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Abstract: This paper presents and compares some major hardware and embedded software sorting 

solutions, with a special care for methods whose implementation can be efficiently done in FPGA. 

Distributed sorting in a processor network is considered. For specific data sets a special merge-sorting 

architecture is presented, that consists of block RAM based merge sorters fed by a sorting network. 

Measurements and comparisons to other existing solutions, especially to sorting performance of PCs 

are also discussed in the paper. 
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1 Introduction: scope and purpose 
of embedded sorting 

Sorting algorithms are a very well known 

and thoroughly analyzed part of computer 

science. Many methods and architectures have 

been discovered and optimized, yet for specific 

input data in a special environment, the 

algorithms that are usually meant to be ‘optimal’ 

(quick sort and heap sort among others) are not 

the best solution. 

For FPGA-accelerated algorithms, sorting is 

sometimes an intermediate step for following 

computations, and in-place sorting is necessary 

if the communication costs are too high or if an 

external PC-based sorting is not a possible 

solution. FPGAs have handicaps in the domain 

of sorting algorithms against current desktop 

computers: the smaller memory and slower 

clock speed, the lack of fast L1 and L2 caches 

makes sorting generally less cost-efficient, 

especially if data can be accessed only 

sequentially from the memory. 

One important factor was to achieve the 

performance of desktop computers for a well 

defined type of data set. The target architecture 

was a Xilinx Virtex-II 6000, thus some of the 

presented sorting solutions rely on its hardware 

resources. 

2 Sorting architectures 

For the most effective resource utilization, 

different sorting methods may be combined 

together. Such combination is the std::sort() 

method of C++ STL: it is an introsort 

implementation that combines quicksort and 

heapsort, giving a worst-case runtime of 

O(n log n). This is an asymptotically optimal 

solution of comparison based sorting on a von 

Neumann architecture computer. [Musser] 

For such complex algorithms a hardware 

implementation is not viable, still there is a 

possibility to outperform these algorithms with 

less sophisticated solutions utilizing the 

parallelization possibilities of the hardware.  

Merge sort is more hardware-friendly, it is a 

basic sorting algorithm with O(n log n) 

computational complexity. Merge-sorting N 

elements is done by sorting its two halves 

separately, and then merging the two sorted 

parts with N-1 comparisons. 
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2.1 Sorting network 

A sorting network is a simple pipelined 

architecture of compare and swap units 

organized in a way that the parallel input data 

gets sorted as it is streamed through the pipeline. 

This architecture is optimal for high input 

data rate, where only small (≤32) sets have to be 

sorted, as its hardware complexity is 

O(n (log n)2) comparators for n input elements. 

The network sorts n elements in every clock 

cycle. [Lang] 

 

Figure 1. 6-stage sorting network for n=8 

2.2 Systolic processing arrays 

Systolic processing arrays are simple sorting 

units connected to their neighbours. Elements 

are compared and transferred to the neighbours 

in a way that sorting is done simultaneously 

with the load of new elements. After data is 

loaded, the sorted output is ready to be read out 

from the processing array. The array 

connections can either be linear or two 

dimensional, resulting in different resource 

demands and different performance. A good 

systolic processing solution is presented in 

[Bednara]. 

2.3 Embedded processors 

Soft core processors in FPGA like 

PicoBlaze or MicroBlaze give a good 

opportunity for parallel sorting, as they can be 

easily connected to form a processor network.  

These processors run software sorting 

algorithms, and they are best if the comparison 

itself is a complex operation. In this case there is 

no possibility to have hundreds of comparators 

due to hardware limitations, so brute force 

hardware implementations are not possible. As 

the comparison operation is expensive, complex 

software implementations with small 

comparison counts are better. The operator itself 

can be partially or fully implemented in 

hardware and accessed as an extended 

instruction (e.g. via FSL in MicroBlaze), giving 

a performance boost for the otherwise slow 50-

100 MHz soft core processor. If multiple 

processors fit in the resource budget, their sorted 

output can be merge-sorted, either with a 

specific merger hardware, or with a higher 

performance embedded hard core processor. 

The main bottleneck of sorting in soft core 

processor hierarchies is the block RAM size of 

FPGAs and the slow speed of these cores in 

comparison to PC based solutions. The 

embedded memory is a limited resource, and 

program code also consumes it (the MicroBlaze 

implementation of standard C qsort() routine 

consumes 4K of memory, and there is only 

324K of BRAM memory available in a Virtex-II 

6000, which is a considerably big FPGA). The 

available memory limits the maximum size of 

sorted data blocks. 

2.4 Mixed architectures 

If an algorithm works in the FPGA’s block 

RAMs it is bounded by size limits. The possible 

block size of sorted elements is too small, so 

many rounds of merge sort has to be performed. 

For this purpose [Bednara] shows the usage of 

microprocessors as final merger units; instead of 

that solution a more resource effective 

hardware-based merge sorter unit will be 

described. 

3 A special merge sorter 

Merge sort works with previously sorted 

sub-arrays, and is a good choice for sorting 

separately sorted chunks. The algorithm is very 

simple and appropriate for hardware 

implementation. It needs  O(n) size of memory 

for temporary operations; as FPGAs have 

relatively small memory, this memory 

consumption is a big disadvantage, but it gives 

the possibility of further parallelisation as 

shown later.  

The architecture presented here generates 

small scale sorted blocks and then combines 

them in a few steps to form 512K x 64 bit sorted 

output. 
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3.1 Basic sorter block 

This unit is based on insertion sort and has 

the capability to merge 32 sorted blocks 

simultaneously. The sorting architecture relies 

on a multi-level version of this merge sorter. 

<1R1

<0R0

RNew

 

Figure 2. Basic sorter block (2 cells shown) 

 

The basic building blocks of the merge 

sorter are on Figure 2. Each cell is connected to 

its two neighbours and to the input data RNew. 

