
© Copyright 2018 Xilinx

Data Types



© Copyright 2018 Xilinx

Objectives

Data Types 14- 2

˃ After completing this module, you will be able to:

State various data types of C, C++, and SystemC are supported 

Identify advantages and pitfalls of using arbitrary precision 

List various supported quantization and overflow modes

Describe the floating point support



Outline

˃C and C++ Data Types

˃Arbitrary Precision Data Types

˃System C Data Types

˃Floating Point Support

˃Summary



© Copyright 2018 Xilinx

Data Types and Bit-Accuracy

Data Types 14- 4

˃ C and C++ have standard types created on the 8-bit boundary

char (8-bit), short (16-bit), int (32-bit), long long (64-bit)

‒ Also provides stdint.h (for C), and stdint.h and cstdint (for C++)

‒ Types: int8_t, uint16_t, uint32_t, int_64_t etc. 

They result in hardware which is not bit-accurate and can give sub-standard QoR

˃ Vivado HLS provides bit-accurate types in both C and C++

Allow any arbitrary bit-width to be specified

Hence designers can improve the QoR of the hardware by specifying exact data widths

‒ Can be specified in the code and simulated to ensure there is no loss of accuracy

˃ Vivado HLS also provides half-precision floating-point data types

14- 4



© Copyright 2018 Xilinx

Why is arbitrary precision Needed?

Data Types 14- 5

˃ Code using native C int type

˃ However, if the inputs will only have a max range of 8-bit
Arbitrary precision data-types should be used

It will result in smaller & faster hardware with the full required precision
With arbitrary precision types on function interfaces, Vivado HLS can propagate the correct bit-
widths throughout the design



© Copyright 2018 Xilinx

HLS & C Types

Data Types 14- 6

˃ There are 4 basic types you can use for HLS

Standard C/C++ Types

Vivado HLS enhancements to C: apint

Vivado HLS enhancements to C++: ap_int, ap_fixed

SystemC types 

14- 6



© Copyright 2018 Xilinx

Arbitrary Precision Data Types



© Copyright 2018 Xilinx

Arbitrary Precision : C apint types 

Data Types 14- 8

˃ For C 

Vivado HLS types apint can be used

Range: 1 to 1024 bits

Specify the integers as shown and just use them like any other variable

˃ There are two issues to be aware of 

C compilation : YOU MUST use apcc to simulate (no debugger support)

Be aware of integer promotion issues

Failure to use apcc to compile the C will result in 

INCORRECT results
This only applies to C

NOT C++ or SystemC

14- 8

#include ap_cint.h

void foo_top (…) {

int9 var1; // 9-bit

uint10 var2; // 10-bit unsigned

Include header file



© Copyright 2018 Xilinx

Using apcc

Data Types 14- 9

˃ apcc
Command line compatible with gcc
Required to support arbitrary precision for C 
Use apcc at the Vivado HLS CLI (shell)

HLS uses apcc automatically when it sees arbitrary precision is used in C model

˃ apcc understands bit-accurate types

Once you create bit-accurate types you must re-validate the C
It’s the only way to discover rounding and truncation issues
‒ It’s fast in C !!!

#include “ap_cint.h”
int3 ex_bit_accurate (

int3 x1,
int3 y1
) {
return x1+y1;

}

0 0 1 00 0 0…

0 0 1 00 0 0…

0 1 0 00 0 0…
+

gcc simulation

2

2

4

0 1 0

0 1 0

1 0 0
+

apcc simulation

2

2

-4

x1

y1

return

Given: x1=2 

y1=2 Simulates as 

hardware

shell> apcc –o my_test test.c test_tb.c 



© Copyright 2018 Xilinx

Integer Promotion

Data Types 14- 10

˃ Integer promotion 

The apcc utility must still obey standard C/gcc rules and protocols

Integer promotion:

‒ If the operator result is a larger type 

‒ The result is promoted to the target type (on 8, 16, 32 or 64 boundaries)

0 0 0 00 1 00

0 0 0 00 1 00

0 0 0 00 0 01 0*

Result in Hex

65536

65536

0

a

b
Integer promotion promotes a*b to 

32-bit then assigns this to tmp: the 

top-bits are lost

Solution: cast before 

the operation tmp = (int36)a * (int36)b;

