
© Copyright 2018 Xilinx

Improving Performance

© Copyright 2018 Xilinx

Objectives

˃ After completing this module, you will be able to:

Add directives to your design

List number of ways to improve performance

State directives which are useful to improve latency

Describe how loops may be handled to improve latency

Recognize the dataflow technique that improves throughput of the design

Describe the pipelining technique that improves throughput of the design

Identify some of the bottlenecks that impact design performance

Improving Performance 13- 2

© Copyright 2018 Xilinx

Outline

˃Adding Directives

˃ Improving Latency

Manipulating Loops

˃ Improving Throughput

˃Performance Bottleneck

˃Summary

© Copyright 2018 Xilinx

Improving Performance

˃ Vivado HLS has a number of ways to improve performance

Automatic (and default) optimizations

Latency directives

Pipelining to allow concurrent operations

˃ Vivado HLS support techniques to remove performance bottlenecks

Manipulating loops

Partitioning and reshaping arrays

˃ Optimizations are performed using directives

Let’s look first at how to apply and use directives in Vivado HLS

Improving Performance 13- 4

© Copyright 2018 Xilinx

Applying Directives

˃ If the source code is open in the GUI

Information pane

The Directive tab in the Auxiliary pane shows
all the locations and objects upon which
directives can be applied (in the opened C file,
not the whole design)

‒ Functions, Loops, Regions, Arrays, Top-
level arguments

Select the object in the Directive Tab

‒ “dct” function is selected

Right-click to open the editor dialog box

Select a desired directive from the drop-
down menu

‒ “DATAFLOW” is selected

Specify the Destination

‒ Source File

‒ Directive File

Improving Performance 13- 5

© Copyright 2018 Xilinx

Optimization Directives: Tcl or Pragma

˃ Directives can be placed in the directives file

The Tcl command is written into directives.tcl

There is a directives.tcl file in each solution

‒ Each solution can have different directives

˃ Directives can be place into the C source

Pragmas are added (and will remain) in the C
source file

Pragmas (#pragma) will be used by every
solution which uses the code

Improving Performance 13- 6

Once applied the directive will be

shown in the Directives tab

(right-click to modify or delete)

© Copyright 2018 Xilinx

Solution Configurations

˃ Configurations can be set on a solution
Set the default behavior for that solution
‒ Open configurations settings from the menu (Solutions > Solution Settings…)

Choose the configuration from the drop-down menu
‒ Array Partitioning, Binding, Dataflow Memory types, Interface, RTL Settings, Core, Compile, Schedule

efforts

Improving Performance 13- 7

Select

“General”

“Add” or “Remove”

configuration settings

© Copyright 2018 Xilinx

Example: Configuring the RTL Output

˃ Specify the FSM encoding style

By default the FSM is auto

˃ Add a header string to all RTL output files

Example: Copyright Acme Inc.

˃ Add a user specified prefix to all RTL output filenames

The RTL has the same name as the C functions

Allow multiple RTL variants of the same top-level function to be
used together without renaming files

˃ Reset all registers

By default only the FSM registers and variables initialized in the code
are reset

