
© Copyright 2018 Xilinx

Introduction to High-Level

Synthesis with Vivado HLS

© Copyright 2018 Xilinx

Objectives

˃ After completing this module, you will be able to:

Describe the high level synthesis flow

Understand the control and datapath extraction

Describe scheduling and binding phases of the HLS flow

List the priorities of directives set by Vivado HLS

List comprehensive language support in Vivado HLS

Identify steps involved in validation and verification flows

Intro to HLS 11- 2

Outline

˃ Introduction to High-Level Synthesis

˃High-Level Synthesis with Vivado HLS

˃Language Support

˃Validation Flow

˃Summary

© Copyright 2018 Xilinx

Need for High-Level Synthesis

˃ Algorithmic-based approaches are getting popular due to accelerated design time

and time to market (TTM)

Larger designs pose challenges in design and verification of hardware at HDL level

˃ Industry trend is moving towards hardware acceleration to enhance performance

and productivity

CPU-intensive tasks can be offloaded to hardware accelerator in FPGA

Hardware accelerators require a lot of time to understand and design

˃ Vivado HLS tool converts algorithmic description written in C-based design flow

into hardware description (RTL)

Elevates the abstraction level from RTL to algorithms

˃ High-level synthesis is essential for maintaining design productivity for large

designs

Intro to HLS 11- 4

© Copyright 2018 Xilinx

High-Level Synthesis: HLS

˃ High-Level Synthesis

Creates an RTL implementation from C, C++,
System C, OpenCL API C kernel code

Extracts control and dataflow from the source
code

Implements the design based on defaults and
user applied directives

˃ Many implementation are possible from

the same source description

Smaller designs, faster designs, optimal
designs

Enables design exploration

Intro to HLS 11- 5

© Copyright 2018 Xilinx

Design Exploration with Directives

Intro to HLS 11- 6

The same hardware is used for each iteration of

the loop:

•Small area

•Long latency

•Low throughput

Different iterations are executed concurrently:

•Higher area

•Short latency

•Best throughput

Different hardware is used for each iteration of the

loop:

•Higher area

•Short latency

•Better throughput

Before we get into details, let’s look

under the hood ….

One body of code:

Many hardware outcomes

…

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

….

© Copyright 2018 Xilinx

Introduction to High-Level Synthesis

˃ How is hardware extracted from C code?

Control and datapath can be extracted from C code at the top level

The same principles used in the example can be applied to sub-functions

‒ At some point in the top-level control flow, control is passed to a sub-function

‒ Sub-function may be implemented to execute concurrently with the top-level and or other sub-
functions

˃ How is this control and dataflow turned into a hardware design?

Vivado HLS maps this to hardware through scheduling and binding processes

˃ How is my design created?

How functions, loops, arrays and IO ports are mapped?

Intro to HLS 11- 7

© Copyright 2018 Xilinx

HLS: Control Extraction

Intro to HLS 11- 8

void fir (

data_t *y,

coef_t c[4],

data_t x

) {

static data_t shift_reg[4];

acc_t acc;

int i;

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

}

Code

From any C code example .. The loops in the C code correlated to states

of behavior

Function Start

For-Loop Start

For-Loop End

Function End

0

2

Control Behavior

1

Finite State Machine (FSM)

states

This behavior is extracted into a hardware

state machine

© Copyright 2018 Xilinx

HLS: Control & Datapath Extraction

Intro to HLS 11- 9

void fir (

data_t *y,

coef_t c[4],

data_t x

) {

static data_t shift_reg[4];

acc_t acc;

int i;

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

}

Code

From any C code example ..

0

2

Control Behavior

1

Finite State Machine (FSM)

states

The control is

known

Operations

Operations are

extracted…

-

==

+

>=

*

+

*

RDx

WRy

RDc

Control & Datapath Behavior

A unified control dataflow behavior is

created.

