
High Performance Visibility Testing with Screen Segmentation

Péter Szántó, Béla Fehér
Budapest University of Technology and Economics

Department of Measurement and Information Systems
szanto@mit.bme.hu, feher@mit.bme.hu

Abstract

There are two factors determining the performance a 3D
accelerator can achieve: the available computational power
and the available memory bandwidth. In embedded systems,
these resources are even more limited then in desktop
environments, thus the efficiency of the hardware
architecture and the exploitation of the logic resources
become even more important. Most resources are wasted at
the visibility testing process: traditional implementations
require a lot of bandwidth, and process pixels which are not
visible on the final image. By segmenting the screen, the
presented architecture can use high performance, on-chip
buffers to lower memory requirements and to provide high
performance. The order of the processing guarantees that
only those colors are computed, which are truly visible. The
modular architecture allows satisfying different
requirements; a trade off can be made between the number
of processing units and performance.

1. Introduction

Three dimensional image synthesis becomes more and
more important even in embedded systems (such as handheld
devices), as customers demand more functions, more
entertaining applications and better quality. Although
embedded CPUs get faster, the complexity of quality 3D
rendering still requires dedicated hardware acceleration to
provide convenient rendering speed. The increasing
complexity and decreasing price of FPGAs allow very
complex designs to be implemented in a single chip, as a
system on programmable chip (SOPC).

From the 3D rendering perspective, embedded systems
have fewer resources than desktop systems, while at the
same time the lower resolution lowers performance
requirements. As shown in the next section, most resources
are wasted during image synthesis because of pixels which
are processed, but are not visible on the final image.

2. 3D rendering basics

Real time 3D graphics rendering algorithms are based on
triangles. Complex object surfaces are approximated by a so
called triangle mesh – in general cases the more triangle is

used to define an object, the more lifelike the resulting model
is. The virtual objects are defined in their local coordinate
system. To visualize the complete virtual world on a 2D
display, the vertices of the objects are first transformed into a
3D space representing the whole world; with the camera
placed into the origin and facing into the positive Z direction.
The next step projects this space into the 2D screen space.
Due to the non-linear behavior of this perspective projection,
the 3D world space Z (depth) coordinate do not change
linearly with the screen X, Y coordinates. Therefore, new Z
values are generated during the process, which fulfill the
linear requirement.

Another per-vertex operation is the vertex lighting. For
every vertex, the effects of the light sources are computed
according to the light source type and color, and the material
properties of the object. The final result is a diffuse and
specular color component at every vertex.

The per-vertex transformation is followed by the per–
pixel rasterization process. For every screen pixel, the visible
triangle is determined and its color is computed. Color
computing can be done using the computed vertex colors by
interpolating them across the triangle surface. This can be
combined with other processes, such as texture mapping.
Texture mapping assigns 1D, 2D or 3D arrays to triangles by
defining an element of the array at the triangle vertices
(texture coordinates) thus stretching it onto the triangle
surface. In the simplest case, a 2D texture is nothing more
than the photo of the real surface which is “painted” onto the
triangle.

This paper focuses on one step of the rasterization
process: the determination of the visible triangle for the
screen pixels.

2.1 Wasting resources

In traditional implementations, rasterization happens
triangle by triangle, while visibility testing is based on the
well known Z Buffer algorithm. Usually there is a per-pixel
buffer for color values (Frame Buffer) and a buffer for
storing depth (Z) values (Z Buffer or Depth Buffer), both
placed into external memory ([1]).

The Z Buffer algorithm finds the visible triangle for every
screen pixel – this triangle is usually the one, which is closest
to the camera in the given pixel, that is, which has the
smallest Z value. At any given time, the Z Buffer stores the

mailto:szanto@mit.bme.hu
mailto:feher@mit.bme.hu

minimum Z value of the already processed triangles. When
processing a new triangle, for every pixel covered by it, a
color value is computed together with a per-pixel depth (Z)
value. The depth value is then compared with the value in the
Z Buffer, and in case this depth test passes (the new Z value
is smaller than the one read from the Z Buffer), the new color
value is written into the Frame Buffer, while the new depth
value is written into the Z Buffer. If the depth test fails, the
computed color value is discarded.

