
© Copyright 2018 Xilinx

Block and Port Level Protocols

© Copyright 2018 Xilinx

Objectives

IO Level Protocols 22- 2

˃ After completing this module, you will be able to:

List the types of IO abstracted in Vivado HLS

List various basic and optional IO ports handled in Vivado HLS

State how a design can be synthesized as combinatorial and sequential

Distinguish between block-level and port-level IO protocols

State how pointer interfaces are implemented

Outline

˃ Introduction

˃Block Level Protocols

˃Port Level Protocols

˃Summary

© Copyright 2018 Xilinx

The Key Attributes of C code : IO

IO Level Protocols 22- 4

Code
Functions: All code is made up of functions which represent the design

hierarchy: the same in hardware

Loops: Functions typically contain loops. How these are handled can have an

impact on area and performance.

Arrays: Arrays are used often in C code. They can impact the device area

and become performance bottlenecks.

Operators: Operators in the C code may require sharing to control area or

be assigned to specific hardware implementations to meet performance

Types: All variables are of a defined type. The type can influence the area

and performance

Input & Outputs: The arguments of the top-level function must be

transformed to hardware interfaces with an IO protocol

22- 4

void fir (

data_t *y,

coef_t c[4],

data_t x

) {

static data_t shift_reg[4];

acc_t acc;

int i;

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i] * c[i];

}

}

*y=acc>>2;

}

© Copyright 2018 Xilinx

Example 101 : Combinational Design

IO Level Protocols 22- 5

˃ Simple Adder Example

Output is the sum of 3 inputs

˃ Synthesized with 100 ns clock

All adders can fit in one clock cycle

Combinational design

The function return becomes RTL port ap_return

No handshakes are required or created in this example

#include "adders.h"

int adders(int in1, int in2, int in3) {

int sum;

sum = in1 + in2 + in3;

return sum;

}

adders
ap_returnin1

In2

In3

© Copyright 2018 Xilinx

Example 102: Sequential Design

IO Level Protocols 22- 6

˃ The same adder design is now synthesized with a 3ns clock

The design now takes more than 1 cycle to complete

Vivado HLS creates a sequential design with the default port types

˃ By Default ..

Block level handshake signals are added to the design

#include "adders.h"

int adders(int in1, int in2, int in3) {

int sum;

sum = in1 + in2 + in3;

return sum;

}

adders
ap_returnin1

In2

In3Synthesis

ap_done

ap_start ap_idle

© Copyright 2018 Xilinx

Vivado HLS IO Options

IO Level Protocols 22- 7

˃ Vivado HLS has four types of IO
1. Data ports created by the original top-level C function arguments
2. IO protocol signals added at the Block-Level
3. IO protocol signals added at the Port-Level
4. IO protocol signals added externally as IP Interfaces

˃ Data Ports
These are the function arguments/parameters

˃ Block-Level Interfaces (optional)
An interface protocol which is added at the block level
Controls the addition of block level control ports: start, idle, done, and ready

˃ Port-Level interfaces (optional)
IO interface protocols added to the individual function arguments

˃ IP interfaces (optional)
Added as external adapters when exported as an IP

22- 7

© Copyright 2018 Xilinx

Vivado HLS Basic Ports

IO Level Protocols 22- 8

˃ Adder Example • Clock added to all sequential RTL blocks

− One clock per function/block

− SystemC designs may have a unique clock for each
CTHREAD

• Reset added to all sequential RTL blocks

− Only the FSM and any variables initialized in the C are
reset by default

− Reset and polarity options are controlled via the RTL
Configuration

− Solutions/Solution Settings...

• Optional Clock Enable

− An optional clock enable can be added via the sequential
RTL (config_interface) configuration

− When de-asserted it will cause the block to “freeze”

− All connected blocks are assumed to be using the same CE

− When the IO protocol of this block freezes, it is expected
other blocks do the same

− Else a valid output may be read multiple times
22- 8

#include "adders.h"

int adders(int in1, int in2, int *sum) {

int temp;

*sum = in1 + in2 + *sum;

temp = in1 + in2;

return temp;