Control Dataflow

>=

-

+

==

*

+ *

WRy

-

RDx RDc

© Copyright 2018 Xilinx

High-Level Synthesis: Scheduling & Binding

˃ Scheduling & Binding

Scheduling and Binding are at the heart of HLS

˃ Scheduling determines in which clock cycle an operation will occur

Takes into account the control, dataflow and user directives

The allocation of resources can be constrained

˃ Binding determines which library cell is used for each operation

Takes into account component delays, user directives

Intro to HLS 11- 10

Design Source
(C, C++, SystemC)

Scheduling Binding

RTL
(Verilog, VHDL, SystemC)

Technology

Library

User

Directives

© Copyright 2018 Xilinx

Scheduling

˃ The operations in the control flow graph are mapped into clock cycles

˃ The technology and user constraints impact the schedule
A faster technology (or slower clock) may allow more operations to occur in the same clock
cycle

˃ The code also impacts the schedule
Code implications and data dependencies must be obeyed

Intro to HLS 11- 11

void foo (

…

t1 = a * b;

t2 = c + t1;

t3 = d * t2;

out = t3 – e;

}

+

*
a
b
c

-

*d

e out

* -*+
Schedule 1

* -*+
Schedule 2

© Copyright 2018 Xilinx

Binding

˃ Binding is where operations are mapped to cores from the hardware library
Operators map to cores

˃ Binding Decision: to share
Given this schedule:

‒ Binding must use 2 multipliers, since both are in the same cycle
‒ It can decide to use an adder and subtractor or share one addsub

˃ Binding Decision: or not to share
Given this schedule:

‒ Binding may decide to share the multipliers (each is used in a different cycle)
‒ Or it may decide the cost of sharing (muxing) would impact timing and it may decide not to share them
‒ It may make this same decision in the first example above too

Intro to HLS 11- 12

* -*+

* -*+

© Copyright 2018 Xilinx

High-Level Synthesis with

Vivado HLS

© Copyright 2018 Xilinx

RTL vs High-Level Language

Intro to HLS 11- 14

© Copyright 2018 Xilinx

Vivado HLS Benefits

˃ Productivity

Verification

‒ Functional

‒ Architectural

Abstraction

‒ Datatypes

‒ Interface

‒ Classes

Automation

˃ Block level specification AND verification significantly reduced

Intro to HLS 11- 15

Video Design Example

Input C Simulation Time RTL Simulation Time Improvement

10 frames

1280x720

10s ~2 days

(ModelSim)

~12000x

RTL (Spec) RTL (Sim)

C (Spec/Sim) RTL (Sim)

© Copyright 2018 Xilinx

Vivado HLS Benefits

˃ Portability

Processors and FPGAs

Technology migration

Cost reduction

Power reduction

˃ Design and IP reuse

Intro to HLS 11- 16

© Copyright 2018 Xilinx

Vivado HLS Benefits

˃ Permutability

Architecture Exploration

‒ Timing

 Parallelization

 Pipelining

‒ Resources

 Sharing

Better QoR

˃ Rapid design exploration delivers QoR

rivaling hand-coded RTL

Intro to HLS 11- 17

© Copyright 2018 Xilinx

Understanding Vivado HLS Synthesis

˃ Vivado HLS

Determines in which cycle operations should occur (scheduling)

Determines which hardware units to use for each operation (binding)

Performs high-level synthesis by :

‒ Obeying built-in defaults

‒ Obeying user directives & constraints to override defaults

‒ Calculating delays and area using the specified technology/device

˃ Priority of directives in Vivado HLS

1. Meet Performance (clock & throughput)

‒ Vivado HLS will allow a local clock path to fail if this is required to meet throughput

‒ Often possible the timing can be met after logic synthesis

2. Then minimize latency

3. Then minimize area

Intro to HLS 11- 18

© Copyright 2018 Xilinx

The Key Attributes of C code

Intro to HLS 11- 19

Functions: All code is made up of functions which represent the design

hierarchy: the same in hardware

Loops: Functions typically contain loops. How these are handled can have a

major impact on area and performance

Arrays: Arrays are used often in C code. They can influence the device IO

and become performance bottlenecks

Operators: Operators in the C code may require sharing to control area or

specific hardware implementations to meet performance

Types: All variables are of a defined type. The type can influence the area

and performance

Let’s examine the default synthesis behavior of these …

Top Level IO : The arguments of the top-level function determine the

hardware RTL interface ports

void fir (

data_t *y,

coef_t c[4],

data_t x

) {

static data_t shift_reg[4];

acc_t acc;

int i;

