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Abstract 
 

There are two factors determining the performance a 3D 
accelerator can achieve: the available computational power 
and the available memory bandwidth. In embedded systems, 
these resources are even more limited then in desktop 
environments, thus the efficiency of the hardware 
architecture and the exploitation of the logic resources 
become even more important. Most resources are wasted at 
the visibility testing process: traditional implementations 
require a lot of bandwidth, and process pixels which are not 
visible on the final image. By segmenting the screen, the 
presented architecture can use high performance, on-chip 
buffers to lower memory requirements and to provide high 
performance. The order of the processing guarantees that 
only those colors are computed, which are truly visible. The 
modular architecture allows satisfying different 
requirements; a trade off can be made between the number 
of processing units and performance. 
 
1. Introduction 
 

Three dimensional image synthesis becomes more and 
more important even in embedded systems (such as handheld 
devices), as customers demand more functions, more 
entertaining applications and better quality. Although 
embedded CPUs get faster, the complexity of quality 3D 
rendering still requires dedicated hardware acceleration to 
provide convenient rendering speed. The increasing 
complexity and decreasing price of FPGAs allow very 
complex designs to be implemented in a single chip, as a 
system on programmable chip (SOPC). 

From the 3D rendering perspective, embedded systems 
have fewer resources than desktop systems, while at the 
same time the lower resolution lowers performance 
requirements. As shown in the next section, most resources 
are wasted during image synthesis because of pixels which 
are processed, but are not visible on the final image. 
 
2. 3D rendering basics 
 

Real time 3D graphics rendering algorithms are based on 
triangles. Complex object surfaces are approximated by a so 
called triangle mesh – in general cases the more triangle is 

used to define an object, the more lifelike the resulting model 
is. The virtual objects are defined in their local coordinate 
system. To visualize the complete virtual world on a 2D 
display, the vertices of the objects are first transformed into a 
3D space representing the whole world; with the camera 
placed into the origin and facing into the positive Z direction. 
The next step projects this space into the 2D screen space. 
Due to the non-linear behavior of this perspective projection, 
the 3D world space Z (depth) coordinate do not change 
linearly with the screen X, Y coordinates. Therefore, new Z 
values are generated during the process, which fulfill the 
linear requirement. 

Another per-vertex operation is the vertex lighting. For 
every vertex, the effects of the light sources are computed 
according to the light source type and color, and the material 
properties of the object. The final result is a diffuse and 
specular color component at every vertex. 

The per-vertex transformation is followed by the per–
pixel rasterization process. For every screen pixel, the visible 
triangle is determined and its color is computed. Color 
computing can be done using the computed vertex colors by 
interpolating them across the triangle surface. This can be 
combined with other processes, such as texture mapping. 
Texture mapping assigns 1D, 2D or 3D arrays to triangles by 
defining an element of the array at the triangle vertices 
(texture coordinates) thus stretching it onto the triangle 
surface. In the simplest case, a 2D texture is nothing more 
than the photo of the real surface which is “painted” onto the 
triangle.  

This paper focuses on one step of the rasterization 
process: the determination of the visible triangle for the 
screen pixels. 

 
2.1 Wasting resources 
 

In traditional implementations, rasterization happens 
triangle by triangle, while visibility testing is based on the 
well known Z Buffer algorithm. Usually there is a per-pixel 
buffer for color values (Frame Buffer) and a buffer for 
storing depth (Z) values (Z Buffer or Depth Buffer), both 
placed into external memory ([1]). 

The Z Buffer algorithm finds the visible triangle for every 
screen pixel – this triangle is usually the one, which is closest 
to the camera in the given pixel, that is, which has the 
smallest Z value. At any given time, the Z Buffer stores the 
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minimum Z value of the already processed triangles. When 
processing a new triangle, for every pixel covered by it, a 
color value is computed together with a per-pixel depth (Z) 
value. The depth value is then compared with the value in the 
Z Buffer, and in case this depth test passes (the new Z value 
is smaller than the one read from the Z Buffer), the new color 
value is written into the Frame Buffer, while the new depth 
value is written into the Z Buffer. If the depth test fails, the 
computed color value is discarded. 