RAMs are initialized in the RTL and bitstream

˃ Synchronous or Asynchronous reset

The default is synchronous reset

˃ Active high or low reset

The default is active high

Improving Performance 13- 8

The remainder of the configuration commands

will be covered throughout the course

© Copyright 2018 Xilinx

Copying Directives into New Solutions

˃ Click the New Solution Button

˃ Optionally modify any of the settings

Part, Clock Period, Uncertainty

Solution Name

˃ Copy existing directives

By default selected

Uncheck if do not want to copy

No need to copy pragmas, they are in the code

Improving Performance 13- 9

© Copyright 2018 Xilinx

Improving Latency

© Copyright 2018 Xilinx

Latency and Throughput – The Performance Factors

˃ Design Latency

The latency of the design is the number of cycle it takes to output the result

‒ In this example the latency is
10 cycles

˃ Design Throughput

The throughput of the design is the
number of cycles between new inputs

‒ By default (no concurrency) this is the
same as latency

‒ Next start/read is when this transaction ends

Improving Performance 13- 11

© Copyright 2018 Xilinx

Latency and Throughput

˃ In the absence of any concurrency

Latency is the same as throughput

˃ Pipelining for higher throughput

Vivado HLS can pipeline functions and
loops to improve throughput

Latency and throughput are related

We will discuss optimizing for latency
first, then throughput

Improving Performance 13- 12

© Copyright 2018 Xilinx

Vivado HLS: Minimize latency

˃ Vivado HLS will by default minimize latency

Throughput is prioritized above latency
(no throughput directive is specified here)

In this example

‒ The functions are connected as shown

‒ Assume function B takes longer than any
other functions

˃ Vivado HLS will automatically take advantage of the parallelism

It will schedule functions to start
as soon as they can

‒ Note it will not do this for loops
within a function: by default they
are executed in sequence

Improving Performance 13- 13

© Copyright 2018 Xilinx

Reducing Latency

˃ Vivado HLS has the following directives to reduce latency

LATENCY

‒ Allows a minimum and maximum latency constraint to be specified

LOOP_FLATTEN

‒ Allows nested loops to be collapsed into a single loop with improved laten

LOOP_MERGE

‒ Merge consecutive loops to reduce overall latency, increase sharing, and improve logic optimization

UNROLL

Improving Performance 13- 14

© Copyright 2018 Xilinx

Default Behavior: Minimizing Latency

˃ Functions

Vivado HLS will seek to minimize latency by allowing functions to operate in parallel

‒ As shown on the previous slide

˃ Loops

Vivado HLS will not schedule loops to operate in parallel by default

‒ Dataflow optimization must be used or the loops must be unrolled

‒ Both techniques are discussed in detail later

˃ Operations

Vivado HLS will seek to minimize latency by allowing the operations to occur in parallel

It does this within functions and within loops

Improving Performance 13- 15

Loop:for(i=1;i<3;i++) {

op_Read;

op_Compute;

op_Write;

}

void foo(...) {

op_Read;

op_Compute;

op_Write;

}

RD

CMP

WR

RD CMP WR

Example with Sequential

Operations

RD

CMP

WR

Example of Minimizing latency with Parallel

Operations

RD

CMP

WR

© Copyright 2018 Xilinx

Latency Constraints

˃ Latency constraints can be specified

Can define a minimum and/or maximum latency for the location

‒ This is applied to all objects in the specified scope

No range specification: schedule for minimum

‒ Which is the default

Improving Performance 13- 16

Impact of ranges

© Copyright 2018 Xilinx

Region Specific Latency Constraint

˃ Latency directives can be applied on functions, loops and regions

˃ Use regions to specify specific locations for latency constraints

A region is any set of named braces {…a region…}

‒ The region My_Region is shown in this example

This allows the constraint to be applied to a specific range of code

‒ Here, only the else branch has a latency constraint

Improving Performance 13- 17

int write_data (int buf, int output) {

if (x < y) {

return (x + y);

} else {

My_Region: {

return (y – x) * (y + x);

}

}

Select the region in the

Directives tab & right-click to

apply latency directive

© Copyright 2018 Xilinx

Improving Latency

- Manipulating Loops

© Copyright 2018 Xilinx

Review: Loops

˃ By default, loops are rolled
Each C loop iteration  Implemented in the same state

Each C loop iteration  Implemented with same resources

Loops can be unrolled if their indices are statically determinable at elaboration time
‒ Not when the number of iterations is variable

Improving Performance 13- 19

void foo_top (…) {
...
Add: for (i=3;i>=0;i--) {

b = a[i] + b;
...
}

foo_top

+
Synthesis

N

a[N]
b

Loops require labels if they are to be referenced by Tcl directives

(GUI will auto-add labels)