Apparently, this process not only computes unnecessary
color values, but requires a lot of memory bandwidth for Z
Buffer reads and writes. Compared with desktop
environment, in SOC systems, the available bandwidth is
much less and it is shared between more processing units,
thus architecture with the least amount of bandwidth demand
is the most adequate.

Our main goals were to reduce unnecessary
computations, reduce bandwidth requirements and achieve
adequate performance for the implementation of more
advanced visual effects (like shadowing). Another key point
was to accelerate as much operation with dedicated hardware
as possible to relieve the central processing unit.

2.2 Handling of transparent objects

One serious drawback of the original Z Buffer algorithm
is the inability to handle transparent objects correctly. As the
transparency effect depends on the order of processing,
translucent triangles have to be sorted before processing
them. For correct results, sorting should be done at the pixel
level; however most hardware renderers do not support this
operation, so only a rough sorting is done by the CPU before
triangles are sent to the 3D accelerator.

To eliminate the need of this sorting by the CPU, the
presented design handles transparent triangles in hardware
with a multi-pass procedure ([2]).

2.3 Shadow effects

One of the most impressive and most important visual
effects for lifelike image synthesis is the generation of
shadows. A lot of research was invested into this area, and
nowadays the two most widely used algorithms are shadow
mapping ([3]) and stencil shadow volumes ([4]). These
algorithms can be accelerated with an appropriate Z Buffer
architecture. However, it is beyond the scope of this paper to
discuss these algorithms in details, just a very brief
description is presented to help imagine the required
hardware functionality for fast processing.

2.2.1. Shadow Map based shadows. The Shadow Map
algorithm renders the screen form the light sources point of
view, and saves the resulting depth values into a texture (no
color values should be computed during this process). The
scene is then rendered from the camera point of view, and
the saved depth values are used to determine whether a given
pixel is in shadow or not. When multiple light sources are
used, multiple depth maps must be computed, so to
maximize depth mapping performance, the computed (and

just as importantly, the saved) number of depth values per
second should be maximized.

2.2.2. Stencil Shadow Volumes. The Stencil Shadow
Volumes algorithm uses another per-pixel buffer, the Stencil
Buffer. Just like the Depth Buffer, the Stencil Buffer has a
comparison function, but it also has different functions
depending on passing the stencil and/or the depth test. For
example the stencil values for the pixels covered by triangle
N. may be incremented when both the depth and stencil test
passes, decremented when stencil test passes and depth test
fails, and remain unchanged when both tests fail.
The algorithm first computes the silhouette of the shadow
casting objects, then projects the vertices away from the light
source, thus generating a volume which is in shadow
(shadow extrusion process, see Figure 1). These are vertex
based processes, so the CPU or the graphics hardware’s
geometry engine is responsible for them.
The rendering process is then divided into multiple passes
(shown for one light):

1. The scene is rendered without the shadow casting
light source, stencil buffer is set to 0

2. The front faces of the shadow volumes are
rendered. When depth test passes (so the shadow
volume is closer to the camera, then the object
visible on that pixel) the stencil buffer is
incremented.

3. The back faces of the shadow volumes are
rendered. If the depth test passes, stencil buffer is
decremented.

4. Render the scene with the light source, but only
update pixel colors if the stencil value is zero (the
pixel is not in shadow).

Z

X

Shadow
occluders

Camera

Light
source Shadow

volumes

0

1

0

1

0

Figure 1. Stencil Shadow Volumes

This technique requires fast depth and stencil buffering to
perform adequately.