Apparently, this process not only computes unnecessary 
color values, but requires a lot of memory bandwidth for Z 
Buffer reads and writes. Compared with desktop 
environment, in SOC systems, the available bandwidth is 
much less and it is shared between more processing units, 
thus architecture with the least amount of bandwidth demand 
is the most adequate. 

Our main goals were to reduce unnecessary 
computations, reduce bandwidth requirements and achieve 
adequate performance for the implementation of more 
advanced visual effects (like shadowing). Another key point 
was to accelerate as much operation with dedicated hardware 
as possible to relieve the central processing unit. 
 
2.2 Handling of transparent objects 
 

One serious drawback of the original Z Buffer algorithm 
is the inability to handle transparent objects correctly. As the 
transparency effect depends on the order of processing, 
translucent triangles have to be sorted before processing 
them. For correct results, sorting should be done at the pixel 
level; however most hardware renderers do not support this 
operation, so only a rough sorting is done by the CPU before 
triangles are sent to the 3D accelerator. 

To eliminate the need of this sorting by the CPU, the 
presented design handles transparent triangles in hardware 
with a multi-pass procedure ([2]). 
 
2.3 Shadow effects 
 

One of the most impressive and most important visual 
effects for lifelike image synthesis is the generation of 
shadows. A lot of research was invested into this area, and 
nowadays the two most widely used algorithms are shadow 
mapping ([3]) and stencil shadow volumes ([4]). These 
algorithms can be accelerated with an appropriate Z Buffer 
architecture. However, it is beyond the scope of this paper to 
discuss these algorithms in details, just a very brief 
description is presented to help imagine the required 
hardware functionality for fast processing. 
 
2.2.1. Shadow Map based shadows. The Shadow Map 
algorithm renders the screen form the light sources point of 
view, and saves the resulting depth values into a texture (no 
color values should be computed during this process). The 
scene is then rendered from the camera point of view, and 
the saved depth values are used to determine whether a given 
pixel is in shadow or not. When multiple light sources are 
used, multiple depth maps must be computed, so to 
maximize depth mapping performance, the computed (and 

just as importantly, the saved) number of depth values per 
second should be maximized. 
 
2.2.2. Stencil Shadow Volumes. The Stencil Shadow 
Volumes algorithm uses another per-pixel buffer, the Stencil 
Buffer. Just like the Depth Buffer, the Stencil Buffer has a 
comparison function, but it also has different functions 
depending on passing the stencil and/or the depth test. For 
example the stencil values for the pixels covered by triangle 
N. may be incremented when both the depth and stencil test 
passes, decremented when stencil test passes and depth test 
fails, and remain unchanged when both tests fail. 
The algorithm first computes the silhouette of the shadow 
casting objects, then projects the vertices away from the light 
source, thus generating a volume which is in shadow 
(shadow extrusion process, see Figure 1). These are vertex 
based processes, so the CPU or the graphics hardware’s 
geometry engine is responsible for them. 
The rendering process is then divided into multiple passes 
(shown for one light): 

1. The scene is rendered without the shadow casting 
light source, stencil buffer is set to 0 

2. The front faces of the shadow volumes are 
rendered. When depth test passes (so the shadow 
volume is closer to the camera, then the object 
visible on that pixel) the stencil buffer is 
incremented. 

3. The back faces of the shadow volumes are 
rendered. If the depth test passes, stencil buffer is 
decremented. 

4. Render the scene with the light source, but only 
update pixel colors if the stencil value is zero (the 
pixel is not in shadow). 
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Figure 1. Stencil Shadow Volumes 

This technique requires fast depth and stencil buffering to 
perform adequately. 