© Copyright 2018 Xilinx

Rolled Loops Enforce Latency

˃ A rolled loop can only be optimized so much

Given this example, where the delay of the adder is small compared to the clock frequency

This rolled loop will never take less than 4 cycles

‒ No matter what kind of optimization is tried

‒ This minimum latency is a function of the loop iteration count

Improving Performance 13- 20

void foo_top (…) {
...
Add: for (i=3;i>=0;i--) {

b = a[i] + b;
...
}

Clock
3 2 1 0Adder Delay

© Copyright 2018 Xilinx

Unrolled Loops can Reduce Latency

Improving Performance 13- 21

Select loop “Add” in

the directives pane

and right-click
Unrolled loops allow

greater option &

exploration

Unrolled loops are likely to result in more hardware

resources and higher area
Options explained on next

slide

© Copyright 2018 Xilinx

Partial Unrolling

˃ Fully unrolling loops can create a lot of
hardware

˃ Loops can be partially unrolled
Provides the type of exploration shown in the
previous slide

˃ Partial Unrolling
A standard loop of N iterations can be unrolled to by a factor

For example unroll by a factor 2, to have N/2 iterations

• Similar to writing new code as shown on the right 

• The break accounts for the condition when N/2 is not
an integer

If “i” is known to be an integer multiple of N

• The user can remove the exit check (and associated
logic)

• Vivado HLS is not always be able to determine this is
true
(e.g. if N is an input argument)

• User takes responsibility: verify!

Improving Performance 13- 22

Add: for(int i = 0; i < N; i++) {

a[i] = b[i] + c[i];

}

Add: for(int i = 0; i < N; i += 2) {

a[i] = b[i] + c[i];

if (i+1 >= N) break;

a[i+1] = b[i+1] + c[i+1];

}

for(int i = 0; i < N; i += 2) {

a[i] = b[i] + c[i];

a[i+1] = b[i+1] + c[i+1];

}
An extra adder for

N/2 cycles trade-off

Effective code after

compiler

transformation

© Copyright 2018 Xilinx

Loop Flattening

˃ Vivado HLS can automatically flatten nested loops

A faster approach than manually changing the code

˃ Flattening should be specified on the inner most loop

It will be flattened into the loop above

The “off” option can prevent loops in the hierarchy from being flattened

Improving Performance 13- 23

void foo_top (…) {
...
L1: for (i=3;i>=0;i--) {

[loop body l1]
}

L2: for (i=3;i>=0;i--) {
L3: for (j=3;j>=0;j--) {
[loop body l3]
}

}

L4: for (i=3;i>=0;i--) {
[loop body l4]

}

1

2

3

4

x4

x4

x4

x4

36 transitions

void foo_top (…) {
...
L1: for (i=3;i>=0;i--) {

[loop body l1]
}

L2: for (k=15,k>=0;k--) {

[loop body l3]
}

L4: for (i=3;i>=0;i--) {
[loop body l1]

}

1

2

4

x4

x16

x4

28 transitionsLoops will be flattened by default: use “off” to disable

© Copyright 2018 Xilinx

Perfect and Semi-Perfect Loops

˃ Only perfect and semi-perfect loops can be flattened

The loop should be labeled or directives cannot be applied

Perfect Loops

– Only the inner most loop has body (contents)

– There is no logic specified between the loop statements

– The loop bounds are constant

Semi-perfect Loops

– Only the inner most loop has body (contents)

– There is no logic specified between the loop statements

– The outer most loop bound can be variable

– Other types

– Should be converted to perfect or semi-perfect loops

Improving Performance 13- 24

Loop_outer: for (i=3;i>=0;i--) {
Loop_inner: for (j=3;j>=0;j--) {

[loop body]
}

}

Loop_outer: for (i=3;i>N;i--) {
Loop_inner: for (j=3;j>=0;j--) {

[loop body]
}

}

Loop_outer: for (i=3;i>N;i--) {
[loop body]
Loop_inner: for (j=3;j>=M;j--) {

[loop body]
}

}

© Copyright 2018 Xilinx

Loop Merging

˃ Vivado HLS can automatically merge loops

A faster approach than manually changing the code

Allows for more efficient architecture explorations

FIFO reads, which must occur in strict order, can prevent loop merging

‒ Can be done with the “force” option : user takes responsibility for correctness