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i] * c[i];

}

}

*y=acc;

}

© Copyright 2018 Xilinx

Functions & RTL Hierarchy

˃ Each function is translated into an RTL block
Verilog module, VHDL entity

By default, each function is implemented using a common instance
Functions may be inlined to dissolve their hierarchy
‒ Small functions may be automatically inlined

Intro to HLS 11- 20

void A() { ..body A..}

void B() { ..body B..}

void C() {

B();

}

void D() {

B();

}

void foo_top() {

A(…);

C(…);

D(…)

}

foo_top

A

C
B

D
B

Source Code RTL hierarchy

Each function/block can be shared like any other component (add, sub, etc) provided

it’s not in use at the same time
my_code.c

© Copyright 2018 Xilinx

Types = Operator Bit-sizes

Intro to HLS 11- 21

void fir (

data_t *y,

coef_t c[4],

data_t x

) {

static data_t shift_reg[4];

acc_t acc;

int i;

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

}

Code

From any C code example ...

Operations

Operations are

extracted…

-

==

+

>=

*

+

*

RDx

WRy

RDc

Types

The C types define the size of the hardware used:

handled automatically

long long (64-bit)

int (32-bit)

short (16-bit)

char (8-bit)

double (64-bit)float (32-bit)

unsigned types

Standard C types

Arbitary Precision types

C: ap(u)int types (1-1024)

C++: ap_(u)int types (1-1024)

ap_fixed types

C++/SystemC: sc_(u)int types (1-1024)

sc_fixed types

Can be used to define any variable to be a specific bit-width (e.g. 17-bit, 47-

bit etc).

© Copyright 2018 Xilinx

Loops

˃ By default, loops are rolled

Each C loop iteration Implemented in the same state

Each C loop iteration Implemented with same resources

Loops can be unrolled if their indices are statically determinable at elaboration time
‒ Not when the number of iterations is variable

Unrolled loops result in more elements to schedule but greater operator mobility
‒ Let’s look at an example ….

Intro to HLS 11- 22

void foo_top (…) {
...
Add: for (i=3;i>=0;i--) {

b = a[i] + b;
...
}

foo_top

+
Synthesis

N

a[N]
b

Loops require labels if they are to be referenced by Tcl

directives

(GUI will auto-add labels)

© Copyright 2018 Xilinx

Data Dependencies: Good

˃ Example of good mobility
The read on data port X can occur anywhere from the start to iteration 4
‒ The only constraint on RDx is that it occur before the final multiplication

Vivado HLS has a lot of freedom with this operation
‒ It waits until the read is required, saving a register

‒ There are no advantages to reading any earlier (unless you want it registered)

‒ Input reads can be optionally registered

The final multiplication is very constrained…

Intro to HLS 11- 23

void fir (

…

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

}

+

==

-

>=

RDx

*
+

==

-

>=*
+

==

-

>=*
+

==

-

>=* WRy

Iteration 1 Iteration 2 Iteration 3 Iteration 4

- - -

RDcRDcRDcRDc

The read X operation has

good mobility

Default Schedule

© Copyright 2018 Xilinx

Data Dependencies: Bad

˃ Example of bad mobility
The final multiplication must occur before the read and final addition
‒ It could occur in the same cycle if timing allows

Loops are rolled by default
‒ Each iteration cannot start till the previous iteration completes
‒ The final multiplication (in iteration 4) must wait for earlier iterations to complete

The structure of the code is forcing a particular schedule
‒ There is little mobility for most operations

Optimizations allow loops to be unrolled giving greater freedom

Intro to HLS 11- 24

void fir (

…

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

}

+

==

-

>=

RDx

*
+

==

-

>=*
+

==

-

>=*
+

==

-

>=* WRy

Iteration 1 Iteration 2 Iteration 3 Iteration 4

- - -

RDcRDcRDcRDc

Mult is very

constrained

Default Schedule

© Copyright 2018 Xilinx

Schedule after Loop Optimization

˃ With the loop unrolled (completely)

The dependency on loop iterations is gone

Operations can now occur in parallel

‒ If data dependencies allow

‒ If operator timing allows

Design finished faster but uses more operators

‒ 2 multipliers & 2 Adders

˃ Schedule Summary

All the logic associated with the loop counters and index checking are
now gone

Two multiplications can occur at the same time

‒ All 4 could, but it’s limited by the number of input reads (2) on coefficient port C

Why 2 reads on port C?

