

 1

 International
Carpathian Control

Conference ICCC’ 2006
Rožnov pod Radhoštěm,

CZECH REPUBLIC
May 29-31, 2006

EFFICIENT SORTING ARCHITECTURES IN FPGA

András SZÉLL and Béla FEHÉR
Department of Measurement and Information Systems,

BUTE – Budapest University of Technology and Economics,

Budapest, Hungary, {szell,feher}@mit.bme.hu

Abstract: This paper presents and compares some major hardware and embedded software sorting

solutions, with a special care for methods whose implementation can be efficiently done in FPGA.

Distributed sorting in a processor network is considered. For specific data sets a special merge-sorting

architecture is presented, that consists of block RAM based merge sorters fed by a sorting network.

Measurements and comparisons to other existing solutions, especially to sorting performance of PCs

are also discussed in the paper.

Key words: sorting, FPGA, merge sort, parallel comparison

1 Introduction: scope and purpose
of embedded sorting

Sorting algorithms are a very well known

and thoroughly analyzed part of computer

science. Many methods and architectures have

been discovered and optimized, yet for specific

input data in a special environment, the

algorithms that are usually meant to be ‘optimal’

(quick sort and heap sort among others) are not

the best solution.

For FPGA-accelerated algorithms, sorting is

sometimes an intermediate step for following

computations, and in-place sorting is necessary

if the communication costs are too high or if an

external PC-based sorting is not a possible

solution. FPGAs have handicaps in the domain

of sorting algorithms against current desktop

computers: the smaller memory and slower

clock speed, the lack of fast L1 and L2 caches

makes sorting generally less cost-efficient,

especially if data can be accessed only

sequentially from the memory.

One important factor was to achieve the

performance of desktop computers for a well

defined type of data set. The target architecture

was a Xilinx Virtex-II 6000, thus some of the

presented sorting solutions rely on its hardware

resources.

2 Sorting architectures

For the most effective resource utilization,

different sorting methods may be combined

together. Such combination is the std::sort()

method of C++ STL: it is an introsort

implementation that combines quicksort and

heapsort, giving a worst-case runtime of

O(n log n). This is an asymptotically optimal

solution of comparison based sorting on a von

Neumann architecture computer. [Musser]

For such complex algorithms a hardware

implementation is not viable, still there is a

possibility to outperform these algorithms with

less sophisticated solutions utilizing the

parallelization possibilities of the hardware.

Merge sort is more hardware-friendly, it is a

basic sorting algorithm with O(n log n)

computational complexity. Merge-sorting N

elements is done by sorting its two halves

separately, and then merging the two sorted

parts with N-1 comparisons.

 2

2.1 Sorting network

A sorting network is a simple pipelined

architecture of compare and swap units

organized in a way that the parallel input data

gets sorted as it is streamed through the pipeline.

This architecture is optimal for high input

data rate, where only small (≤32) sets have to be

sorted, as its hardware complexity is

O(n (log n)2) comparators for n input elements.

The network sorts n elements in every clock

cycle. [Lang]

Figure 1. 6-stage sorting network for n=8

2.2 Systolic processing arrays

Systolic processing arrays are simple sorting

units connected to their neighbours. Elements

are compared and transferred to the neighbours

in a way that sorting is done simultaneously

with the load of new elements. After data is

loaded, the sorted output is ready to be read out

from the processing array. The array

connections can either be linear or two

dimensional, resulting in different resource

demands and different performance. A good

systolic processing solution is presented in

[Bednara].

2.3 Embedded processors

Soft core processors in FPGA like

PicoBlaze or MicroBlaze give a good

opportunity for parallel sorting, as they can be

easily connected to form a processor network.

These processors run software sorting

algorithms, and they are best if the comparison

itself is a complex operation. In this case there is

no possibility to have hundreds of comparators

due to hardware limitations, so brute force

hardware implementations are not possible. As

the comparison operation is expensive, complex

software implementations with small

comparison counts are better. The operator itself

can be partially or fully implemented in

hardware and accessed as an extended

instruction (e.g. via FSL in MicroBlaze), giving

a performance boost for the otherwise slow 50-

100 MHz soft core processor. If multiple

processors fit in the resource budget, their sorted

output can be merge-sorted, either with a

specific merger hardware, or with a higher

performance embedded hard core processor.