}

addersSynthesis

ap_clk

ap_rst

ap_ce

© Copyright 2018 Xilinx

Vivado HLS Optional IO : Function Arguments

IO Level Protocols 22- 9

˃ Adder Example • Function Arguments

− Synthesized into data ports

• Function Return

− Any return is synthesized into an output port

called ap_return

• Pointers (& C++ References)

− Can be read from and written to

− Separate input and output ports for pointer

reads and writes

• Arrays (not shown here)

− Like pointers can be synthesized into read

and/or write ports

22- 9

adders

sum_dataout

in1

in2

ap_return

sum_datain

ap_clk

ap_rst

#include "adders.h"

int adders(int in1, int in2, int *sum) {

int temp;

*sum = in1 + in2 + *sum;

temp = in1 + in2;

return temp;

}

addersSynthesis

© Copyright 2018 Xilinx

Vivado HLS Optional IO : Block Level Protocol

IO Level Protocols 22- 10

˃ Adder Example
• Block Level Protocol

− An IO protocol added at the RTL block level

− Controls and indicates the operational status of

the block

• Block Operation Control

− Controls when the RTL block starts execution

(ap_start)

− Indicates if the RTL block is idle (ap_idle) or

has completed (ap_done)

• Complete and function return

− The ap_done signal also indicates when any

function return is valid

• Ready (not shown here)

− If the function is pipelined an additional ready

signal (ap_ready) is added

− Indicates a new sample can be supplied before

done is asserted

22- 10

sum_dataout

in1

in2

ap_done

ap_start ap_idle

ap_return

sum_datain

adders

ap_clk

ap_rst

#include "adders.h"

int adders(int in1, int in2, int *sum) {

int temp;

*sum = in1 + in2 + *sum;

temp = in1 + in2;

return temp;

}

Synthesis

© Copyright 2018 Xilinx

Vivado HLS Optional IO : Port IO Protocols

IO Level Protocols 22- 11

˃ Adder Example
• Port IO Protocols

− An IO protocol added at the port level

− Sequences the data to/from the data port

• Interface Synthesis

− The design is automatically synthesized to account

for IO signals (enables, acknowledges etc.)

• Select from a pre-defined list

− The IO protocol for each port can be selected from

a list

− Allows the user to easily connect to surrounding

blocks

• Non-standard Interfaces

− Supported in C/C++ using an arbitrary protocol

definition

− Supported natively in SystemC

22- 11

sum_dataout

in1

in2

ap_done

ap_start ap_idle

ap_return

in1_ap_ack

in2_read

in1_ap_vld

in2_empty_n

sum_req_write

sum_rsp_read

sum_req_din
sum_address

sum_size

sum_req_full_n
sum_rsp_empty_n

sum_datain

adders

ap_clk

ap_rst

#include "adders.h"

int adders(int in1, int in2, int *sum) {

int temp;

*sum = in1 + in2 + *sum;

temp = in1 + in2;

return temp;

}

addersSynthesis

© Copyright 2018 Xilinx

Vivado HLS Interfaces Summary

IO Level Protocols 22- 12

˃ Where do you find the summary?

In the Synthesis report

Interface Summary Section

(at the end)

The same pathname as this

from the project directory

Ports
Sizes and

Direction

22- 12

© Copyright 2018 Xilinx

Vivado HLS Optional IO : IP Adapters

IO Level Protocols 22- 13

˃ Adder Example

• Added when the IP block is exported

• Available in the IP directory

• “ip”, “sysgen”

AXI4LiteS

AXI4

AXI4Stream

© Copyright 2018 Xilinx

Block Level Protocols

© Copyright 2018 Xilinx

AP_START: Single Cycle

IO Level Protocols 22- 15

• Input Data
– Can be applied when ap_idle goes low

• The first read is performed 1 clock cycle after idle goes low

– Input reads can occur in any cycle up until the last cycle

• Output Data
– Any function return is valid when ap_done is asserted high

– Other outputs may output their data at any time after the first read
• The output can only be guaranteed to be valid with ap_done if it is registered