‒ The default behavior for arrays now limits the schedule…

Intro to HLS 11- 25

+

RDx

*

+

*
*
*

WRy

RDc

RDc

+

RDc

RDc

void fir (

…

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

}

© Copyright 2018 Xilinx

Arrays in HLS

˃ An array in C code is implemented by a memory in the RTL

By default, arrays are implemented as RAMs, optionally a FIFO

˃ The array can be targeted to any memory resource in the library

The ports (Address, CE active high, etc.) and sequential operation (clocks from address to
data out) are defined by the library model

All RAMs are listed in the Vivado HLS Library Guide

˃ Arrays can be merged with other arrays and reconfigured

To implement them in the same memory or one of different widths & sizes

˃ Arrays can be partitioned into individual elements

Implemented as smaller RAMs or registers

Intro to HLS 11- 26

void foo_top(int x, …)

{

int A[N];

L1: for (i = 0; i < N; i++)

A[i+x] = A[i] + i;

}

N-1

N-2

…

1

0

Synthesis
DOUTDIN

ADDR

CE

WE

SPRAMBA[N]
A_outA_in

© Copyright 2018 Xilinx

Top-Level IO Ports

˃ Top-level function arguments

All top-level function arguments have a default hardware port type

˃ When the array is an argument of the top-level function

The array/RAM is “off-chip”

The type of memory resource determines the top-level IO ports

Arrays on the interface can be mapped & partitioned
‒ E.g. partitioned into separate ports for each element in the array

˃ Default RAM resource

Dual port RAM if performance can be improved otherwise Single Port RAM

Intro to HLS 11- 27

Synthesis

foo_top DOUT0DIN0

ADDR0

CE0

WE0

DPRAMBvoid foo_top(int A[3*N] , int x)

{

L1: for (i = 0; i < N; i++)

A[i+x] = A[i] + i;

}

+
Number of ports defined by the

RAM resource
DIN1

ADDR1

CE1

WE1

DOUT1

© Copyright 2018 Xilinx

Schedule after an Array Optimization

˃ With the existing code & defaults

Port C is a dual port RAM

Allows 2 reads per clock cycles

‒ IO behavior impacts performance

˃ With the C port partitioned into (4) separate ports

All reads and mults can occur in one cycle

If the timing allows

‒ The additions can also occur in the same cycle

‒ The write can be performed in the same cycles

‒ Optionally the port reads and writes could be registered

Intro to HLS 11- 28

Note: It could have performed 2 reads in the original rolled design but there

was no advantage since the rolled loop forced a single read per cycle +

RDx

*

+

*
*
*

WRy

RDc

RDc

+

RDc

RDc

+

RDx

*

+

*
*
*

WRy

RDc

+

RDc

RDc

RDc

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

© Copyright 2018 Xilinx

Operators

˃ Operator sizes are defined by the type

The variable type defines the size of the operator

˃ Vivado HLS will try to minimize the number of operators

By default Vivado HLS will seek to minimize area after constraints are satisfied

˃ User can set specific limits & targets for the resources used

Allocation can be controlled

‒ An upper limit can be set on the number of operators or cores allocated for the design: This can be used to force
sharing

‒ e.g limit the number of multipliers to 1 will force Vivado HLS to share

Resources can be specified

‒ The cores used to implement each operator can be specified

‒ e.g. Implement each multiplier using a 2 stage pipelined core (hardware)

Intro to HLS 11- 29

3 2 1 0

Use 1 mult, but take 4 cycle even if it could be done in

1 cycle using 4 mults

3 1

Same 4 mult operations could be done with 2 pipelined

mults (with allocation limiting the mults to 2)