Improving Performance 13- 25

void foo_top (…) {
...
L1: for (i=3;i>=0;i--) {

[loop body l1]
}

L2: for (i=3;i>=0;i--) {
L3: for (j=3;j>=0;j--) {
[loop body l3]
}

}

L4: for (i=3;i>=0;i--) {
[loop body l4]

}

1
x16

void foo_top (…) {
...
L123: for (l=16,l>=0;l--) {

if (cond1)
[loop body l1]

[loop body l3]

if (cond4)
[loop body l4]

}

1

18 transitions

1

2

3

4

x4

x4

x4

x4

36 transitions

Already flattened

© Copyright 2018 Xilinx

Loop Merge Rules

˃ If loop bounds are all variables, they must have the same value

˃ If loops bounds are constants, the maximum constant value is used as the bound

of the merged loop

As in the previous example where the maximum loop bounds become 16 (implied by L3
flattened into L2 before the merge)

˃ Loops with both variable bound and constant bound cannot be merged

˃ The code between loops to be merged cannot have side effects

Multiple execution of this code should generate same results

‒ A=B is OK, A=A+1 is not

˃ Reads from a FIFO or FIFO interface must always be in sequence

A FIFO read in one loop will not be a problem

FIFO reads in multiple loops may become out of sequence

‒ This prevents loops being merged

Improving Performance 13- 26

© Copyright 2018 Xilinx

Loop Reports

˃ Vivado HLS reports the latency of loops

Shown in the report file and GUI

˃ Given a variable loop index, the latency cannot be reported

Vivado HLS does not know the limits of the loop index

This results in latency reports showing unknown values

˃ The loop tripcount (iteration count) can be specified

Apply to the loop in the directives pane

Allows the reports to show an estimated latency

Improving Performance 13- 27

Impacts reporting – not synthesis

© Copyright 2018 Xilinx

Techniques for Minimizing Latency - Summary

˃ Constraints

Vivado HLS accepts constraints for latency

˃ Loop Optimizations

Latency can be improved by minimizing the number of loop boundaries

‒ Rolled loops (default) enforce sharing at the expense of latency

‒ The entry and exits to loops costs clock cycles

Improving Performance 13- 28

© Copyright 2018 Xilinx

Improving Throughput

© Copyright 2018 Xilinx

Improving Throughput

˃ Given a design with multiple functions

The code and dataflow are as shown

˃ Vivado HLS will schedule the design

˃ It can also automatically optimize the dataflow for throughput

Improving Performance 13- 30

© Copyright 2018 Xilinx

Dataflow Optimization

˃ Dataflow Optimization
Can be used at the top-level function
Allows blocks of code to operate concurrently
‒ The blocks can be functions or loops
‒ Dataflow allows loops to operate concurrently

It places channels between the blocks to maintain the data rate

‒ For arrays the channels will include memory elements to buffer the samples
‒ For scalars the channel is a register with hand-shakes

˃ Dataflow optimization therefore has an area overhead
Additional memory blocks are added to the design
The timing diagram on the previous page should have a memory access delay between the
blocks
‒ Not shown to keep explanation of the principle clear

Improving Performance 13- 31

© Copyright 2018 Xilinx

Dataflow Optimization Commands

˃ Dataflow is set using a directive

Vivado HLS will seek to create the highest performance design

‒ Throughput of 1

Improving Performance 13- 32

© Copyright 2018 Xilinx

Dataflow Optimization through Configuration
Command

˃ Configuring Dataflow Memories

Between functions Vivado HLS uses ping-pong memory buffers by default

‒ The memory size is defined by the maximum number of producer or consumer elements