The main bottleneck of sorting in soft core

processor hierarchies is the block RAM size of

FPGAs and the slow speed of these cores in

comparison to PC based solutions. The

embedded memory is a limited resource, and

program code also consumes it (the MicroBlaze

implementation of standard C qsort() routine

consumes 4K of memory, and there is only

324K of BRAM memory available in a Virtex-II

6000, which is a considerably big FPGA). The

available memory limits the maximum size of

sorted data blocks.

2.4 Mixed architectures

If an algorithm works in the FPGA’s block

RAMs it is bounded by size limits. The possible

block size of sorted elements is too small, so

many rounds of merge sort has to be performed.

For this purpose [Bednara] shows the usage of

microprocessors as final merger units; instead of

that solution a more resource effective

hardware-based merge sorter unit will be

described.

3 A special merge sorter

Merge sort works with previously sorted

sub-arrays, and is a good choice for sorting

separately sorted chunks. The algorithm is very

simple and appropriate for hardware

implementation. It needs O(n) size of memory

for temporary operations; as FPGAs have

relatively small memory, this memory

consumption is a big disadvantage, but it gives

the possibility of further parallelisation as

shown later.

The architecture presented here generates

small scale sorted blocks and then combines

them in a few steps to form 512K x 64 bit sorted

output.

 3

3.1 Basic sorter block

This unit is based on insertion sort and has

the capability to merge 32 sorted blocks

simultaneously. The sorting architecture relies

on a multi-level version of this merge sorter.

<1R1

<0R0

RNew

Figure 2. Basic sorter block (2 cells shown)

The basic building blocks of the merge

sorter are on Figure 2. Each cell is connected to

its two neighbours and to the input data RNew.

The cells shift up smaller R register values to

their next neighbour, and store the RNew value

where it fits. The equation Ri>Ri+1 is true in

every time instance. The truth table according to

the result of the comparison is the following

(The comparator output 1 stands for ‘RNew is

bigger’):

Table 1. comparison results and R1 cell actions

<0 <1 action
1 1 R1 <= R0 (shift)

0 1 R1 <= RNew (insert)

0 0 keep R1

As a result, the smallest element will

eventually reach Rk, the last sorting cell. After

that, in every clock cycle the actual smallest

element will be shifted to Rk.

These cells are very similar to a systolic

processing array, a key difference is that RNew is

carried to every node separately, decreasing the

amount of necessary registers. However it must

be noted that because the fan-out of RNew has

been considerably increased, therefore the

routing delay is also longer. This means that

larger cell number (e.g. sorting 64 elements)

reduces maximal operating frequency.

This simple unit has to be extended in two

ways to make it possible to build a full sorter on

it. Sorted elements could be read out parallel

from the sorter, but that would give a 64 x 32 =

2048 bit data path, which is unnecessary, so for

sequential reading, a shifting mechanism is

implemented: the sorted elements are shifted out

while the empty sorting units take part one by

one in sorting the next set of elements, as

described in 3.2.

The second extension makes the sorter block

capable of merging previously sorted sets from

block RAMs.

3.2 Sorter with shift/sort (‘active’) flag

A state variable (‘active’ flag) is added to

each sorting cell. Inactive cells shift their

content regardless of the input, and in every

cycle one more cell is set to be active; when the

last cell becomes active (and thus the 32 cells

store a new set of sorted elements), all are

inactivated. This way 32 elements can be sorted

in 32 cells, without the necessity to wait for the

pipeline to be cleaned up, because the previous

set of sorted elements is ‘protected’ by the flag.

3.3 Merge sorter

Merging n sorted arrays is done with the

help of n additional address registers. If an

element is found to be the smallest, it has to be

picked off from the top of the array, and the next

element has to be compared with the smallest

ones of all the other arrays.