3. Architecture overview

To spare external memory bandwidth, the presented
architecture uses on-chip Depth- and Stencil Buffers.
Naturally, the buffers for the entire screen cannot fit into on-
chip memory (a 640*480 resolution screen requires more
than one Mbytes for these buffers), so the screen is
segmented into small rectangles (henceforward referred as
tiles), which can be handled entirely on-chip. Rendering
happens tile by tile – first the visible triangle is determined

for every pixel in the given tile (HSR – hidden surface
removal – process), and then colors are computed only for
the visible pixels.

A typical scene in real-time applications contains ten
thousands of triangles. Traditional rendering hardware
architectures work triangle by triangle, so every object is
processed once. With the screen divided into tiles, processing
every triangle in every of them would make the architecture
very inefficient, so before the actual rasterization starts,
another hardware unit (Indexing Unit) processes all triangles
in the scene, and generates a list for every tile containing
pointers to triangles, which covers at least one pixel in the
given tile.

Figure 2 shows the high level schematic of the whole
Rasterization Unit.
The Memory Controller handles communication between the
external memory and the internal processing units.
The Vertex Buffer stores data associated to vertices (x, y
coordinates, depth value, color, and so on). Its output is
routed to all processing units.
The Pointer Buffer stores the output of the Indexing Unit in
32 word blocks. The first N number blocks (where N is the
number of tiles) are associated with the appropriate tiles, and
further blocks are reserved as required. To implement this
scheme, the first 31 elements of the blocks are pointers to
triangles, while the 31st is a pointer to a new 32 word block.

Figure 2. Rasterization Unit

The Pointer Buffer is read by the HSR Unit. For every given
tile, only those triangles are processed by the HSR Unit,
which are listed in the pointer Buffer.
The texture Memory stores 1D, 2D and 3D arrays of data.
For fast shadow map generation Texture Memory can be
written with data from the internal Z/Stencil Buffer; or for
other special effects from the internal Frame Memory.
The Shading Unit is responsible for computing output color
values by using vertex colors and texture data. It has an on-
chip Frame Memory containing the output colors of one tile,
which are saved into external memory after processing of the
tile finished. Bidirectional communication with this on-chip
memory is required to implement transparency (the
computed opaque color has to be read, modified with the
transparent color and written back).
The Indexing- and HSR Unit are responsible for the
previously mentioned visibility determination. This paper
presents the architecture of the HSR Unit.

4. The HSR Unit

The HSR Unit works tile by tile. Within a tile, triangles

are processed one after the other, reading the Pointer Buffer
and then the vertex data for the triangles listed in the buffer.
The unit has three functions: determination of the covered
pixels, depth testing and stencil testing.

The whole HSR Unit consists of sixteen HSR Cells and
an Input Processing unit, as Figure 3 shows. Each cell has its
own Z/Stencil- and Triangle Memory; the former stores per-
pixel Z and Stencil values in a single 32 bit word (8 bits for
stencil value and 24 bits for depth value), while the latter
contains per-pixel triangle pointers (which are the input of
the Shading Unit).

You may notice that the HSR Cell has input from the
Shading Unit. This is necessary because some special
rendering techniques require the modification of the Z value
during the shading process.

Figure 3. HSR Unit

Due to the separate memories, the sixteen cells can work
in parallel, achieving fast depth- and stencil testing
performance.

The tile size is configurable, so it can be adjusted for
different applications to perform optimally. The minimum
size is 16 lines by 32 pixels, while the maximum is defined
by the memory size.

The pixel rows of the tiles are assigned to HSR Cells. In
the case of 16 line tile, every row is processed by a different
cell. As the vertical size of the tile increases, every Mth row
is processed by the Mth HSR Cell. In a given row, a cell steps
through all pixels, irrespectively of the pixel being covered
by the triangle or not.