Between loops Vivado HLS will determine if a FIFO can be used in place of a ping-pong buffer

The memories can be specified to be FIFOs using the Dataflow Configuration

‒ Menu: Solution > Solution Settings > config_dataflow

‒ With FIFOs the user can override the default size of the FIFO

‒ Note: Setting the FIFO too small may result in an RTL verification failure

˃ Individual Memory Control

When the default is ping-pong

‒ Select an array and mark it as Streaming (directive STREAM) to implement the array as a FIFO

When the default is FIFO

‒ Select an array and mark it as Streaming (directive STREAM) with option “off” to implement the array
as a ping-pong

Improving Performance 13- 33

To use FIFO’s the access must be sequential. If HLS determines that the access is not

sequential then it will halt and issue a message. If HLS can not determine the sequential

nature then it will issue warning and continue.

© Copyright 2018 Xilinx

Dataflow : Ideal for streaming arrays & multi-rate functions

˃ Arrays are passed as single entities by default

This example uses loops but the same principle applies to functions

˃ Dataflow pipelining allows loop_2 to start when data is ready

The throughput is improved

Loops will operate in parallel

‒ If dependencies allow

˃ Multi-Rate Functions

Dataflow buffers data when one function or loop consumes or produces data at different rate from others

˃ IO flow support

To take maximum advantage of dataflow in streaming designs, the IO interfaces at both ends of the
datapath should be streaming/handshake types (ap_hs or ap_fifo)

Improving Performance 13- 34

© Copyright 2018 Xilinx

Dataflow Limitations (1)

˃ Must be single producer consumer; the following code violates the rule and

dataflow does not work

Improving Performance 13- 35

The Fix

© Copyright 2018 Xilinx

Dataflow Limitations (2)

˃ You cannot bypass a task; the following code violates this rule and dataflow does

not work

Improving Performance 13- 36

The fix: make it systolic like datapath

© Copyright 2018 Xilinx

Dataflow vs Pipelining Optimization

˃ Dataflow Optimization

Dataflow optimization is “coarse grain” pipelining at the function and loop level

Increases concurrency between functions and loops

Only works on functions or loops at the top-level of the hierarchy

‒ Cannot be used in sub-functions

˃ Function & Loop Pipelining

“Fine grain” pipelining at the level of the operators (*, +, >>, etc.)

Allows the operations inside the function or loop to operate in parallel

Unrolls all sub-loops inside the function or loop being pipelined

‒ Loops with variable bounds cannot be unrolled: This can prevent pipelining

‒ Unrolling loops increases the number of operations and can increase memory and run time

Improving Performance 13- 37

© Copyright 2018 Xilinx

Function Pipelining

˃ There are 3 clock cycles before operation RD can occur again

Throughput = 3 cycles

˃ There are 3 cycles before the 1st output is written

Latency = 3 cycles

Improving Performance 13- 38

˃ The latency is the same

˃ The throughput is better

Less cycles, higher throughput

Latency = 3 cycles

Without Pipelining

Throughput = 3 cycles

RD CMP WR RD CMP WR

With Pipelining

Latency = 3 cycles

Throughput = 1 cycle

RD CMP WR

RD CMP WR

void foo(...) {

op_Read;

op_Compute;

op_Write;

}

RD

CMP

WR

© Copyright 2018 Xilinx

Loop Pipelining

˃ There are 3 clock cycles before operation RD can occur again

Throughput = 3 cycles

˃ There are 3 cycles before the 1st output is written

Latency = 3 cycles

For the loop, 6 cycles

Improving Performance 13- 39

Latency = 3 cycles

Without Pipelining

Throughput = 3 cycles

RD CMP WR RD CMP WR

With Pipelining

Latency = 3 cycles

Throughput = 1 cycle

RD CMP WR

RD CMP WR

Loop:for(i=1;i<3;i++) {

op_Read;

op_Compute;

op_Write;

