
PARALLEL SORTING ALGORITHMS IN FPGA

András SZÉLL
Advisor: Béla FEHÉR

I. Introduction
Sorting algorithms have been investigated since the beginning of computing. There’s a lot of

well-known and thoroughly analyzed, optimized algorithms for different problem sets, with different
average runtimes and memory needs. For specific input data and specific computer architectures,
there isn’t a general “best of all” algorithm, sorting algorithms like quick sort that tend to be fast on
average, may be less efficient in special cases.

In this paper I describe some major sorting algorithms and architectures taken into consideration
and present a method to create fast, hardware-efficient and deterministic sorting solution for a
specific data set in molecule data clustering on a Virtex-II FPGA. As data clustering is an often
applied method in bioinformatics, efficient sorting is a vital intermediate step.

II. Sorting architectures
Most sorting algorithms consist of three main steps: read, compare and store – sorting is a memory

intensive task. For finding a good sorting solution, memory operations has to be performed fast and
the algorithm must be smart enough to reduce the number of necessary operations. As general
purpose processors have extremely fast L1 and L2 caches and clock frequencies several times higher
than in any processor implemented in FPGA, their sorting performance can be achieved only by
higher level of parallelism in embedded applications.

For parallel operations, there are several different possibilities [1].
Sorting networks (see Figure 1) have a great performance but only for
limited data count, as their hardware requirements increase exponentially.
Sorting with mesh-connected processor arrays is an interesting method,
but only for limited data sizes. Another way for parallel sorting is using
several processors and a more sophisticated data distribution mechanism.
These processors can be either MicroBlaze or PicoBlaze processors
(according to the complexity of the sorting algorithm), a Virtex-II 6000
may implement 8-12 MicroBlaze processors and much more PicoBlazes.

All these solutions are limited by the speed of the input/output memory and the hardware resources
of the FPGA, so for the optimal performance, these attributes and the type of the input data has to be
considered.

III. Input data and hardware limitations
The input data is a 256 megabyte set

of 64 bit elements, as on Figure 2. Data
has to be sorted in A, R, B order;
storage also follows this order. This
way either 32/64 bit integer
comparisons or bit-wise comparisons can be carried out. The algorithm which generates the data
performs a bucket sort on index A with a bucket size of 128 indexes, and in our case sorting by B
index is unnecessary when using stable sorting algorithms ([2], e.g. merge sort).

Figure 1: Sorting network

Figure 2: Input data format

Input data is stored in a 100 MHz, 64 bit wide external SDRAM memory, while the parallel
sorting process can use the internal block RAMs and distributed RAMs. In Virtex-II 6000 there are
144 block RAMs with 18Kbit in each block. They are best utilized as 512x64 bit dual port modules
by coupling them, this way a 100 MHz clock speed can be easily achieved with double speed for
read operations. Another external memory is present for storage of partial results.

Input data has been thoroughly analyzed by simulations on data sets extracted from real molecule
databases. The deviation of the number of pairs at a specific A index is much higher than the
deviation in buckets of 128 A indexes, resulting in sub-optimal hardware utilization, though due to
the greater element count, sorting will take much more time in the latter case. Merge block sizes are
set according to the results of the analysis.

IV. Parallel merge sorting
The main concept of the recursive merge sort is the following: divide the unsorted elements into

two equal size sublists, sort the sublists and merge the two sorted lists into one.
Merge sort is an O(n log(n)) linear algorithm [2]. (Real parallel algorithms may have an

asymptotic complexity of O(n), but they need extreme hardware resources, so they are not feasible
for our data set, where data is read in from a linear memory.) In general it is slower than quicksort,
but there is smaller difference in its best and worst case run lengths unlike in quicksort, making
hardware timing optimizations easier, and its simplicity results in a smaller hardware complexity.
Merge sort needs 2n memory for sorting n elements – a big disadvantage that has to be addressed as
memory limitation is a bottleneck of the sorting procedure.

The proposed algorithm is a two-round merge sort with a previous 8-element sorting network to
reduce recursive complexity. Unsorted data is written into the 32 merge cells via this net; then in
log2(512/8)=6 merge cycles, data is sorted by these units in parallel (each cell sorts its 512 elements
in 2x512 places). Storing the results of the cells is done via a binary tree which sorts the 32*512
elements on the fly; while storing the results, the next set of data is read into the empty half of the
merge cells. After sorting each 16384-element block of a bucket, these blocks are merged from the
temporary memory and the sorted bucket is written over the unsorted input.

 Figure 3: Sorting steps – numbers between sorting steps show the size of sorted blocks

V. Conclusion
The proposed architecture sorts the input data in 1 memory read cycle (33M steps), 1 memory

write cycle (33M) and 6 merge cycles per 16K-blocks (>6.3M steps) time, with deterministic run
times. The architecture depends on input data properties and hardware features, but the algorithm
itself is much more general. The objective to get the sorting speed of Pentium 4 class processors on
Virtex-II FPGAs was reached.

References
[1] H.W. Lang, Sequential and parallel sorting algorithms, Fachhochschule Flensburg, 2000,

URL: http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/algoen.htm
[2] Sorting algorithm, Wikipedia, 2005, URL: http://en.wikipedia.org/wiki/Sorting_algorithm

 x32

unsorted 8

<524288 16384

16384 512 Ext. RAM
unsorted data
(in buckets of

128 A indexes)

8-element
wide

sorting net

2x512
element

merge cell

32 to 1
merge tree

sorted data

Ext. RAM
temporary

storage

32 to 1
 merge tree