4.1. Covering Determination

Covering determination is based on a variable generated

from the explicit equations of the triangle sides (1.):
xyyyxxyxAs ∆−−∆−= *)(*)(),(00 , (1)

This variable is zero on the side, negative in one of the half
planes and positive on the other half plane defined by the
side. The exact sign on the two half planes depends on how
the delta values in Eq. 1. are computed. Figure 4 shows the
situation when vertices are sorted according to their y
coordinates, and numbered accordingly. Triangle sides are
also numbered based on the vertex they are in front of. The
figure also shows the sign of the mentioned variable (As)
when delta values are computed by subtracting values at the

higher numbered vertex from the lower numbered vertex’s
data; for side2 this means:

10

10
yyy
xxx

−=∆

−=∆
, (2)

A point is then inside the triangle if

))),((^)),(((
&))),((^))),(((

21

10

yxAsignyxAsign
yxAsignyxAsign

 (3)

is true, where)),((yxAsign k is the sign bit of the As
coefficient of side k at X,Y screen coordinates (1 when As is
negative, 0 otherwise), ‘^’ is XOR while ‘&’ is AND
operation.

V0

V1

V2

X

Y

+
-+

+

-

-

S2
S1

S0

Figure 4. Covering determination

It can be easily seen that the As variable must be incremented
by y∆ when stepping one pixel to the positive X direction,
and by x∆ when stepping in the Y direction.

4.2. Interpolating depth values

The perspective projection generates Z values in the
vertices which change linearly with the screen coordinates
across the triangle surface. This means that per-pixel values
can be computed using the plane equation

z

z

z

z

z

z
zzz C

Dy
C
Bx

C
AGyFxEyxz ++=++= ****),(

(4)

where the coefficients can be computed using values given at
the vertices (Eq. 2):

0.00

01210121

01210121

01210121

)(*)()(*)(

)(*)()(*)(
)(*)()(*)(

zCyBxAD
xxyyyyxxC

xxzzzzxxB
zzyyyyzzA

zzzz

z

z

z

++=
−−−−−=

−−−−−=
−−−−−=

 (5)

4.3. Input processing

The input processing unit uses vertex data from the
Memory Controller to produce the necessary input values for
the HSR Cells.

First, it computes the three As values for the three triangle
sides, and the coefficients for interpolating the Z value.
Then, it computes the As values and a Z value for the top-left
tile pixel – or in other words, the first pixel assigned to the
0th HSR Cell. In the following clock cycles, the Input
Processing Unit increments the computed As values by the

appropriate x∆ values, and the Z value by zF – with that,
generating these values at the next pixel row’s leftmost pixel.

The Nth HSR Cell therefore reads its input N clock cycles
after the 0th cell read its values. This means that loading one
triangle’s input data into all cells takes 16 clock cycles. This
way, only four adders (three for the As variables, one for the
Z value) are required to generate the input values for all pixel
rows.

4.4. The HSR Cell

The HSR Cell has four subunits: the Address Generator,
the Covering Unit, the Depth Unit and the Stencil Unit, as
Figure 5 shows.

4.4.1. The Depth Unit. The global architecture of the cell is
mainly defined by the functionality of the Depth Unit. As
mentioned earlier, the presented architecture supports
hardware sorting of transparent triangles. This is achieved
with storing two depth words for every pixel: one at even
Z/Stencil Memory address, and one at odd address.

Figure 5. HSR Cell

Processing starts with opaque triangles, and happens just
like with the ordinary Z Buffer algorithm, using even
addressed Z Memory words. At the end of the process, the Z
Memory contains the Z value of the visible opaque triangle
at every pixel, while Triangle Memory contains a pointer to
this triangle. The Shading Unit computes an opaque output
color value for every pixel using these pointers, and saves
them into the internal Frame Memory.

The next processing step is an even transparent pass. In
this pass, transparent triangles are processed to find the
transparent triangle for every pixel which is farthest away
from the camera, but closer than the opaque triangle. This
can be determined by two Z comparisons per pixel: the Z
value of the processed triangle must be compared with the
opaque Z value (even addressed Z Buffer word), and with the
already processed transparent value (odd addressed Z Buffer
word) – the depth test passes if both comparisons pass. In
this case, the odd addressed Z Buffer word is updated with
the new transparent value together with the pointer in
Triangle Memory. After the end of this pass, the color of the
transparent triangles in the Triangle Memory are computed
and blended with the opaque color in the Frame Memory.

