010

24 17 11010111011011101 195 17 11010111110011001 366 17 11010111101111010

25 17 11010111011011111 196 17 11010111110111001 367 17 11010111110000010

26 17 11010111011111101 197 17 11010111111100001 368 17 11010111110001010

27 17 11010111011111111 198 17 11010111111101001 369 17 11010111110011010

28 17 11010111100000111 199 17 11010111111111001 370 17 11010111110111010

29 17 11010111100001101 200 16 1101011100000001 371 17 11010111111100010

30 17 11010111100001111 201 16 1101011100001001 372 17 11010111111101010

31 17 11010111100011101 202 16 1101011100011001 373 17 11010111111111010

32 17 11010111100011111 203 17 11010111111001001 374 16 1101011100000010

33 17 11010111100100101 204 17 11010111111010001 375 16 1101011100001010

34 17 11010111100100111 205 17 11010111111011001 376 16 1101011100011010

35 17 11010111100101101 206 16 1101011100101001 377 17 11010111111001010

36 17 11010111100101111 207 17 11010111110100001 378 17 11010111111010010

37 17 11010111100111101 208 17 11010111110101001 379 17 11010111111011010

38 17 11010111100111111 209 17 11010111101101001 380 16 1101011100101010

39 17 11010111101000101 210 17 11010111011100001 381 17 11010111110100010

40 17 11010111101000111 211 16 1101011100100000 382 17 11010111110101010

41 17 11010111101001101 212 16 1101011100100001 383 17 11010111101101010

42 17 11010111101001111 213 17 11010111111000001 384 17 11010111011100010

43 17 11010111101011101 214 16 1101011100010001 385 17 11010111011101010

44 17 11010111101011111 215 17 11010111111110001 386 17 11010111011101000

45 17 11010111101111101 216 17 11010111110110001 387 16 1101011100100010

46 17 11010111101111111 217 17 11010111110010001 388 17 11010111111000010

47 17 11010111110000101 218 11 11101100101 389 16 1101011100010010

48 17 11010111110000111 219 11 11011111011 390 17 11010111111110010

49 17 11010111110001101 220 11 11011110001 391 17 11010111110110010

50 17 11010111110001111 221 10 1101110011 392 17 11010111110010010

ISO/IEC 14496-2 Committee Draft

260

51 17 11010111110011101 222 17 11010111101110001 393 17 11010111101110010

52 17 11010111110011111 223 17 11010111010100000 394 17 11010111101010010

53 17 11010111110111101 224 17 11010111010100001 395 17 11010111101010000

54 17 11010111110111111 225 17 11010111011110100 396 17 11010111100010010

55 17 11010111111100101 226 17 11010111011110101 397 17 11010111100010000

56 17 11010111111100111 227 17 11010111011110001 398 17 11010111011010010

57 17 11010111111101101 228 17 11010111100010101 399 17 11010111011010000

58 17 11010111111101111 229 17 11010111100110000 400 16 1101011100110010

59 17 11010111111111101 230 17 11010111100110001 401 16 1101011100110000

60 17 11010111111111111 231 17 11010111101010101 402 17 11010111010100110

61 16 1101011100000101 232 11 11101100111 403 17 11010111010100100

62 16 1101011100000111 233 17 11010111101110101 404 17 11010111010100010

63 16 1101011100001101 234 11 11101100110 405 17 11010111011010110

64 16 1101011100001111 235 17 11010111110110101 406 17 11010111011010100

65 16 1101011100011101 236 17 11010111111000100 407 17 11010111011110110

66 16 1101011100011111 237 8 11010110 408 17 11010111011110010

67 17 11010111111001101 238 11 11011110010 409 17 11010111100010110

68 17 11010111111001111 239 9 110010100 410 17 11010111100110110

69 17 11010111111010101 240 10 1101110001 411 17 11010111100110100

70 17 11010111111010111 241 9 110001111 412 17 11010111100110010

71 17 11010111111011101 242 10 1101111100 413 17 11010111101010110

72 17 11010111111011111 243 9 110010101 414 17 11010111101110110

73 16 1101011100101101 244 9 110111111 415 17 11010111110010110

74 16 1101011100101111 245 10 1101110100 416 17 11010111110010100

75 17 11010111110100101 246 7 1100100 417 17 11010111110110110

76 17 11010111110100111 247 8 11101101 418 17 11010111111110110

77 17 11010111110101101 248 8 11001011 419 17 11010111111110100

78 17 11010111110101111 249 7 1101100 420 16 1101011100010110

79 17 11010111101101101 250 7 1101101 421 16 1101011100010100

80 17 11010111101101111 251 7 1110111 422 17 11010111111000110

81 17 11010111011100101 252 6 110100 423 16 1101011100100110

82 17 11010111011100111 253 6 111001 424 16 1101011100100100

83 17 11010111011101101 254 5 11111 425 17 11010111101100110

84 17 11010111011101111 255 3 100 426 17 11010111101100100

85 17 11010111101100001 256 1 0 427 17 11010111101100010

86 17 11010111101100011 257 3 101 428 17 11010111101100000

87 17 11010111101100101 258 5 11110 429 17 11010111011101110

88 17 11010111101100111 259 6 111000 430 17 11010111011101100

89 16 1101011100100101 260 6 111010 431 17 11010111011100110

90 16 1101011100100111 261 6 110000 432 17 11010111011100100

91 17 11010111111000111 262 7 1100111 433 17 11010111101101110

92 16 1101011100010101 263 7 1100110 434 17 11010111101101100

93 16 1101011100010111 264 7 1101010 435 17 11010111110101110

94 17 11010111111110101 265 8 11000101 436 17 11010111110101100

95 17 11010111111110111 266 8 11000110 437 17 11010111110100110

96 17 11010111110110111 267 8 11000100 438 17 11010111110100100

97 17 11010111110010101 268 17 11010111111000101 439 16 1101011100101110

98 17 11010111110010111 269 9 111011000 440 16 1101011100101100

99 17 11010111101110111 270 11 11011111010 441 17 11010111111011110

100 17 11010111101010111 271 11 11011110101 442 17 11010111111011100

101 17 11010111100110011 272 17 11010111100000101 443 17 11010111111010110

102 17 11010111100110101 273 10 1101111011 444 17 11010111111010100

103 17 11010111100110111 274 17 11010111011000101 445 17 11010111111001110

 ISO/IEC 14496-2 Committee Draft

261

104 17 11010111100010111 275 11 11011110011 446 17 11010111111001100

105 17 11010111011110011 276 9 110001110 447 16 1101011100011110

106 17 11010111011110111 277 11 11011110000 448 16 1101011100011100

107 17 11010111011010101 278 10 1101110111 449 16 1101011100001110

108 17 11010111011010111 279 17 11010111010110101 450 16 1101011100001100

109 17 11010111010100011 280 16 1101011100110100 451 16 1101011100000110

110 17 11010111010100101 281 10 1101110010 452 16 1101011100000100

111 17 11010111010100111 282 10 1101110000 453 17 11010111111111110

112 16 1101011100110001 283 11 11011101010 454 17 11010111111111100

113 16 1101011100110011 284 17 11010111010110100 455 17 11010111111101110

114 17 11010111011010001 285 17 11010111011000100 456 17 11010111111101100

115 17 11010111011010011 286 17 11010111100000100 457 17 11010111111100110

116 17 11010111100010001 287 11 11011101100 458 17 11010111111100100

117 17 11010111100010011 288 17 11010111110110100 459 17 11010111110111110

118 17 11010111101010001 289 17 11010111101110100 460 17 11010111110111100

119 17 11010111101010011 290 17 11010111101010100 461 17 11010111110011110

120 17 11010111101110011 291 11 11101100100 462 17 11010111110011100

121 17 11010111110010011 292 17 11010111100010100 463 17 11010111110001110

122 17 11010111110110011 293 17 11010111011110000 464 17 11010111110001100

123 17 11010111111110011 294 11 11011110100 465 17 11010111110000110

124 16 1101011100010011 295 11 11011101011 466 17 11010111110000100

125 17 11010111111000011 296 17 11010111101110000 467 17 11010111101111110

126 16 1101011100100011 297 17 11010111110010000 468 17 11010111101111100

127 17 11010111011101001 298 17 11010111110110000 469 17 11010111101011110

128 17 11010111011101011 299 17 11010111111110000 470 17 11010111101011100

129 17 11010111011100011 300 16 1101011100010000 471 17 11010111101001110

130 17 11010111101101011 301 17 11010111111000000 472 17 11010111101001100

131 17 11010111110101011 302 11 11011101101 473 17 11010111101000110

132 17 11010111110100011 303 17 11010111011100000 474 17 11010111101000100

133 16 1101011100101011 304 17 11010111101101000 475 17 11010111100111110

134 17 11010111111011011 305 17 11010111110101000 476 17 11010111100111100

135 17 11010111111010011 306 17 11010111110100000 477 17 11010111100101110

136 17 11010111111001011 307 16 1101011100101000 478 17 11010111100101100

137 16 1101011100011011 308 17 11010111111011000 479 17 11010111100100110

138 16 1101011100001011 309 17 11010111111010000 480 17 11010111100100100

139 16 1101011100000011 310 17 11010111111001000 481 17 11010111100011110

140 17 11010111111111011 311 16 1101011100011000 482 17 11010111100011100

141 17 11010111111101011 312 16 1101011100001000 483 17 11010111100001110

142 17 11010111111100011 313 16 1101011100000000 484 17 11010111100001100

143 17 11010111110111011 314 17 11010111111111000 485 17 11010111100000110

144 17 11010111110011011 315 17 11010111111101000 486 17 11010111011111110

145 17 11010111110001011 316 17 11010111111100000 487 17 11010111011111100

146 17 11010111110000011 317 17 11010111110111000 488 17 11010111011011110

147 17 11010111101111011 318 17 11010111110011000 489 17 11010111011011100

148 17 11010111101011011 319 17 11010111110001000 490 17 11010111011001110

149 17 11010111101001011 320 17 11010111110000000 491 17 11010111011001100

150 17 11010111101000011 321 17 11010111101111000 492 17 11010111011000110

151 17 11010111100111011 322 17 11010111101011000 493 17 11010111010111110

152 17 11010111100101011 323 17 11010111101001000 494 17 11010111010111100

153 17 11010111100100011 324 17 11010111101000000 495 17 11010111010110110

154 17 11010111100011011 325 17 11010111100111000 496 17 11010111010101110

155 17 11010111100001011 326 17 11010111100101000 497 17 11010111010101100

156 17 11010111100000011 327 17 11010111100100000 498 17 11010111010011110

ISO/IEC 14496-2 Committee Draft

262

157 17 11010111011111011 328 17 11010111100011000 499 17 11010111010011100

158 17 11010111011011011 329 17 11010111100001000 500 17 11010111010010110

159 17 11010111011001011 330 17 11010111100000000 501 17 11010111010010100

160 17 11010111011000011 331 17 11010111011111000 502 17 11010111010001110

161 17 11010111010111011 332 17 11010111011011000 503 17 11010111010001100

162 17 11010111010110011 333 17 11010111011001000 504 17 11010111010000110

163 17 11010111010101011 334 17 11010111011000000 505 17 11010111010000100

164 17 11010111010011011 335 17 11010111010111000 506 17 11010111001111110

165 17 11010111010010011 336 17 11010111010110000 507 17 11010111001111100

166 17 11010111010001011 337 17 11010111010101000 508 17 11010111001110110

167 17 11010111010000011 338 17 11010111010011000 509 17 11010111001110100

168 17 11010111001111011 339 17 11010111010010000 510 17 11010111001101110

169 17 11010111001110011 340 17 11010111010001000 511 17 11010111001101100

170 17 11010111001110001 341 17 11010111010000000

Table 11-39 AC_table, 512 symbols

 ISO/IEC 14496-2 Committee Draft

263

symb
ol

no_
of_
bits

code sym
bol

no_o
f_bit
s

code symb
ol

no_
of_
bits

code

0 16 1000011100011000 171 16 1000011101100001 342 16 1000011101100000

1 16 1000011100011001 172 16 1000011110100001 343 15 100001110000000

2 16 1000011100011011 173 16 1000011111000001 344 16 1000011101101000

3 16 1000011100011101 174 16 1000011111100001 345 16 1000011110101000

4 16 1000011100011111 175 15 100001000100001 346 16 1000011111001000

5 16 1000011100100101 176 15 100001001100001 347 16 1000011111101000

6 16 1000011100100111 177 15 100001011000001 348 15 100001000101000

7 16 1000011100101101 178 15 100001011100001 349 15 100001001101000

8 16 1000011100101111 179 15 100001010100001 350 15 100001011001000

9 16 1000011100111101 180 15 100001010000001 351 15 100001011101000

10 16 1000011100111111 181 15 100001001000001 352 15 100001010101000

11 16 1000011101111101 182 15 100001000000001 353 15 100001010001000

12 16 1000011101111111 183 16 1000011110000001 354 15 100001001001000

13 16 1000011110111111 184 16 1000011101000001 355 15 100001000001000

14 16 1000011111011101 185 16 1000011101010001 356 16 1000011110001000

15 16 1000011111011111 186 16 1000011110010001 357 16 1000011101001000

16 16 1000011111111101 187 15 100001000010001 358 16 1000011101011000

17 16 1000011111111111 188 15 100001001010001 359 16 1000011110011000

18 15 100001000111101 189 15 100001010010001 360 15 100001000011000

19 15 100001000111111 190 15 100001010110001 361 15 100001001011000

20 15 100001001111101 191 15 100001011110001 362 15 100001010011000

21 15 100001001111111 192 15 100001011010001 363 15 100001010111000

22 15 100001011011101 193 15 100001001110001 364 15 100001011111000

23 15 100001011011111 194 15 100001000110001 365 15 100001011011000

24 15 100001011111101 195 16 1000011111110001 366 15 100001001111000

25 15 100001011111111 196 16 1000011111010001 367 15 100001000111000

26 15 100001010111111 197 16 1000011110110001 368 16 1000011111111000

27 15 100001010011101 198 16 1000011101110001 369 16 1000011111011000

28 15 100001010011111 199 16 1000011100110001 370 16 1000011110111000

29 15 100001001011111 200 15 100001110001001 371 16 1000011101111000

30 15 100001000011111 201 16 1000011100110101 372 16 1000011100111000

31 16 1000011110011111 202 16 1000011101110101 373 16 1000011100101000

32 16 1000011101011111 203 16 1000011110110101 374 16 1000011100100000

33 16 1000011101001111 204 16 1000011111010101 375 16 1000011100100010

34 16 1000011110001111 205 16 1000011111110101 376 16 1000011100101010

35 15 100001000001111 206 15 100001000110101 377 16 1000011100111010

36 15 100001001001111 207 15 100001001110101 378 16 1000011101111010

37 15 100001010001111 208 15 100001011010101 379 16 1000011110111010

38 15 100001010101111 209 15 100001011110101 380 16 1000011111011010

39 15 100001011101111 210 15 100001010110101 381 16 1000011111111010

40 15 100001011001111 211 15 100001010010101 382 15 100001000111010

41 15 100001001101111 212 15 100001001010101 383 15 100001001111010

42 15 100001000101111 213 15 100001000010101 384 15 100001011011010

43 16 1000011111101111 214 16 1000011110010101 385 15 100001011111010

44 16 1000011111001111 215 16 1000011101010101 386 15 100001010111010

45 16 1000011110101111 216 16 1000011101000101 387 15 100001010011010

46 16 1000011101101111 217 16 1000011110000101 388 15 100001001011010

47 15 100001110000111 218 15 100001000000101 389 15 100001000011010