}

RD

CMP

WR

Loop Latency = 6 cycles
Loop Latency = 4 cycles

˃ The latency is the same

The throughput is better

‒ Less cycles, higher throughput

˃ The latency for all iterations, the loop latency, has

been improved

© Copyright 2018 Xilinx

Pipelining and Function/Loop Hierarchy

˃ Vivado HLS will attempt to unroll all loops nested below a PIPELINE directive

May not succeed for various reason and/or may lead to unacceptable area

‒ Loops with variable bounds cannot be unrolled

‒ Unrolling Multi-level loop nests may create a lot of hardware

Pipelining the inner-most loop will result in best performance for area

‒ Or next one (or two) out if inner-most is modest and fixed

 e.g. Convolution algorithm

‒ Outer loops will keep the inner pipeline fed

Improving Performance 13- 40

void foo(in1[][], in2[][], …) {

#pragma HLS PIPELINE

…

L1:for(i=1;i<N;i++) {

L2:for(j=0;j<M;j++) {

out[i][j] = in1[i][j] + in2[i][j];

}

}

}

void foo(in1[][], in2[][], …) {

…

L1:for(i=1;i<N;i++) {

#pragma HLS PIPELINE

L2:for(j=0;j<M;j++) {

out[i][j] = in1[i][j] + in2[i][j];

}

}

}

void foo(in1[][], in2[][], …) {

…

L1:for(i=1;i<N;i++) {

L2:for(j=0;j<M;j++) {

#pragma HLS PIPELINE

out[i][j] = in1[i][j] + in2[i][j];

}

}

}

Unrolls L1 and L2

N*M adders, 3(N*M) accesses

Unrolls L2

M adders, 3M accesses

1adder, 3 accesses

© Copyright 2018 Xilinx

Pipeline Directive

˃ The pipeline directive pipelines functions or loops
This example pipelines the function with an Initiation
Interval (II) of 2

‒ The II is the same as the throughput but this term is used
exclusively with pipelines

˃ Omit the target II and Vivado HLS will Automatically

pipeline for the fastest possible design
Specifying a more accurate maximum may allow more
sharing (smaller area)

˃ The directive on loops provides loop rewinding option

Improving Performance 13- 41

RD CMP WR

RD CMP WR

Initiation Interval (or II)

© Copyright 2018 Xilinx

Pipeline Flush

˃ Pipelines can optionally be flushed

Flush: when the input enable goes low (no more data) all existing results are flushed out

‒ The input enable may be from an input interface or from another block in the design

The default is to stall all existing values in the pipeline

˃ With Flush

When no new input reads are performed

Values already in the pipeline are flushed out

Improving Performance 13- 42

Without Flush (default)

Clk

RD CMP WR

RD CMP WR

out1

out2

Data Valid

With Flush (optional)

Clk

RD CMP WR

RD CMP WR

out1

out2

Data Valid

RD CMP RD CMP

© Copyright 2018 Xilinx

Pipelining the Top-Level Loop

˃ Loop Pipelining top-level loop may give a “bubble”

A “bubble” here is an interruption to the data stream

Given the following

The function will process a stream of data

The next time the function is called, it still needs to execute the initial (init) operations

‒ These operations are any which occur before the loop starts

‒ These operations may include interface start/stop/done signals

This can result in an unexpected interruption of the data stream

Improving Performance 13- 43

© Copyright 2018 Xilinx

Continuous Pipelining the Top-Level loop

˃ Use the “rewind” option for continuous pipelining

Immediate re-execution of the top-level loop

The operation rewinds to the start of the loop

‒ Ignores any initialization statements before the start of the loop

˃ The rewind portion only effects top-level loops

Ensures the operations before the loop are never re-executed when the function is re-
executed