 
3. Architecture overview 
 

To spare external memory bandwidth, the presented 
architecture uses on-chip Depth- and Stencil Buffers. 
Naturally, the buffers for the entire screen cannot fit into on-
chip memory (a 640*480 resolution screen requires more 
than one Mbytes for these buffers), so the screen is 
segmented into small rectangles (henceforward referred as 
tiles), which can be handled entirely on-chip. Rendering 
happens tile by tile – first the visible triangle is determined 



for every pixel in the given tile (HSR – hidden surface 
removal – process), and then colors are computed only for 
the visible pixels. 

A typical scene in real-time applications contains ten 
thousands of triangles. Traditional rendering hardware 
architectures work triangle by triangle, so every object is 
processed once. With the screen divided into tiles, processing 
every triangle in every of them would make the architecture 
very inefficient, so before the actual rasterization starts, 
another hardware unit (Indexing Unit) processes all triangles 
in the scene, and generates a list for every tile containing 
pointers to triangles, which covers at least one pixel in the 
given tile. 

Figure 2 shows the high level schematic of the whole 
Rasterization Unit. 
The Memory Controller handles communication between the 
external memory and the internal processing units. 
The Vertex Buffer stores data associated to vertices (x, y 
coordinates, depth value, color, and so on). Its output is 
routed to all processing units.  
The Pointer Buffer stores the output of the Indexing Unit in 
32 word blocks. The first N number blocks (where N is the 
number of tiles) are associated with the appropriate tiles, and 
further blocks are reserved as required. To implement this 
scheme, the first 31 elements of the blocks are pointers to 
triangles, while the 31st is a pointer to a new 32 word block. 
 

 
Figure 2. Rasterization Unit 

The Pointer Buffer is read by the HSR Unit. For every given 
tile, only those triangles are processed by the HSR Unit, 
which are listed in the pointer Buffer. 
The texture Memory stores 1D, 2D and 3D arrays of data. 
For fast shadow map generation Texture Memory can be 
written with data from the internal Z/Stencil Buffer; or for 
other special effects from the internal Frame Memory. 
The Shading Unit is responsible for computing output color 
values by using vertex colors and texture data. It has an on-
chip Frame Memory containing the output colors of one tile, 
which are saved into external memory after processing of the 
tile finished. Bidirectional communication with this on-chip 
memory is required to implement transparency (the 
computed opaque color has to be read, modified with the 
transparent color and written back). 
The Indexing- and HSR Unit are responsible for the 
previously mentioned visibility determination. This paper 
presents the architecture of the HSR Unit. 

4. The HSR Unit 
 
The HSR Unit works tile by tile. Within a tile, triangles 

are processed one after the other, reading the Pointer Buffer 
and then the vertex data for the triangles listed in the buffer. 
The unit has three functions: determination of the covered 
pixels, depth testing and stencil testing. 

The whole HSR Unit consists of sixteen HSR Cells and 
an Input Processing unit, as Figure 3 shows. Each cell has its 
own Z/Stencil- and Triangle Memory; the former stores per-
pixel Z and Stencil values in a single 32 bit word (8 bits for 
stencil value and 24 bits for depth value), while the latter 
contains per-pixel triangle pointers (which are the input of 
the Shading Unit). 

You may notice that the HSR Cell has input from the 
Shading Unit. This is necessary because some special 
rendering techniques require the modification of the Z value 
during the shading process. 

 
Figure 3. HSR Unit 

Due to the separate memories, the sixteen cells can work 
in parallel, achieving fast depth- and stencil testing 
performance. 

The tile size is configurable, so it can be adjusted for 
different applications to perform optimally. The minimum 
size is 16 lines by 32 pixels, while the maximum is defined 
by the memory size. 

The pixel rows of the tiles are assigned to HSR Cells. In 
the case of 16 line tile, every row is processed by a different 
cell. As the vertical size of the tile increases, every Mth row 
is processed by the Mth HSR Cell. In a given row, a cell steps 
through all pixels, irrespectively of the pixel being covered 
by the triangle or not. 
 