48 16 1000011101100111 219 15 100001001000101 390 16 1000011110011010

49 16 1000011110100111 220 15 100001010000101 391 16 1000011101011010

50 16 1000011111000111 221 15 100001010100101 392 16 1000011101001010

ISO/IEC 14496-2 Committee Draft

264

51 16 1000011111100111 222 15 100001011100101 393 16 1000011110001010

52 15 100001000100111 223 15 100001011000101 394 15 100001000001010

53 15 100001001100111 224 15 100001001100101 395 15 100001001001010

54 15 100001011000111 225 15 100001000100101 396 15 100001010001010

55 15 100001011100111 226 16 1000011111100101 397 15 100001010101010

56 15 100001010100111 227 16 1000011111000101 398 15 100001011101010

57 15 100001010000111 228 16 1000011110100101 399 15 100001011001010

58 15 100001001000111 229 16 1000011101100101 400 15 100001001101010

59 15 100001000000111 230 15 100001110000101 401 15 100001000101010

60 16 1000011110000111 231 16 1000011101101101 402 16 1000011111101010

61 16 1000011101000111 232 16 1000011110101101 403 16 1000011111001010

62 16 1000011101010111 233 16 1000011111001101 404 16 1000011110101010

63 16 1000011110010111 234 16 1000011111101101 405 16 1000011101101010

64 15 100001000010111 235 15 100001000101101 406 15 100001110000010

65 15 100001001010111 236 15 100001001101101 407 16 1000011101100010

66 15 100001010010111 237 15 100001011001101 408 16 1000011110100010

67 15 100001010110111 238 15 100001011101101 409 16 1000011111000010

68 15 100001011110111 239 15 100001010101101 410 16 1000011111100010

69 15 100001011010111 240 15 100001010001101 411 15 100001000100010

70 15 100001001110111 241 15 100001001001101 412 15 100001001100010

71 15 100001000110111 242 15 100001000001101 413 15 100001011000010

72 16 1000011111110111 243 16 1000011110001101 414 15 100001011100010

73 16 1000011111010111 244 16 1000011101001101 415 15 100001010100010

74 16 1000011110110111 245 16 1000011101011101 416 15 100001010000010

75 16 1000011101110111 246 16 1000011110011101 417 15 100001001000010

76 16 1000011100110111 247 15 100001000011101 418 15 100001000000010

77 15 100001110001011 248 6 100000 419 16 1000011110000010

78 16 1000011100110011 249 15 100001001011101 420 16 1000011101000010

79 16 1000011101110011 250 15 100001010111101 421 16 1000011101010010

80 16 1000011110110011 251 7 1001110 422 16 1000011110010010

81 16 1000011111010011 252 6 100110 423 15 100001000010010

82 16 1000011111110011 253 5 10010 424 15 100001001010010

83 15 100001000110011 254 4 1010 425 15 100001010010010

84 15 100001001110011 255 2 11 426 15 100001010110010

85 15 100001011010011 256 16 1000011110111100 427 15 100001011110010

86 15 100001011110011 257 1 0 428 15 100001011010010

87 15 100001010110011 258 4 1011 429 15 100001001110010

88 15 100001010010011 259 6 100011 430 15 100001000110010

89 15 100001001010011 260 6 100010 431 16 1000011111110010

90 15 100001000010011 261 7 1001111 432 16 1000011111010010

91 16 1000011110010011 262 16 1000011110111101 433 16 1000011110110010

92 16 1000011101010011 263 8 10000110 434 16 1000011101110010

93 16 1000011101000011 264 15 100001010111100 435 16 1000011100110010

94 16 1000011110000011 265 15 100001001011100 436 15 100001110001010

95 15 100001000000011 266 15 100001000011100 437 16 1000011100110110

96 15 100001001000011 267 16 1000011110011100 438 16 1000011101110110

97 15 100001010000011 268 16 1000011101011100 439 16 1000011110110110

98 15 100001010100011 269 16 1000011101001100 440 16 1000011111010110

99 15 100001011100011 270 16 1000011110001100 441 16 1000011111110110

100 15 100001011000011 271 15 100001000001100 442 15 100001000110110

101 15 100001001100011 272 15 100001001001100 443 15 100001001110110

102 15 100001000100011 273 15 100001010001100 444 15 100001011010110

103 16 1000011111100011 274 15 100001010101100 445 15 100001011110110

 ISO/IEC 14496-2 Committee Draft

265

104 16 1000011111000011 275 15 100001011101100 446 15 100001010110110

105 16 1000011110100011 276 15 100001011001100 447 15 100001010010110

106 16 1000011101100011 277 15 100001001101100 448 15 100001001010110

107 15 100001110000011 278 15 100001000101100 449 15 100001000010110

108 16 1000011101101011 279 16 1000011111101100 450 16 1000011110010110

109 16 1000011110101011 280 16 1000011111001100 451 16 1000011101010110

110 16 1000011111001011 281 16 1000011110101100 452 16 1000011101000110

111 16 1000011111101011 282 16 1000011101101100 453 16 1000011110000110

112 15 100001000101011 283 15 100001110000100 454 15 100001000000110

113 15 100001001101011 284 16 1000011101100100 455 15 100001001000110

114 15 100001011001011 285 16 1000011110100100 456 15 100001010000110

115 15 100001011101011 286 16 1000011111000100 457 15 100001010100110

116 15 100001010101011 287 16 1000011111100100 458 15 100001011100110

117 15 100001010001011 288 15 100001000100100 459 15 100001011000110

118 15 100001001001011 289 15 100001001100100 460 15 100001001100110

119 15 100001000001011 290 15 100001011000100 461 15 100001000100110

120 16 1000011110001011 291 15 100001011100100 462 16 1000011111100110

121 16 1000011101001011 292 15 100001010100100 463 16 1000011111000110

122 16 1000011101011011 293 15 100001010000100 464 16 1000011110100110

123 16 1000011110011011 294 15 100001001000100 465 16 1000011101100110

124 15 100001000011011 295 15 100001000000100 466 15 100001110000110

125 15 100001001011011 296 16 1000011110000100 467 16 1000011101101110

126 15 100001010011011 297 16 1000011101000100 468 16 1000011110101110

127 15 100001010111011 298 16 1000011101010100 469 16 1000011111001110

128 15 100001011111011 299 16 1000011110010100 470 16 1000011111101110

129 15 100001011011011 300 15 100001000010100 471 15 100001000101110

130 15 100001001111011 301 15 100001001010100 472 15 100001001101110

131 15 100001000111011 302 15 100001010010100 473 15 100001011001110

132 16 1000011111111011 303 15 100001010110100 474 15 100001011101110

133 16 1000011111011011 304 15 100001011110100 475 15 100001010101110

134 16 1000011110111011 305 15 100001011010100 476 15 100001010001110

135 16 1000011101111011 306 15 100001001110100 477 15 100001001001110

136 16 1000011100111011 307 15 100001000110100 478 15 100001000001110

137 16 1000011100101011 308 16 1000011111110100 479 16 1000011110001110

138 16 1000011100100011 309 16 1000011111010100 480 16 1000011101001110

139 16 1000011100100001 310 16 1000011110110100 481 16 1000011101011110

140 16 1000011100101001 311 16 1000011101110100 482 16 1000011110011110

141 16 1000011100111001 312 16 1000011100110100 483 15 100001000011110

142 16 1000011101111001 313 15 100001110001000 484 15 100001001011110

143 16 1000011110111001 314 16 1000011100110000 485 15 100001010011110

144 16 1000011111011001 315 16 1000011101110000 486 15 100001010011100

145 16 1000011111111001 316 16 1000011110110000 487 15 100001010111110

146 15 100001000111001 317 16 1000011111010000 488 15 100001011111110

147 15 100001001111001 318 16 1000011111110000 489 15 100001011111100

148 15 100001011011001 319 15 100001000110000 490 15 100001011011110

149 15 100001011111001 320 15 100001001110000 491 15 100001011011100

150 15 100001010111001 321 15 100001011010000 492 15 100001001111110

151 15 100001010011001 322 15 100001011110000 493 15 100001001111100

152 15 100001001011001 323 15 100001010110000 494 15 100001000111110

153 15 100001000011001 324 15 100001010010000 495 15 100001000111100

154 16 1000011110011001 325 15 100001001010000 496 16 1000011111111110

155 16 1000011101011001 326 15 100001000010000 497 16 1000011111111100

156 16 1000011101001001 327 16 1000011110010000 498 16 1000011111011110

ISO/IEC 14496-2 Committee Draft

266

157 16 1000011110001001 328 16 1000011101010000 499 16 1000011111011100

158 15 100001000001001 329 16 1000011101000000 500 16 1000011110111110

159 15 100001001001001 330 16 1000011110000000 501 16 1000011101111110

160 15 100001010001001 331 15 100001000000000 502 16 1000011101111100

161 15 100001010101001 332 15 100001001000000 503 16 1000011100111110

162 15 100001011101001 333 15 100001010000000 504 16 1000011100111100

163 15 100001011001001 334 15 100001010100000 505 16 1000011100101110

164 15 100001001101001 335 15 100001011100000 506 16 1000011100101100

165 15 100001000101001 336 15 100001011000000 507 16 1000011100100110

166 16 1000011111101001 337 15 100001001100000 508 16 1000011100100100

167 16 1000011111001001 338 15 100001000100000 509 16 1000011100011110

168 16 1000011110101001 339 16 1000011111100000 510 16 1000011100011100

169 16 1000011101101001 340 16 1000011111000000 511 16 1000011100011010

170 15 100001110000001 341 16 1000011110100000

11.2 Arithmetic Decoding

11.2.1 Aritmetic decoding for still texture object

To fully initialize the decoder, the function ac_decoder_init is called followed by ac_model_init
respectively:

void ac_decoder_init (ac_decoder *acd) {

int i, t;

acd->bits_to_go = 0;

acd->total_bits = 0;

acd->value = 0;

for (i=1; i<=Code_value_bits; i++) {

acd->value = 2*acd->value + input_bit(acd);

}

acd->low = 0;

acd->high = Top_value;

return;

}

 ISO/IEC 14496-2 Committee Draft

267

void ac_model_init (ac_model *acm, int nsym) {

int i;

acm->nsym = nsym;

acm->freq = (unsigned short *) malloc (nsym*sizeof (unsigned short));

check (!acm->freq, "arithmetic coder model allocation failure");

acm->cfreq = (unsigned short *) calloc (nsym+1, sizeof (unsigned short));

check (!acm->cfreq, "arithmetic coder model allocation failure");

for (i=0; i<acm->nsym; i++) {

acm->freq[i] = 1;

acm->cfreq[i] = acm->nsym - i;

}

acm->cfreq[acm->nsym] = 0;

return;

}

The acd is structures which contains the decoding variables and whose addresses act as handles for
the decoded symbol/bit streams. The fields bits_to_go, buffer, bitstream, and bitstream_len are used to
manage the bits in memory. The low, high, and fbits fields describe the scaled range corresponding to
the symbols which have been decoded. The value field contains the currently seen code value inside
the range. The total_bits field contains the total number of bits encoded or used for decoding so far.
The values Code_value_bits and Top_value describe the maximum number of bits and the maximum
size of a coded value respectively. The ac_model structure contains the variables used for that
particular probability model and it's address acts as a handle. The nsym field contains the number of
symbols in the symbol set, the freq field contains the table of frequency counts for each of the nsym
symbols, and the cfreq field contains the cumulative frequency count derived from freq.

The bits are read from the bitstream using the function:

ISO/IEC 14496-2 Committee Draft

268

static int input_bit (ac_decoder *acd) {

int t;

unsigned int tmp;

if (acd->bits_to_go==0) {

acd->buffer = ace->bitstream[ace->bitstream_len++];

acd->bits_to_go = 8;

}

t = acd->buffer & 0x080;

acd->buffer <<= 1;

acd->buffer &= 0x0ff;

acd->total_bits += 1;

acd->bits_to_go -= 1;

t = t >> 7;

return t;

}

The decoding process has four main steps. The first step is to decode the symbol based on the current
state of the probability model (frequency counts) and the current code value (value) which is used to
represent (and is a member of) the current range. The second step is to get the new range. The third
step is to rescale the range and simultaneously load in new code value bits. The fourth step is to
update the model. To decode symbols, the following function is called:

 ISO/IEC 14496-2 Committee Draft

269

int ac_decode_symbol (ac_decoder *acd, ac_model *acm) {

long range;

int cum;

int sym;

range = (long)(acd->high-acd->low)+1;

/*--- decode symbol ---*/

cum = (((long)(acd->value-acd->low)+1)*(int)(acm->cfreq[0])-1)/range;

for (sym = 0; (int)acm->cfreq[sym+1]>cum; sym++)

/* do nothing */ ;

check (sym<0||sym>=acm->nsym, "symbol out of range");

/*--- Get new range ---*/

acd->high = acd->low + (range*(int)(acm->cfreq[sym]))/(int)(acm->cfreq[0])-1;

acd->low = acd->low + (range*(int)(acm->cfreq[sym+1]))/(int)(acm->cfreq[0]);

/*--- rescale and load new code value bits ---*/

for (;;) {

if (acd->high<Half) {

/* do nothing */

} else if (acd->low>=Half) {

acd->value -= Half;

acd->low -= Half;

acd->high -= Half;

} else if (acd->low>=First_qtr && acd->high<Third_qtr) {

acd->value -= First_qtr;

acd->low -= First_qtr;

acd->high -= First_qtr;

} else

break;

acd->low = 2*acd->low;

acd->high = 2*acd->high+1;

acd->value = 2*acd->value + input_bit(acd);

}

/*--- Update probability model ---*/

update_model (acm, sym);

return sym;

}

The bits_plus_follow function mentioned above calls another function, output_bit. They are:

ISO/IEC 14496-2 Committee Draft

270

static void output_bit (ac_encoder *ace, int bit) {

ace->buffer <<= 1;

if (bit)

ace->buffer |= 0x01;

ace->bits_to_go -= 1;

ace->total_bits += 1;

if (ace->bits_to_go==0) {

if (ace->bitstream) {

if (ace->bitstream_len >= MAX_BUFFER)

if ((ace->bitstream = (uChar *)realloc(ace->bitstream, sizeof(uChar)*

(ace->bitstream_len/MAX_BUFFER+1)*MAX_BUFFER))==NULL) {

fprintf(stderr, "Couldn't reallocate memory for ace->bitstream in output_bit.\n");

exit(-1);

}

ace->bitstream[ace->bitstream_len++] = ace->buffer;

}

ace->bits_to_go = 8;

}

return;

}

static void bit_plus_follow (ac_encoder *ace, int bit) {

output_bit (ace, bit);

while (ace->fbits > 0) {

output_bit (ace, !bit);

ace->fbits -= 1;

}

return;

}

The update of the probability model used in the decoding of the symbols is shown in the following
function:

 ISO/IEC 14496-2 Committee Draft

271

static void update_model (ac_model *acm, int sym)

{

int i;

if (acm->cfreq[0]==Max_frequency) {

int cum = 0;

acm->cfreq[acm->nsym] = 0;

for (i = acm->nsym-1; i>=0; i--) {

acm->freq[i] = ((int)acm->freq[i] + 1) / 2;

cum += acm->freq[i];

acm->cfreq[i] = cum;

}

}

acm->freq[sym] += 1;

for (i=sym; i>=0; i--)

acm->cfreq[i] += 1;

return;

}

This function simply updates the frequency counts based on the symbol just decoded. It also makes
sure that the maximum frequency allowed is not exceeded. This is done by rescaling all frequency
counts by 2.