0 0 0 00 1 00

0 0 0 00 1 00

0 0 0 00 0 001* 4294967296

a

b
65536

65536

0 0 0 00 0 000 0

#include "ap_cint.h"

int36 mult (int18 a,int18 b) {

int36  tmp;

tmp = a * b;

return tmp;

}

Given: 

a=0x10000 

b=0x10000



© Copyright 2018 Xilinx

C apint types: Bit-Selection & Manipulation

Data Types 14- 11
14- 11

Function Example

Length Returns the length of the variable. res=apint_bitwidthof(var);

Concatenation Concatenation low to high res=apint_concatenate(var_high, var_low)

Get a range Return a bit-range from high to low. res= apint_get_range(var, high,low)

Set a range Reserve the bits in the variable apint_set_range(res, high, low, res)

(n)and_reduce (N)And reduce all bits. bool t = apint_(n)and_reduce(var);

(n)or_reduce (N)Or reduce all bits bool t = apint_(n)or_reduce(var);

X(n)or_reduce X(N)or reduce all bits bool t = apint_x(n)or_reduce(var);

Get a bit Get a specific bit res=apint_get_bit(var, bit-number)

Set bit value Sets the value of a specific bit apint_set_bit(res, bit-number)

Print value Print the value of an apint variable apint_print(int#N value, int radix));

Print value to file Print the value of an apint variable to a file apint_fprint(FILE* file, int#N value, int radix)



© Copyright 2018 Xilinx

#include ap_int.h

void foo_top (…) {

ap_int<9> var1;        // 9-bit

ap_uint<10> var2;        // 10-bit unsigned

shell> g++ –o my_test test.c test_tb.c -I$VIVADO_HLS_HOME/include

Arbitrary Precision : C++ ap_int types 

Data Types 14- 12

˃ For C++ 

Vivado HLS types ap_int can be used

Range: 1 to 1024 bits

 Signed: ap_int<W>

 Unsigned: ap_uint<W>

The bit-width is specified by W

˃ C++ compilation

Use g++ at the Vivado HLS CLI (shell)

‒ Include the path to the Vivado HLS header file

Include header file

14- 12



© Copyright 2018 Xilinx

Microsoft Visual Studio Support

Data Types 14- 13

˃ C++ Arbitrary Precision Types are supported in Microsoft Visual Studio Compiler

Simply include the Vivado HLS directory $(VIVADO_HLS_HOME)/include

Note: C designs using arbitrary precision types (apint) must still use apcc

˃ C++ Designs using AP_INT types

In the MVS Project

‒ Click Project

‒ Click Properties

‒ In the panel that shows up, select C/C++

‒ Select general

‒ Click on additional include directories and 
add the path

14- 13



© Copyright 2018 Xilinx

AP_INT operators & conversions

Data Types 14- 14

˃ Fully Supported for all Arithmetic operator

˃ Methods for type conversion

14- 14

Operations

Arithmetic + - * / % ++ --

Logical ~ !

Bitwise & | ^

Relational >  < <= >= == != 

Assignment *= /= %= += -=

<<= >>= &= ^= |=

Methods Example

To integer Convert to a integer type res = var.to_int();

To unsigned integer Convert to an unsigned integer type res = var.to_uint();

To 64-bit integer Convert to a 64-bit long long type res = var.to_int64();

To 64-bit unsigned integer Convert to an unsigned long long type res = var.to_uint64();

To double Convert to double type res = var.double();



© Copyright 2018 Xilinx

AP_INT Bit Manipulation methods

Data Types 14- 15

Methods Example

Length Returns the length of the variable. res=var.length;

Concatenation Concatenation low to high res=var_hi.concat(var_lo);

Or  res= (var_hi,var_lo)

Range or Bit-select Return a bit-range from high to low or a specific bit. res=var.range(high bit,low bit); 

Or res=var[bit-number]

(n)and_reduce (N)And reduce all bits. bool t = var.and_reduce(); 

(n)or_reduce (N)Or reduce all bits bool t = var.or_reduce(); 

X(n)or_reduce X(N)or reduce all bits bool t = var.xor_reduce(); 

Reverse Reserve the bits in the variable var.reverse();

Test bit Tests if a bit is true bool t = var.test(bit-number)

Set bit value Sets the value of a specific bit var.set_bit(bit-number, value)