In the FPGA these arrays are stored in block

RAMs. When an array element is picked off the

top of an array, the address of the next element

is attached to it, so when the element is the

smallest among the 32 sorted elements, a

memory address will also be read out from the

associated address register, which is in turn

increased by one. The address gives the position

of the next element of the same array in the

block RAM.

 4

B

R

A

M

addr

address of next

element in same block

sorted

output

basic
sorter
block

R

addr

R

addr

read next R,

write: 264-1

+1

Figure 3. Merge sorter

While the block RAMs are initialized, the

sorter block is initialized with the smallest (first)

elements of each sorted array. This way the

addressing mechanism guarantees that at any

time instance the smallest elements of each

array are in the sorter block.

For a performance increase, instead of

storing which arrays were exhausted during the

merge, 264-1 is written back to the block RAM

after each read (dual port block RAMs used

with read-first setting, so the read and write are

done in one clock cycle). When an address

register reaches the end of an array, it

overflows, and by reading 264-1, the new

element will be the biggest in the sorting queue,

so no 264-1 element will pop up until all arrays

are exhausted and the sorting is finished.

3.4 Proposed architecture

The proposed architecture consist of

256 MB external memory to store the whole

input and output array, a smaller 4 MB external

memory for parallel temporary storage, a

32-to-1 sorter block with shift/sort (‘active’)

flag; a pair of 1024 x 64 bit block RAMs to

store 32 sets of 32 element big sorted arrays; a

32-to-1 merge sorter to generate 32*32=1024

sorted elements; a pair of 16K x 64 bit block

RAMs to store these sorted arrays, a 16-to-1

merge sorter that produces 16K sorted blocks

from the 16 x 1K blocks and writes it into

external memory, and finally, a 32-to-1 merge

sorter that reads and merges the temporary

external memory back into the 256 MB external

memory with the 4 MB of 16K x 64 bit sorted

blocks, when it is full.

The pairs of block RAMs are used for

parallelisation: while a previous level writes one

of the block RAMs, the next level does merge

sort on the previously filled part. When they are

finished, they swap their working area. This way

the inefficient memory utilization of merge sort

is solved.

4 Results

Several measurements were done on the

input data set. The PC test platform was an

AMD Sempron 3000+ on 2 GHz, with 768 MB

memory. First a quick sort (C++ qsort())

implementation was tested, this algorithm sorted

the 256 MB input data in 21.0s. Introsort

(std::sort()) was even faster: 13.61s for simply

sorting the 64 bit elements, and 9.72s when a

bucket sort preceded the sorting.

The test hardware was a Virtex-II 6000 at

speed grade -4. It has an external SDRAM

operating at 100 MHz @ 64 bit, its data rate is

6400 Mbps = 800 MB/s. The basic sorter block

was implemented with 20 bit comparisons for

the same size of sorting keys, operating at a

speed over 100 MHz, so it was capable to

handle the input data at maximal frequency.

Overhead occurs in the following situations:

• during the initialization of the sorter blocks

• when the block RAMs are swapped

• during the last 16K block write, when there

is no memory read simultaneously to write

The different overhead factors sum up to a 13%

maximal performance loss. Sorting 512K x 64

bit chunks is done in not much more than one

full memory read and full memory write cycle,

resulting in a 0.64s * 1.13 < 1s performance for

sorting 256 MB (32M) of 64 bit elements into

512K blocks.

References

MUSSER, D. R. 1997. Introspective Sorting and

Selection Algorithms, Software − Practice

and Experience 27

LANG, H. W. 2005. Sorting Networks,

http://www.iti.fh-flensburg.de/lang/algorith

men/sortieren/networks/sortieren.htm

BEDNARA, M., BEYER, O., TEICH, J., WANKA, R.

2000. Hardware-Supported Sorting: Design

and Tradeoff Analysis. In 3rd Workshop on

System Design Automation, Paderborn,

Germany, 2000, pp 37-44.