11.2.2 Arithmetic decoding for shape decoding

11.2.2.1 Structures and Typedefs
typedef void Void;

typedef int Int;

typedef unsigned short int USInt;

#define CODE_BIT 32

#define HALF ((unsigned) 1 << (CODE_BITS-1))

#define QUARTER (1 << (CODE_BITS-2))

struct arcodec {

UInt L; /* lower bound */

UInt R; /* code range */

UInt V; /* current code value */

UInt arpipe;

Int bits_to_follow; /* follow bit count */

Int first_bit;

Int nzeros;

Int nonzero;

Int nzerosf;

Int extrabits;

};

typedef struct arcodec ArCoder;

typedef struct arcodec ArDecoder;

#define MAXHEADING 8

#define MAXMIDDLE 16

#define MAXTRAILING 8

11.2.2.2 Decoder Source
Void StartArDecoder(ArDecoder *decoder, Bitstream *bitstream) {

Int i,j;

ISO/IEC 14496-2 Committee Draft

272

decoder->V = 0;

decoder->nzerosf = MAXHEADING;

decoder->extrabits = 0;

for (i = 1; i<CODE_BITS; i++) {

j=BitstreamLookBit(bitstream,i+decoder->extrabits);

decoder->V += decoder->V + j;

if (j == 0) {

decoder->nzerosf--;

if (decoder->nzerosf == 0) {

decoder->extrabits++;

decoder->nzerosf = MAXMIDDLE;

}

}

else

decoder->nzerosf = MAXMIDDLE;

}

decoder->L = 0;

decoder->R = HALF - 1;

decoder->bits_to_follow = 0;

decoder->arpipe = decoder->V;

decoder->nzeros = MAXHEADING;

decoder->nonzero = 0;

}

Void StopArDecoder(ArDecoder *decoder, Bitstream *bitstream) {

Int a = decoder->L >> (CODE_BITS-3);

Int b = (decoder->R + decoder->L) >> (CODE_BITS-3);

Int nbits,i;

if (b == 0)

b = 8;

if (b-a >= 4 || (b-a == 3 && a&1))

nbits = 2;

else

nbits = 3;

for (i = 1; i <= nbits-1; i++)

AddNextInputBit(bitstream, decoder);

if (decoder->nzeros < MAXMIDDLE-MAXTRAILING || decoder->nonzero == 0)

BitstreamFlushBits(bitstream,1);

}

Void AddNextInputBit(Bitstream *bitstream, ArDecoder *decoder) {

Int i;

if (((decoder->arpipe >> (CODE_BITS-2))&1) == 0) {

decoder->nzeros--;

if (decoder->nzeros == 0) {

BitstreamFlushBits(bitstream,1);

decoder->extrabits--;

decoder->nzeros = MAXMIDDLE;

decoder->nonzero = 1;

}

}

else {

decoder->nzeros = MAXMIDDLE;

decoder->nonzero = 1;

}

BitstreamFlushBits(bitstream,1);

i = (Int)BitstreamLookBit(bitstream, CODE_BITS-1+decoder->extrabits);

decoder->V += decoder->V + i;

decoder->arpipe += decoder->arpipe + i;

if (i == 0) {

decoder->nzerosf--;

if (decoder->nzerosf == 0) {

decoder->nzerosf = MAXMIDDLE;

decoder->extrabits++;

}

}

else

decoder->nzerosf = MAXMIDDLE;

 ISO/IEC 14496-2 Committee Draft

273

}

Int ArDecodeSymbol(USInt c0, ArDecoder *decoder, Bitstream *bitstream) {

Int bit;

Int c1 = (1<<16) - c0;

Int LPS = c0 > c1;

Int cLPS = LPS ? c1 : c0;

unsigned long rLPS;

rLPS = ((decoder->R) >> 16) * cLPS;

if ((decoder->V - decoder->L) >= (decoder->R - rLPS)) {

bit = LPS;

decoder->L += decoder->R - rLPS;

decoder->R = rLPS;

}

else {

bit = (1-LPS);

decoder->R -= rLPS;

}

DECODE_RENORMALISE(decoder,bitstream);

return(bit);

}

Void DECODE_RENORMALISE(ArDecoder *decoder, Bitstream *bitstream) {

while (decoder->R < QUARTER) {

if (decoder->L >= HALF) {

decoder->V -= HALF;

decoder->L -= HALF;

decoder->bits_to_follow = 0;

}

else

if (decoder->L + decoder->R <= HALF)

decoder->bits_to_follow = 0;

else{

decoder->V -= QUARTER;

decoder->L -= QUARTER;

(decoder->bits_to_follow)++;

}

decoder->L += decoder->L;

decoder->R += decoder->R;

AddNextInputBit(bitstream, decoder);

}

}

• BitstreamLookBit(bitstream,nbits) : Looks nbits ahead in the bitstream beginning from the current
position in the bitstream and returns the bit.

• BitstreamFlushBits(bitstream,nbits) : Moves the current bitstream position forward by nbits.
The parameter c0 (used in ArDecodeSymbol()) is taken directly from the probability tables of USint

inter_prob or .Usint intra_prob in Table 11-28. That is, for the pixel to be coded/decoded, c0 is the
probability than this pixel is equal to zero. The value of c0 depends on the context number of the
given pixel to be decoded.

11.2.3 Face Object Decoding

In FAP decoder, a symbol is decoded by using a specific model based on the syntax and by calling the
following procedure which is specified in C.

static long low, high, code_value, bit, length, sacindex, cum, zerorun=0;

int aa_decode(int cumul_freq[])

{

 length = high - low + 1;

 cum = (-1 + (code_value - low + 1) * cumul_freq[0]) / length;

 for (sacindex = 1; cumul_freq[sacindex] > cum; sacindex++);

ISO/IEC 14496-2 Committee Draft

274

 high = low - 1 + (length * cumul_freq[sacindex-1]) / cumul_freq[0];

 low += (length * cumul_freq[sacindex]) / cumul_freq[0];

 for (; ;) {

 if (high < q2) ;

 else if (low >= q2) {

 code_value -= q2;

 low -= q2;

 high -= q2;

 }

 else if (low >= q1 && high < q3) {

 code_value -= q1;

 low -= q1;

 high -= q1;

 }

 else {

 break;

 }

 low *= 2;

 high = 2*high + 1;

 bit_out_psc_layer();

 code_value = 2*code_value + bit;

 used_bits++;

 }

 return (sacindex-1);

}

void bit_out_psc_layer()

{

 bit = getbits(1);

}

Again the model is specified through cumul_freq[]. The decoded symbol is returned through its
index in the model. The decoder is initialized to start decoding an arithmetic coded bitstream by
calling the following procedure.

void decoder_reset()

{

 int i;

 zerorun = 0; /* clear consecutive zero's counter */

 code_value = 0;

 low = 0;

 high = top;

 for (i = 1; i <= 16; i++) {

 bit_out_psc_layer();

 code_value = 2 * code_value + bit;

 }

 used_bits = 0;

}

 ISO/IEC 14496-2 Committee Draft

275

12. Annex C

Face object decoding tables and definitions

 (This annex forms an integral part of this International Standard)

FAPs names may contain letters with the following meaning: l = left, r = right, t = top, b = bottom, i
= inner, o = outer, m = middle. The sum of two corresponding top and bottom eyelid FAPs must
equal 1024 when the eyelids are closed. Inner lips are closed when the sum of two corresponding top
and bottom lip FAPs equals zero. For example: (lower_t_midlip + raise_b_midlip) = 0 when the lips
are closed. All directions are defined with respect to the face and not the image of the face.

Table 12-1 FAP definitions, group assignments and step sizes

ISO/IEC 14496-2 Committee Draft

276

FAP name FAP description units Uni-
or
Bidi
r

Pos

motion

Grp FDP
subgrp
num

Quant
step
size

1 viseme Set of values determining the
mixture of two visemes for this
frame (e.g. pbm, fv, th)

na na na 1 na 1

2 expression A set of values determining the
mixture of two facial
expression

na na na 1 na 1

3 open_jaw Vertical jaw displacement (does
not affect mouth opening)

MNS U down 2 1 4

4 lower_t_midlip Vertical top middle inner lip
displacement

MNS B down 2 2 2

5 raise_b_midlip Vertical bottom middle inner
lip displacement

MNS B up 2 3 2

6 stretch_l_cornerlip Horizontal displacement of left
inner lip corner

MW B left 2 4 2

7 stretch_r_cornerlip Horizontal displacement of
right inner lip corner

MW B right 2 5 2

8 lower_t_lip_lm Vertical displacement of
midpoint between left corner
and middle of top inner lip

MNS B down 2 6 2

9 lower_t_lip_rm Vertical displacement of
midpoint between right corner
and middle of top inner lip

MNS B down 2 7 2

10 raise_b_lip_lm Vertical displacement of
midpoint between left corner
and middle of bottom inner lip

MNS B up 2 8 2

11 raise_b_lip_rm Vertical displacement of
midpoint between right corner
and middle of bottom inner lip

MNS B up 2 9 2

12 raise_l_cornerlip Vertical displacement of left
inner lip corner

MNS B up 2 4 2

13 raise_r_cornerlip Vertical displacement of right
inner lip corner

MNS B up 2 5 2

14 thrust_jaw Depth displacement of jaw MNS U forward 2 1 1

15 shift_jaw Side to side displacement of
jaw

MNS B right 2 1 1

16 push_b_lip Depth displacement of bottom
middle lip

MNS B forward 2 3 1

17 push_t_lip Depth displacement of top
middle lip

MNS B forward 2 2 1

18 depress_chin Upward and compressing
movement of the chin

(like in sadness)

MNS B up 2 10 1

19 close_t_l_eyelid Vertical displacement of top
left eyelid

IRISD B down 3 1 1

20 close_t_r_eyelid Vertical displacement of top
right eyelid

IRISD B down 3 2 1

 ISO/IEC 14496-2 Committee Draft

277

21 close_b_l_eyelid Vertical displacement of
bottom left eyelid

IRISD B up 3 3 1

22 close_b_r_eyelid Vertical displacement of
bottom right eyelid

IRISD B up 3 4 1

23 yaw_l_eyeball Horizontal orientation of left
eyeball

AU B left 3 na 128

24 yaw_r_eyeball Horizontal orientation of right
eyeball

AU B left 3 na 128

25 pitch_l_eyeball Vertical orientation of left
eyeball

AU B down 3 na 128

26 pitch_r_eyeball Vertical orientation of right
eyeball

AU B down 3 na 128

27 thrust_l_eyeball Depth displacement of left
eyeball

IRISD B forward 3 na 1

28 thrust_r_eyeball Depth displacement of right
eyeball

IRISD B forward 3 na 1

29 dilate_l_pupil Dilation of left pupil IRISD U growing 3 5 1

30 dilate_r_pupil Dilation of right pupil IRISD U growing 3 6 1

31 raise_l_i_eyebrow Vertical displacement of left
inner eyebrow

ENS B up 4 1 2

32 raise_r_i_eyebrow Vertical displacement of right
inner eyebrow

ENS B up 4 2 2

33 raise_l_m_eyebrow Vertical displacement of left
middle eyebrow

ENS B up 4 3 2

34 raise_r_m_eyebrow Vertical displacement of right
middle eyebrow

ENS B up 4 4 2

35 raise_l_o_eyebrow Vertical displacement of left
outer eyebrow

ENS B up 4 5 2

36 raise_r_o_eyebrow Vertical displacement of right
outer eyebrow

ENS B up 4 6 2

37 squeeze_l_eyebrow Horizontal displacement of left
eyebrow

ES B right 4 1 1

38 squeeze_r_eyebrow Horizontal displacement of
right eyebrow

ES B left 4 2 1

39 puff_l_cheek Horizontal displacement of left
cheeck

ES B left 5 1 2

40 puff_r_cheek Horizontal displacement of
right cheeck

ES B right 5 2 2

41 lift_l_cheek Vertical displacement of left
cheek

ENS U up 5 3 2

42 lift_r_cheek Vertical displacement of right
cheek

ENS U up 5 4 2

43 shift_tongue_tip Horizontal displacement of
tongue tip

MW B right 6 1 1

44 raise_tongue_tip Vertical displacement of tongue
tip

MW B up 6 1 1

45 thrust_tongue_tip Depth displacement of tongue
tip

MW B forward 6 1 1

46 raise_tongue Vertical displacement of tongue MW B up 6 2 1

ISO/IEC 14496-2 Committee Draft

278

47 tongue_roll Rolling of the tongue into U
shape

AU U concave

upward

6 3, 4 512

48 head_pitch Head pitch angle from top of
spine

AU B down 7 na 128

49 head_yaw Head yaw angle from top of
spine

AU B left 7 na 128

50 head_roll Head roll angle from top of
spine

AU B right 7 na 128

51 lower_t_midlip _o Vertical top middle outer lip
displacement

MNS B down 8 1 2

52 raise_b_midlip_o Vertical bottom middle outer
lip displacement

MNS B up 8 2 2

53 stretch_l_cornerlip_
o

Horizontal displacement of left
outer lip corner

MW B left 8 3 2

54 stretch_r_cornerlip_
o

Horizontal displacement of
right outer lip corner

MW B right 8 4 2

55 lower_t_lip_lm _o Vertical displacement of
midpoint between left corner
and middle of top outer lip

MNS B down 8 5 2

56 lower_t_lip_rm _o Vertical displacement of
midpoint between right corner
and middle of top outer lip

MNS B down 8 6 2

57 raise_b_lip_lm_o Vertical displacement of
midpoint between left corner
and middle of bottom outer lip

MNS B up 8 7 2

58 raise_b_lip_rm_o Vertical displacement of
midpoint between right corner
and middle of bottom outer lip

MNS B up 8 8 2

59 raise_l_cornerlip_o Vertical displacement of left
outer lip corner

MNS B up 8 3 2

60 raise_r_cornerlip _o Vertical displacement of right
outer lip corner

MNS B up 8 4 2

61 stretch_l_nose Horizontal displacement of left
side of nose

ENS B left 9 1 1

62 stretch_r_nose Horizontal displacement of
right side of nose

ENS B right 9 2 1

63 raise_nose Vertical displacement of nose
tip

ENS B up 9 3 1

64 bend_nose Horizontal displacement of
nose tip

ENS B right 9 3 1

65 raise_l_ear Vertical displacement of left
ear

ENS B up 10 1 1

66 raise_r_ear Vertical displacement of right
ear

ENS B up 10 2 1

67 pull_l_ear Horizontal displacement of left
ear

ENS B left 10 3 1

68 pull_r_ear Horizontal displacement of
right ear

ENS B right 10 4 1

 ISO/IEC 14496-2 Committee Draft

279

Table 12-2 FAP grouping

Group Number of FAPs

1: visemes and expressions 2

2: jaw, chin, inner lowerlip, cornerlips, midlip 16

3: eyeballs, pupils, eyelids 12

4: eyebrow 8

5: cheeks 4

6: tongue 5

7: head rotation 3

8: outer lip positions 10

9: nose 4

10: ears 4

In the following, each facial expression is defined by a textual description and a pictorial example.
(reference [10], page 114.) This reference was also used for the characteristics of the described
expressions.

Table 12-3 Values for expression_select

expression_select expression name textual description

0 na na

1 joy The eyebrows are relaxed. The mouth is open and the mouth
corners pulled back toward the ears.

2 sadness The inner eyebrows are bent upward. The eyes are slightly
closed. The mouth is relaxed.

3 anger The inner eyebrows are pulled downward and together. The
eyes are wide open. The lips are pressed against each other or
opened to expose the teeth.

4 fear The eyebrows are raised and pulled together. The inner
eyebrows are bent upward. The eyes are tense and alert.

5 disgust The eyebrows and eyelids are relaxed. The upper lip is raised
and curled, often asymmetrically.

6 surprise The eyebrows are raised. The upper eyelids are wide open,
the lower relaxed. The jaw is opened.

ISO/IEC 14496-2 Committee Draft

280

x
y

z

11.5

11.4

11.2

10.2

10.4

10.10

10.8
10.6

2.14

7.1

11.6 4.6

4.4

4.2

5.2

5.4

2.10

2.12
2.1

11.1

Tongue

6.26.4 6.3

6.1
Mouth

8.1
8.9 8.10 8.5

8.3

8.7

8.2

8.8

8.4
8.6

2.2

2.3

2.6

2.82.9

2.72.5 2.4

2.1
2.12 2.11

2.14
2.10

2.13

10.6
10.8

10.4

10.2

10.10
5.4

5.2

5.3

5.1

10.1

10.9
10.3

10.5
10.7

4.1 4.3
4.54.6

4.4 4.2

11.111.2 11.3

11.4

11.5

x

y

z

Nose

9.6 9.7

9.14 9.13

9.12

9.2

9.4 9.15 9.5

9.3

9.1

Teeth

9.10
9.11

9.8

9.9

Feature points affected by FAPs

Other feature points

Right eye Left eye

3.13

3.7

3.9

3.5

3.1

3.3

3.11

3.14

3.10

3.12 3.6

3.4

3.2
3.8

 ISO/IEC 14496-2 Committee Draft

281

MW0

MNS0

ENS0

ES0 IRISD0

Figure 12-1 FDP feature point set

In the following, the notation 2.1.x indicates the x coordinate of feature point 2.1.