4.1. Covering Determination 

 
Covering determination is based on a variable generated 

from the explicit equations of the triangle sides (1.): 
xyyyxxyxAs ∆−−∆−= *)(*)(),( 00 , (1) 

This variable is zero on the side, negative in one of the half 
planes and positive on the other half plane defined by the 
side. The exact sign on the two half planes depends on how 
the delta values in Eq. 1. are computed. Figure 4 shows the 
situation when vertices are sorted according to their y 
coordinates, and numbered accordingly. Triangle sides are 
also numbered based on the vertex they are in front of. The 
figure also shows the sign of the mentioned variable (As) 
when delta values are computed by subtracting values at the 



higher numbered vertex from the lower numbered vertex’s 
data; for side2 this means: 
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A point is then inside the triangle if 
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is true, where )),(( yxAsign k is the sign bit of the As 
coefficient of side k at X,Y screen coordinates (1 when As is 
negative, 0 otherwise), ‘^’ is XOR while ‘&’ is AND 
operation. 
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Figure 4. Covering determination 

It can be easily seen that the As variable must be incremented 
by y∆ when stepping one pixel to the positive X direction, 
and by x∆  when stepping in the Y direction. 
 
4.2. Interpolating depth values 
 

The perspective projection generates Z values in the 
vertices which change linearly with the screen coordinates 
across the triangle surface. This means that per-pixel values 
can be computed using the plane equation 
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where the coefficients can be computed using values given at 
the vertices (Eq. 2): 
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4.3. Input processing 
 

The input processing unit uses vertex data from the 
Memory Controller to produce the necessary input values for 
the HSR Cells. 

First, it computes the three As values for the three triangle 
sides, and the coefficients for interpolating the Z value. 
Then, it computes the As values and a Z value for the top-left 
tile pixel – or in other words, the first pixel assigned to the 
0th HSR Cell. In the following clock cycles, the Input 
Processing Unit increments the computed As values by the 

appropriate x∆  values, and the Z value by zF  – with that, 
generating these values at the next pixel row’s leftmost pixel. 

The Nth HSR Cell therefore reads its input N clock cycles 
after the 0th cell read its values. This means that loading one 
triangle’s input data into all cells takes 16 clock cycles. This 
way, only four adders (three for the As variables, one for the 
Z value) are required to generate the input values for all pixel 
rows. 
 
4.4. The HSR Cell 
 

The HSR Cell has four subunits: the Address Generator, 
the Covering Unit, the Depth Unit and the Stencil Unit, as 
Figure 5 shows. 
 
4.4.1. The Depth Unit. The global architecture of the cell is 
mainly defined by the functionality of the Depth Unit. As 
mentioned earlier, the presented architecture supports 
hardware sorting of transparent triangles. This is achieved 
with storing two depth words for every pixel: one at even 
Z/Stencil Memory address, and one at odd address.  

 
Figure 5. HSR Cell 

Processing starts with opaque triangles, and happens just 
like with the ordinary Z Buffer algorithm, using even 
addressed Z Memory words. At the end of the process, the Z 
Memory contains the Z value of the visible opaque triangle 
at every pixel, while Triangle Memory contains a pointer to 
this triangle. The Shading Unit computes an opaque output 
color value for every pixel using these pointers, and saves 
them into the internal Frame Memory. 

The next processing step is an even transparent pass. In 
this pass, transparent triangles are processed to find the 
transparent triangle for every pixel which is farthest away 
from the camera, but closer than the opaque triangle. This 
can be determined by two Z comparisons per pixel: the Z 
value of the processed triangle must be compared with the 
opaque Z value (even addressed Z Buffer word), and with the 
already processed transparent value (odd addressed Z Buffer 
word) – the depth test passes if both comparisons pass. In 
this case, the odd addressed Z Buffer word is updated with 
the new transparent value together with the pointer in 
Triangle Memory. After the end of this pass, the color of the 
transparent triangles in the Triangle Memory are computed 
and blended with the opaque color in the Frame Memory. 