2 0

© Copyright 2018 Xilinx

Language Support

© Copyright 2018 Xilinx

Comprehensive C Support

˃ A Complete C Validation & Verification Environment

Vivado HLS supports complete bit-accurate validation of the C model

Vivado HLS provides a productive C-RTL co-simulation verification solution

˃ Vivado HLS supports C, C++, SystemC and OpenCL API C kernel

Functions can be written in any version of C

Wide support for coding constructs in all three variants of C

˃ Modeling with bit-accuracy

Supports arbitrary precision types for all input languages

Allowing the exact bit-widths to be modeled and synthesized

˃ Floating point support

Support for the use of float and double in the code

˃ Support for OpenCV functions

Enable migration of OpenCV designs into Xilinx FPGA

Libraries target real-time full HD video processing

Intro to HLS 11- 31

© Copyright 2018 Xilinx

C, C++ and SystemC Support

˃ The vast majority of C, C++ and SystemC is supported

Provided it is statically defined at compile time

If it’s not defined until run time, it won’ be synthesizable

˃ Any of the three variants of C can be used

If C is used, Vivado HLS expects the file extensions to be .c

For C++ and SystemC it expects file extensions .cpp

Intro to HLS 11- 32

© Copyright 2018 Xilinx

Validation Flow

© Copyright 2018 Xilinx

C Validation and RTL Verification

˃ There are two steps to verifying the design

– Pre-synthesis: C Validation

• Validate the algorithm is correct

– Post-synthesis: RTL Verification

• Verify the RTL is correct

˃ C validation

– A HUGE reason users want to use HLS

• Fast, free verification

− Validate the algorithm is correct before
synthesis

• Follow the test bench tips given over

˃ RTL Verification

Vivado HLS can co-simulate the RTL with the
original test bench

Intro to HLS 11- 34

Validate C

Verify RTL

© Copyright 2018 Xilinx

C Function Test Bench

˃ The test bench is the level above the function

The main() function is above the function to be synthesized

˃ Good Practices

The test bench should compare the results with golden data

‒ Automatically confirms any changes to the C are validated and verifies the RTL is correct

The test bench should return a 0 if the self-checking is correct

‒ Anything but a 0 (zero) will cause RTL verification to issue a FAIL message

‒ Function main() should expect an integer return (non-void)

Intro to HLS 11- 35

int main () {

int ret=0;

…

ret = system("diff --brief -w output.dat output.golden.dat");

if (ret != 0) {

printf("Test failed !!!\n");

ret=1;

} else {

printf("Test passed !\n");

}

…

return ret;

}

© Copyright 2018 Xilinx

Determine or Create the Top-level Function

˃ Determine the top-level function for synthesis

˃ If there are Multiple functions, they must be merged

There can only be 1 top-level function for synthesis

Intro to HLS 11- 36

int main () {

...

func_A(a,b,*i1);

func_B(c,*i1,*i2);

func_C(*i2,ret)

return ret;

}

func_A

func_B

func_C

main.c

#include func_AB.h

func_AB(a,b,c, *i1, *i2) {

...

func_A(a,b,*i1);

func_B(c,*i1,*i2);

…

}

#include func_AB.h

int main (a,b,c,d) {

...

// func_A(a,b,i1);

// func_B(c,i1,i2);

func_AB (a,b,c, *i1, *i2);

func_C(*i2,ret)

return ret;

}

func_A

func_B

func_AB

func_C

main.c

func_AB.c

Given a case where functions func_A and

func_B are to be implemented in FPGA

Re-partition the design to create a new single

top-level function inside main()

Recommendation is to separate test

bench and design files

© Copyright 2018 Xilinx

Summary

© Copyright 2018 Xilinx

Summary

˃ In HLS

C becomes RTL

Operations in the code map to hardware resources

Understand how constructs such as functions, loops and arrays are synthesized

˃ HLS design involves

Synthesize the initial design

Analyze to see what limits the performance

‒ User directives to change the default behaviors

‒ Remove bottlenecks

Analyze to see what limits the area

‒ The types used define the size of operators

‒ This can have an impact on what operations can fit in a clock cycle

Intro to HLS 11- 38

© Copyright 2018 Xilinx

Summary

˃ Use directives to shape the initial design to meet performance

Increase parallelism to improve performance

Refine bit sizes and sharing to reduce area

˃ Vivado HLS benefits

Productivity

Portability

Permutability

Intro to HLS 11- 39