ISO/IEC 14496-2 Committee Draft

282

Feature points Recommended location constraints

Text description x y z

2.1 Bottom of the chin 7.1.x

2.2 Middle point of inner upper lip
contour

7.1.x

2.3 Middle point of inner lower lip
contour

7.1.x

2.4 Left corner of inner lip contour

2.5 Right corner of inner lip contour

2.6 Midpoint between f.p. 2.2 and 2.4 in
the inner upper lip contour

(2.2.x+2.4.x)/2

2.7 Midpoint between f.p. 2.2 and 2.5 in
the inner upper lip contour

(2.2.x+2.5.x)/2

2.8 Midpoint between f.p. 2.3 and 2.4 in
the inner lower lip contour

(2.3.x+2.4.x)/2

2.9 Midpoint between f.p. 2.3 and 2.5 in
the inner lower lip contour

(2.3.x+2.5.x)/2

2.10 Chin boss 7.1.x

2.11 Chin left corner > 8.7.x and <
8.3.x

2.12 Chin right corner > 8.4.x and <
8.8.x

2.13 Left corner of jaw bone

2.14 Right corner of jaw bone

3.1 Center of upper inner left eyelid (3.7.x+3.11.x)/2

3.2 Center of upper inner right eyelid (3.8.x+3.12.x)/2

3.3 Center of lower inner left eyelid (3.7.x+3.11.x)/2

3.4 Center of lower inner right eyelid (3.8.x+3.12.x)/2

3.5 Center of the pupil of left eye

3.6 Center of the pupil of right eye

3.7 Left corner of left eye

3.8 Left corner of right eye

3.9 Center of lower outer left eyelid (3.7.x+3.11.x)/2

3.10 Center of lower outer right eyelid (3.7.x+3.11.x)/2

3.11 Right corner of left eye

3.12 Right corner of right eye

3.13 Center of upper outer left eyelid (3.8.x+3.12.x)/2

3.14 Center of upper outer right eyelid (3.8.x+3.12.x)/2

4.1 Right corner of left eyebrow

4.2 Left corner of right eyebrow

4.3 Uppermost point of the left eyebrow (4.1.x+4.5.x)/2
or x coord of the
uppermost point
of the contour

4.4 Uppermost point of the right eyebrow (4.2.x+4.6.x)/2
or x coord of the
uppermost point

 ISO/IEC 14496-2 Committee Draft

283

of the contour

4.5 Left corner of left eyebrow

4.6 Right corner of right eyebrow

5.1 Center of the left cheek 8.3.y

5.2 Center of the right cheek 8.4.y

5.3 Left cheek bone > 3.5.x and <
3.7.x

> 9.15.y and <
9.12.y

5.4 Right cheek bone > 3.6.x and <
3.12.x

> 9.15.y and <
9.12.y

6.1 Tip of the tongue 7.1.x

6.2 Center of the tongue body 7.1.x

6.3 Left border of the tongue 6.2.z

6.4 Right border of the tongue 6.2.z

7.1 top of spine (center of head rotation)

8.1 Middle point of outer upper lip
contour

7.1.x

8.2 Middle point of outer lower lip
contour

7.1.x

8.3 Left corner of outer lip contour

8.4 Right corner of outer lip contour

8.5 Midpoint between f.p. 8.3 and 8.1 in
outer upper lip contour

(8.3.x+8.1.x)/2

8.6 Midpoint between f.p. 8.4 and 8.1 in
outer upper lip contour

(8.4.x+8.1.x)/2

8.7 Midpoint between f.p. 8.3 and 8.2 in
outer lower lip contour

(8.3.x+8.2.x)/2

8.8 Midpoint between f.p. 8.4 and 8.2 in
outer lower lip contour

(8.4.x+8.2.x)/2

8.9

8.10

9.1 Left nostril border

9.2 Right nostril border

9.3 Nose tip 7.1.x

9.4 Bottom right edge of nose

9.5 Bottom left edge of nose

9.6 Left upper edge of nose bone

9.7 Right upper edge of nose bone

9.8 Top of the upper teeth 7.1.x

9.9 Bottom of the lower teeth 7.1.x

9.10 Bottom of the upper teeth 7.1.x

9.11 Top of the lower teeth 7.1.x

9.12 Middle lower edge of nose bone (or
nose bump)

7.1.x (9.6.y + 9.3.y)/2
or nose bump

9.13 Left lower edge of nose bone (9.6.y +9.3.y)/2

9.14 Right lower edge of nose bone (9.6.y +9.3.y)/2

9.15 Bottom middle edge of nose 7.1.x

ISO/IEC 14496-2 Committee Draft

284

10.1 Top of left ear

10.2 Top of right ear

10.3 Back of left ear (10.1.y+10.5.y)/
2

10.4 Back of right ear (10.2.y+10.6.y)/
2

10.5 Bottom of right ear lobe

10.6 Bottom of left ear lobe

10.7 Lower contact point between left lobe
and face

10.8 Lower contact point between right
lobe and face

10.9 Upper contact point between left ear
and face

10.10 Upper contact point between right ear
and face

11.1 Middle border between hair and
forehead

7.1.x

11.2 Right border between hair and
forehead

< 4.4.x

11.3 Left border between hair and forehead > 4.3.x

11.4 Top of skull 7.1.x > 10.4.z and <
10.2.z

11.5 Hair thickness over f.p. 11.4 11.4.x 11.4.z

11.6 Back of skull 7.1.x 3.5.y

Table 12-4 FDP fields

 ISO/IEC 14496-2 Committee Draft

285

FDP field Description

featurePointsCoord contains a Coordinate node. Specifies feature points
for the calibration of the proprietary face. The
coordinates are listed in the ‘point’ field in the
Coordinate node in the prescribed order, that a
feature point with a lower label is listed before a
feature point with at higher label (e.g. Figure 12-1
feature point 3.14 before feature point 4.1).

textureCoord4FeaturePoints contains a TextureCoordinate node. Specifies the
texture coordinates for the feature points.

calibrationMesh contains an IndexedFaceSet node. Specifies a 3D
mesh for the calibration of the proprietary face
model. All fields in the IndexedFaceSet node can
be used as calibration information.

faceTexture contains an ImageTexture or PixelTexture node.
Specifies texture to be applied on the proprietary
face model.

animationDefinitionTables contains AnimationDefinitionTable nodes. If a face
model is downloaded, the behavior of FAPs is
defined in this field.

faceSceneGraph contains a Group node. Grouping node for face
model rendered in the compositor. Can also be used
to download a face model: in this case the effect of
Facial Animation Parameters is defined in the
‘animationDefinitionTables’ field.

Table 12-5 Values for viseme_select

viseme_select phonemes example

0 none na

1 p, b, m put, bed, mill

2 f, v far, voice

3 T,D think, that

4 t, d tip, doll

5 k, g call, gas

6 tS, dZ, S chair, join, she

7 s, z sir, zeal

8 n, l lot, not

9 r red

10 A: car

11 e bed

12 I tip

13 Q top

14 U book

ISO/IEC 14496-2 Committee Draft

286

13. Annex D

Video buffering verifier

(This annex forms an integral part of the International Standard)

Coded video bitstreams shall meet constraints imposed through a Video Buffering Verifier (VBV)
defined in this clause. Each bitstream in a scalable hierarchy shall not violate the VBV constraints
defined in this annex.

The VBV is a hypothetical decoder, which is conceptually connected to the output of an encoder. It
has an input buffer known as the VBV buffer.

 ISO/IEC 14496-2 Committee Draft

287

14. Annex E

Features supported by the algorithm

(This annex does not form an integral part of the International Standard)

14.1 Error resilience

14.1.1 Resynchronization

Resynchronization tools, as the name implies, attempt to enable resynchronization between the
decoder and the bitstream after a residual error or errors have been detected. Generally, the data
between the synchronization point prior to the error and the first point where synchronization is
reestablished, is discarded. If the resynchronization approach is effective at localizing the amount of
data discarded by the decoder, then the ability of other types of tools that recover data and/or conceal
the effects of errors is greatly enhanced.

The resynchronization approach adopted by MPEG-4, referred to as a packet approach, is similar to
the Group of Blocks (GOBs) structure utilized by the ITU-T standards H.261 and H.263. In these
standards a GOB is defined as one or more rows of macroblocks (MB). At the start of a new GOB,
information called a GOB header is placed within the bitstream. This header information contains a
GOB start code, which is different from a picture start code, and allows the decoder to locate this
GOB. Furthermore, the GOB header contains information which allows the decoding process to be
restarted (i.e., resynchronize the decoder to the bitstream and reset all coded data that is predicted).

The GOB approach to resynchronization is based on spatial resynchronization. That is, once a
particular macroblock location is reached in the encoding process, a resynchronization marker is
inserted into the bitstream. A potential problem with this approach is that since the encoding process
is variable rate, these resynchronization markers will most likely be unevenly spaced throughout the
bitstream. Therefore, certain portions of the scene, such as high motion areas, will be more
susceptible to errors, which will also be more difficult to conceal.

The video packet approach adopted by MPEG-4, is based on providing periodic resynchronization
markers throughout the bitstream. In other words, the length of the video packets are not based on the
number of macroblocks, but instead on the number of bits contained in that packet. If the number of
bits contained in the current video packet exceeds a predetermined threshold, then a new video packet
is created at the start of the next macroblock.

Resync

Marker

macroblo
ck_numb

er

quan
t_sca

le

HEC Macroblock Data Resync

Marker

Figure 14-1 Error Resilient Video Packet

ISO/IEC 14496-2 Committee Draft

288

In Figure 14-1, a typical video packet is described. A resynchronization marker is used to distinguish
the start of a new video packet. This marker is distinguishable from all possible VLC code words as
well as the VOP start code. Header information is also provided at the start of a video packet.
Contained in this header is the information necessary to restart the decoding process and includes: the
macroblock address (number) of the first macroblock contained in this packet and the quantization
parameter (quant_scale) necessary to decode that first macroblock. The macroblock number provides
the necessary spatial resynchronization while the quantization parameter allows the differential
decoding process to be resynchronized. Following the quant_scale is the Header Extension Code
(HEC). As the name implies, HEC is a single bit used to indicate whether additional information will
be available in this header. If the HEC is equal to one then the following additional information is
available in this packet header: modulo time base, VOP_time_increment, VOP_coding_type,
intra_dc_vlc_thr, VOP_fcode_forward, VOP_fcode_backward.

The Header Extension Code makes each video packet (VP) possible to be decoded independently,
when its value is equal to 1. The necessary information to decode the VP is included in the header
extension code field, if the HEC is equal to 1.

If the VOP header information is corrupted by the transmission error, they can be corrected by the
HEC information. The decoder can detect the error in the VOP header, if the decoded information is
inconsistent with its semantics. For example, because it is prohibited that the values of the
VOP_fcode_forward and VOP_fcode_backward are set to "0", if they are 0, the decoder can detect the
error in the fcode information. In such a case, the decoder can correct the value by using the HEC
information of the next VP.

When utilizing the error resilience tools within MPEG-4, some of the compression efficiency tools are
modified. For example, all predictively encoded information must be confined within a video packet
so as to prevent the propagation of errors. In other words, when predicting (i.e., AC/DC prediction
and motion vector prediction) a video packet boundary is treated like a VOP boundary.

In conjunction with the video packet approach to resynchronization, a second method called fixed
interval synchronization has also been adopted by MPEG-4. This method requires that VOP start
codes and resynchronization markers (i.e., the start of a video packet) appear only at legal fixed
interval locations in the bitstream. This helps to avoid the problems associated with start codes
emulations. That is, when errors are present in a bitstream it is possible for these errors to emulate a
VOP start code. In this case, when fixed interval synchronization is utilized the decoder is only
required to search for a VOP start code at the beginning of each fixed interval. The fixed interval
synchronization method extends this approach to be any predetermined interval.

The fixed interval synchronization is achieved by first inserting a bit with the value 0 and then, if
necessary, inserting bits with the value 1 before the start code and the resync marker. The video
decoder can determine if errors are injured in a video packet by detecting the incorrect number of the
stuffing bits. (e.g. eight or more 1’s are followed after 0 at the last part of a video packet, or the
remaining bit pattern is not “011...”)

14.1.2 Data Partitioning

Error concealment is an extremely important component of any error robust video codec. Similar to
the error resilience tools discussed above, the effectiveness of an error concealment strategy is highly
dependent on the performance of the resynchronization scheme. Basically, if the resynchronization
method can effectively localize the error then the error concealment problem becomes much more
tractable. For low bitrate, low delay applications the current resynchronization scheme provides very
acceptable results with a simple concealment strategy, such as copying blocks from the previous
frame.

 ISO/IEC 14496-2 Committee Draft

289

In recognizing the need to provide enhanced concealment capabilities, the Video Group has developed
an additional error resilient mode that further improves the ability of the decoder to localize an error.
Specifically, this approach utilizes data partitioning. This data partitioning is achieved by separating
the motion and macroblock header information away from the texture information. This approach
requires that a second resynchronization marker be inserted between motion and texture information.
Data partitioning, like the use of RVLCs, is signaled to the decoder in the VOL. Figure 14-2
illustrates the syntactic structure of the data partitioning mode. If the texture information is lost, this
approach utilizes the motion information to conceal these errors. That is, due to the errors the texture
information is discarded, while the motion is used to motion compensate the previously decoded VOP.

Resync

Marker

macrobl
ock_nu

mber

qua
nt_s
cale

HEC Motion &Header

Information

Motion
Marker

Texture

Information

Resync

Marker

Figure 14-2 Data Partitioning

14.1.3 Reversible VLC

Reversible Variable Length Codes (RVLC) are designed such that they can be instantaneously
decoded both in forward and reverse directions. A part of a bitstream which cannot be decoded in the
forward direction due to the presence of errors can often be decoded in the backward direction. This
is illustrated in Figure 14-3. Therefore number of discarded bits can be reduced. RVLC is applied only
to TCOEF coding

Resync

Marker

macrobloc
k_number

quant_
scale

HEC Motion &Header

Information

Motion
Marker

Texture

Information

Resync

Marker

Texture Header
TCOEF

Forward Backward

Errors

Decode Decode

Figure 14-3 Reversible VLC

ISO/IEC 14496-2 Committee Draft

290

14.1.4 Decoder Operation

14.1.4.1 General Error Detection

1. An illegal VLC is received.

2. A semantic error is detected.

• More than 64 DCT coefficients are decoded in a block.

• Inconsistent resyncronization header information (i.e., QP out of range, MBA(k)<MBA(k-
1),etc.)

14.1.4.2 Resynchronization

When an error is detected in the bitstream, the decoder should resynchronize at the next suitable
resynchronization point(VOP_start_code or resync_marker).

After that, it can be determined by detecting the incorrect number of the stuffing bits whether or not
errors are injured in a video packet. If eight or more 1’s are followed after 0 at the last part of a video
packet, or the remaining bit pattern is not “011…”, it means there is any error in this video packet.

If the VOP start code is corrupted by the transmission error and the frame synchronization is lost, the
decoder may establish the resynchronization by using the HEC information. The decoder compares
the VOP_time_increment in the VOP header with one in the HEC field. If they are not same, the
decoder may find that the current VOP start code is corrupted by the error. In this case, there must not
be the error in the both VOP_time_increments. The simple method is to check whether the
VOP_time_increment is mutilple of frame interval of the original source format (NTSC, PAL and so
on). Therefore, it is expected that the number of the VOP_time_increment is as many as possible. As
this check method does not always detect the error, this is the auxiliary technique.

Missing blocks may be replaced with the same block from the previous frame.

14.1.4.3 Data Partitioning

14.1.4.4 Reversible VLC

This section describes a decoding methodology for Reversible Variable Length Codes (RVLC) when
errors in the video bitstream are detected during the decoding process. This particular decoding
methodology was developed during the RVLC core experiment process.

14.1.4.4.1 Process for detecting errors for both forward and backward decoding

Errors are present in the following cases:

(1) An illegal RVLC is found, where an illegal RVLC is defined as follows:

• A codeword whose pattern is not listed in the RVLC table (e.g. 169 codeword patterns and escape
codes).

• Escape coding is used (i.e., a legal codeword is not available in the RVLC table) and the decoded
value for LEVEL is zero.

 ISO/IEC 14496-2 Committee Draft

291

• The second escape code is incorrect (e.g. codeword is not “00000” or “00001” for forward
decoding, and/or is not “00001” for backward decoding).

• There is a decoded value of FLC part using escape codes (e.g. LAST, RUN, LEVEL) in the RVLC
table.

• An incorrect number of stuffing bits for byte alignment (e.g. eight or more 1s follow 0 at the last
part of a Video packet (VP), or the remaining bit pattern is not “0111...” after decoding process is
finished).

 (2) More than 64 DCT coefficients are decoded in a block.

14.1.4.4.2 Decoding information

The bitstream is decoded in a forward direction first. If no errors are detected, the bitstream is
assumed to be valid and the decoding process is finished for that video packet. If an error is detected
however, two-way decoding is applied. The following strategies for determining which bits to
discard are used. These strategies are described using the figures given below along with the
following definitions:

L : Total number of bits for DCT coefficients part in a VP.
N : Total number of macroblocks (MBs) in a VP.
L1 : Number of bits which can be decoded in a forward decoding.
L2 : Number of bits which can be decoded in a backward decoding.
N1 : Number of MBs which can be completely decoded in a forward decoding.
N2 : Number of MBs which can be completely decoded in a backward decoding.
f_mb(S) : Number of decoded MBs when S bits can be decoded in a forward direction.
 (Equal to or more than one bit can be decoded in a MB, f_mb(S) counter is up.)
b_mb(S) : Number of decoded MBs when S bits can be decoded in a backward direction.
T : Threshold (90 is used now).