• It is recommended to use a port level IO protocol for other outputs

• The block will wait for ap_start before it begins

operation

• Output ap_idle goes low when ap_start is

sampled high

• Output ap_done goes high on the final cycle

• Idle goes high one cycle after done

• The block waits for next start

© Copyright 2018 Xilinx

AP_START: Constant High

IO Level Protocols 22- 16

• Input and Output data operations

– As before

• The key difference here is that the design is never idle

– The next data read is performed immediately

• If start is high when done is asserted, the

design will not enter the idle state

• Since start is high, idle stays low

• The block starts to execute the next

transaction immediately

© Copyright 2018 Xilinx

Pipelined Designs

IO Level Protocols 22- 17

• Input Data
– Will be read when ap_ready is high and ap_idle is low

• Indicates the design is ready for data

– Signal ap_ready will change at the rate of the II

• Output Data
– As before, function return is valid when ap_done is asserted high

– Other outputs may output their data at any time after the first read
• It is recommended to use a port level IO protocol for other outputs

This example shows

an II of 2

• After reset, ap_ready goes high if idle is high

• Start applied : Idle goes low, apply first data

• Inputs will be read when ap_ready is high and idle is low

• Output ap_done goes high on the final cycle

• Idle goes high one cycle after done

• The block waits for next start

© Copyright 2018 Xilinx

Pipelined Designs: II = 1

IO Level Protocols 22- 18

• Input Data when II=1

– It can be expected that ap_ready remains high and data is continuously read

– The design will only stop processing when ap_start is de-asserted

• Output Data when II=1

– After the first output, ap_done will remain high while there are samples to process

– Assuming there is no data decimation (output rate = input rate)

• Will start with ap_start

• Will keep reading input data since II = 1

• After the first output, ap_done will remain

high

• If ap_start goes is sampled low, ap_ready

will go low immediately

© Copyright 2018 Xilinx

Disabling Block Level Handshakes

IO Level Protocols 22- 19

˃ Block Level Handshakes can be disabled
Select the function in the directives tab, right-click

‒ Select Interface & then ap_ctrl_none for no block level handshakes

‒ Select Interface & then ap_ctrl_hs to re-apply the default

˃ Requirement: Manually verify the RTL
Without block level handshakes autosim cannot verify the design

‒ Will only work in simple combo and II=1 cases

‒ Handshakes are required to know when to sample output signals

It is recommended to leave the default

and use Block Level Handshakes

Tcl commands

set_directive_interface -mode ap_ctrl_none “dct“

Default is on

set_directive_interface -mode ap_ctrl_hs “dct“

© Copyright 2018 Xilinx

AP_CTRL_CHAIN

IO Level Protocols 22- 20

˃ Protocol to support pipeline chains: ap_ctrl_chain

Similar to ap_ctrl_hs but with additional signal ap_continue

Allows blocks to be easily chained in a pipelined manner

ap_ctrl_chain protocol provides back-pressure in systems

© Copyright 2018 Xilinx

AP_CTRL_CHAIN

IO Level Protocols 22- 21

• Asserting the ap_continue signal

Low informs the design that the

downstream block that consumes

the data is not ready to accept

new data

• When ap_continue is asserted

Low, the design stalls when it

reaches the final state of the

current transaction: the output

data is presented on the

interface, the ap_done signal can

be asserted High and the design

remains in this state until

ap_continue is asserted High

© Copyright 2018 Xilinx

Port Level Protocols

© Copyright 2018 Xilinx

Port Level IO protocols

IO Level Protocols 22- 23

˃ We’ve seen how the function return is validated

The block level output signal ap_done goes high to indicate the function return is valid

This allows downstream blocks to correctly sample the output port

˃ For other outputs, Port Level IO protocols can be added

Allowing upstream and downstream blocks to synchronize with the other data ports

The type of protocol depends on the type of C port

‒ Pass-by-value scalar

‒ Pass-by-reference pointers (& references in C++)

‒ Pass-by-reference arrays

The starting point is the type of argument used by the C function

adders
ap_returnin1

In2

In3
ap_done

ap_start ap_idle

downstream
data

enablesum

© Copyright 2018 Xilinx

Let’s Look at an Example

IO Level Protocols 22- 24

Key:
I : input

IO : inout

O : output

D : Default Interface

#include "adders.h"

int adders(int in1, int in2, int *sum) {

int temp;

*sum = in1 + in2 + *sum;

temp = in1 + in2;

return temp;