HSR process continues with an odd transparent pass. In
this pass even and odd Z Buffer words change role: now odd
words act as already processed Z values, while even
addressed words are used to find the transparent triangle
which is farthest away from the camera, but closer than the
previously processed transparent triangle (or in other words:
second farthest away from the camera but closer than the
opaque triangle).

Processing takes as many passes as many transparent
layers are on the scene. Figure 6 shows the schematic of the
Depth Cell (for smaller size, inputs directly connected to
registers are not labeled – they are the appropriate input
values from Input Processing Unit).

Figure 6. Depth Unit

To be able to process one transparent pixel per system clock,
the cell contains two depth comparison logics, while the Z
Memory is read with doubled system clock (referred as fast
clock). In the schematic, grey blocks represent registers,
while white blocks are logics. Registers are:

• Z Read High: the output of the Z/Stencil Memory,
sampled at the falling edge of the system clock

• Z Read Low: the output of the Z/Stencil Memory,
sampled at the rising edge of the system clock

• Z Inc: the value to increment Z as the cell steps to
the x direction: zE (see Eq. 4), or double of it

• Z New High: a new (interpolated) Z value, updated
at the falling edge of system clock

• Z New Low: a new (interpolated) Z value, updated
at the rising edge of system clock

• Z Func0, Z Func1: a comparison function for the
depth test (never, always, less, less-equal, equal,
greater-equal, greater)

• Cell Mode: operating mode of the cell (opaque,
transparent even pass, transparent odd pass)

Opaque mode. In this mode the HSR Cell can perform depth
test for two pixels. The Z/Stencil Memory is read and written
at twice the system clock, however the complex comparison
and selection operations has too high latency to be performed
at twice the system clock, therefore the memory’s output are
stored in two registers (Z Read Low and High), both updated
at system clock rate. For the same reason, the interpolated Z
values are also stored in two registers; in opaque mode the Z
New High stores interpolated Z values for even numbered

pixels in the processed pixel row, while Z New Low stores
the value for odd pixels. This means that these registers
should be incremented with Ez multiplied by two (stored in Z
Inc).
Transparent mode. In this mode only one pixel is processed
per system clock, as two comparisons are required per pixel.
Z High now stores the already processed Z value, while Z
Low stores the transparent Z value. The result of depth test 0
is stored in a register to be available during the time of depth
test 1 (half system clock delayed). Write is only possible
once, after both depth tests are evaluated – at this time only
Z Read Low and Z New Low contains valid data. The Depth
Cell does not differentiate between even and odd passes; this
is handled by the Address Generator.

4.4.2. Stencil Unit. The Stencil Unit is also capable of two
stencil tests per system clock. Architecturally it is very
similar to the Depth Unit, with the key difference being the
different function.

Figure 7. Stencil Unit

A stencil test is passed if
)&()&(RMaskStBuffCOMPRMaskRef (6)

is true, where Ref is a reference value, RMask is a read
mask, StBuff is the stencil buffer value and COMP is the
comparison functions (same options as with the Depth Unit).
The stencil buffer is updated with the following value:

))(&(|)~&(StBuffOPWMaskWMaskStBuff (7)
where WMask is a write mask, and OP is one of the possible
operations (among others: replace with reference, increment,
decrement). Unlike the Z Buffer, the Stencil Buffer is not
only updated when the stencil test passes; different
operations may be set for “stencil test fails”, “stencil test

passes and depth test fails” and “stencil test passes and depth
test passes” cases.
Figure 7 shows the schematic of the Stencil Unit (again,
trivial inputs are not labeled). Like the Depth Unit, the
Stencil Unit is also pipelined, so most registers (masks,
functions) are doubled – the only difference being them is
the load time: registers with 0 index loads its values on the
falling edge of the system clock, while the others loads on
the next rising edge when processing of a new line starts.
The logic next to the registers generates the stencil pass
signals. The ALU computes the results of the possible
operations, and a multiplexer selects the appropriate result
based on the stencil and Z pass signals and the set operation.
The next logic blocks generate the value to be written into
the Stencil Buffer according to Eq. 7. The final multiplexer
selects one of the two results considering the system clock
state.