Set bit Set a specific bit to one var.set(bit-number);

Clear bit Clear a specific bit to zero var.clear(bit-number);

Invert Bit Invert a specific bit var.invert(bit-number);

Rotate right Rotate the N-bits to the right var.rrotate(N);

Rotate left Rotate the N-bits to the left var.lrotate(N);

Bitwise Invert Invert all bits var.b_not();

Test sign Test if the sign is negative (return true) bool t = var.sign();



© Copyright 2018 Xilinx

Arbitrary Precision : C++ ap_fixed types 

Data Types 14- 16

˃ Support for fixed point datatypes in C++

Include the path to the ap_fixed.h header file

Both signed (ap_fixed) and unsigned types (ap_ufixed)

˃ Advantages of Fixed Point types

The result of variables with different sizes is automatically taken care of

The binary point is automatically aligned

‒ Quantization: Underflow is automatically handled

‒ Overflow: Saturation  is automatically handled 

14- 16

#include ap_fixed.h

void foo_top (…) {

ap_fixed<9, 5, AP_RND_CONV, AP_SAT>  var1; //  9-bit, 

//  5 integer  bits, 4 decimal places

ap_ufixed<10, 7, AP_RND_CONV, AP_SAT>  var2;  // 10-bit unsigned 

//   7 integer bits, 3 decimal places

$VIVADO_HLS_HOME/include/ap_fixed.h

Alternatively, make the result variable large enough such that overflow or 

underflow does not occur



© Copyright 2018 Xilinx

Definition of ap_fixed type

Data Types 14- 17

˃ Fixed point types are specified by
Total bit width (W)

The number of integer bits (I)

The quantization/rounding mode (Q)

The overflow/saturation mode (O)

The number of saturation bits

14- 17

Description
W Word length in bits
I The number of bits used to represent the integer value (the number of bits above the decimal point)

Q Quantization mode (modes detailed below) dictates the behavior when greater precision is generated than can be defined by the LSBs.

AP_Fixed Mode Description
AP_RND Rounding to plus infinity
AP_RND_ZERO Rounding to zero
AP_RND_MIN_INF Rounding to minus infinity
AP_RND_INF Rounding to infinity
AP_RND_CONV Convergent rounding
AP_TRN Truncation to minus infinity
AP_TRN_ZERO Truncation to zero (default)

O Overflow mode (modes detailed below) dictates the behavior when more bits are required than the word contains.

AP_Fixed Mode Description
AP_SAT Saturation
AP_SAT_ZERO Saturation to zero
AP_SAT_SYM Symmetrical saturation
AP_WRAP Wrap around (default)
AP_WRAP_SM Sign magnitude wrap around

N The number of saturation bits in wrap modes.

Binary point  : W = I + B

ap_[u]fixed<W, I , Q, O , N> 

I-1 -1 … -B1 0…



© Copyright 2018 Xilinx

Quantization Modes

Data Types 14- 18

˃ Quantization mode 

Determines the behavior when an operation generates more precision in the LSBs than is 
available

˃ Quantization Modes (rounding): 

AP_RND, AP_RND_MIN_IF, AP_RND_IF

AP_RND_ZERO,  AP_RND_CONV

˃ Quantization Modes (truncation): 

AP_TRN, AP_TRN_ZERO

14- 18



© Copyright 2018 Xilinx

Quantization Modes: Rounding 

Data Types 14- 19

˃ AP_RND_ZERO: rounding to zero
For positive numbers, the redundant bits are truncated

For negative numbers, add MSB of removed bits to the remaining bits. 

The effect is to round towards zero.

‒ 01.01 (1.25 using 4 bits) rounds to 01.0 (1 using 3 bits)

‒ 10.11 (-1.25 using 4 bits) rounds to 11.0 (-1 using 3 bits)

˃ AP_RND_CONV: rounded to the nearest value 
The rounding depends on the least significant bit 

If the least significant bit is set, rounding towards plus infinity 

Otherwise, rounding towards minus infinity

‒ 00.11 ( 0.75 using 4-bit) rounds to 01.0 (1.0 using 3-bit)

‒ 10.11 (-1.25 using 4-bit) rounds to 11.0 (-1.0 using 3-bit)

14- 19



© Copyright 2018 Xilinx

Quantization Modes: Truncation

Data Types 14- 20

˃ AP_TRN: truncate

Remove redundant bits. Always rounds to minus infinity

This is the default.