}

“Sum” is a pointer which is read and written

to : an Inout

The port for “Sum” can be

any of these interface

types

The default for port for

“Sum” will be type

ap_ovld

© Copyright 2018 Xilinx

Interface Types

˃ Multiple interface protocols

Every combination of C
argument and port protocol
is not supported

It may require a code
modification to implement a
specific IO protocol

IO Level Protocols 22- 25

No IO Protocol

Wire handshake protocols

Memory protocols : RAM

: FIFO

Bus protocols

Block Level Protocol

Block level protocols can be applied to the

return port - but the port can be omitted and just

the function name specified22- 25

AXI4 Interfaces

© Copyright 2018 Xilinx

Default IO Protocols

IO Level Protocols 22- 26

˃ The default port protocols

Inputs: ap_none

Outputs: ap_vld

Inout: ap_ovld

‒ In port gets ap_none

‒ Out port gets ap_vld

Arrays: ap_memory

All shown as the default (D) on previous slide

˃ Result of the default protocols

No protocol for input ports

‒ They should be held stable for the entire transaction

‒ There is no way to know when the input will be read

Output writes have an accompanying output valid signal which can be used to validate them

Arrays will default to RAM interfaces (2-port RAM is the default RAM)

The Vivado HLS shell/console always shows the results of interface

synthesis

22- 26

© Copyright 2018 Xilinx

Specifying IO Protocols

˃ Select the port in the Directives pane to

specify a

protocol

Select the port

Right-click and choose Interface

Select the protocol from the drop-down menu

˃ Or apply using Tcl or Pragma

IO Level Protocols 22- 27

© Copyright 2018 Xilinx

Interface Types

˃ Multiple interface protocols

Every combination of C
argument and port protocol
is not supported

It may require a code
modification to implement a
specific IO protocol

IO Level Protocols 22- 28

No IO Protocol

Wire handshake protocols

Memory protocols : RAM

: FIFO

Bus protocols

Block Level Protocol

Block level protocols can be applied to the

return port - but the port can be omitted and just

the function name specified22- 28

AXI4 Interfaces

© Copyright 2018 Xilinx

No IO Protocol

IO Level Protocols 22- 29

˃ AP_NONE: The default protocol for input ports

Protocol ap_none means that no additional protocol signals are added

The port will be implemented as just a data port

˃ Other ports can be specified as ap_none

Except arrays which must be a RAM or FIFO interface

˃ AP_STABLE: An ap_none with fanout benefits

The ap_stable type informs High-Level Synthesis that the data applied to this port remains
stable during normal operation, but is not a constant value that could be optimized, and the
port is not required to be registered

Typically used for ports that provides configuration data - data that can change but remains
stable during normal operation (configuration data is typically only changed during or before a
reset)

© Copyright 2018 Xilinx

Interface Types

˃ Multiple interface protocols

Every combination of C
argument and port protocol
is not supported

It may require a code
modification to implement a
specific IO protocol

IO Level Protocols 22- 30

No IO Protocol

Wire handshake protocols

Memory protocols : RAM

: FIFO

Bus protocols

Block Level Protocol

Block level protocols can be applied to the

return port - but the port can be omitted and just

the function name specified22- 30

AXI4 Interfaces

© Copyright 2018 Xilinx

Wire Protocols

IO Level Protocols 22- 31

˃ The wire protocols add a valid and/or acknowledge port to each data port

˃ The wire protocols are all derivatives of protocol ap_hs

ap_ack: add an additional acknowledge port

ap_vld: add an additional valid port

ap_ovld: add an additional valid port to an output

ap_hs: adds both

˃ Output control signals are used to inform other blocks

Data has been read at the input by this block (ack)

Data is valid at the output (vld)

The other block must accept the control signal (this block will continue)

˃ Input control signals are used to inform this block

The output data has been read by the consumer (ack)

The input from the producer is valid (vld)