14.1.4.4.2.1 Strategies for decoding RVLC

(1) Strategy 1 : L1+L2 < L and N1+N2 < N

MBs of f_mb(L1-T) from the beginning and MBs of b_mb(L2-T) from the end are used. In the figure
below, the MBs of the dark part are discarded.

ISO/IEC 14496-2 Committee Draft

292

×

×
L1 L2

L

Error detected positions
in a bitstream

N1 N2

N
Number of decoded
MBs corresponding to
L1 and L2

MBs to be discarded

f_mb(L1-T) b_mb(L2-T)

T T

 (2) Strategy 2 : L1+L2 < L and N1+N2 >= N

MBs of N-N2-1 from the beginning and MBs of N-N1-1 from the end are used. MBs of the dark part
are discarded.

×

×
L1 L2

L

Error detected positions
in a bitstream

N1 N2

N

Number of decoded
MBs corresponding to
L1 and L2

MBs to be discarded

N - N2-1 N - N1-1

 (3) Strategy 3 : L1+L2 >= L and N1+N2 < N

 ISO/IEC 14496-2 Committee Draft

293

MBs of N-b_mb(L2) from the beginning and MBs of N-f_mb(L1) from the end are used. MBs of the
dark part are discarded.

×

×
L1 L2

L

Error detected positions
in a bitstream

N1 N2

N

Number of decoded
MBs corresponding to
L1 and L2

MBs to be discarded

N - b_mb(L2) N - f_mb(L1)

 (4) Strategy 4 : L1+L2 >= L and N1+N2 >= N

MBs of min{N-b_mb(L2), N-N2-1} from the beginning and MBs of min{N-f_mb(L1), N-N1-1} from
the end are used. MBs of the dark part are discarded.

×

×
L1 L2

L

Error detected positions
in a bitstream

N1 N2

N

Number of decoded
MBs corresponding to
L1 and L2

MBs to be discarded

Min{N - b_mb(L2), N-N2-1} Min{N - f_mb(L1), N-N1-1}

14.1.4.4.2.2 INTRA MBs within a bitstream

In the above strategies (Strategy 1 - Strategy 4), INTRA MBs are discarded even though they could
have been decoded. An example of such a case is shown below.

ISO/IEC 14496-2 Committee Draft

294

INTRA MB INTRA MB

X X

Although these intra MBs are thought to be correct, the result of displaying an Intra MB that does
contain an error can substantially degrade the quality of the video. Therefore, when a video packet is
determined to contain errors, all Intra MBs are not displayed, but instead concealed.

14.1.5 Adaptive Intra Refresh (AIR) Method

The AIR is the technique of the intra refresh method for the error resilience. In the AIR, motion area
is encoded frequently in Intra mode. Therefore, it is possible to recover the corrupted motion area
quickly.

The method of the “AIR”

The number of Intra MBs in a VOP is fixed and pre-determined. It depends on bitrates and frame rate
and so on.

The encoder estimates motion of each MB and the only motion area is encoded in Intra mode. The
results of the estimation are recorded to the Refresh Map MB by MB. The encoder refers to the
Refresh Map and decides to encode current MB in Intra mode or not. The estimation of motion is
performed by the comparison between SAD and SAD_th. SAD is the Sum of the Absolute Differential
value between the current MB and the MB in same location of the previous VOP. The SAD has been
already calculated in the Motion Estimation part. Therefore, additional calculation for the AIR is not
needed. SAD_th is the threshold value. If the SAD of the current MB is larger than the SAD_th, this
MB is regarded as motion area. Once the MB is regarded as motion area, it is regarded as motion area
until it is encoded in Intra mode predetermined times. The predetermined value is recorded to the
Refresh Map. (See figure 14-4. In this figure, predetermined value is “1” as an example)

The holizontal scan is used to determine the MBs to be encoded in Intra mode within the moving area
(see figure 14-5).

0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 0 1 0 0
0 0 0 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

Figure 14-4 Refresh Map for QCIF

 ISO/IEC 14496-2 Committee Draft

295

Figure 14-5 Scan order for the Adaptive Refresh

The processing of the “AIR”

The following is the explanation of the processing of AIR (see figure 3). The fixed number of the
Intra MB in a VOP should be determined in advance. Here, it is set to “2” as an example.

[1] 1st VOP ([a]~[b] in figure 3)

The all MBs in the 1st VOP are encoded in Intra mode [a]. The Refresh Map is set to “0”, because
there is no previous VOP [b].

[2] 2nd VOP ([c] ~ [f])
The 2nd VOP is encoded as P-VOP. Intra refresh is not performed in this VOP, because all values in
the Refresh Map is zero yet ([c] and [d]). The encoder estimates motion of each MB. If the SAD for
current MB is larger than the SAD_th, it is regarded as motion area (hatched area in figure 3 [e]).
And the Refresh Map is updated [f].

[3] 3rd VOP ([g] ~ [k])
When the 3rd VOP is encoded, the encoder refers to the Refresh Map [g]. If the current MB is the
target of the Intra refresh, it is encoded in Intra mode [h]. The value of the MB in Refresh Map is
decreased by 1 [i]. If the decreased value is 0, this MB is not regarded as motion area. After this, the
processing is as same as the 2nd VOP [j]~[k].

[4] 4th VOP ([l]~[p])

It is as same as 3rd VOP...

ISO/IEC 14496-2 Committee Draft

296

0 0 0 0 0 0

1

1

0

0

1

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

1

0

0

1

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

1

0

1

1

1

0

1

1

0

0

0

0

0

0

1

0

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1st VOP

[b] Refresh Map

[a] Encode the I-VOP

[c]

[d] Encode the P-VOP

[k]

[n]
[m]

[j]

[g]

0

2nd VOP

[f] motion MB is set to
 “1” in the Refresh Map.[e] Estimate the motion of MB.

3rd VOP

4th VOP

[I] Intra MBs in Refresh
 Map are updated.

[h] Encode the VOP.Some
MBs are encoded as INTRA
 refresh.

0

0

0

1

1

0

0

1

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

1

0

0

1

1

1

0

0

1

1

0

0

0

0

0

0

0

0

[p][o]

[l]

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Figure 14-6 the Explanation of AIR

14.2 Complexity Estimation

The Complexity Estimation Tool enables the estimation of decoding complexity without the need of
the actual decoding of the incoming VOPs. The tool is based on the trasmission of the statistic of the
actual encoding algorithms, modes and parameters used to encode the incoming VOP. The ‘cost’ in
complexity for the execution of each algorithm is measured or eastimated on each decoder platform.
The actual statistic of the decoding algorithms is transmitted in the video bitstream and can be
converted by means of the mentioned ‘costs’ into the VOP actual decoding cost for the specific
decoder.
The tool is flexible since it enables, for each VO, the definition of the set of used statistics. Such
definition is done in the VO header. The actual values of the defined statistics is then inserted into
each VOP header according to the ‘complexity estimation syntax’.

 ISO/IEC 14496-2 Committee Draft

297

For the implementation of the Complexity Estimation Tool, the following modifications to the video
syntax, indicated by the gray background, are necessary :

14.2.1 Video Object Layer Class

14.2.1.1 Video Object Layer

ISO/IEC 14496-2 Committee Draft

298

Syntax No. of bits Mnemonic

VideoObjectLayer() {

video_object_layer_start_code sc+4=28

video_object_layer_id 4

video_object_layer_shape 2

if (video_object_layer_shape == ‘00’) {

video_object_layer_width 13

video_object_layer_height 13

}

…………………………..

…………………………..

…………………………..

…………………………..

if(load_gray_nonintra_quant_mat)

Gray_nonintra_quant_mat[64] 8*64

}

}

Complexity_estimation_disable 1

if (!Complexity_estimation_disable){

 Parameter_list 8

 Estimation_method 2

 if (Estimation_method ==’00’){

 Shape_complexity_estimation_disable 1

 if (Shape_complexity_estimation_disable) {

 Shape_Binary 1

 Shape_Gray 1

 }

 Texture_complexity_estimation_set_1_disable 1

 if (!Texture_complexity_estimation_set_1_disable) {

 Intra

 Inter 1

 Inter4v 1

 Not_Coded 1

 }

 Texture_complexity_estimation_set_2_disable 1

 if (!Texture_complexity_ estimation_set_2_disable) {

 DctCoef 1

 DctLine 1

 VlcSymbols 1

 VlcBits 1

 }

 Motion_compensation_complexity_disable 1

 if (!Motion_compensation_complexity_disable) {

 APM (Advanced Prediction Mode) 1

 NPM (Normal Prediction Mode) 1

 ISO/IEC 14496-2 Committee Draft

299

 InterpolateMC+Q 1

 Forw+Back+MC+Q 1

 HalfPel2 1

 HalfPel4 1

 }

 }

}

Error_resilient_disable 1

if (!error_resilient_disable) {

data_partitioning 1

Reversible_VLC 1

}

……………………….

……………………….

………………………..

14.2.1.2 Parameter definition of Complexity Estimation Syntax

Complexity_estimation_disable: flag for disabling complexity estimation header in each
VOP

Parameter_list: number of complexity estimation parameters.

Estimation_method: definition of the estimation method.

Shape_complexity_estimation_disable: flag to disable setting of shape parameters

Shape_Binary: flag enabling transmission of the number of luminance and chrominance
blocks coded using binary alpha block shape coding information in % of the total number of
blocks (bounding box).

Shape_Gray: flag enabling transmission of the number of luminance and chrominance
blocks coded using gray scale shape coding information in % of the total number of blocks
(bounding box).

Texture_complexity_estimation_set_1_disable: flag to disable parameter set 1.

Intra: flag enabling transmission of the number of luminance and chrominance Intra or
Intra+Q coded blocks in % of the total number of blocks (bounding box).

Inter: flag enabling transmission of the number of luminance and chrominance Inter and
Inter+Q coded blocks in % of the total number of blocks (bounding box).

Inter4v: flag enabling transmission of the number of luminance and chrominance Inter4V
coded blocks in % of the total number of blocks (bounding box).

Not-Coded: flag enabling transmission of the number of luminance and chrominance Non
Coded blocks in % of the total number of blocks (bounding box).

Texture_complexity_estimation_set_2_disable: flag to disable parameter set 2.

DctCoef: flag enabling transmission of the number of DCT coefficients % of the maximum
number of coefficients (coded blocks).

DctLine: flag enabling transmission of the number of DCT8x1 in % of the maximum
number of DCT8x1 (coded blocks).

VlcSymbols: flag enabling transmission of the average number of VLC symbols for
macroblock.

VlcBits: flag enabling transmission of the average number of bits for each symbol.

Motion_compensation_complexity_disable: flag to disable motion compensation parameter
set.

ISO/IEC 14496-2 Committee Draft

300

APM (Advanced Prediction Mode): flag enabling transmission of the number of luminance
block predicted using APM in % of the total number of blocks for VOP (bounding box).

NPM (Normal Prediction Mode): flag enabling transmission of the number of luminance and
chrominance blocks predicted using NPM in % of the total number of luminance and
chrominance for VOP (bounding box).

InterpolateMC+Q: flag enabling transmission of the number of luminance and chrominance
interpolated blocks in % of the total number of blocks for VOP (bounding box).

Forw+Back+MC+Q: flag enabling transmission of the number of luminance and
chrominance predicted blocks in % of the total number of blocks for VOP (bounding box).

HalfPel2: flag enabling transmission of the number of luminance and chrominance block
predicted by a half-pel vector on one dimension (horizontal or vertical) in % of the total
number of blocks (bounding box).

HalfPel4: flag enabling transmission of the number of luminance and chrominance block
predicted by a half-pel vector on two dimensions (horizontal and vertical) in % of the total
number of blocks (bounding box).

14.2.2 Video Object Plane Class

14.2.3 Video Object Plane

Syntax No. of
bits

Mnemoni
c

VideoObjectPlane() {

VOP_start_code Sc+8=32

do {

modulo_time_base 1

} while (modulo_time_base != “0”)

VOP_time_increment 10

VOP_prediction_type 2

if (video_object_layer_sprite_usage != SPRITE_NOT_USED)

………………….

………………….

………………….

………………….

Interlaced 1

if (interlaced)

Top_field_first 1

if (VOP_prediction_type==‘10’)

VOP_dbquant 2

else {

VOP_quant Quant_precis
ion

If(video_object_layer_shape == “10”)

VOP_gray_quant 6

}

if ((video_object_layer_shape_effects == ‘0010’) ||

 (video_object_layer_shape_effects == ‘0011’) ||

 (video_object_layer_shape_effects == ‘0101’)) {

VOP_constant_alpha 1

 ISO/IEC 14496-2 Committee Draft

301

If (VOP_constant_alpha)

VOP_constant_alpha_value 8

}

if (!Complexity_estimation_disable){

 if (estimation_method==’00’){

 If (VOP_prediction_type==‘00’){

 If(Shape_Gray) DCECS_Shape_Binary 8

 If (Shape_Binary) DCECS_Shape_Gray 8

 If (Intra) DCECS_Intra 8

 If (Not_Coded) DCECS_Not_Coded 8

 If (DctCoef) DCECS_DctCoef 8

 If (DctLine) DCECS_DctLine 8

 If (VlcSymbols) DCECS_VlcSymbols 8

 If (VlcBits) DCECS_VlcBits 4

 }

 If (VOP_prediction_type==‘01’){

 If(Shape_Gray) DCECS_Shape_Binary 8

 If (Shape_Binary) DCECS_Shape_Gray 8

 If (Intra) DCECS_Intra 8

 If (Not_Coded) DCECS_Not_Coded 8

 If (DctCoef) DCECS_DctCoef 8

 If (DctLine) DCECS_DctLine 8

 If (VlcSymbols) DCECS_VlcSymbols 8

 If (VlcBits) DCECS_VlcBits 4

 If (Inter) DCECS_Inter 8

 If (Inter4v) DCECS_Inter4v 8

 If(APM) DCECS_APM 8

 If(NPM) DCECS_NPM 8

 If(Forw+Back+MC+Q) DCECS_Forw+Back+MC+Q 8

 If(HalfPel2) DCECS_HalfPel2 8

 If(HalfPel4) DCECS_HalfPel4 8

 }

 If (VOP_prediction_type==‘10’){

 If(Shape_Gray) DCECS_Shape_Binary 8

 If (Shape_Binary) DCECS_Shape_Gray 8

 If (Intra) DCECS_Intra 8

 If (Not_Coded) DCECS_Not_Coded 8

 If (DctCoef) DCECS_DctCoef 8

 If (DctLine) DCECS_DctLine 8

 If (VlcSymbols) DCECS_VlcSymbols 8

 If (VlcBits) DCECS_VlcBits 4

 If (Inter) DCECS_Inter 8

 If (Inter4v) DCECS_Inter4v 8

 If(APM) DCECS_APM 8

 If(NPM) DCECS_NPM 8

ISO/IEC 14496-2 Committee Draft

302

 If(Forw+Back+MC+Q) DCECS_ Forw+Back+MC+Q 8

 If(HalfPel2) DCECS_ HalfPel2 8

 If(HalfPel4) DCECS_ HalfPel4 8

 If(InterpolateMC+Q) DCECS_InterpolateMC+Q 8

 }

 If (VOP_prediction_type==‘11’){

 If (Intra) DCECS_Intra 8

 If (Not_Coded) DCECS_Not_Coded 8

 If (DctCoef) DCECS_DctCoef 8

 If (DctLine) DCECS_DctLine 8

 If (VlcSymbols) DCECS_VlcSymbols 8

 If (VlcBits) DCECS_VlcBits 4

 If (Inter) DCECS_Inter 8

 If (Inter4v) DCECS_Inter4v 8

 If(APM) DCECS_APM 8

 If(NPM) DCECS_NPM 8

 If(Forw+Back+Q) DCECS_ Forw+Back+Q 8

 If(HalfPel2) DCECS_ HalfPel2 8

 If(HalfPel4) DCECS_ HalfPel4 8

 If(InterpolateMC+Q) DCECS_InterpolateMC+Q 8

 }

 }

 }

if (!scalability) {

if (!separate_motion_shape_texture)

Definition of DCECS Parameter Values
The semantic of all DCECS parameters is defined at the VO syntax level. They represents % values.
The actual values of all 8 bit words are normalized to 256 plus the addition of a binary 1 to prevent
start code emulation (i.e 0% = ‘00000001’, 99.5% = ‘11111111’ and 100% = ‘11111111’). The
binary ‘00000000’ string is a forbidden value. The only parameter expressed in absolute value is the
DCEDS_VlcBits parameter expressed in absolute value in a 4 bit word.