Improving Performance 13- 44

© Copyright 2018 Xilinx

Issues which prevent Pipelining

˃ Pipelining functions unrolls all loops

Loops with variable bounds cannot be unrolled

This will prevent pipelining

‒ Re-code to remove the variables bounds: max bounds with an exit

˃ Feedback prevent/limits pipelines

Feedback within the code will prevent or limit pipelining

‒ The pipeline may be limited to higher initiation interval (more cycles, lower throughput)

˃ Resource Contention may prevent pipelining

Can occur within input and output ports/arguments

This is a classis way in which arrays limit performance

Improving Performance 13- 45

© Copyright 2018 Xilinx

Resource Contention: Unfeasible Initiation Intervals

˃ Sometimes the II specification cannot be met

In this example there are 2 read operations on the same port

An II=1 cannot be implemented

‒ The same port cannot be read at the same time

‒ Similar effect with other resource limitations

‒ For example if functions or multipliers etc. are limited

˃ Vivado HLS will automatically increase the II

Vivado HLS will always try to create a design, even if constraints must be violated

Improving Performance 13- 46

© Copyright 2018 Xilinx

Performance Bottleneck

© Copyright 2018 Xilinx

Arrays : Performance bottlenecks

˃ Arrays are intuitive and useful software constructs

They allow the C algorithm to be easily captured and understood

˃ Array accesses can often be performance bottlenecks

Arrays are targeted to a default RAM

‒ May not be the most ideal memory for performance

‒ Cannot pipeline with a throughput of 1

˃ Vivado HLS allows arrays to be partitioned and reshaped

Allows more optimal configuration of the array

Provides better implementation of the memory resource

Improving Performance 13- 48

© Copyright 2018 Xilinx

Review: Arrays in HLS

˃ An array in C code is implemented by a memory in the RTL

By default, arrays are implemented as RAMs, optionally a FIFO

˃ The array can be targeted to any memory

resource in the library

The ports and sequential operation are
defined by the library model

‒ All RAMs are listed in the Vivado HLS Library Guide

Improving Performance 13- 49

List of

available

Cores

© Copyright 2018 Xilinx

Array and RAM selection

˃ If no RAM resource is selected
Vivado HLS will determine the RAM to use

‒ It will use a Dual-port if it improves throughput

‒ Else it will use a single-port

˃ BRAM and LUTRAM selection
If none is made (e.g. resource RAM_1P used) RTL synthesis will determine if RAM is
implemented as BRAM or LUTRAM

If the user specifies the RAM target (e.g. RAM_1P_BRAM or RAM_1P_LUTRAM is
selected) Vivado HLS will obey the target

‒ If LUTRAM is selected Vivado HLS reports registers not BRAM

Improving Performance 13- 50

© Copyright 2018 Xilinx

Array Partitioning

˃ Partitioning breaks an array into smaller elements

If the factor is not an integer multiple the final array has fewer elements

Arrays can be split along any dimension

‒ If none is specified dimension zero is assumed

‒ Dimension zero means all dimensions

All partitions inherit the same resource target

‒ That is, whatever RAM is specified as the resource target

‒ Except of course “complete”

Improving Performance 13- 51

© Copyright 2018 Xilinx

Configuring Array Partitioning

˃ Vivado HLS can automatically partition arrays to improve throughput

This is controlled via the array configuration command

Enable mode throughput_driven

˃ Auto-partition arrays with constant indexing

When the array index is not a variable

Arrays below the threshold are auto-partitioned

Set the threshold using option elem_count_limit

˃ Partition all arrays in the design

Select option scalarize_all

˃ Include all arrays in partitioning

The include_ports option will include any arrays on the IO interface when partitioning is performed

‒ Partitioning these arrays will result in multiple ports and change the interface

‒ This may however improve throughput

Any arrays defined as a global can be included in the partitioning by selecting option
include_extern_globals