This block will stall while waiting for the input controls

© Copyright 2018 Xilinx

Wire Protocols: Ports Generated

IO Level Protocols 22- 32

˃ The wire protocols are all derivatives of protocol ap_hs

Inputs

‒ Arguments which are only read

‒ The valid is input port indicating when to read

‒ Acknowledge is an output indicating it was read

Outputs

‒ Arguments which are only written to

‒ Valid is an output indicating data is ready

‒ Acknowledge is an input indicating it was read

Inouts

‒ Arguments which are read from and written to

‒ These are split into separate in and out ports

‒ Each half has handshakes as per Input and Output

22- 32

foo

in1_ack
in1

in1_vld

foo

out1

out1_ack

adders

inout1_i_ack
inout1_i

Inout1_i_vld

Inout1_o_ack

out1_vld

inout1_o_vld

inout1_o

ap_hs is compatible with AXI-

Stream

© Copyright 2018 Xilinx

Handshake IO Protocol

IO Level Protocols 22- 33
22- 33

• After start, idle goes low and the RTL

operates until a read is required

• The RTL will stall (wait) until the input valid

is asserted

• If there is more than one input valid, each

can stall the RTL

• It will acknowledge on the same cycle it

reads the data (reads on next clock edge)

• An output valid is asserted when the port

has data

• The RTL will stall (hold the data and wait)

until an input acknowledge is received

• Done will be asserted when the function is

complete

© Copyright 2018 Xilinx

Other Handshake Protocols

IO Level Protocols 22- 34

˃ The other wire protocols are derivatives of ap_hs in behavior

Some subtleties are worth discussing when the full two-way handshake is not used

˃ Using the Valid protocols (ap_vld, ap_ovld)

Outputs: Without an associated input acknowledge it is a requirement that the consumer takes the
data when the output valid is asserted

‒ Protocol ap_ovld only applies to output ports (is ignored on inputs)

Inputs: No particular issue.

‒ Without an associated output acknowledge, the producer does not know when the data
has been read (but the done signal can be used to update values)

˃ Using the Acknowledge Protocol (ap_ack)

Outputs: Without an associated output valid the consumer will not know when valid data is ready
but the design will stall until it receives an acknowledge (Dangerous: Lock up potential)

Inputs: Without an associated input valid, the design will simply read when it is ready and
acknowledge that fact.

© Copyright 2018 Xilinx

Registering IO Reads and Writes

IO Level Protocols 22- 35

˃ Vivado HLS does not register Input and Outputs by default

It will chain operations to minimize latency

The inputs will be read when the design requires them

The outputs will be written as soon as they are available

˃ Inputs and outputs can be registered

Inputs will be registered in the first cycle

‒ Input pointers and partitioned arrays will be registered when
they are required

Outputs will be registered and held until the next write operation

‒ Which for scalars will be the next transaction (can’t write twice to
the same port) unless the block is pipelined

22- 35

in1

clk

in2

sum sum

sum_vld

in3

X1

X2

X3

+

F

D +

© Copyright 2018 Xilinx

Interface Types

˃ Multiple interface protocols

Every combination of C
argument and port protocol
is not supported

It may require a code
modification to implement a
specific IO protocol

IO Level Protocols 22- 36

No IO Protocol

Wire handshake protocols

Memory protocols : RAM

: FIFO

Bus protocols

Block Level Protocol

Block level protocols can be applied to the

return port - but the port can be omitted and just

the function name specified22- 36

AXI4 Interfaces

© Copyright 2018 Xilinx

Memory IO Protocols

IO Level Protocols 22- 37

˃ Memory protocols can be inferred from array and pointer arguments

Array arguments can be synthesized to RAM or FIFO ports

‒ When FIFOs specified on array ports, the ports must be read-only or write-only

Pointer (and References in C++) can be synthesized to FIFO ports

˃ RAM ports

Support arbitrary/random accesses

May be implemented with Dual-Port RAMs to increase the bandwidth

‒ The default is a Dual-Port RAM interface

Requires two cycles read access: generate address, read data

‒ Pipelining can reduce this overhead by overlapping generation with reading

˃ FIFO ports

Require read and writes to be sequential/streaming

Always uses a standard FIFO (single-port) model

Single cycle for both reads and writes

22- 37

© Copyright 2018 Xilinx

Memory IO Protocols: Ports Generated

˃ RAM Ports

Created by protocol ap_memory

Given an array specified on the interface

Ports are generated for data, address & control

‒ Example shows a single port RAM

‒ A dual-port resource will result in dual-port interface

Specify the off-chip RAM as a Resource

‒ Use the RESOURCE directive on the array port

˃ FIFO Ports

Created by protocol ap_fifo

Can be used on arrays, pointers and references

Standard Read/Write, Full/Empty ports generated

‒ Arrays: must use separate arrays for read and write

‒ Pointers/References: split into In and Out ports

IO Level Protocols 22- 38
22- 38

ram d_d0d_q0
d_address0

d_we0

d_ce0

#include "ram.h"

void ram (int d[DEPTH], …) {

…

}

#include "fifo.h"

void fifo (int d_o[DEPTH],

int d_i[DEPTH]) {

…

}

fifo d_o_dind_i_dout

d_o_write

d_i_readd_i_empty_n

d_o_full_n

© Copyright 2018 Xilinx

Memory IO Protocol (ap_memory)