14.2.4 Resynchronization in Case of Unknown Video Header Format

Two video object layer starting indicators are supported:

1. video_object_layer_start_code, and
2. short_video_start_marker

The automatic detection of which of the these byte aligned codes is present is unambiguous. The
short_video_start_marker will never emulate a video_object_layer_start_code, since 23 byte-aligned
zeros cannot occur in any video stream using the short_video_start_marker. The
video_object_layer_start_code will also never emulate a short_video_start_marker, because its first
non-zero bit is in a different location (provided byte alignment is not lost).

 ISO/IEC 14496-2 Committee Draft

303

However, special attention needs to be paid if some application requires starting at any arbitrary point
in a bitstream for which there is no prior knowledge of the format type. Although unlikely, a
resync_marker can emulate a short_video_start_marker (for certain macroblock_number field lengths
and macroblock_number values and vop_fcode_forward values).

Although the behavior of the decoder in these circumstances is not specified, it is suggested to
perform validity checks on the first few bits beyond the short_video_start_marker if the
video_object_layer_start_code is not the first starting indicator found. Numerous checks are possible,
for example, checking the values of the bits 9, 10, 18-21 and 27 beyond the short_video_start_marker.
The decoder may also choose to delay acquisition until an “I” vop-type is indicated in bit 17. Even
simply discarding some data while searching for a video_object_layer_start_code prior to “timing out”
with a decision to seek the short_video_start_marker may be acceptable for some applications.

ISO/IEC 14496-2 Committee Draft

304

15. Annex F

Preprocessing and Postprocessing

(This annex does not form an integral part of the International Standard)

15.1 Segmentation for VOP Generation

15.1.1 Introduction

The video coding scheme defined by this standard offers several content-based functionalities,
demanding the description of the scene in terms of so-called video-objects (VOs). The separate coding
of the video objects may enrich the user interaction in several multimedia services due to flexible
access to the bit-stream and an easy manipulation of the video information. In this framework, the
coder may perform a locally defined pre-processing, aimed at the automatic identification of the
objects appearing in the sequence. Hence, segmentation is a key issue in efficiently applying the
MPEG-4 coding scheme, although not affecting at all the bit-stream syntax and thus not being a
normative part of the standard.

Usually, the term segmentation denotes the operation aimed at partitioning an image or a video
sequence into regions extracted according to a given criterion. In the case of video sequences, this
partition should achieve the temporal coherence of the resulting sequence of object masks representing
the video object. In the recent literature, different methods have been proposed for segmentation of
video sequences, based on either a spatial homogeneity, a motion coherence criterion [[8]] or on joint
processing of spatio-temporal information [4][[9]][[11]][[15]]. These algorithms are expected to
identify classes of moving objects, according to some luminance homogeneity and motion coherence
criterion.

In this annex, a framework aiming at an appropriate combination of temporal and spatial
segmentation strategies, developed throughout the standardisation phase of MPEG-4 Version 1, is
described. The description is given only for informative purposes as the technique to extract objects
from the scene is not standardised. The classification of the pels in a video sequence is performed into
two classes, namely moving objects (foreground) and background. This framework will continue to be
investigated throughout the standardisation phase of MPEG-4 Version 2, leading to improved
segmentation results. Only the general principles are shortly described, however, if more detail is
required a number of references containing much more detailed descriptions are given.

15.1.2 Description of a combined temporal and spatial segmentation framework

Throughout the work on automatic segmentation of moving objects, different proposals for temporal
and spatial segmentation algorithms have been proposed and investigated. This resulted at the end in
a combined temporal and spatial segmentation framework [[6]] which is shown in a high level block
diagram in Figure 15-1.

 ISO/IEC 14496-2 Committee Draft

305

Video

Sequence of object

Global Motion Compensation

Scene Cut Detection

Combination of temporal
and spatial results

Temporal Segmentation Spatial Segmentation

Figure 15-1 Block diagram of combined temporal and spatial segmentation framework

The combined scheme applies in a first step the general blocks of camera motion estimation and
compensation [[17]][[18]] and scene cut detection [[13]] which can be seen as a kind of pre-
processing in order to eliminate the influence of a moving camera.

In a second step, either temporal or combined spatio-temporal segmentation of each image are carried
out, depending on the requirements. The reason for this is, that in general only performing temporal
segmentation requires less computational complexity. On the other hand, taking into account also
spatial segmentation leads to more accurate segmentation results, but increases the computational
complexity of the segmentation.

For temporal segmentation, two possible algorithms are under consideration, both having been
verified by extensive cross-checking. It will be one main task for the group which will be working on
segmentation for MPEG-4 Version 2, to decide which of these algorithms performs better. For spatial
segmentation, only one algorithm is considered, which however has not been cross-checked by the
group.

Finally, if temporal and spatial segmentation is performed, both temporal and spatial segmentation
results are combined. It will be the second main task of the group to work out an appropriate
algorithm for combining the temporal and spatial segmentation results.

The three algorithms for temporal and spatial segmentation will be shortly described in the following.
For more details on them as well as on the possible combination approaches [[15]][[10]][[7]], the
reader is referred to the given references, where more detailed descriptions can be found.

Temporal segmentation based on change detection: this segmentation algorithm [[16]][[17]][[18]],
which is mainly based on a change detection, can be subdivided into two main steps, assuming that a
possible camera motion has already been compensated: by the first step, a change detection mask
between two successive frames is estimated. In this mask, pels for which the image luminance has
changed due to a moving object are labelled as changed. For that, first an initial change detection
mask between the two successive frames is generated by global thresholding the frame difference.
After that, boundaries of changed image areas are smoothed by a relaxation technique using local
adaptive thresholds [[1]][[2]]. Thereby, the algorithm adapts frame-wise automatically to camera
noise. In order to finally get temporal stable object regions, an object mask memory with scene
adaptive memory length is applied. Finally, the mask is simplified and small regions are eliminated,
resulting in the final change detection mask.

ISO/IEC 14496-2 Committee Draft

306

In the second step, an object mask is calculated by eliminating the uncovered background areas from
the change detection mask as in [[12]]. Therefore, displacement information for pels within the
changed regions is used. The displacement is estimated by a hierarchical blockmatcher (HBM) [[3]].
For a higher accuracy of the calculated displacement vector field (DVF), the change detection mask
from the first step is considered by the HBM. Pels are set to foreground in the object mask, if foot- and
top-point of the corresponding displacement vector are both inside the changed area in the current
CDM. If not, these pels are set to background. Results for the described method can be found in
[[14]][[16]][[18]].

Temporal segmentation using higher order moments and motion tracking: The algorithm
[8][[9]][[19]][[20]] produces the segmentation map of each frame fk of the sequence by processing a
group of frames {fk-i, i=0,..n}. The number of frames n varies on the basis of the estimated object
speed [8]. For each frame fk, the algorithm splits in three steps. First, the differences { dk-j (x,y)=fk-

j(x,y)– fk-n(x,y), j=0,..n-1 } of each frame of the group with respect to the first frame fk-n are evaluated
in order to detect the changed areas, due to object motion, uncovered background and noise. In order
to reject the luminance variations due to noise, an Higher Order Statistic test is performed. Namely,

for each pixel (x,y) the fourth-order moment ̂ m d
(4) (x, y)of each inter-frame difference d(x,y) is

estimated on a 3x3 window, it is compared with a threshold adaptively set on the basis of the
estimated background activity [8], and set to zero if it is below the threshold. Then, on the sequence of

the thresholded fourth-order moment maps

˜ m

d
k − j

(4) (x , y) , a motion detection procedure is performed.

This step aims at distinguish changed areas representing uncovered background (which stands still in
the HOS maps) and moving objects (moving in the HOS maps). At the j-th iteration, the pair of

thresholded HOS maps),(~),,(~)4()4(

1
yxmyxm

jkjk dd −−−
 is examined. For each pixel (x,y) the displacement of

is evaluated on a 3x3 window, adopting a SAD criterion, and if the displacement is not null the pixel
is classified as moving. Then, the lag j is increased (i.e. the pair of maps slides) and the motion
analysis is repeated, until j=n-2. Pixels presenting null displacements on all the observed pairs are
classified as still. Finally, a regularization algorithm re-assigns still regions, internal to moving
regions, to foreground and refines the segmentation results imposing a priori topological constraints
on the size of objects irregularities such as holes, isthmi, gulfs and isles by morphological filtering. A
post-processing operation refines the results on the basis of spatial edges.

Spatial segmentation based on watershed algorithm: In the spatial segmentation, images are first
simplified to make easier the image segmentation [[21]]. Morphological filters are used for the
purpose of image simplification. These filters remove regions that are smaller than a given size but
preserve the contours of the remaining objects. By the second step, the spatial gradient of the
simplified image is approximated by the use of a morphological gradient operator [[21]]. The spatial
gradient can be used as an input of watershed algorithm to partition an image into homogeneous
intensity regions. For the problem of ambiguous boundaries by spatial gradient, we incorporate color
information into gradient computation in which the largest values among the weighed gradients
obtained in

br CCY γβα ,, are chosen [[5]]. In the boundary decision step, the boundary decision is

taken through the use of a watershed algorithm that assigns pixels in the uncertainty area to the most
similar region with some segmentation criterion such as difference of intensity values [[22]]. To merge
into semantic regions the genetically over-segmented regions from watershedding, a region merging
algorithm is then incorporated [[5]]. The final output of the spatial segmentation is the images that
are composed of semantically meaningful regions with precise boundaries. Moving objects are
therefore represented with semantic regions with precise boundaries and can be segmented in
conjunction with temporal information that localizes the moving objects.

15.1.3 References

[1] T. Aach, A. Kaup, R. Mester, „Statistical model-based change detection in moving video“,
Signal Processing, Vol. 31, No. 2, pp. 165-180, March 1993.

[2] T. Aach, A. Kaup, R. Mester, „Change detection in image sequences using Gibbs random
fields: a Bayesian approach“, Proceedings Int. Workshop on Intelligent Signal Processing and
Communication Systems, Sendai, Japan, pp. 56-61, October 1993.

 ISO/IEC 14496-2 Committee Draft

307

[3] M. Bierling, „Displacement estimation by hierarchical blockmatching“, 3rd SPIE Symposium
on Visual Communications and Image Processing, Cambridge, USA, pp. 942-951, November
1988.

[4] P. Bouthemy, E. François, „Motion segmentation and qualitative dynamic scene analysis from
an image sequence” in Int. Journal of Computer Vision vol.10, no.2, pp157-182, 1993.

[5] J. G. Choi, M. Kim, M. H. Lee, C. Ahn, „Automatic segmentation based on spatio-temporal
information“, Doc. ISO/IEC JTC1/SC29/WG11 MPEG97/2091, April 1997.

[6] J. G. Choi, M. Kim, M. H. Lee, C. Ahn (ETRI); S. Colonnese, U. Mascia, G. Russo, P. Talone
(FUB); Roland Mech, Michael Wollborn (UH), „Merging of temporal and spatial
segmentation“, Doc. ISO/IEC JTC1/SC29/WG11 MPEG97/2383, July 1997.

[7] J. G. Choi, M. Kim, M. H. Lee, C. Ahn, „New ETRI results on core experiment N2 on
automatic segmentation techniques“, Doc. ISO/IEC JTC1/SC29/WG11 MPEG97/2641,
October 1997.

[8] S. Colonnese, A. Neri, G. Russo, C. Tabacco, „Adaptive Segmentation of Moving Object
versus Background for Video Coding”, Proceedings of SPIE Annual Symposium, Vol. 3164,
San Diego, August 1997.

[9] S. Colonnese, U. Mascia, G. Russo, P. Talone, „Core Experiment N2: Preliminary FUB results
on combination of automatic segmentation techniques“, Doc. ISO/IEC JTC1/SC29/WG11
MPEG97/2365, July 1997.

[10] S. Colonnese, U. Mascia, G. Russo, „Automatic segmentation techniques: updated FUB results
on core experiment N2“, Doc. ISO/IEC JTC1/SC29/WG11 MPEG97/2664, October 1997.

[11] J. Dugelay, H. Sanson, „Differential methods for the identification of 2D and 3D motion
models in image sequences“, Signal Processing, Vol.7, pp. 105-127, Sept. 1995.

[12] M. Hötter, R. Thoma, „Image Segmentation based on object oriented mapping parameter
estimation“, Signal Processing, Vol. 15, No. 3, pp. 315-334, October 1988.

[13] M. Kim, J. G. Choi, M. H. Lee, C. Ahn; „Performance analysis of an ETRI’s global motion
compensation and scene cut detection algorithms for automatic segmentation“, Doc. ISO/IEC
JTC1/SC29/WG11 MPEG97/2387, July 1997.

[14] R. Mech, P. Gerken, „Automatic segmentation of moving objects (Partial results of core
experiment N2), Doc. ISO/IEC JTC1/SC29/WG11 MPEG97/1949, April 1997.

[15] R. Mech, M. Wollborn, „Automatic segmentation of moving objects (Partial results of core
experiment N2)“, Doc. ISO/IEC JTC1/SC29/WG11 MPEG97/2703, October 1997.

[16] R. Mech, M. Wollborn, „A Noise Robust Method for Segmentation of Moving Objects in Video
Sequences“, International Conference on Acoustic, Speech and Signal, Munich, Germany,
April 1997.

[17] R. Mech, M. Wollborn, „A Noise Robust Method for 2D Shape Estimation of Moving Objects
in Video Sequences Considering a Moving Camera“, Workshop on Image Analysis for
Multimedia Interactive Services, Louvain-la-Neuve, Belgium, June 1997.

[18] R. Mech, M. Wollborn, „A Noise Robust Method for 2D Shape Estimation of Moving Objects
in Video Sequences Considering a Moving Camera“, accepted for publication in Signal
Processing: Special Issue on Video Sequence Segmentation for Content-based Processing and
Manipulation, to be published in the beginning of 1998.

[19] A. Neri, S. Colonnese, G. Russo, „Video Sequence Segmentation for Object-based Coders
using Higher Order Statistics“, ISCAS ‘97, Hongkong, June 1997.

[20] A. Neri, S. Colonnese, G. Russo, „Automatic Moving Objects and Background Segmentation
by means of Higher Order Statistics“, IS&T Electronic Imaging ‘97 Conference: Visual
Communication and Image Processing, San Jose’, 8-14 February 1997, SPIE Vol. 3024.

[21] P. Salembier, M. Pardàs, „Hierarchical Morphological Segmentation for Image Sequence
Coding”, IEEE Transactions on Image Processing, Vol.3, No.5, pp. 639-651, September 1994.

ISO/IEC 14496-2 Committee Draft

308

[22] Luc Vincent, Pierre Soille, „Watersheds in digital spaces: an efficient algorithm based on
immersion simulations“, IEEE Transactions on PAMI, Vol.13, No. 6, pp. 583-598, June 1991.

15.2 Bounding Rectangle of VOP Formation

This section describes the bounding rectangle of VOP formation process. The formation of the
bounding rectangle of VOP is based on the segmented shape information. The following explains the
process to achieve the bounding rectanle of a VOP in such a way that the minimum number of
macroblocks containing the object will be attained in order to achieve a higher coding efficiency.

1. Generate the tightest rectangle whose top left poition is an even number.

2. If the top left position of this rectangle is not the same as the origin of the image, the following
steps have to be performed. Otherwise no further processing is necessary.

3. Form a control macroblock at the top left corner of the tightest rectangle as shown in Figure 15-2.

4. Count the number of macroblocks that completely contain the VOP for all even numbered point
of the control macroblock using the following procedure.

• Generate a bounding rectangle from the control point to the right bottom side of the VOP
which consists of multiples of 16x16 blocks.

• Count the number of macroblocks in this bounding rectangle, which contain at least one
object pel. To do so, it would suffice to take into account the boundary pels of a macroblock
only.

5. Select the control point that results in the smallest number of non transparent macroblocks for the
given object.

6. Extend the top left coordinate of the tightest rectangle generated in Figure 15-2. to the selected
control coordinate. This will create a rectangle that completely contains the object but with the
minimum number of non transparent macroblocks in it. The VOP horizontal and vertical spatial
references are taken directly from the modified top-left coordinate.

...

Control MB

Tightest Rectangle

Extended
Bounding
Box

Intelligently generated VOP

: control point

...