The cells shift up smaller R register values to 

their next neighbour, and store the RNew value 

where it fits. The equation Ri>Ri+1 is true in 

every time instance. The truth table according to 

the result of the comparison is the following 

(The comparator output 1 stands for ‘RNew is 

bigger’): 

Table 1. comparison results and R1 cell actions 

<0 <1 action 
1 1 R1 <= R0 (shift) 

0 1 R1 <= RNew  (insert) 

0 0 keep R1 

 

As a result, the smallest element will 

eventually reach Rk, the last sorting cell. After 

that, in every clock cycle the actual smallest 

element will be shifted to Rk. 

These cells are very similar to a systolic 

processing array, a key difference is that RNew is 

carried to every node separately, decreasing the 

amount of necessary registers. However it must 

be noted that because the fan-out of RNew has 

been considerably increased, therefore the 

routing delay is also longer. This means that 

larger cell number (e.g. sorting 64 elements) 

reduces maximal operating frequency.  

This simple unit has to be extended in two 

ways to make it possible to build a full sorter on 

it. Sorted elements could be read out parallel 

from the sorter, but that would give a 64 x 32 = 

2048 bit data path, which is unnecessary, so for 

sequential reading, a shifting mechanism is 

implemented: the sorted elements are shifted out 

while the empty sorting units take part one by 

one in sorting the next set of elements, as 

described in 3.2. 

The second extension makes the sorter block 

capable of merging previously sorted sets from 

block RAMs. 

3.2   Sorter with shift/sort (‘active’) flag 

A state variable (‘active’ flag) is added to 

each sorting cell. Inactive cells shift their 

content regardless of the input, and in every 

cycle one more cell is set to be active; when the 

last cell becomes active (and thus the 32 cells 

store a new set of sorted elements), all are 

inactivated. This way 32 elements can be sorted 

in 32 cells, without the necessity to wait for the 

pipeline to be cleaned up, because the previous 

set of sorted elements is ‘protected’ by the flag. 

3.3   Merge sorter 

Merging n sorted arrays is done with the 

help of n additional address registers. If an 

element is found to be the smallest, it has to be 

picked off from the top of the array, and the next 

element has to be compared with the smallest 

ones of all the other arrays.  

In the FPGA these arrays are stored in block 

RAMs. When an array element is picked off the 

top of an array, the address of the next element 

is attached to it, so when the element is the 

smallest among the 32 sorted elements, a 

memory address will also be read out from the 

associated address register, which is in turn 

increased by one. The address gives the position 

of the next element of the same array in the 

block RAM. 
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Figure 3. Merge sorter 

 

While the block RAMs are initialized, the 

sorter block is initialized with the smallest (first) 

elements of each sorted array. This way the 

addressing mechanism guarantees that at any 

time instance the smallest elements of each 

array are in the sorter block. 

For a performance increase, instead of 

storing which arrays were exhausted during the 

merge, 264-1 is written back to the block RAM 

after each read (dual port block RAMs used 

with read-first setting, so the read and write are 

done in one clock cycle). When an address 

register reaches the end of an array, it 

overflows, and by reading 264-1, the new 

element will be the biggest in the sorting queue, 

so no 264-1 element will pop up until all arrays 

are exhausted and the sorting is finished. 

3.4 Proposed architecture 

The proposed architecture consist of 

256 MB external memory to store the whole 

input and output array, a smaller 4 MB external 

memory for parallel temporary storage, a 

32-to-1 sorter block with shift/sort (‘active’) 

flag; a pair of 1024 x 64 bit block RAMs to 

store 32 sets of 32 element big sorted arrays; a 

32-to-1 merge sorter to generate 32*32=1024 

sorted elements; a pair of 16K x 64 bit block 

RAMs to store these sorted arrays, a 16-to-1 

merge sorter that produces 16K sorted blocks 

from the 16 x 1K blocks and writes it into 

external memory, and finally, a 32-to-1 merge 

sorter that reads and merges the temporary 

external memory back into the 256 MB external 

memory with the 4 MB of 16K x 64 bit sorted 

blocks, when it is full. 

The pairs of block RAMs are used for 

parallelisation: while a previous level writes one 

of the block RAMs, the next level does merge 

sort on the previously filled part. When they are 

finished, they swap their working area. This way 

the inefficient memory utilization of merge sort 

is solved. 

4 Results 

Several measurements were done on the 

input data set. The PC test platform was an 

AMD Sempron 3000+ on 2 GHz, with 768 MB 

memory. First a quick sort (C++ qsort()) 

implementation was tested, this algorithm sorted 

the 256 MB input data in 21.0s. Introsort 

(std::sort()) was even faster: 13.61s for simply 

sorting the 64 bit elements, and 9.72s when a 

bucket sort preceded the sorting. 

The test hardware was a Virtex-II 6000 at 

speed grade -4. It has an external SDRAM 

operating at 100 MHz @ 64 bit, its data rate is 

6400 Mbps = 800 MB/s. The basic sorter block 

was implemented with 20 bit  comparisons for 

the same size of sorting keys, operating at a 

speed over 100 MHz, so it was capable to 

handle the input data at maximal frequency. 

Overhead occurs in the following situations: 

• during the initialization of the sorter blocks 

• when the block RAMs are swapped 

• during the last 16K block write, when there 

is no memory read simultaneously to write 

The different overhead factors sum up to a 13% 

maximal performance loss. Sorting 512K x 64 

bit chunks is done in not much more than one 

full memory read and full memory write cycle, 

resulting in a 0.64s * 1.13 < 1s performance for 

sorting 256 MB (32M) of 64 bit elements into 

512K blocks. 
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