IO Level Protocols 22- 39

There is no stall behavior initiated by a RAM interface

• After start, idle goes low and the RTL operates

• When a read is required, an address is

generated and CE asserted high

• Data is available on data input port d_q0 in the

next cycle

• The read operations may be pipelined

• When a write is required, the address and data

are placed on the output ports

• Both CE &WE are asserted high

• Writes may be pipelined

• Done will be asserted when the function is

complete

© Copyright 2018 Xilinx

FIFO IO Protocol (ap_fifo, Read)

IO Level Protocols 22- 40
22- 40

• After start, idle goes low and the RTL operates

until a read is required

• The RTL will stall (wait) until the empty_n is

asserted high to indicate data is available

• As soon as data is available, the fifo read port

will go high

• Reads will occur when required, so long as

data is available (empty_n is high)

© Copyright 2018 Xilinx

FIFO IO Protocol (ap_fifo, Write)

IO Level Protocols 22- 41
22- 41

• When ready, data will be written to the output

port

• The RTL will then stall and hold the data until

the FIFO is no longer full (full_n high)

• As soon as data can written, write is asserted

high

• A write will occur when required if there is room

in the fifo (full_n high)

• Done will be asserted when the function is

complete

© Copyright 2018 Xilinx

Interface Types

˃ Multiple interface protocols

Every combination of C
argument and port protocol
is not supported

It may require a code
modification to implement a
specific IO protocol

IO Level Protocols 22- 42

No IO Protocol

Wire handshake protocols

Memory protocols : RAM

: FIFO

Bus protocols

Block Level Protocol

Block level protocols can be applied to the

return port - but the port can be omitted and just

the function name specified22- 42

AXI4 Interfaces

© Copyright 2018 Xilinx

Bus IO Protocol

IO Level Protocols 22- 43

˃ Vivado HLS supports a Bus IO protocol

It is that of a generic bus

‒ Not an industry standard

Can be used to communicate with a bus bridge

The Vivado HLS bus protocol is principally used to connect to adapters

˃ The Bus IO protocol supports memcpy

The bus IO protocol supports the C function memcpy

This provides a high performance interface for bursting data in a DMA like fashion

˃ The Bus IO protocol supports complex pointer arithmetic at the IO

Pointers at the IO can be synthesized to ap_fifo or ap_bus

‒ If using ap_fifo, the accesses must be sequential

‒ If pointer arithmetic is used, the port must use ap_bus

22- 43

© Copyright 2018 Xilinx

Standard and Burst Mode

IO Level Protocols 22- 44

˃ Standard Mode

Each access to the bus results in a request then a read or write operation

Multiple read or writes can be performed in a single transaction

˃ Burst Mode

Use the memcpy command

Copies data between array & a pointer argument

The pointer argument can be a bus interface

‒ This example uses a size of 4

‒ This is more efficient for higher values

22- 44

#include "bus.h"

void foo (int *d) {

int buf1[4], buf2[4];

int i;

memcpy(buf1,d,4*sizeof(int));

for (i=0;i<4;i++) {

buf2[i] = buf1[3-i];

}

memcpy(d,buf2,4*sizeof(int));

}

#include "bus.h"

void foo (int *d) {

static int acc = 0;

int i;

for (i=0;i<4;i++) {

acc += d[i];

d[i] = acc;

}

}

#include "bus.h"

void foo (int *d) {

static int acc = 0;

int i;

for (i=0;i<4;i++) {

acc += *(d+i);

*(d+i) = acc;

}

}

#include "bus.h"

void foo (int *d) {

static int acc = 0;

int i;

acc += d[i];

d[i] = acc;