Object

Figure 15-2 Intelligent VOP Formation

 ISO/IEC 14496-2 Committee Draft

309

15.3 Postprocessing for Coding Noise Reduction

The post-filter consists of deblocking filter and deringing filter. Either one or both of them can be turned on as
needed.

15.3.1 Deblocking filter

The filter operations are performed along the 8x8 block edges at the decoder as a post-processing operation.
Luminance as well as chrominace data is filtered. Figure 15-3 shows the block boundaries.

v0 v1 v2 v3 v4 v5 v6 v7

v0

v1

v2

v3

v4

v5

v6

v7

Block boundary

Block boundary

S0

S0

S1

S2

S1 S2

v8 v9

v8

v9

Pixels for filtering on a

vertical edge

Pixels for filtering on a

horizontal edge

Figure 15-3 Boundary area around block of interest

In the filter operations, two modes are used separately depending on the pixel conditions around a boundary. The
following procedure is used to find a very smooth region with blocking artifacts due to small dc offset and to assign
it a DC offset mode. In the other case, default mode operations are applied.

eq_cnt = φ(v0−v1) + φ(v1−v2) + φ(v2−v3) + φ(v3−v4) + φ(v4−v5) + φ(v5−v6) + φ(v6−v7)
 + φ(v7−v8) + φ(v8−v9),

where φ(γ) = 1 if |γ | ≤ THR1 and 0 otherwise.
If (eq_cnt ≥ THR2)

DC offset mode is applied,
else

Default mode is applied.

For the simulation, threshold values of THR1 = 2 and THR2 = 6 are used.

In the default mode, a signal adaptive smoothing scheme is applied by differentiating image details at the block
discontinuities using the frequency information of neighbor pixel arrays, S0, S1, and S2,. The filtering scheme in
default mode is executed by replacing the boundary pixel values v4 and v5 with v4′ and v5′ as follows:

ISO/IEC 14496-2 Committee Draft

310

v4′ = v4−d,

v5′ = v5+d,

and d = CLIP(5⋅(a3,0′− a3,0)//8, 0, (v4−v5)/2) ⋅ δ(|a3,0| < QP)

where a3,0′ = SIGN(a3,0) ⋅ MIN(|a3,0|, |a3,1|, |a3,2|).

Frequency components a3,0, a3,1, and a3,2 can be evaluated from the simple inner product of the approximated DCT
kernel [2 -5 5 -2] with the pixel vectors, i.e.,

a3,0 = ([2 -5 5 -2] • [v3 v4 v5 v6]T) // 8,
a3,1 = ([2 -5 5 -2] • [v1 v2 v3 v4]T) // 8,
a3,2 = ([2 -5 5 -2] • [v5 v6 v7 v8]T) // 8.

Here CLIP(x,p,q) clips x to a value between p and q; and QP denotes the quantization parameter of the
macroblock where pixel v5 belongs. δ(condition)=1 if the "condition" is true and 0 otherwise..

In very smooth region, the filtering in the default mode is not good enough to reduce the blocking artifact due to
dc offset. So we treat this case in the DC offset mode and apply a stronger smoothing filter as follows :

max = MAX (v1, v2, v3, v4, v5, v6, v7, v8),
min = MIN (v1, v2, v3, v4, v5, v6, v7, v8),

if (|max−min| < 2⋅QP) {

()

()
16//}1,1,2,2,4,2,2,1,1{}44:{
8

81

1

,:?

,

,:?

81,

8998

1001

4

4

=≤≤−
>

≤≤
<









−

−
=

≤≤⋅=′ +
−=

∑

kb
m

m

m

if

if

if

vvQP<vv

v

vvQP<vv

p

npbv

k

mm

kn
k

kn

}
else

No change will be done.

The above filter operations are applied for all the block boundaries first along the horizontal edges followed by the
vertical edges. If a pixel value is changed by the previous filtering operation, the updated pixel value is used for the
next filtering.

15.3.2 Deringing filter

This filter comprises three subprocesses; threshold determination, index acquisition and adaptive smoothing. This
filter is applied to the pixels on 8x8 block basis. More specifically 8x8 pixels are processed by referencing 10x10
pixels at each block. The following notation is used to specify the six blocks in a macroblock. For instance,
block[5] corresponds to the Cb block whereas block[k] is used as a general representation in the following sections.

15.3.2.1 Threshold determination

Firstly, calculate maximum and minimum gray value within a block in the decoded image. Secondary, the
threshold denoted by thr[k] and the dynamic range of gray scale denoted by range[k] are set:

()thr k imum k imum k[] max [] min [] /= + + 1 2

range k imum k imum k[] max [] min []= −

An additional process is done only for the luminance blocks. Let max_range be the maximum value of the dynamic
range among four luminance blocks.

 ISO/IEC 14496-2 Committee Draft

311

max_ []maxrange range k=

Then apply the rearrangement as follows.

for(k=1 ; k<5 ; k++){
if(range[k] < 32 && max_range > =64)

thr[k] = thr[kmax];
if(max_range<16)

thr[k] = 0;
}

15.3.2.2 Index acquisition

Once the threshold value is determined, the remaining operations are purely 8x8 block basis. Let rec(h,v) and
bin(h,v) be the gray value at coordinates (h,v) where h,v=0,1,2,...,7, and the corresponding binary index,
respectively. Then bin(h,v) can be obtained by:

() ()
otherwise

thrvhrecif
vhbin

≥





=
,

0

1
,

Note that (h,v) is use to address a pixel in a block, while (i,j) is for accessing a pixel in a 3x3 window.

15.3.2.3 Adaptive smoothing

15.3.2.3.1 Adaptive filtering

The figure below is the binary indices in 8x8 block level, whereas practically 10x10 binary indices are calculated to
process one 8x8 block.

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 1 1 1

1 1 1 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 0 0

ISO/IEC 14496-2 Committee Draft

312

Figure 15-4: Example of adaptive filtering and binary index

The filter is applied only if the binary indices in a 3x3 window are all the same, i.e., all “0” indices or all “1”
indices. Note 10x10 binary indices are obtained with a single threshold which corresponds to the 8x8 block shown
in the above figure, where the shaded region represents the pixels to be filtered.

The filter coefficients used for both intra and non-intra blocks denoted by coef(i,j), where i,j=-1,0,1, are:

1 2 1

2 4 2

1 2 1

Figure 15-5: Filter mask for adaptive smoothing

Here the coefficient at the center pixel, i.e., coef(0,0), corresponds to the pixel to be filtered. The filter output
flt’(i,j) is obtained by:

() { () () } 16//,,8,'
1

1

1

1
∑ ∑

−= −=
++⋅+=

i j
jvihrecjicoefvhflt

15.3.2.3.2 Clipping

The maximum gray level change between the reconstructed pixel and the filtered one is limited according to the
quantization parameter, i.e., QP. Let flt(h,v) and flt’(h,v) be the filtered pixel value and the pixel value before
limitation, respectively.

if(flt’(h,v) - rec(h,v) > max_diff)
flt(h,v) = rec(h,v) + max_diff

else if(flt’(h,v) - rec(h,v) < -max_diff)
flt(h,v) = rec(h,v) - max_diff

else
flt(h,v) = flt’(h,v)

where max_diff=QP/2 for both intra and inetr macroblocks.

15.3.3 Further issues

In order to reduce the number of computations in post-filtering, two kinds of semaphores can be defined: the
blocking semaphores and the ringing semaphore. Depending on the blocking semaphores, the horizontal and the
vertical deblocking filtering is applied strongly and weakly on the block boundary. If the ringing semaphore (RS)
of a current block is “1”, deringing filtering is applied. For extracting the semaphores in intra-frame, when only a
DC component in the 8x8 inverse quantized coefficients (IQC), the DCT coefficients after inverse quantization,
has a non-zero value, both the horizontal blocking semaphore (HBS) and the vertical blocking semaphore (VBS) of
the block are set to “1”. When only the coefficients in the top row of the IQC have non-zero values, the VBS is set
to “1”. When only the coefficients in the far left column of the IQC have non-zero values, the HBS is set to “1”.
The RS is set to “1” if any non-zero coefficient exists in positions other than a DC component, the first horizontal
AC component, and the first vertical AC comonent. Also the semaphores of the inter-frame are calculated from
both the residual signal and the semaphores of the reference frame by using the motion vector.

[1] M2723 Y.L. Lee et al.

 ISO/IEC 14496-2 Committee Draft

313

16. Annex G

Profile and level restrictions

(This annex does not form an integral part of the International Standard)

This annex specifies the syntax element restrictions and permissible layer combinations.

ISO/IEC 14496-2 Committee Draft

314

17. Annex H

Visual Bitstream Syntax in MSDL-S

(This annex forms an integral part of the International Standard)

{Note: This annex needs to be updated to be conformant to the bitstream specification of this part.}

 ISO/IEC 14496-2 Committee Draft

315

18. Annex I

Patent statements

(This annex does not form an integral part of this International Standard)

ISO/IEC 14496-2 Committee Draft

316

19. Annex J

Bibliography

(This annex does not form an integral part of this International Standard)

1 Arun N. Netravali and Barry G. Haskell “Digital Pictures, representation and compression”
Plenum Press, 1988

2 See the Normative Reference for Recommendation ITU-R BT.601

3 See the Normative Reference for IEC Standard Publication 461

4 See the Normative Reference for Recommendation ITU-T H.263

5 See the Normative reference for IEEE Standard Specification P1180-1990

6 ISO/IEC 10918-1 | ITU-T T.81 (JPEG)

7 Barry G. Haskell, Atul Puri, Arun N. Netravali, "Digital Video: An Introduction to
MPEG-2," Chapman & Hall, ISBN 0-412-08411-2, 1997.

8 A. Puri, R. L. Schmidt and B. G. Haskell, "Improvements in DCT Based Video
Coding," Proc. SPIE Visual Communications and Image Processing, San Jose, Feb.
1997.

9 A. Puri, R. L. Schmidt and B. G. Haskell, "Performance Evaluation of the MPEG-4
Visual Coding Standard," to appear in SPIE Visual Communications and Image
Processing, San Jose, Jan 1998.

10 F. I. Parke, K. Waters, Computer Facial Animation, A K Peters, Wellesley, MA, USA, 1996

 ISO/IEC 14496-2 Committee Draft

317

20. Annex K

View Dependent Object Scalability

(This annex does form an integral part of this International Standard)

20.1 Introduction

Coding of View-Dependent Scalability (VDS) parameters for texture can provide for efficient
incremental decoding of 3D images (e.g. 2D texture mapped onto a gridded 3D mesh such as terrain).
Corresponding tools from ISO/IEC 14496-1 and 14496-2 of this specification are used in conjunction
with downstream and upstream channels of a decoding terminal. The combined capabilities provide
the means for an encoder to react to a stream of viewpoint information received from a terminal. The
encoder transmits a series of coded textures optimized for the viewing conditions which can be
applied in the rendering of textured 3D meshes by the receiving terminal. Each encoded view-
dependent texture (initial texture and incremental updates) typically corresponds to a specific 3D view
in the user’s viewpoint that is first transmitted from the receiving terminal.

A tool defined in ISO/IEC 14496-1 transmits 3D viewpoint parameters in the upstream channel back
to the encoder. The encoder's response is a frequency-selective, view-dependent update of DCT
coefficients for the 2D texture (based upon view-dependent projection of the 2D texture in 3D) back to
the receiving terminal, along the downstream channel, for decoding by a Visual DCT tool at the
receiving terminal. This bilateral communication supports interactive server-based refinement of
texture for low-bandwidth transmissions to a decoding terminal that renders the texture in 3D for a
user controlling the viewpoint movement. A gain in texture transmission efficiency is traded for
longer closed-loop latency in the rendering of the textures in 3D. The terminal coordinates inbound
texture updates with local 3D renderings, accounting for network delays so that texture cached in the
terminal matches each rendered 3D view.

A method to obtain an optimal coding of 3D data is to take into account the viewing position in order
to transmit only the most visible information. This approach reduces greatly the transmission delay,
in comparison to transmitting all scene texture that might be viewable in 3D from the encoding
database server to the decoder. At a given time, only the most important information is sent,
depending on object geometry and viewpoint displacement. This technique allows the data to be
streamed across a network, given that a upstream channel is available for sending the new viewing
conditions to the remote database. This principle is applied to the texture data to be mapped on a 3D
grid mesh. The mesh is first downloaded into the memory of the decoder using the appropriate BIFS
node, and then the DCT coefficients of the texture image are updated by taking into account the
viewing parameters, i.e. the field of view, the distance and the direction to the viewpoint.

20.2 Decoding Process of a View-Dependent Object

This subclause explains the process for decoding the texture data using the VDS parameters. In order
to determine which of the DCT coefficients are to be updated, a “mask”, which is a simple binary
image, shall be computed. The first step is to determine the viewing parameters obtained from the
texture-mesh composition procedure that drives 3D rendering in the user's decoding terminal. These
parameters are used to construct the DCT mask corresponding to the first viewpoint of the session
(VD mask). This mask is then updated with differential masks, built with the new viewing parameters
that allow the texture image to be streamed. The bitstream syntax for view parameters and
incremental transmission of DCT coefficients is given elsewhere in the ISO/IEC 14496-1 and 14496-2
of this standard.

20.2.1 General Decoding Scheme

The following subclauses outline the overall process for the decoder and encoder to accomplish the
VDS functionalities.

ISO/IEC 14496-2 Committee Draft

318

20.2.1.1 View-dependent parameters computation

The VDS parameters (α and β angles, distance d for each cell) shall be computed using the
geometrical parameters (Mesh, Viewpoint, Aimpoint, Rendering window). These parameters shall
be computed for each cell of the grid mesh.

20.2.1.2 VD mask computation

For each 8x8 block of texture elements within a 3D mesh cell, the locations of the visible DCT
coefficients inside the DCT block shall be computed using α and β angles, and the distance d defined
for each cell relative to the viewpoint. The result shall be put in a binary mask image.

20.2.1.3 Differential mask computation

With the knowledge of which DCT coefficients have already been received (Binary mask buffered
image) and which DCT coefficients are necessary for the current viewing conditions (Binary VD mask
image), the new DCT coefficients shall be determined (Binary Differential mask image) as described
in subclause 20.2.4 of this specification.

20.2.1.4 DCT coefficients decoding

The Video Intra bitstream, in the downstream channel, shall be decoded by the receiver terminal to
obtain the DCT coefficients (DCT image). The decoding procedure is described in subclause 20.2.5 of
this specification.

20.2.1.5 Texture update

The current DCT buffer in the receiver terminal shall be updated according to the Differential mask,
using the received DCT image. The new received DCT coefficients shall be added to the buffered
DCT image.

20.2.1.6 IDCT

The Inverse DCT of the updated DCT image shall computed, as specified in subclause 20.2.7 of this
specification, to obtain the final texture.

20.2.1.7 Rendering

The texture is mapped onto the 3D mesh and the rendering of the scene is done, taking into account
the mesh and the viewing conditions. This part of the procedure is outside the scope of this
specification.

 ISO/IEC 14496-2 Committee Draft

319

VD parameters
computation

VD mask
computation

Differential mask
computation

DCT coefficients
decoding

Texture
update

IDCT
computation

Mask Buffer

DCT Buffer

Rendering

α ,β ,d

VD Mask

Diff. Mask

DCT Image

New DCT Buffer

Texture Image

Displayed Image

Bitstream

Viewpoint,
Aimpoint

Mesh, FOV

This shape indicates that the parameter is
stored in the decoder memory

NB :

Figure 20-1: General Decoding Scheme of a View-Dependent Object

20.2.2 Computation of the View-Dependent Scalability parameters

The VDS parameters shall be computed for each cell of the grid mesh. The mesh may either be a
quadrilateral or a triangular mesh. The number of cells in each dimension shall be equal to the texture
size divided by 8.

ija

jia 1+ 11 ++ jia

1+ija
Cell

20.2.2.1 Distance criterion:

u
Rd

1
=

u is the distance between viewpoint and Cell center: cvu
rr

−= with

)(
4

1
1111 ++++ +++= jiijjiij aaaac

rrrrr
and v

r
is the viewpoint vector.

ISO/IEC 14496-2 Committee Draft

320

20.2.2.2 Rendering criterion:

q

p
Rr =

p is the distance between viewpoint and projection plane normalized to window width. p may be
computed using:

)2/tan(2
1

FOV
p =

View Of Field theis FOV,
)2/tan(2

1

FOV
p =

where FOV is the Field of View specified in radians, and q = <TextureWidth>/<WindowWidth>
where the texture width is the width of the full texture (1024 for instance) and the WindowWidth is
the width of the rendering window.