‒ 01.01(1.25)  01.0 (1)

˃ AP_TRN_ZERO: truncate to zero

For positive numbers, the same as AP_TRN

‒ For positive numbers: 01.01(1.25)  01.0(1)

For negative numbers, round to zero

‒ For negative numbers: 10.11 (-1.25)  11.0(-1)

14- 20



© Copyright 2018 Xilinx

Overflow Modes

Data Types 14- 21

˃ Overflow mode

Determines the behavior when an operation generates more bits than can be satisfied by the 
MSB

˃ Overflow Modes (saturation)

AP_SAT, AP_SAT_ZERO, AP_SAT_SYM

˃ Overflow Modes (wrap)

AP_WRAP, AP_WRAP_SM

The number of saturation bits, N, is considered when wrapping

14- 21



© Copyright 2018 Xilinx

Overflow Mode: Saturation

Data Types 14- 22

˃ AP_SAT: saturation
This overflow mode will convert the specified value to MAX for an overflow or MIN for an 
underflow condition 

MAX and MIN are determined from the number of bits available

˃ AP_SAT_ZERO: saturates to zero
Will set the result to zero, if the result is out of range

˃ AP_SAT_SYM: symmetrical saturation
In 2’s complement notation one more negative value than positive value can be represented

If it is desirable to have the absolute values of MIN and MAX symmetrical around zero, 
AP_SAT_SYM can be used

Positive overflow will generate MAX and negative overflow will generate -MAX

‒ 0110(6) => 011(3) 

‒ 1011(-5) => 101(-3)

14- 22



© Copyright 2018 Xilinx

Overflow Mode: Wrap

Data Types 14- 23

˃ AP_WRAP, N = 0

This mode uses wrapping

Simply removes the MSB bits

˃ AP_WRAP, N > 0

Wrapping

Behaves similar to case where N = 0,
except that positive numbers stay
positive and negative numbers stay negative



© Copyright 2018 Xilinx

Overflow Mode: Wrap Sign Magnitude

Data Types 14- 24

˃ AP_WRAP_SM, N = 0

This mode uses sign magnitude wrapping

Sign bit set to the value of the least significant deleted bit

If the most significant remaining bit is different from the original
MSB, all the remaining bits are inverted

IF MSBs are same, the other bits are copied over

‒ Step 1: First delete redundant MSBs. 0100(4) => 100(-4)

‒ Step 2: The new sign bit is the least significant bit of the deleted bits. 0 in
this case

‒ Step 3: Compare the new sign bit with the sign of the new value

If different, invert all the numbers. They are different in this case

‒ 011 (3) 11

˃ AP_WRAP_SM, N > 0

Uses sign magnitude saturation

Here N MSBs will be saturated to 1

Behaves similar to case where N = 0,
except that positive numbers stay positive and negative numbers
stay negative



© Copyright 2018 Xilinx

AP_FIXED operators & conversions

Data Types 14- 25

˃ Fully Supported for all Arithmetic operator

˃ Methods for type conversion

14- 25

Operations

Arithmetic + - * / % ++ --

Logical ~ !

Bitwise & | ^ 

Relational >  < <= >= == != 

Assignment *= /= %= += -=

<<= >>= &= ^= |=

Methods Example

To integer Convert to a integer type res = var.to_int();

To unsigned integer Convert to an unsigned integer type res = var.to_uint();

To 64-bit integer Convert to a 64-bit long long type res = var.to_int64();

To 64-bit unsigned integer Convert to an unsigned long long type res = var.to_uint64();

To double Convert to double type res = var.double();

To ap_int Convert to an ap_int res = var.to_ap_int();



© Copyright 2018 Xilinx

AP_FIXED methods

Data Types 14- 26

˃ Methods for bit manipulation

14- 26

Methods Example

Length Returns the length of the variable. res=var.length;

Concatenation Concatenation low to high res=var_hi.concat(var_lo);

Or  res= (var_hi,var_lo)

Range or Bit-select Return a bit-range from high to low or a specific bit. res=var.range(high bit,low bit); 

Or res=var[bit-number]