}

Single read and write in

Standard Mode

Multiple reads and writes in Standard

Mode

© Copyright 2018 Xilinx

Bus IO Protocol: Ports Generated

IO Level Protocols 22- 45

˃ Bus request then access protocol

The protocol will request a read/write bus access

Then read or write data in single or burst mode

22- 45

#include “foo.h"

void foo (int *d) {

…

}

foo d_dataout[31:0]

d_datain[31:0] d_req_write

d_rsp_read

d_req_din

d_address[31:0]

d_size[31:0]

d_req_full_n

d_rsp_empty_n

d_rsp_dout

Input Ports Description

d_datain Input data.

d_req_full_n Active low signal indicates the bus bridge is full.

The design will stall, waiting to write.

d_rsp_empty_n Active low signal indicates the bus bridge is

empty and can accept data.

Output Ports Description

d_dataout Output data.

d_req_write Asserted to initiate a bus access.

d_req_din Asserted if the bus access is to write. Remains low if the

access it to read.

d_rsp_read Asserted to start a bus read (completes a bus access

request and starts reading data)

d_address Offset for the base address.

d_size Indicates the burst (read or write) size.

Standard Mode: The address port gives the index address e.g.

*(d+i), addr = value of “i”

© Copyright 2018 Xilinx

void foo (int *d) {

static int acc = 0;

int i;

for (i=0;i<4;i++) {

acc += d[i+1];

d[i] = acc;

}

}

Bus IO Protocol (Standard, Read)

IO Level Protocols 22- 46
22- 46

• After start, idle goes low and the RTL operates

until a read is required

• A req_write high with req_din low indicates a

read request

• A read address is supplied: value is the pointer

index value

• The RTL will stall (wait) until the empty_n is

asserted high to indicate data is available

• As soon as data is available, rsp_read will go

high

• Reads will occur when required, so long as

data is available (empty_n is high)

© Copyright 2018 Xilinx

Bus IO Protocol (Standard, Write)

IO Level Protocols 22- 47
22- 47

void foo (int *d) {

static int acc = 0;

int i;

for (i=0;i<4;i++) {

acc += d[i+1];

d[i] = acc;

}

}

• After start, idle goes low and the RTL operates

until a write is required

• When a write is required, data and address are

applied

• The RTL will stall (wait) until the full_n is

asserted high to indicate space is available

• As soon as data is available, rsp_write and

req-din will go high

• A req_write high with req_din high indicates a

write request

• There is no acknowledge for writes in this

interace

• Write will occur when required, so long as data

is available (full_n is high)

© Copyright 2018 Xilinx

Bus IO Protocol (Burst, Read)

IO Level Protocols 22- 48

void foo (int *d) {

int buf1[4], buf2[4];

int i;

memcpy(buf1,d,4*sizeof(int));

for (i=0;i<4;i++) {

buf2[i] = buf1[3-i];

}

memcpy(d,buf2,4*sizeof(int));

}

• Similar to a Standard Mode

• This example uses a burst=4

• The base address is zero

• The burst size is placed on port size

• All reads are done consecutively

• The empty_n signal will stall the RTL until data

is available

© Copyright 2018 Xilinx

Bus IO Protocol (Burst, Write)

IO Level Protocols 22- 49
22- 49

void foo (int *d) {

int buf1[4], buf2[4];

int i;

memcpy(buf1,d,4*sizeof(int));

for (i=0;i<4;i++) {

buf2[i] = buf1[3-i];

}

memcpy(d,buf2,4*sizeof(int));

}

• Similar to a Standard Mode

• This example uses a burst=4

• The base address is zero

• The burst size is placed on port size

• All writes are done consecutively

• The full_n signal will stall the RTL until data is

available

© Copyright 2018 Xilinx

Summary

© Copyright 2018 Xilinx

Summary

IO Level Protocols 22- 51

˃ Vivado HLS has four types of IO

Data ports created by the original C function arguments

IO protocol signals added at the Block-Level

IO protocol signals added at the Port-Level

IO protocol signals added externally as IP Interfaces

˃ Block Level protocols provide default handshake

Block Level handshakes are added to the RTL design

Enables system level control & sequencing

˃ Port Level Protocols provide wide support for all standard IO protocols

The protocol is dependent on the C variable type