HSR process continues with an odd transparent pass. In 
this pass even and odd Z Buffer words change role: now odd 
words act as already processed Z values, while even 
addressed words are used to find the transparent triangle 
which is farthest away from the camera, but closer than the 
previously processed transparent triangle (or in other words: 
second farthest away from the camera but closer than the 
opaque triangle). 

Processing takes as many passes as many transparent 
layers are on the scene. Figure 6 shows the schematic of the 
Depth Cell (for smaller size, inputs directly connected to 
registers are not labeled – they are the appropriate input 
values from Input Processing Unit). 

 
Figure 6. Depth Unit 

To be able to process one transparent pixel per system clock, 
the cell contains two depth comparison logics, while the Z 
Memory is read with doubled system clock (referred as fast 
clock). In the schematic, grey blocks represent registers, 
while white blocks are logics. Registers are: 

• Z Read High: the output of the Z/Stencil Memory, 
sampled at the falling edge of the system clock 

• Z Read Low: the output of the Z/Stencil Memory, 
sampled at the rising edge of the system clock 

• Z Inc: the value to increment Z as the cell steps to 
the x direction: zE  (see Eq. 4), or double of it 

• Z New High: a new (interpolated) Z value, updated 
at the falling edge of system clock 

• Z New Low: a new (interpolated) Z value, updated 
at the rising edge of system clock 

• Z Func0, Z Func1: a comparison function for the 
depth test (never, always, less, less-equal, equal, 
greater-equal, greater) 

• Cell Mode: operating mode of the cell (opaque, 
transparent even pass, transparent odd pass) 

Opaque mode. In this mode the HSR Cell can perform depth 
test for two pixels. The Z/Stencil Memory is read and written 
at twice the system clock, however the complex comparison 
and selection operations has too high latency to be performed 
at twice the system clock, therefore the memory’s output are 
stored in two registers (Z Read Low and High), both updated 
at system clock rate. For the same reason, the interpolated Z 
values are also stored in two registers; in opaque mode the Z 
New High stores interpolated Z values for even numbered 

pixels in the processed pixel row, while Z New Low stores 
the value for odd pixels. This means that these registers 
should be incremented with Ez multiplied by two (stored in Z 
Inc). 
Transparent mode. In this mode only one pixel is processed 
per system clock, as two comparisons are required per pixel. 
Z High now stores the already processed Z value, while Z 
Low stores the transparent Z value. The result of depth test 0 
is stored in a register to be available during the time of depth 
test 1 (half system clock delayed). Write is only possible 
once, after both depth tests are evaluated – at this time only 
Z Read Low and Z New Low contains valid data. The Depth 
Cell does not differentiate between even and odd passes; this 
is handled by the Address Generator. 
 
4.4.2. Stencil Unit. The Stencil Unit is also capable of two 
stencil tests per system clock. Architecturally it is very 
similar to the Depth Unit, with the key difference being the 
different function. 

 
Figure 7. Stencil Unit 

A stencil test is passed if 
)&()&( RMaskStBuffCOMPRMaskRef  (6) 

is true, where Ref is a reference value, RMask is a read 
mask, StBuff is the stencil buffer value and COMP is the 
comparison functions (same options as with the Depth Unit).  
The stencil buffer is updated with the following value: 