‒ By default, global arrays are not partitioned

Improving Performance 13- 52

© Copyright 2018 Xilinx

Array Dimensions

˃ The array options can be performed on dimensions of the array

˃ Examples

Improving Performance 13- 53

my_array[10][6][4]  partition dimension 3 

my_array_0[10][6]

my_array_1[10][6]

my_array_2[10][6]

my_array_3[10][6]

my_array[10][6][4]  partition dimension 1 

my_array_0[6][4]

my_array_1[6][4]

my_array_2[6][4]

my_array_3[6][4]

my_array_4[6][4]

my_array_5[6][4]

my_array_6[6][4]

my_array_7[6][4]

my_array_8[6][4]

my_array_9[6][4]
my_array[10][6][4]  partition dimension 0  10x6x4 = 240 individual registers

my_array[10][6][4]

Dimension 1

Dimension 2

Dimension 3

Dimension 0

(All dimensions)

© Copyright 2018 Xilinx

Array Reshaping

˃ Reshaping recombines partitioned arrays back into a single array

Same options as array partition

However, reshape automatically recombines
the parts back into a single element

The “new” array has the same name

‒ Same name used for resource targeting

Improving Performance 13- 54

© Copyright 2018 Xilinx

Reshaping vs Partitioning

˃ Both are useful for increasing the memory or data bandwidth

˃ Reshaping

Simply increases the width of the data word

Does not increase the number of memory ports

˃ Partitioning

Increases the memory ports; thus more I/O to deal with

Use it only if you have to use independent addressing

˃ Common error message: cue to use reshaping or partitioning

Improving Performance 13- 55

© Copyright 2018 Xilinx

Bottleneck Example

˃ Array accesses (block RAM) can be bottlenecks inside functions or loops

Still prevents a II of 1 despite PIPELINE and DATAFLOW

Prevents processing of one sample per clock

Improving Performance 13- 56

Solution: Use ARRAY_PARTITION directive

© Copyright 2018 Xilinx

Structs and Arrays: The Default Handling

˃ Structs are a commonly used coding construct

By default, structs are separated into their separate elements

Improving Performance 13- 57

• Treated as separate elements

• On the Interface

− This means separate ports

• Internally

− Separate buses & wires

− Separate control logic, which may be more
complex, slower and increase latency

• Use the DATA_PACK directive to group
them into a single element

© Copyright 2018 Xilinx

Data Packing

˃ Data packing groups structs internally and at the IO Interface

Creates a single wide bus of all struct elements

Improving Performance 13- 58

• Grouped structure

− First element in the struct becomes the LSB

− Last struct element becomes the MSB

− Arrays are partitioning completely

• On the Interface

− This means a single port

• Internally

− Single bus

− May result in simplified control logic, faster

and lower latency designs

© Copyright 2018 Xilinx

Using Data Pack Directive

˃ Apply the DATA_PACK directive

Select and specify the struct variable to pack

Improving Performance 13- 59

© Copyright 2018 Xilinx

Summary

© Copyright 2018 Xilinx

Summary

˃ Directives may be added through GUI

Tcl command is added into script.tcl file

Pragmas are added into the source file

˃ Latency is minimized by default

Constraints can be set

˃ Loops may have impact on the latency

˃ Throughput may be improved by pipelining at

The task, function, and loop level

˃ Arrays may create performance bottleneck if not handled properly

Improving Performance 13- 61

© Copyright 2018 Xilinx

Summary

˃ Optimizing Performance

Latency optimization

‒ Specify latency directives

‒ Unroll loops

‒ Merge and Flatten loops to reduce loop transition overheads

Throughput optimization

‒ Perform Dataflow optimization at the top-level

‒ Pipeline individual functions and/or loops

‒ Pipeline the entire function: beware of lots of operations, lots to schedule and it’s not always possible

Array Optimizations

‒ Focus on bottlenecks often caused by memory and port accesses

‒ Removing bottlenecks improves latency and throughput

 Use Array Partitioning, Reshaping, and Data packing directives to achieve throughput

Improving Performance 13- 62