© Copyright 2018 Xilinx

Fixed Point Math Functions

Data Types 14- 27

˃ The hls_math.h library 

Now includes fixed-point functions for sin, cos and sqrt

‒ ULP- Units of Least Precision

The sin and cos functions are all 32-bit ap_fixed<32,Int_Bit> 

‒ Where Int_Bit specifies the number of integer bits

The sqrt function is any width but must have a decimal point

‒ Cannot be all intergers or all bits

The accuracy above is quoted with respect to the equivalent floating point version

Function Type Accuracy (ULP) Implementation Style

cos ap_fixed<32,I> 16 Synthesized

sin ap_fixed<32,I> 16 Synthesized

Sqrt ap_fixed<W,I> 

ap_ufixed<W,I>

1 Synthesized



© Copyright 2018 Xilinx

Fixed Point Math Functions

Data Types 14- 28



© Copyright 2018 Xilinx

System C Data Types



© Copyright 2018 Xilinx

Arbitrary Precision : SystemC

Data Types 14- 30

˃ SystemC is an IEEE standard (IEEE 1666)

C++ class libraries

Allows design and simulation with concurrency

Provides a library of arbitrary precision types

‒ sc_int, sc_uint, sc_bigint (int > 64 bit), sc_fixed, etc.

˃ SystemC support

Vivado HLS supports SystemC 2.1 and 1.3 Synthesizable subset1

˃ SystemC Compilation

Compile with g++

Include the SystemC files from the Vivado HLS tree

˃ SC Types

Can be used in C++ designs without the need to convert the entire design to SystemC

shell> g++ –o my_test test.c test_tb.c \

-I$Vivado HLS_HOME\Win_x86\tools\systemc\include \

-lsystemc  \

-L$Vivado HLS_HOME\Win_x86\tools\systemc\include\lib 



© Copyright 2018 Xilinx

Floating Point Support



© Copyright 2018 Xilinx

Floating Point Support

Data Types 14- 32

˃ Synthesis for floating point 

Data types (IEEE-754 standard compliant)

‒ Single-precision 
 32 bit: 24-bit fraction, 8-bit exponent 

‒ Double-precision 
 64 bit: 53-bit fraction, 11-bit exponent

‒ Half-precision
 16-bit:1-bit sign, 5-bit exponent, 10-bit mantissa

˃ Support for Operators

Vivado HLS supports the Floating Point (FP) cores for each Xilinx technology

‒ If Xilinx has a FP core, Vivado HLS supports it

‒ It will automatically be synthesized

If there is no such FP core in the Xilinx technology, it will not be in the library

‒ The design will be still synthesized

14- 32



© Copyright 2018 Xilinx

Half-Precision Floating Point Operations

Data Types 14- 33

˃ Supported operations

Addition

Division

Multiplication

Subtraction

˃ Include “hls_half.h”
// Include half-float header file

#include “hls_half.h”

// Use data-type “half”

typedef half data_t;

// Use typedef or “half” on arrays and pointers

void top( data_t in[SIZE], half &out_sum);



© Copyright 2018 Xilinx

Floating-Point Cores

Data Types 14- 34



© Copyright 2018 Xilinx

Summary



© Copyright 2018 Xilinx

Summary

Data Types 14- 36

˃ C and C++ have standard types created on the 8-bit boundary
char (8-bit), short (16-bit), int (32-bit), long long (64-bit)

˃ Vivado HLS supports SystemC 1.3 Synthesizable subset

˃ Arbitrary precision in C is supported using apint and ap_int in C++

Compile using apcc for arbitrary precision

Arbitrary precision types can define bit-accurate operators leading to better 
QoR

˃ Fixed point precision is supported in C++
Both signed (ap_fixed) and unsigned types (ap_ufixed)



© Copyright 2018 Xilinx

Summary

Data Types 14- 37

˃ Various quantization and overflow modes supported
Quantization
‒ AP_RND, AP_RND_ZERO, AP_RND_MIN_INF, AP_RND_INF, AP_RND_CONV, 

AP_TRN, AP_TRN_ZERO

Overflow
‒ AP_SAT, AP_SAT_ZERO, AP_SAT_SYM, AP_WRAP, AP_WRAP_SYM

˃ Half-, single- and double-precision floating point data types are 
supported

If a corresponding floating point core is available then it will automatically be 
used

If floating point core is not available then Vivado HLS will generate the RTL 
model