20.2.2.3 Orientation criteria:

)cos(

)cos(

β
α

=
=

Rb

Ra

The angle between the aiming direction and the normal of the current cell center shall be projected
into two planes. These two planes are spans of normal vector

v
n of the cell and the cell edges in x and

y directions, respectively. Then the angles (α, β) between projected vectors and the normal
v
n shall be

calculated, respectively.

The angle β is specified as the projection of the angle between
v
n , the normal of the quad cell, and

v
u ,

the aiming direction, onto the plane Π x that passes through
v
g x and is parallel to

v
n . Similarly, the

angle α is specified as the projection of the same angle onto the plane yΠ that passes through

yg
v

and its parallel to
v
n .

This is illustrated in Figure 20-2

Quad Cell

xΠ
n
r

xg
r

β

yg
r

u
r

ViewPoint

Quad Cell

n
r

xg
r

yg
r

u
r

ViewPoint

α

yΠ

Figure 20-2: Definition of αα and ββ angles

20.2.2.4 Cropping criterion:

Cells that are out of the field of view shall not be transmitted/received: that is, at least one of the 4
vertices which define the cell should all be inside the horizontal and vertical Field Of View (FOV).

The horizontal FOV shall be deduced from the vertical FOV using the screen geometry. The vertical
FOV is equal to the FOV. Then the following shall be calculated

))2/tan(tan(FOV
h

w
AHFOV ⋅= where w and h are the width and height, respectively, of the

rendered image.

 ISO/IEC 14496-2 Committee Draft

321

View Point
Vertical
FOV

ijv

jiv 1+ 11 ++ jiv

1+ijv

Vertical/Horizontal FOV

Figure 20-3: Definition of Out of Field of View cells

20.2.3 VD mask computation

The VD mask is a binary image of the same size as the texture image. Each value in the mask shall
indicate if the corresponding DCT coefficient is needed (1) or not (0), given the VDS parameters.

For each cell, the following rules shall be applied to fill the corresponding 8x8 block of the VD mask:

• Use of cropping criterion: If all the vertices of the cell are out of the field of view, the
corresponding 8x8 block of the mask image shall be set to 0.

• Use of rendering, distance, tilting and rotation criteria: For each 8x8 block of the mask
(corresponding to a quad cell), the 4 criteria mentioned above shall be computed. Two values of
the rotation and tilting criteria shall be obtained for a quad cell, but only the higher value of each
criterion shall be kept.

 Two thresholds, TX and TY, shall be calculated as the product of the three VDS parameters Rr, Rd, Rb,
and Rr, Rd, Ra, respectively, and the value 8. The results shall be bounded to 8. This procedure may
be indicated symbolically as follows

()
()adr

bdr

RRRMinTy

RRRMinTx

⋅⋅⋅=

⋅⋅⋅=

8,8

8,8

 The flag (i,j) of the 8x8 block corresponding to the current cell shall be set to 1 if i < TX and j < TY.
The flag shall be set to 0 in all other cases, as illustrated in the figure below.

ISO/IEC 14496-2 Committee Draft

322

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Tx

Ty

DC

 Figure 20-4: VD mask of an 8x8 block using VD parameters

20.2.4 Differential mask computation

 Once the first image has been received using the previously described filter, less data is necessary to
update the texture data for the following frames. (assuming there is a correlation between viewpoint
positions). Since this computation is exactly the same for each flag of each cell, it shall be performed
directly on the full mask images and not on a cell by cell basis.

 If the coefficient has not been already transmitted (buffer mask set to 0) and is needed according to
VDS visibility criteria (VD mask set to 1), then the corresponding pixel of the differential mask shall
be set to 1. This implies that the texture shall be updated, according to the procedure described in the
subclause 20.2.6 of this specification.

DCT Coeff.
Needed ?

DCT.already
received ?

No

Yes

VD Mask

Mask Buffer

No

Corresponding Inter
mask pixel set to 1.

Yes

Corresponding Inter
mask pixel set to 0.

 Figure 20-5: Differential mask computation scheme

20.2.5 DCT coefficients decoding

 The DCT coefficients shall be decoded using the Video Intra mode, Separated Texture/Motion mode
as described in the subclause 7.3 of the ISO/IEC 14496-2.

20.2.6 Texture update

 The Differential mask image shall be used to select which DCT coefficients of the buffered texture
should be updated using the decoded DCT coefficients.

• Y component

 ISO/IEC 14496-2 Committee Draft

323

 If the Differential mask is set to 0, the corresponding DCT value of the buffer shall be left unchanged,
otherwise the value shall be updated with the previously decoded DCT coefficient.

Inter Mask
Value=1?

No

Yes

Inter Mask

Update DCT buffer
image.

Do not update DCT
buffer image.

 Figure 20-6: Texture update scheme

• U and V component
The texture is coded in 4:2:0 format, as specified in subclause 6.1.1.6 of the ISO/IEC 14496-2, which
shall imply that for each chrominance DCT coefficient, 4 Differential mask flags shall be available.
The chrominance coefficients shall be received/transmitted if at least 1 of these 4 flags is set to 1.

20.2.7 IDCT

The IDCT and de-quantization shall be performed using the same process as in the Video Intra mode
as described in the clause 7.3 of ISO/IEC 14496-2.

ISO/IEC 14496-2 Committee Draft

324

21. Annex L

Decoder Configuration Information

(This annex does form an integral part of this International Standard)

21.1 Introduction

This annex identifies the syntax elements defined in the main body of ISO/IEC 14496-2 that describe
the configuration of the visual decoder. These elements shall be processed differently if this part of the
specification is used jointly with the Systems part, ISO/IEC 14496-1. Instead of conveying the
configuration at the beginning of a visual elementary bitstream, it shall be conveyed as part of an
Elementary Stream Descriptor that is itself included in an Object Descriptor describing the visual
object. This descriptor framework is specified in ISO/IEC 14496-1.

21.2 Description of the set up of a visual decoder (informative)

The process of accessing ISO/IEC 14496 content is specified in ISO/IEC 14496-1. It is summarized
here and visualized in Fig. L.1 to outline the processing of decoder configuration information in an
ISO/IEC 14496 terminal. This description assumes that all elementary streams are accessible and
solely the problem of identifying them is to be solved.

The content access procedure starts from an Initial Object Descriptor that may be made available
through means that are not defined in this specification, like a http or ftp link on an HTML page, a
descriptor in an ISO/IEC 13818-1 Transport Stream, or some H.245 signaling, etc. Note that this may
need standardisation by the responsible group.

This Initial Object Descriptor contains pointers at least to a scene description stream and an object
descriptor stream. The scene description stream conveys the time variant spatiotemporal layout of the
scene. For each streaming media object incorporated in the scene, an Object Descriptor exists that
describes the set of streams associated to this media object. The set of Object Descriptors is conveyed
in a separate stream, in order to distinguish scene description from the description of the streaming
resources.

Both the scene description stream and the object descriptor stream allow for time stamped updates of
the scene description and the object descriptors, respectively. Due to the time stamps it is always
known at which point in time, or from which point in time onwards a data item, called Access Unit, is
valid.

The Object Descriptor associated to a given visual object is identified by its ObjectDescriptor_ID.
Each visual object may require more than one elementary stream (ES) that convey its coded
representation, especially if any form of scaleability is used. Each of these streams is described by an
ES_Descriptor. This description contains a unique label for the stream, the ES_Id, and, among others,
the DecoderSpecificInfo structure that is of concern for the purpose of this annex.

 ISO/IEC 14496-2 Committee Draft

325

Scene Description Stream

Object Descriptor Stream

ObjectDescriptor

:
:

Video
Object

2D

Scene Description (BIFS)

ES_Descriptor {
....
DecoderSpecificInfo
....

}

ObjectDescriptorID

Visual Stream (e.g. temporal enhancement)

Visual Stream (e.g. base layer)

ES_ID

ES_Descriptor {
....
DecoderSpecificInfo
....

}

ES_ID

Figure 21-1: Visual decoder setup

21.2.1 Processing of decoder configuration information

After the retrieval of the Object Descriptor for a media object a decoder for the visual stream(s) is
instantiated, connected to the stream(s) and initialised with the data found in
ES_Descriptor.DecoderSpecificInfo.specificInfo[] for each stream. Subsequently, in a random access
scenario, the decoder is expected to search forward to the next random access point, while in a client-
server or local storage scenario, data in the visual stream may already be aligned in a way that the first
data arriving in the visual stream corresponds to a random access point.

The difference between a visual-only scenario, as specified in the main body of ISO/IEC 14496-2, and
an integrated application using both Systems and Visual parts of this specification is visualized in a
figure. Figure 21-2 shows the Visual-only approach with configuration information at the beginning
of a bit stream and optionally repeated thereafter to enable random access. Figure 21-3 with the
integrated Systems and Visual approach shows the plain bit streams with the configuration
information extracted into the object descriptors. In this case the object descriptors will be repeated if
random access is desired. The Access Units shown in the figure correspond to VOPs in the case of
visual media streams.

Cfg Access Unit AU AU AU AU AU AU

Cfg AU AU AU AU AUAU AU AU AU AU AU

Cfg AU AU AU AU AU AU AU

S1

S2

S3

Cfg

Cfg

Cfg

Media Elementary Streams

Figure 21-2: Visual-only scenario

ISO/IEC 14496-2 Committee Draft

326

Access Unit AU AU AU AU AU AU

AU AU AU AU AUAU AU AU AU AU AU

AU AU AU AU AU AU AU

S1

S2

S3

OD1 OD2S0

Cfg Cfg Cfg

OD1 OD2

Cfg Cfg Cfg
Object Descriptor Stream

Media Elementary Streams

Figure 21-3: Integrated Systems and Visual approach

21.3 Specification of decoder configuration information

The decoder configuration information for a visual elementary stream is given by a concatenation of
those syntax elements that precede the actual encoded data, i. e., that form the ‚stream header‘
according to the syntax specification in clause 6.2. Those syntax elements are identified separately for
each type of visual object in the subsequent subclauses. The syntax elements that are conveyed as
decoder configuration information shall not be present in the visual elementary stream itself.
Furthermore, the generic syntax definition in clause 6.2 is constrained to clarify that an elementary
stream may not contain a concatenation of, for example, multiple VisualObject() structures or multipe
VideoObjectLayer() structures.

The decoder configuration information shall be conveyed in the DecoderSpecificInfo.specificInfo[]
field of the respective ES_Descriptor and passed to the decoder before any data of the visual
elementary stream itself.

21.3.1 VideoObject

The decoder configuration information for a visual object of type VideoObject consists of the
following elements

• All syntax elements of VisualObjectSequence()
• including all syntax elements of one VisualObject()

• including all syntax elements of one VideoObject()
• including all syntax elements of one VideoObjectLayer() excluding the

trailing Group_of_VideoObjectPlane() and VideoObjectPlane() that convey the coded
data.

VisualObject.profile_and_level_indication is overridden by the value present in the ES_Descriptor for
this stream.

VisualObject.is_visual_object_identifier shall be zero. Note: Identification and priority of objects is
signaled generically for all kinds of audiovisual objects in the ES_Descriptor.

VideoObjectLayer.is_object_layer_identifier shall be zero. Note: Identification and priority of objects
is signaled generically for all kinds of audiovisual objects in the ES_Descriptor.

21.3.2 StillTextureObject

The decoder configuration information for a visual object of type StillTextureObject consists of the
following elements

• All syntax elements of VisualObjectSequence()
• including all syntax elements of one VisualObject()

• including all syntax elements of one StillTextureObject() up to and including
wavelet_decomposition_levels

 ISO/IEC 14496-2 Committee Draft

327

VisualObject.profile_and_level_indication is overridden by the value present in the ES_Descriptor for
this stream.

VisualObject.is_visual_object_identifier shall be zero. Note: Identification and priority of objects is
signaled generically for all kinds of audiovisual objects in the ES_Descriptor.

21.3.3 MeshObject

The decoder configuration information for a visual object of type MeshObject consists of the following
elements

• All syntax elements of VisualObjectSequence()
• including all syntax elements of one VisualObject()

• including all syntax elements of one MeshObject() excluding the trailing
MeshObjectPlane() that convey the coded data.

VisualObject.profile_and_level_indication is overridden by the value present in the ES_Descriptor for
this stream.

VisualObject.is_visual_object_identifier shall be zero. Note: Identification and priority of objects is
signaled generically for all kinds of audiovisual objects in the ES_Descriptor.

21.3.4 FaceObject

The decoder configuration information for a visual object of type FaceObject consists of the following
elements

• All syntax elements of VisualObjectSequence()
• including all syntax elements of one VisualObject()

• including all syntax elements of one FaceObject() up to and including
face_object_coding_type

VisualObject.profile_and_level_indication is overridden by the value present in the ES_Descriptor for
this stream.

VisualObject.is_visual_object_identifier shall be zero. Note: Identification and priority of objects is
signaled generically for all kinds of audiovisual objects in the ES_Descriptor.

ISO/IEC 14496-2 Committee Draft

328

22. Annex M

Visual Combination Profiles@Levels

(This annex does form an integral part of this International Standard)

The table that describes the visual combination profiles and levels is given below, with the following
notes:

1. Enhancement layers are not counted as separate objects.

2. Defined as the combined Object surface in active macroblocks (including memory needed for
enhancement layers and B-VOPs). The Macroblocks can be overlapping. The numbers were
derived as follows:

• 99 MBs can fill a QCIF surface; 198 MBs is twice that amount.
• 396 MBs can fill a CIF surface; 792 MBs is twice that amount; 495 MBs is 1.25 times 396.
• 1620 MBs can fill a ITU-R BT.601 surface twice.

3. The conformance point for the Simple Scalable CP levels is the Simple CP @L1 when spatial
scalability is used and Simple CP @ L2 when temporal scalability is used.

4. The numbers of MB’s per second were derived as follows:

• 1485 MBs/s corresponds to QCIF at 15Hz.
• 5940 MBs/s corresponds to 15 Hz CIF; 11880 MB/s corresponds to 30 Hz CIF.
• 7425 MB/s corresponds to 1.25 times the amount of MBs in CIF at 15 Hz.
• 4860 MB/s corresponds to 1620 MBs at 30 Hz.

5. The maximum Number of Boundary Macroblocks is 50% of the maximum total number of
macroblocks

 ISO/IEC 14496-2 Committee Draft

329

Visual
Combination

Profile

Level Typical
Visual
Session
Size (in-
dicative)

Max. total
number of
objects 1

Max. number
per type

Max.
number
different
Quant
Tables

Max. total
Ref.

memory
(MB

units)2

Max.
number of
MB/sec 4

Max. number
of Boundary

MB/sec.5

Max sprite
size (MB

units)

Wavelet restric-
tions

Max bitrate Max. enhancement
layers per object

12-Bit L2 CIF 8 8 x Core or
Simple

4 792 23760 11880
(= 50%)

N. A. 2 Mbit/s 1

Main L3 CCIR 601 16 16 x Main or
Core or Simple

4 1620 Progressive:
48600

Interlaced:
tbd

24300

(=50%)

t.b.d 1 taps default
integer filter

15 Mbit/s 1

Main L2 CIF 8 8 x Main or
Core or Simple

4 792 23760 11880
(= 50%)

t.b.d. 1 taps default
integer filter

 2 Mbit/s 1

Main L1 QCIF Will not be defined

Core L2 CIF 8 8 x Core or
Simple

4 792 23760 11880
(= 50%)

N. A. 2 Mbit/s 1

Core L1 QCIF 4 4 x Core or
Simple

4 198 5940 2970
(= 50%)

N. A. 384

kbits/s

1

Simple
Scalable

L2 CIF 4 4 x Simple or
Simple Scalable

1 792 23760 N.A. N.A 256 kbit/s 1 spatial or
temporal

enhancement layer

Simple
Scalable

L1 CIF 4 4 x Simple or
Simple Scalable

1 495 7425 N.A. N.A 128 kbit/s 1 spatial or
temporal

enhancement layer

Simple L3 CIF 4 4 x Simple 1 396 11880 N. A. N. A. 384 kbit/s N. A.

Simple L2 CIF 4 4 x Simple 1 396 5940 N. A. N. A. 128 kbits/s N. A.

Simple L1 QCIF 4 4 x Simple 1 99 1485 N. A. N. A. 64 kbits/s N. A.

Table 22-1 - Definition of Natural Visual Combination Profiles@Levels.

 ISO/IEC 14496-2 Committee Draft

1