4.4.3. Address Generator. The unit is responsible for
generating the read- and write address for the internal
memories, according to the operation mode. Figure 8 shows
the block diagram of the unit.

Figure 8. Address Generator

In opaque mode, both the read- and write address are
incremented by two every fast clock, thus reading and
writing even addresses in the memory.

As mentioned earlier, when processing transparent
triangles writing can only happen after both depth tests are
evaluated, so only Z Read Low and Z New Low are valid
sources. In even transparent pass, this is not a problem, as
odd addresses must be written, and the valid sources contain
the appropriate data, if addresses are incremented by one
every fast clock cycle. In odd transparent passes, still only
the mentioned registers are available for writing – so the
address generator must ensure that those registers contain
“transparent” data. As now data at even addresses act as
transparent, from every two-word block the odd must be read
first, followed by the even. This means that read address
series such as 1-0-3-2-5-4 are correct. This is why two read
address registers are present, one working at rising edge, and
the other at the falling edge of the system clock. These
addresses are multiplexed according to the system clock state
to generate the final read address. Table 1 lists the initial
addresses, the load time (delay in number of fast clocks) and
the increment value in the different modes
(opaque/transparent even/transparent odd).

The Load Logic synchronizes the cell with the Input
Processing Unit, the LOAD_DL delays this load signal for
registers loading some fast clocks later.

Table 1. Address values
 Init Increment Load time

Read 0 0/0/1 4/2/2 0/0/0
Read 1 2/1/0 4/2/2 1/1/1
Write 0/0/-1 2/1/1 3/3/3

5. Conclusion

The presented units fulfill our preliminary requirements.
External bandwidth requirement is decreased thanks to the
on-chip buffers. The parallel memories allow very fast z- and
stencil buffering, thus the architecture can greatly cope with
shadow computing and complex scenes. While the handling
of transparent object may be faster when they are pre-sorted,
the presented multi pass algorithm lowers CPU requirements,
and allows correct, per-pixel transparency effects to be
achieved. As typical embedded systems still use SDRAM
memory, the target clock speed of 66 MHz fits into this
segment. Resolution in such devices hardly reaches 640x480,
so with 100.000 triangles on screen, the HSR unit can
achieve more than 40 frames/second average.

Further improvements can be made by utilizing the
programmable tile size and change it adaptively; by
analyzing the rendered images an optimal tile size can be
derived based on the average number of pixels covered by a
triangle in a tile, and on the average number of tiles affected
by a triangle.
Another possibility for improvement is to join two triangles
which are on the same plane and process them as a single
quad in the HSR Unit, effectively doubling the ratio of
covered and non-covered number of pixels in a tile.

Table 2 summarizes the required logic resources for the
presented units (number of 4 input LUTs, flip-flops and
BlockRAM memory blocks).

Table 2. Logic Resources
 LUT FF BRAM
Depth Unit 330 76
Stencil Unit 210 36
Covering Unit 355 123
Address Gen. 47 111

2

6. References

[1] A. Watt, 3D Computer Graphics, Addison-Wesley, 2000.

[2] P. Diefenbach, Pipeline Rendering: Interaction and
Realism Through Hardware-Based Multi-Pass Rendering,
Ph.D. Thesis, University of Pennsylvania, 1996.

[3] Kilgard, M. J., Everitt C. Optimized Stencil Shadow
Volumes. Game Developer Conference, 2003.

[4] Y. Wang, S. Molnar, Second-Depth Shadow Mapping.
Technical Report TR94-019, 1994.