))(&(|)~&( StBuffOPWMaskWMaskStBuff  (7) 
where WMask is a write mask, and OP is one of the possible 
operations (among others: replace with reference, increment, 
decrement). Unlike the Z Buffer, the Stencil Buffer is not 
only updated when the stencil test passes; different 
operations may be set for “stencil test fails”, “stencil test 



passes and depth test fails” and “stencil test passes and depth 
test passes” cases. 
Figure 7 shows the schematic of the Stencil Unit (again, 
trivial inputs are not labeled). Like the Depth Unit, the 
Stencil Unit is also pipelined, so most registers (masks, 
functions) are doubled – the only difference being them is 
the load time: registers with 0 index loads its values on the 
falling edge of the system clock, while the others loads on 
the next rising edge when processing of a new line starts. 
The logic next to the registers generates the stencil pass 
signals. The ALU computes the results of the possible 
operations, and a multiplexer selects the appropriate result 
based on the stencil and Z pass signals and the set operation. 
The next logic blocks generate the value to be written into 
the Stencil Buffer according to Eq. 7. The final multiplexer 
selects one of the two results considering the system clock 
state.  
 
4.4.3. Address Generator. The unit is responsible for 
generating the read- and write address for the internal 
memories, according to the operation mode. Figure 8 shows 
the block diagram of the unit. 

 
Figure 8. Address Generator 

In opaque mode, both the read- and write address are 
incremented by two every fast clock, thus reading and 
writing even addresses in the memory.  

As mentioned earlier, when processing transparent 
triangles writing can only happen after both depth tests are 
evaluated, so only Z Read Low and Z New Low are valid 
sources. In even transparent pass, this is not a problem, as 
odd addresses must be written, and the valid sources contain 
the appropriate data, if addresses are incremented by one 
every fast clock cycle. In odd transparent passes, still only 
the mentioned registers are available for writing – so the 
address generator must ensure that those registers contain 
“transparent” data. As now data at even addresses act as 
transparent, from every two-word block the odd must be read 
first, followed by the even. This means that read address 
series such as 1-0-3-2-5-4 are correct. This is why two read 
address registers are present, one working at rising edge, and 
the other at the falling edge of the system clock. These 
addresses are multiplexed according to the system clock state 
to generate the final read address. Table 1 lists the initial 
addresses, the load time (delay in number of fast clocks) and 
the increment value in the different modes 
(opaque/transparent even/transparent odd). 

The Load Logic synchronizes the cell with the Input 
Processing Unit, the LOAD_DL delays this load signal for 
registers loading some fast clocks later.  

Table 1. Address values 
 Init Increment Load time 

Read 0 0/0/1 4/2/2 0/0/0 
Read 1 2/1/0 4/2/2 1/1/1 
Write 0/0/-1 2/1/1 3/3/3 

 
5. Conclusion 
 

The presented units fulfill our preliminary requirements. 
External bandwidth requirement is decreased thanks to the 
on-chip buffers. The parallel memories allow very fast z- and 
stencil buffering, thus the architecture can greatly cope with 
shadow computing and complex scenes. While the handling 
of transparent object may be faster when they are pre-sorted, 
the presented multi pass algorithm lowers CPU requirements, 
and allows correct, per-pixel transparency effects to be 
achieved. As typical embedded systems still use SDRAM 
memory, the target clock speed of 66 MHz fits into this 
segment. Resolution in such devices hardly reaches 640x480, 
so with 100.000 triangles on screen, the HSR unit can 
achieve more than 40 frames/second average. 

Further improvements can be made by utilizing the 
programmable tile size and change it adaptively; by 
analyzing the rendered images an optimal tile size can be 
derived based on the average number of pixels covered by a 
triangle in a tile, and on the average number of tiles affected 
by a triangle. 
Another possibility for improvement is to join two triangles 
which are on the same plane and process them as a single 
quad in the HSR Unit, effectively doubling the ratio of 
covered and non-covered number of pixels in a tile. 

Table 2 summarizes the required logic resources for the 
presented units (number of 4 input LUTs, flip-flops and 
BlockRAM memory blocks). 

Table 2. Logic Resources 
 LUT FF BRAM 
Depth Unit 330 76 
Stencil Unit 210 36 
Covering Unit  355 123 
Address Gen. 47 111 
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